
Regulated Pushdown Automata

Alexander Meduna and Dusan Kolar

Department of Computer Science and Engineering
Technical University of Brno

Bozetechova 2, Brno 61266, Czech Republic

Abstract

The present paper suggests a new investigation area of the formal lan-
guage theory—regulated automata. Specifically, it investigates pushdown
automata that regulate the use of their rules by control languages. It proves
that this regulation has no effect on the power of pushdown automata if the
control languages are regular. However, the pushdown automata regulated
by linear control languages characterize the family of recursively enumer-
able languages. All these results are established in terms of (A) acceptance
by final state, (B) acceptance by empty pushdown, and (C) acceptance by
final state and empty pushdown. In its conclusion, this paper formulates
several open problems.

Key Words: pushdown automata; regulated accepting; control languages

1 Introduction

Over the past three or four decades, grammars that regulate the use of their rules
by various control mechanisms have played an important role in the language
theory. Indeed, literally hundreds studies were written about these grammars
(see [1], Chapter 5 in the second volume of [4], and Chapter V in [5] for an
overview of these studies). Besides grammars, however, the language theory uses
automata as fundamental language models, and this very elementary fact gives
rise to the idea of regulated automata, which are introduced and discussed in the
present paper.

More specifically, this paper introduces pushdown automata that regulate the
use of their rules by control languages. First, it demonstrates that this regula-
tion has no effect on the power of pushdown automata if the control languages
are regular. Based on this result, it points out that pushdown automata regu-
lated by analogy with the control mechanisms used in most common regulated
grammars, such as matrix grammars, are of little interest because their resulting
power coincides with the power of ordinary pushdown automata. Then, however,
the present paper proves that the pushdown automata increase their power re-
markably if they are regulated by linear languages; indeed, they characterize the
family of recursively enumerable languages.

All results given in this paper are established in terms of (A) acceptance by
final state, (B) acceptance by empty pushdown, and (C) acceptance by final state
and empty pushdown. In its conclusion, this paper discusses some open problem
areas concerning regulated automata.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [3]). Set
N = {1, 2, . . .} and I = {0, 1, 2, . . .}.

Let V be an alphabet. V ∗ represents the free monoid generated by V under the
operation of concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗−{ε};
algebraically, V + is thus the free semigroup generated by V under the operation
of concatenation.

For w ∈ V ∗, |w| and reversal(w) denote the length of w and the rever-
sal of w, respectively. Set prefix (w) = {x | x is a prefix of w}, suffix (w) =
{x | x is a suffix of w}, and alph(w) = {a | a ∈ V, and a appears in w}.

For w ∈ V + and i ∈ {1, . . . , |w|}, sym(w, i) denotes the ith symbol of w; for
instance, sym(abcd, 3) = c.

A linear grammar is a quadruple, G = (N, T, P, S), where N and T are
alphabets such that N ∩ T = ∅, S ∈ N , and P is a finite set of productions of
the form A → x, where A ∈ N and x ∈ T ∗(N ∪ {ε})T ∗. If A → x ∈ P and
u, v ∈ T ∗, then uAv ⇒ uxv [A → x] or, simply, uAv ⇒ uxv. In the standard
manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗.
The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}. A language,
L, is linear if and only if L = L(G), where G is a linear grammar.

Let G = (N, T, P, S) be a linear grammar. G represents a regular grammar if
for every A → x ∈ P , x ∈ T (N ∪ {ε}). A language, L, is regular if and only if
L = L(G), where G is a regular grammar.

A queue grammar (see [2]) is a sixtuple, Q = (V, T,W, F, S, P), where V and
W are alphabets satisfying V ∩W = ∅, T ⊆ V , F ⊆ W , S ∈ (V − T)(W − F),
and P ⊆ (V × (W − F)) × (V ∗ × W) is a finite relation such that for every
a ∈ V , there exists an element (a, b, x, c) ∈ P . If u, v ∈ V ∗W such that u = arb,
v = rzc, a ∈ V , r, z ∈ V ∗, b, c ∈ W and (a, b, z, c) ∈ P , then u ⇒ v [(a, b, z, c)]
in G or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where
n ≥ 0. Based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined
as L(Q) = {w ∈ T ∗ | S ⇒∗ wf where f ∈ F}.

