Regulated Grammars and Automata

Alexander Meduna and Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61200 Brno, Czech Republic http://www.fit.vutbr.cz/~\{meduna,izemek\}

BRNO UNIVERSITY OF TECHNOLOGY

Based on

Alexander Meduna and Petr Zemek
Regulated Grammars and Automata
Springer, New York, pp. 680, 2014

- Part I: An Introduction to the Book

Basic Idea
General Info Contents

- Part II: A Sample: One-Sided Random Context Grammars

Basic Idea
Definitions and Examples
Generative Power
Normal Forms
Reduction
Other Topics of Investigation

- a grammar or an automaton based upon a finite set of rules R

Example

A context-free grammar with the set of rules R :

$$
\text { R: } \begin{aligned}
S & \rightarrow A B C \\
A & \rightarrow a A \\
B & \rightarrow b B \\
C & \rightarrow c C \\
A & \rightarrow a \\
B & \rightarrow b \\
C & \rightarrow c
\end{aligned}
$$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

$S \Rightarrow A B C$
$\Rightarrow \quad a A B C$
$\Rightarrow \quad a A b B C$
$\Rightarrow \quad a A b B c C$
$\Rightarrow \quad a a b B c C$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :
$R: 1: S \rightarrow A B C$
2: $A \rightarrow a A$
3: $B \rightarrow b B$
4: $C \rightarrow c C$
5: $A \rightarrow a$
6: $B \rightarrow b$
7: $C \rightarrow c$

$$
\begin{array}{rlll}
S & \Rightarrow & A B C & {[1]} \\
& \Rightarrow & a A B C & {[1]} \\
& \Rightarrow & a A b B C & {[3]} \\
& \Rightarrow & a A b B c C & {[4]} \\
& \Rightarrow & a a b B c C & {[4]} \\
& \Rightarrow & a a b b c C & {[6]} \\
& a a b b c c & {[7]}
\end{array}
$$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R :
$R: 1: S \rightarrow A B C$
$S \Rightarrow A B C$
$\Rightarrow \quad a A B C$
2: $A \rightarrow a A$
3: $B \rightarrow b B$
4: $C \rightarrow c C$
5: $A \rightarrow a$
6: $B \rightarrow b$
7: $C \rightarrow c$
$\Rightarrow \quad a A b B C$
$\Rightarrow a A b B c C$
\Rightarrow aabBcC [5]
\Rightarrow aabbcc [6]
\Rightarrow aabbcc [7]

$$
L(G)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

Alexander Meduna and Petr Zemek Regulated Grammars and Automata Springer, New York, pp. 680, 2014

Motivation and Subject

- an important trend in formal language theory
- since 1990, no book has been published on the subject although many papers have discussed it
© Alexander Meduna and Petr Zemek
Regulated Grammars and Automata
Springer, New York, pp. 680, 2014

Motivation and Subject

- an important trend in formal language theory
- since 1990, no book has been published on the subject although many papers have discussed it

Purpose

- theoretical: to summarize key results on the subject
- practical: to demonstrate applications of regulated grammars and automata

Focus

- power
- transformation
- reduction

Focus

- power
- transformation
- reduction

Organization

- 9 parts
- 22 chapters

Approach and Features

- theoretically oriented treatment of regulated grammars and automata
- emphasis on algorithms
- intuitive explanation
- many examples
- application perspectives

Approach and Features

- theoretically oriented treatment of regulated grammars and automata
- emphasis on algorithms
- intuitive explanation
- many examples
- application perspectives

Book Audience

- computer scientists: professionals, professors, Ph.D. students
- mathematicians
- linguists

Part I Introduction and Terminology

1 Introduction
2 Mathematical Background
3 Rudiments of Formal Language Theory

Part I Introduction and Terminology
1 Introduction
2 Mathematical Background
3 Rudiments of Formal Language Theory
Part II Regulated Grammars: Fundamentals
4 Context-Based Grammatical Regulation
5 Rule-Based Grammatical Regulation

Part III Regulated Grammars: Special Topics
6 One-Sided Versions of Random Context Grammars
7 On Erasing Rules and Their Elimination
8 Extension of Languages Resulting from Regulated Grammars
9 Sequential Rewriting over Word Monoids

Part III Regulated Grammars: Special Topics
 6 One-Sided Versions of Random Context Grammars
 7 On Erasing Rules and Their Elimination
 8 Extension of Languages Resulting from Regulated Grammars
 9 Sequential Rewriting over Word Monoids

Part IV Regulated Grammars: Parallelism
10 Regulated ETOL Grammars
11 Uniform Regulated Rewriting in Parallel
12 Parallel Rewriting over Word Monoids

Part V Regulated Grammar Systems
13 Regulated Multigenerative Grammar Systems
14 Controlled Pure Grammar Systems

Part V Regulated Grammar Systems
13 Regulated Multigenerative Grammar Systems
14 Controlled Pure Grammar Systems
Part VI Regulated Automata
15 Self-Regulating Automata
16 Automata Regulated by Control Languages

