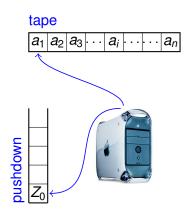
Regulated Nondeterminism in PDAs: The Non-Regular Case

Tomáš Masopust

Faculty of Information Technology Brno University of Technology Czech Republic

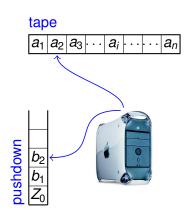
> NCMA 2009 Wroclaw, Poland

Pushdown Automaton



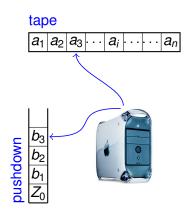
Transitions used:

Pushdown Automaton



Transitions used: r_1

Pushdown Automaton



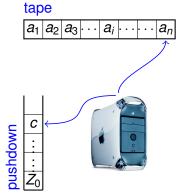
Transitions used: r_1, r_2

- Motivated by regulations in grammars.
- Given a PDA M and a control language R.

Transitions used: r_1, r_2, \ldots, r_k

It accepts the input (by a final state) if M accepts the input and

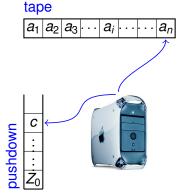
- Motivated by regulations in grammars.
- Given a PDA M and a control language R.



Transitions used: r_1, r_2, \ldots, r_k

• It accepts the input (by a final state) if M accepts the input and

- Motivated by regulations in grammars.
- Given a PDA M and a control language R.



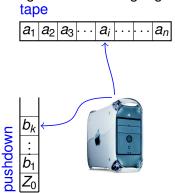
Transitions used: r_1, r_2, \ldots, r_k

• It accepts the input (by a final state) if M accepts the input and $r_1r_2...r_k \in R$.

- Regulated PDAs with regular control languages are ordinary PDAs.
- Regulated PDAs with non-regular (linear) control languages are computationally complete.

Regularly Regulated Pushdowns (Křivka, 2007)

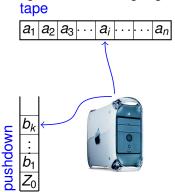
Given a PDA M and a regular control language R.



- It accepts the input if M accepts and $b_1 \dots b_K \in R$ (in each step).
- Equivalent to ordinary pushdown automata.

Regularly Regulated Pushdowns (Křivka, 2007)

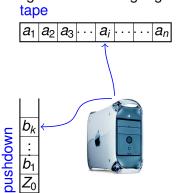
• Given a PDA M and a regular control language R.



- It accepts the input if M accepts and $b_1 \dots b_k \in R$ (in each step).
- Equivalent to ordinary pushdown automata.

Regularly Regulated Pushdowns (Křivka, 2007)

Given a PDA M and a regular control language R.



- It accepts the input if M accepts and $b_1 \dots b_k \in R$ (in each step).
- Equivalent to ordinary pushdown automata.

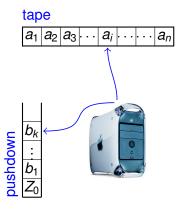
R-PDAs (Kutrib, Malcher, Werlein, 2007)

- Generalization: considering nondeterminism.
- Given a PDA M and a control language R

```
Next step is  \begin{cases} b_1 \dots b_k \in R & \textit{nondeterministic} \\ b_1 \dots b_k \notin R & \textit{deterministic} \end{cases}
```

R-PDAs (Kutrib, Malcher, Werlein, 2007)

- Generalization: considering nondeterminism.
- Given a PDA M and a control language R



Next step is

$$\begin{cases} b_1 \dots b_k \in R & nondeterministic \\ b_1 \dots b_k \notin R & deterministic \end{cases}$$

Definition

Given a PDA

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

and a control language $R \subseteq (\Gamma \setminus Z_0)^*$. \mathcal{M} is an R-PDA if:

1 for all q ∈ Q, $a ∈ Σ ∪ {λ}$, and Z ∈ Γ, δ can be written as

$$\delta(q, a, Z) = \delta_d(q, a, Z) \cup \delta_{nd}(q, a, Z)$$
,

where d = deterministic and nd = nondeterministic, and

② for all $q, q' \in Q$, $a \in \Sigma \cup \{\lambda\}$, $w \in \Sigma^*$, $Z \in \Gamma$, and $\gamma \in \Gamma^*$,

$$(q, aw, Z\gamma) \vdash_{\mathcal{M}} (q', w, \gamma'\gamma)$$
 if

- either $(q', \gamma') \in \delta_{nd}(q, a, Z)$, $Z\gamma = \gamma'' Z_0$, and $(\gamma'')^R \in R$,
- ② or $\delta_d(q, a, Z) = (q', \gamma')$, $Z\gamma = \gamma''Z_0$, and $(\gamma'')^R \notin R$.

Definition

Given a PDA

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

and a control language $R \subseteq (\Gamma \setminus Z_0)^*$. \mathcal{M} is an R-PDA if:

1 for all $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, and $Z \in \Gamma$, δ can be written as

$$\delta(q, a, Z) = \delta_d(q, a, Z) \cup \delta_{nd}(q, a, Z),$$

where d = deterministic and nd = nondeterministic, and

② for all $q, q' \in Q$, $a \in \Sigma \cup \{\lambda\}$, $w \in \Sigma^*$, $Z \in \Gamma$, and $\gamma \in \Gamma^*$,

$$(q, aw, Z\gamma) \vdash_{\mathcal{M}} (q', w, \gamma'\gamma) \text{ if}$$

- either $(q', \gamma') \in \delta_{nd}(q, a, Z)$, $Z\gamma = \gamma'' Z_0$, and $(\gamma'')^R \in R$,
- ② or $\delta_d(q, a, Z) = (q', \gamma'), Z\gamma = \gamma''Z_0$, and $(\gamma'')^R \notin R$.

Definition

Given a PDA

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

and a control language $R \subseteq (\Gamma \setminus Z_0)^*$. \mathcal{M} is an R-PDA if:

1 for all $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, and $Z \in \Gamma$, δ can be written as

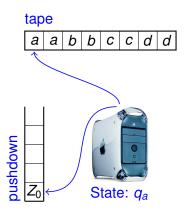
$$\delta(q, a, Z) = \delta_d(q, a, Z) \cup \delta_{nd}(q, a, Z),$$

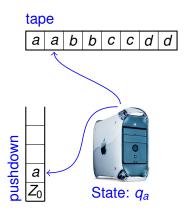
where d = deterministic and nd = nondeterministic, and

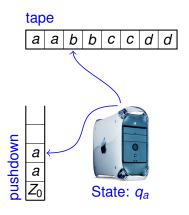
② for all $q, q' \in Q$, $a \in \Sigma \cup \{\lambda\}$, $w \in \Sigma^*$, $Z \in \Gamma$, and $\gamma \in \Gamma^*$,

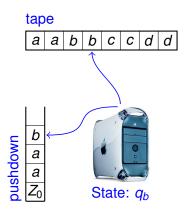
$$(q, aw, Z\gamma) \vdash_{\mathcal{M}} (q', w, \gamma'\gamma)$$
 if

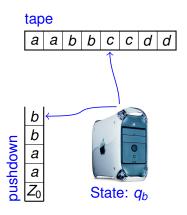
- either $(q', \gamma') \in \delta_{nd}(q, a, Z)$, $Z\gamma = \gamma''Z_0$, and $(\gamma'')^R \in R$,
- 2 or $\delta_d(q, a, Z) = (q', \gamma')$, $Z\gamma = \gamma''Z_0$, and $(\gamma'')^R \notin R$.

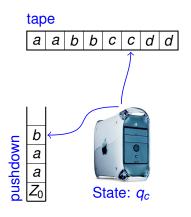


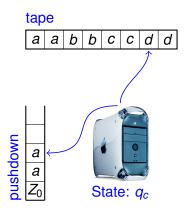


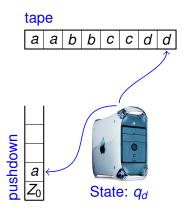


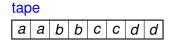


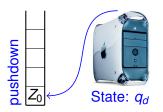


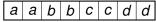


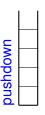












State: OK

$$T(\mathcal{M}) = \{a^n b^n c^n d^n : n \ge 1\}.$$

- R-PDAs behave nondeterministically iff their pushdown content forms a string belonging to R.
- *R* is regular, then the power of PDAs.