Next, this paper slightly modifies the notion of a queue grammar.
A left-extended queue grammar is a sixtuple, Q = (V, T,W, F, S, P), where

V, T,W, F, S, P have the same meaning as in a queue grammar; in addition, as-
sume that # 6∈ V ∪ W . If u, v ∈ V ∗{#}V ∗W so u = w#arb, v = wa#rzc,
a ∈ V , r, z, w ∈ V ∗, b, c ∈ W , and (a, b, z, c) ∈ P , then u ⇒ v [(a, b, z, c)]
in G or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where

n ≥ 0. Based on ⇒n, define ⇒+ and ⇒∗. The language of Q,L(Q), is defined as
L(Q) = {v ∈ T ∗ | #S ⇒∗ w#vf for some w ∈ V ∗ and f ∈ F}.

Let REG , LIN , and RE denote the families of regular, linear, and recursively
enumerable languages, respectively.

3 Definitions

Consider a pushdown automaton, M , and a control language, Ξ, over M ’s rules.
Informally, with Ξ, M accepts a word, x, if and only if Ξ contains a control
word according to which M makes a sequence of moves so it reaches a final
configuration after reading x.

Formally, a pushdown automaton is a 7-tuple, M = (Q,Σ,Ω, R, s, S, F), where
Q is a finite set of states , Σ is an input alphabet , Ω is a pushdown alphabet , R is
a finite set of rules of the form Apa→ wq, where A ∈ Ω, p, q ∈ Q, a ∈ Σ ∪ {ε},
and w ∈ Ω∗, s ∈ Q is the start state, S ∈ Ω is the start symbol , F ⊆ Q is a set of
final states . In addition, this paper requires that Q, Σ, Ω are pairwise disjoint.

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ
be a bijection from R to Ψ. For simplicity, to express that ψ maps a rule,
Apa→ wq ∈ R, to ρ, where ρ ∈ Ψ, this paper writes ρ.Apa→ wq ∈ R; in other
words, ρ.Apa → wq means ψ(Apa → wq) = ρ. A configuration of M , χ, is any
word from Ω∗QΣ∗. For every x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes
a move from configuration xApay to configuration xwqy according to ρ, written
as xApay ⇒ xwqy [ρ]. Let χ be any configuration of M . M makes zero moves
from χ to χ according to ε, symbolically written as χ⇒0 χ [ε]. Let there exist a
sequence of configurations χ0, χ1, . . . , χn for some n ≥ 1 such that χi−1 ⇒ χi [ρi],
where ρi ∈ Ψ, for i = 1, . . . , n, then M makes n moves from χ0 to χn according
to ρ1 . . . ρn, symbolically written as χ0 ⇒n χn [ρ1 . . . ρn].

Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗. With Ξ, M defines the
following three types of accepted languages:

L(M,Ξ, 1)—the language accepted by final state

L(M,Ξ, 2)—the language accepted by empty pushdown

L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ Ω∗QΣ∗. If χ ∈ Ω∗F , χ ∈ Q, χ ∈ F , then χ is
a 1-final configuration, 2-final configuration, 3-final configuration, respectively.
For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈ Σ∗, and Ssw ⇒∗

χ [σ] in M for an i−final configuration, χ, and σ ∈ Ξ}.
For any family of languages, X, set RPD(X, i) = {L | L =

L(M,Ξ, i), where M is a pushdown automaton and Ξ ∈ X}, where i = 1, 2, 3.
Specifically, RPD(REG , i) and RPD(LIN , i) are central to this paper.

4 Results

This section demonstrates that CF = RPD(REG , 1) = RPD(REG , 2) =
RPD(REG , 3) and RE = RPD(LIN , 1) = RPD(LIN , 2) = RPD(LIN , 3).

Some of the following proofs involve several grammars and automata. To
avoid any confusion, these proofs sometimes specify a regular grammar, G, as
G = (V [G], P [G], S[G], T [G]) because this specification clearly expresses that
V [G], P [G], S[G], and T [G] represent G’s components. Other grammars and
automata are specified analogously whenever any confusion may exist.

Regular Control Languages

Next, this section proves that if the control languages are regular, then the reg-
ulation of pushdown automata has no effect on their power. The proof of the
following lemma presents a transformation that converts any regular grammar,
G, and any pushdown automaton, K, to an ordinary pushdown automaton, M ,
such that L(M) = L(K,L(G), 1).

Lemma 1
For every regular grammar, G, and every pushdown automaton, K, there exists
a pushdown automaton, M , such that L(M) = L(K,L(G), 1).