Part V Regulated Grammar Systems

13 Regulated Multigenerative Grammar Systems
14 Controlled Pure Grammar Systems
Part VI Regulated Automata
15 Self-Regulating Automata
16 Automata Regulated by Control Languages
Part VIII Related Unregulated Automata
17 Jumping Finite Automata
18 Deep Pushdown Automata

Part VIII Applications

19 Applications: Overview
20 Case Studies

Part VIII Applications

19 Applications: Overview
20 Case Studies
Part IX Conclusion
21 Concluding Remarks
22 Summary

Part II: A Sample:
 One-Sided Random Context Grammars

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P$
- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P$
- $P=P_{L} \cup P_{R}$
- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P_{L}$
- $P=P_{L} \cup P_{R}$

$$
\ldots, A \ldots \ldots
$$

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P_{R}$
- $P=P_{L} \cup P_{R}$

$$
A \ldots
$$

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P_{R}$
- $P=P_{L} \cup P_{R}$

$$
A \cdots
$$

> Illustration $$
(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}
$$ $b B C E C b A c D$

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P_{R}$
- $P=P_{L} \cup P_{R}$

$$
A \ldots
$$

Illustration
 $(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}$
 $\overleftarrow{\mathrm{bBCECb}} \triangle A C D$

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P_{R}$
- $P=P_{L} \cup P_{R}$

$$
A \ldots
$$

Illustration
 $(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}$
 $$
\overleftarrow{b B c E C b} \boxed{A} c D \Rightarrow b B c E C b \times c D
$$

Definition

A one-sided random context grammar is a quintuple

$$
G=\left(N, T, P_{L}, P_{R}, S\right)
$$

where

- N is an alphabet of nonterminals;
- T is an alphabet of terminals ($N \cap T=\emptyset$);
- P_{L} and P_{R} are two finite sets of rules of the form

$$
(A \rightarrow x, U, W)
$$

where $A \in N, x \in(N \cup T)^{*}$, and $U, W \subseteq N$;

- $S \in N$ is the starting nonterminal.

Definition

A one-sided random context grammar is a quintuple

$$
G=\left(N, T, P_{L}, P_{R}, S\right)
$$

where

- N is an alphabet of nonterminals;
- T is an alphabet of terminals ($N \cap T=\emptyset$);
- P_{L} and P_{R} are two finite sets of rules of the form

$$
(A \rightarrow x, U, W)
$$

where $A \in N, x \in(N \cup T)^{*}$, and $U, W \subseteq N$;

- $S \in N$ is the starting nonterminal.

Definition

If $(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that $|x| \geq 1$, then G is propagating.

Definition

The direct derivation \Rightarrow is defined as

$$
u A v \Rightarrow u x v
$$

if and only if

$$
(A \rightarrow x, U, W) \in P_{L}, U \subseteq \operatorname{alph}(U), \text { and } W \cap \operatorname{alph}(U)=\emptyset
$$

or

$$
(A \rightarrow x, U, W) \in P_{R}, U \subseteq \operatorname{alph}(v), \text { and } W \cap \operatorname{alph}(v)=\emptyset
$$

Note: alph (y) denotes the set of all symbols appearing in string y

Definitions (Continued)

Definition

The direct derivation \Rightarrow is defined as

$$
u A v \Rightarrow u x v
$$

if and only if

$$
(A \rightarrow x, U, W) \in P_{L}, U \subseteq \operatorname{alph}(U), \text { and } W \cap \operatorname{alph}(U)=\emptyset
$$

or

$$
(A \rightarrow x, U, W) \in P_{R}, U \subseteq \operatorname{alph}(v), \text { and } W \cap \operatorname{alph}(v)=\emptyset
$$

Note: alph (y) denotes the set of all symbols appearing in string y

Definition

The language of G is defined as

$$
L(G)=\left\{w \in T^{*}: S \Rightarrow^{*} w\right\}
$$

where \Rightarrow * is the reflexive-transitive closure of \Rightarrow.

Example

Consider the one-sided random context grammar

$$
G=\left(\{S, A, B, \bar{A}, \bar{B}\},\{a, b, c\}, P_{L}, P_{R}, S\right)
$$

where P_{L} contains
$(S \rightarrow A B, \emptyset, \emptyset)$
$(\bar{B} \rightarrow B,\{A\}, \emptyset)$
$(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)$
$(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\})$
and P_{R} contains
$(A \rightarrow a \bar{A},\{B\}, \emptyset)$
$(A \rightarrow \varepsilon,\{B\}, \emptyset)$
$(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
& S \Rightarrow A B & {[(S \rightarrow A B, \emptyset, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
& S \Rightarrow A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow & a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]} \\
& \Rightarrow & a A b B c & {[(\bar{B} \rightarrow B,\{\bar{A}\}, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow & a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]} \\
& \Rightarrow & a A b B c & {[(\bar{B} \rightarrow B,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow{ }^{*} a^{n} A b^{n} B c^{n} &
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
& (B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow & a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]} \\
& \Rightarrow & a A b B c & {[(\bar{B} \rightarrow B,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow a^{*} A a^{n} A b^{n} B c^{n} & \\
& \Rightarrow & a^{n} b^{n} B c^{n} & {[(A \rightarrow \varepsilon,\{B\}, \emptyset)]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow & a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]} \\
& \Rightarrow & a A b B c & {[(\bar{B} \rightarrow B,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a^{n} A b^{n} B c^{n} & \\
& \Rightarrow & a^{n} b^{n} B c^{n} & {[(A \rightarrow \varepsilon,\{B\}, \emptyset)]} \\
& \Rightarrow & a^{n} b^{n} c^{n} & {[(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\})]}
\end{array}
$$