Theorem

- *R* is linear, then the power increases.
- What is the power of *R*-PDAs with non-regular control languages?

- R-PDAs behave nondeterministically iff their pushdown content forms a string belonging to R.
- *R* is regular, then the power of PDAs.

Theorem

- *R* is linear, then the power increases.
- What is the power of R-PDAs with non-regular control languages?

- R-PDAs behave nondeterministically iff their pushdown content forms a string belonging to R.
- R is regular, then the power of PDAs.

Theorem

- *R* is linear, then the power increases.
- What is the power of R-PDAs with non-regular control languages?

- R-PDAs behave nondeterministically iff their pushdown content forms a string belonging to R.
- *R* is regular, then the power of PDAs.

Theorem

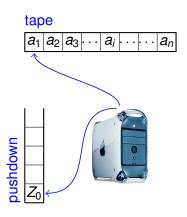
- *R* is linear, then the power increases.
- What is the power of R-PDAs with non-regular control languages?

R-PDAs: The Non-Regular Case

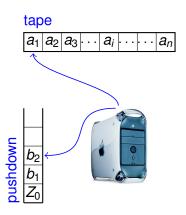
Theorem

Let $L \in RE$. Then, there is a linear language R and an R-PDA $\mathcal M$ such that

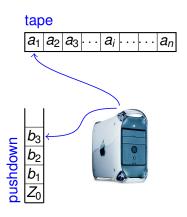
$$L = T(\mathcal{M})$$
.



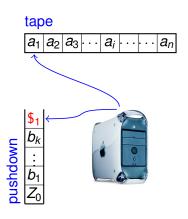
 \bullet $\,{\cal M}$ nondeterministically pushes symbols onto its pushdown.

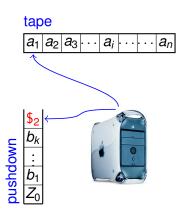


 \bullet $\,{\cal M}$ nondeterministically pushes symbols onto its pushdown.



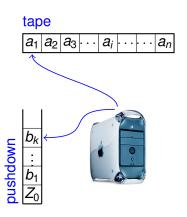
 \bullet $\,{\cal M}$ nondeterministically pushes symbols onto its pushdown.





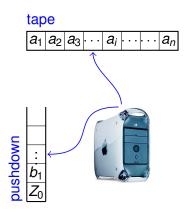
• $\gamma \$_1 \in L_1 \$_1 - YES$; $\gamma \$_2 \in L_2 \$_2$?

Proof (sketch) – $L^R = h(L_1 \cap L_2)$, L_1 , L_2 linear



• $\gamma \$_1 \in L_1 \$_1 - YES$; $\gamma \$_2 \in L_2 \$_2 - YES$; we have $\gamma \in L_1 \cap L_2$.

Proof (sketch) – $L^R = h(L_1 \cap L_2)$, L_1 , L_2 linear



• Remove b_k , read $h(b_k)^R$ from the input.

Descriptional Complexity

Corollary

Let $L \in RE$. Then, there is a linear (deterministic) context-free language R and an R-PDA

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

such that $L = T(\mathcal{M})$,

- $|Q| \le 3$,
- $|\Gamma| \leq |\Sigma| + 7$.

State-Controlled *R*-PDAs (PDAs with an oracle)

Let

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Q}_c, Z_0, F)$$

be a PDA, where $Q_c \subseteq Q$ is a set of checking states. $R \subseteq (\Gamma \setminus Z_0)^*$.

 \mathcal{M} is called a state-controlled R-PDA (R-sPDA) if for all $q, q' \in Q$, $a \in \Sigma \cup \{\lambda\}$, $w \in \Sigma^*$, $Z \in \Gamma$, and $\gamma \in \Gamma^*$,

$$(q, aw, Z\gamma) \vdash_{\mathcal{M}} (q', w, \gamma'\gamma)$$

if $(q', \gamma') \in \delta(q, a, Z)$ and

- either $q \in Q \setminus Q_c$,
- ② or $q \in Q_c$, $Z\gamma = \gamma''Z_0$, and $(\gamma'')^R \in R$.