Proof : Let G = (N [G], T [G], P [G], S[G]) be any regular grammar, and let K =
(Q[K],Σ[K],Ω[K], R[K], s[K], S[K], F [K]) be any pushdown automaton. Next,
we construct a pushdown automaton, M , that simultaneously simulates G and
K so that L(M) = L(K,L(G), 1).

Let f be a new symbol. Define the pushdown automaton M =
(Q[M],Σ[M],Ω[M], R[M], s[M], S[M], F [M]) as Q[M] = {〈qB〉 | q ∈ Q[K], B ∈
N [G] ∪ {f}}, Σ[M] = Σ[K], Ω[M] = Ω[K], s[M] = 〈s[K]S[G]〉, S[M] = S[K],
F [M] = {〈qf〉 | q ∈ F [K]}, and R[M] = {C〈qA〉b → x〈pB〉 | a.Cqb → xp ∈
R[K], A → aB ∈ P [G]} ∪ {C〈qA〉b → x〈pf〉 | a.Cqb → xp ∈ R[K], A → a ∈
P [G]}.

Observe that a move in M according to C〈qA〉b → x〈pB〉 ∈ R[M] simulates
a move in K according a.Cqb→ xp ∈ R[K], where a is generated in G by using
A → aB ∈ P [G]. Based on this observation, it is rather easy to see that M
accepts an input word, w, if and only if K reads w and enters a final state after
using a complete word of L(G); therefore, L(M) = L(K,L(G), 1). A rigorous
proof that L(M) = L(K,L(G), 1) is left to the reader.

Theorem 2
For i ∈ {1, 2, 3}, CF = RPD(REG , i).

Proof : To prove CF = RPD(REG , 1), notice that RPD(REG , 1) ⊆ CF follows
from Lemma 1. Clearly, CF ⊆ RPD(REG , 1), so RPD(REG , 1) = CF .

By analogy with the demonstration of RPD(REG , 1) = CF , prove that CF =
RPD(REG , 2) and CF = RPD(REG , 3).

Let us point out that most fundamental regulated grammars use control mech-
anisms that can be expressed in terms of regular control languages (c.f. Theorem
V.6.1 on page 175 in [5]). However, pushdown automata introduced by analogy
with these grammars are of little or no interest because they are as powerful as
ordinary pushdown automata (see Theorem 2 above).

Linear Control Languages

The rest of this section demonstrates that the pushdown automata regulated by
linear control languages are more powerful than ordinary pushdown automata.
In fact, it proves that RE = RPD(LIN , 1) = RPD(LIN , 2) = RPD(LIN , 3).

Lemma 3
For every left-extended queue grammar, K, there exists a left-extended queue
grammar Q = (V, T,W, F, s, P) satisfying L(K) = L(Q), ! is a distinguished
member of (W −F), V = U ∪Z ∪T such that U , Z, T are pairwise disjoint, and
Q derives every z ∈ L(Q) in this way

#S ⇒+ x#b1b2 . . . bn!
⇒ xb1#b2 . . . bny1p2

⇒ xb1b2#b3 . . . bny1y2p3
...
⇒ xb1b2 . . . bn−1#bny1y2 . . . yn−1pn

⇒ xb1b2 . . . bn−1bn#y1y2 . . . ynpn+1

where n ∈ N , x ∈ U∗, bi ∈ Z for i = 1, . . . , n, yi ∈ T ∗ for i = 1, . . . , n,
z = y1y2 . . . yn, pi ∈ W − {!} for i = 1, . . . , n− 1, pn ∈ F , and in this derivation
x#b1b2 . . . bn! is the only word containing !.

Proof : Let K be any left-extended queue grammar. Convert K to a left-extended
queue grammar, H = (V [H], T [H],W [H], F [H], S[H], P [H]), such that L(K) =
L(H) and H generates every x ∈ L(H) by making two or more derivation steps
(this conversion is trivial and left to the reader).