Example

$$
\begin{array}{rlrl}
P_{L}: & (S \rightarrow A B, \emptyset, \emptyset) & P_{R}: & (A \rightarrow a \bar{A},\{B\}, \emptyset) \\
(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset) & (\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset) \\
(\bar{B} \rightarrow B,\{A\}, \emptyset) & & (A \rightarrow \varepsilon,\{B\}, \emptyset) \\
(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\}) & \\
S & \Rightarrow & A B & {[(S \rightarrow A B, \emptyset, \emptyset)]} \\
& \Rightarrow & a \bar{A} B & {[(A \rightarrow a \bar{A},\{B\}, \emptyset)]} \\
& \Rightarrow & a \bar{A} b \bar{B} c & {[(B \rightarrow b \bar{B} c,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a A b \bar{B} c & {[(\bar{A} \rightarrow A,\{\bar{B}\}, \emptyset)]} \\
& \Rightarrow & a A b B c & {[(\bar{B} \rightarrow B,\{\bar{A}\}, \emptyset)]} \\
& \Rightarrow & a^{n} A b^{n} B c^{n} & \\
& \Rightarrow & a^{n} b^{n} B c^{n} & {[(A \rightarrow \varepsilon,\{B\}, \emptyset)]} \\
& \Rightarrow & a^{n} b^{n} c^{n} & {[(B \rightarrow \varepsilon, \emptyset,\{A, \bar{A}\})]} \\
& & \\
& L(G)=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}
\end{array}
$$

| Generative Power

RE the family of recursively enumerable languages
CS the family of context-sensitive languages
CF the family of context-free languages

Generative Power

ORC the language family generated by one-sided random context grammars
ORC $^{-\varepsilon}$ the language family generated by propagating one-sided random context grammars

Generative Power

RC the language family generated by random context grammars
$\mathrm{RC}^{-\varepsilon}$
the language family generated by propagating random context grammars

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.
Normal Form 1
$P_{L}=P_{R}$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I
$P_{L}=P_{R}$

Normal Form II

$P_{L} \cap P_{R}=\emptyset$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I

$P_{L}=P_{R}$

Normal Form II

$P_{L} \cap P_{R}=\emptyset$
Normal Form III
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that $x \in N N \cup T \cup\{\varepsilon\}$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I
$P_{L}=P_{R}$
Normal Form II
$P_{L} \cap P_{R}=\emptyset$
Normal Form III
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that $x \in N N \cup T \cup\{\varepsilon\}$
Normal Form IV
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that $U=\emptyset$ or $W=\emptyset$

- with respect to the total number of nonterminals

Theorem
Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

- with respect to the total number of nonterminals

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

- with respect to the number of right random context nonterminals

Definition

If $(A \rightarrow x, U, W) \in P_{R}$, then A is a right random context nonterminal.

- with respect to the total number of nonterminals

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

- with respect to the number of right random context nonterminals

Definition

If $(A \rightarrow x, U, W) \in P_{R}$, then A is a right random context nonterminal.

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 2 right random context nonterminals.

- with respect to the number of right random context rules

Definition

If $p \in P_{R}$, then p is a right random context rule.

- with respect to the number of right random context rules

Definition

If $p \in P_{R}$, then p is a right random context rule.

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 2 right random context rules.

- special variants
- one-sided permitting and forbidding grammars
- left random context grammars and their variants
- special variants
- one-sided permitting and forbidding grammars
- left random context grammars and their variants
- leftmost derivations
- three types of leftmost derivations
- special variants
- one-sided permitting and forbidding grammars
- left random context grammars and their variants
- leftmost derivations
- three types of leftmost derivations
- generalized versions
- generalized one-sided forbidding grammars
- special variants
- one-sided permitting and forbidding grammars
- left random context grammars and their variants
- leftmost derivations
- three types of leftmost derivations
- generalized versions
- generalized one-sided forbidding grammars
- parsing-related versions
- LL one-sided random context grammars
- special variants
- one-sided permitting and forbidding grammars
- left random context grammars and their variants
- leftmost derivations
- three types of leftmost derivations
- generalized versions
- generalized one-sided forbidding grammars
- parsing-related versions
- LL one-sided random context grammars
- one-sided versions of other grammars
- left random context ETOL grammars

Discussion