Power

Theorem

Let R be a regular language and \mathcal{M} be an R-sPDA. Then, an equivalent PDA \mathcal{M}' can effectively be constructed.

Power

Theorem

Let R be a regular language and \mathcal{M} be an R-sPDA. Then, an equivalent PDA \mathcal{M}' can effectively be constructed.

Theorem

Let $L \in RE$. Then, there is a linear language R and an R-sPDA $\mathcal M$ such that

$$L = T(\mathcal{M})$$
.

In addition, \mathcal{M} checks the pushdown content no more than twice during any computation.

Descriptional Complexity

Corollary

Let $L \in RE$. Then, there is a linear language R and an R-sPDA

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, Q_c, Z_0, F)$$

which checks the pushdown content no more than twice during any computation, such that

- $|Q| \le 4$,
- $|Q_c| = 1$,
- $\bullet \ |\Gamma| \leq |\Sigma| + 6,$

and $L = T(\mathcal{M})$.

Open Problems

By the example, there is a (deterministic) R-sPDA \mathcal{M} , where

- $R = \{a^n b^n : n \ge 1\}$ is linear, deterministic context-free,
- $T(\mathcal{M}) = \{a^nb^nc^nd^n : n \geq 1\},$
- only one check of the pushdown content.

Open Problems

By the example, there is a (deterministic) R-sPDA \mathcal{M} , where

- $R = \{a^n b^n : n \ge 1\}$ is linear, deterministic context-free,
- $T(\mathcal{M}) = \{a^n b^n c^n d^n : n \ge 1\},$
- only one check of the pushdown content.

Open Problem

What is the power of *R*-sPDAs with one check of the pushdown content and *R* linear?

Open Problems

By the example, there is a (deterministic) R-sPDA \mathcal{M} , where

- $R = \{a^n b^n : n \ge 1\}$ is linear, deterministic context-free,
- $T(\mathcal{M}) = \{a^n b^n c^n d^n : n \ge 1\},$
- only one check of the pushdown content.

Open Problem

What is the power of *R*-sPDAs with one check of the pushdown content and *R* linear?

Open Problem

What is the power of deterministic R-sPDAs with R linear?

Open Problems (Deterministic R-sPDAs)

- Deterministic *R*-sPDAs (*R*-sDPDAs), *R* linear.
- $DCF \subset R$ -sDPDA $\subseteq REC$ (CS, detCS).
- Is $CF \subseteq R$ -sDPDA?

Open Problems (Deterministic R-sPDAs)

- Deterministic R-sPDAs (R-sDPDAs), R linear.
- $DCF \subset R$ -sDPDA $\subseteq REC$ (CS, detCS).
- Is $CF \subseteq R$ -sDPDA?

Open Problems (Deterministic R-sPDAs)

- Deterministic R-sPDAs (R-sDPDAs), R linear.
- $DCF \subset R$ -sDPDA $\subseteq REC$ (CS, detCS).
- Is *CF* ⊆ *R*-sDPDA?

Open Problems (R-PDAs, R-sPDAs, etc.)

- Closure properties: fix R and two R-PDAs (R-sPDAs) \mathcal{M}_1 and \mathcal{M}_2 . Are the languages
 - $T(\mathcal{M}_1) \cup T(\mathcal{M}_2)$
 - $T(\mathcal{M}_1) \cap T(\mathcal{M}_2)$
 - $T(\mathcal{M}_1) \cdot T(\mathcal{M}_2)$
 - $T(\mathcal{M}_1)^*$ etc.

accepted by an R-PDA (R-sPDA)?

Decidable/undecidable problems.

Open Problems (R-PDAs, R-sPDAs, etc.)

- Closure properties: fix R and two R-PDAs (R-sPDAs) M₁ and M₂. Are the languages
 - $T(\mathcal{M}_1) \cup T(\mathcal{M}_2)$
 - $T(\mathcal{M}_1) \cap T(\mathcal{M}_2)$
 - $T(\mathcal{M}_1) \cdot T(\mathcal{M}_2)$
 - T(M₁)* etc.

accepted by an R-PDA (R-sPDA)?

Decidable/undecidable problems.

Thank You