Define the bijection α fromW toW ′, whereW ′ = {q′ | q ∈ W}, as α(q) = {q′}
for every q ∈ W . Analogously, define the bijection β from W to W ′′, where
W ′′ = {q′′ | q ∈ W}, as β(q) = {q′′} for every q ∈ W . Without any loss of
generality, assume that {1, 2}∩(V ∪W) = ∅. Set Ξ = {〈a, q, u1v, p〉 | (a, q, uv, p) ∈
P [H] for some a ∈ V, q ∈ W − F, v ∈ T ∗, u ∈ V ∗, and p ∈ W} and Γ =
{〈a, q, z2w, p〉 |(a, q, zw, p) ∈ P [H] for some a ∈ V, q ∈ W − F,w ∈ T ∗, z ∈
V ∗, and p ∈ W}. Define the relation χ from V [H] to ΞΓ so for every a ∈ V ,
χ(a) = {〈a, q, y1x, p〉〈a, q, y2x, p〉 | 〈a, q, y1x, p〉 ∈ Ξ, 〈a, q, y2x, p〉 ∈ Γ, q ∈ W −

F, x ∈ T ∗, y ∈ V ∗, p ∈ W}. Define the bijection δ from V [H] to V ′, where
V ′ = {a′ | a ∈ V }, as δ(a) = {a′}. In the standard manner, extend δ so it is
defined from (V [H])∗ to (V ′)∗. Finally, define the bijection φ from V [H] to V ′′,
where V ′′ = {a′′ | a ∈ V }, as φ(a) = {a′′}. In the standard manner, extend φ so
it is defined from (V [H])∗ to (V ′′)∗.

Define the left-extended queue grammar

Q = (V [Q], T [Q],W [Q], F [Q], S[Q], P [Q])

so that V [Q] = V [H] ∪ δ(V [H]) ∪ φ(V [H]) ∪ Ξ ∪ Γ, T [Q] = T [H], W [Q] =
W [H] ∪ α(W [H]) ∪ β(W [H]) ∪ {!}, F [Q] = β(F [H]), S[Q] = δ(S[H]), and P [V]
is constructed in this way

1. if (a, q, x, p) ∈ P [H] where a ∈ V , q ∈ W − F , x ∈ V ∗, and p ∈ W , then
add (δ(a), q, δ(x), p) and (δ(a), α(q), δ(x), α(p)) to P [Q];

2. if (a, q, xAy, p) ∈ P [H], where a ∈ V , q ∈ W − F , x, y ∈ V ∗, A ∈ V , and
p ∈ W , then add (δ(a), q, δ(x)χ(A)φ(y), α(p)) to P [Q];

3. if (a, q, yx, p) ∈ P [H], where a ∈ V , q ∈ W − F , y ∈ V ∗, x ∈ T ∗, and
p ∈ W , then add (〈a, q, y1x, p〉, α(q), φ(y), !) and (〈a, q, y2x, p〉, !, x, β(p)) to
P [Q];

4. if (a, q, y, p) ∈ P [H], where a ∈ V , q ∈ W − F , y ∈ T ∗, and p ∈ W , then
add (φ(a), β(q), y, β(p)) to P [Q].

Set U = δ(V [H])∪Ξ and Z = φ(V [H])∪Γ. Notice that Q satisfies properties
2 and 3 of Lemma 3. To demonstrate that the other two properties hold as well,
observe that H generates every z ∈ L(H) in this way

#S[H] ⇒+ x#b1b2 . . . bip1

⇒ xb1#b2 . . . bibi+1 . . . bny1p2

⇒ xb1b2#b3 . . . bibi+1 . . . bny1y2p3
...
⇒ xb1b2 . . . bi−1#bibi+1 . . . bny1y2 . . . yi−1pi

⇒ xb1b2 . . . bi#bi+1 . . . bny1y2 . . . yi−1yipi+1
...
⇒ xb1b2 . . . bn−1#bny1y2 . . . yn−1pn

⇒ xb1b2 . . . bn−1bn#y1y2 . . . ynpn+1

where n ∈ N , x ∈ V +, bi ∈ V for i = 1, . . . , n, yi ∈ T ∗ for i = 1, . . . , n,
z = y1y2 . . . yn, pi ∈ W for i = 1,∈, n, pn+1 ∈ F . Q simulates this generation of
z as follows

#S[Q] ⇒+ δ(x)#χ(b1)φ(b2 . . . bi)α(p1)
⇒ δ(x)〈b1, p1, bi+1 . . . bn1y1, p2〉#〈b1, p1, bi+1 . . . bn2y1, p2〉

φ(b2 . . . bibi+1 . . . bn)!
⇒ δ(x)χ(b1)#φ(b2 . . . bn)y1p2

⇒ δ(x)χ(b1)φ(b2)#φ(b3 . . . bn)y1y2p3
...
⇒ δ(x)χ(b1)φ(b2 . . . bn−1)#φ(bn)y1y2 . . . yn−1pn

⇒ δ(x)χ(b1)φ(b2 . . . bn)#y1y2 . . . ynpn+1

Q makes the first |x|−1 steps of #S[Q] ⇒+ δ(x)#χ(b1)φ(b2 . . . bi)α(p1) according
to productions introduced in 1; in addition, during this derivation, Q makes one
step by using a production introduced in 2. By using productions introduced in
3, Q makes the two steps

δ(x)#χ(b1)φ(b2 . . . bi)α(p0) ⇒
δ(x)〈b1, p1, bi+1 . . . bn1y1, p2〉#〈b1, p1, bi+1 . . . bn2y1, p2〉φ(b2 . . . bibi+1 . . . bn)! ⇒
δ(x)χ(b1)#φ(b2 . . . bn)y1p2

with
χ(b1) = 〈b1, p0, bi+1 . . . bn1y1, p1〉〈b1, p0, bi+1 . . . bn2y1, p2〉.

Q makes the rest of the derivation by using productions introduced in 4.
Based on the previous observation, it easy to see that Q satisfies all the four

properties stated in Lemma 3, whose rigorous proof is left to the reader.

Lemma 4
Let Q be a left-extended queue grammar that satisfies the properties of Lemma
3. Then, there exist a linear grammar, G, and a pushdown automaton, M , such
that L(Q) = L(M,L(G), 3).

Proof : Let Q = (V [Q], T [Q],W [Q], F [Q], s[Q], P [Q]) be a left-extended queue
grammar satisfying the properties of Lemma 3. Without any loss of generality,
assume that {@,£,¶} ∩ (V ∪ W) = ∅. Define the coding, ζ, from (V [Q])∗ to
{〈£as〉 | a ∈ V [Q]}∗ as ζ(a) = {〈£as〉} (s is used as the start state of the
pushdown automaton, M , defined later in this proof).

Construct the linear grammar G = (N [G], T [G], P [G], S[G]) in the following
way. Initially, set

N [G] = {S[G], 〈!〉, 〈!, 1〉} ∪ {〈f〉 | f ∈ F [Q]}

T [G] = ζ(V [Q]) ∪ {〈£§s〉, 〈£@〉} ∪ {〈£§f 〉 | f ∈ F [Q]}

P [G] = {S[G] → 〈£§s〉〈f 〉 | f ∈ F [Q]} ∪ {〈!〉 → 〈!, 1 〉〈£@〉}

Increase N [G], T [G], and P [G] by performing 1 through 3, following next.

1. for every (a, p, x, q) ∈ P [Q] where p, q ∈ W [Q], a ∈ Z, x ∈ T ∗,

N [G] = N [G] ∪ {〈apxqk〉 | k = 0, . . . , |x|} ∪ {〈p〉, 〈q〉}
T [G] = T [G] ∪ {〈£sym(y , k)〉 | k = 1 , . . . , |y |} ∪ {〈£apxq〉}
P [G] = P [G] ∪ {〈q〉 → 〈apxq|x|〉〈£apxq〉, 〈apxq0 〉 → 〈p〉}

∪ {〈apxqk〉 → 〈apxq(k − 1)〉〈£sym(x , k)〉 | k = 1 , . . . , |x |};

2. for every (a, p, x, q) ∈ P [Q] with p, q ∈ W [Q], a ∈ U , x ∈ (V [Q])∗,

N [G] = N [G] ∪ {〈p, 1〉, 〈q, 1〉}
P [G] = P [G] ∪ {〈q, 1〉 → reversal(ζ(x))〈p, 1〉ζ(a)};

3. for every (a, p, x, q) ∈ P [Q] with ap = S[Q], p, q ∈ W [Q], x ∈ (V [Q])∗,

N [G] = N [G] ∪ {〈q, 1〉}
P [G] = P [G] ∪ {〈q, 1〉 → reversal(x)〈£$s〉}.

The construction of G is completed. Set Ψ = T [G]. Ψ represents the al-
phabet of rule labels corresponding to the rules of the pushdown automaton
M = (Q[M],Σ[M],Ω[M], R[M], s[M], S[M], {e}), which is constructed next.

Initially, set Q[M] = {s[M], 〈¶!〉, b, e} (throughout the rest of this proof,
s[M] is abbreviated to s), Σ[M] = T [Q], Ω[M] = {S[M], §} ∪ V [Q], R[M] =
{〈£§s〉.S [M]s → §s} ∪ {〈£§f 〉.§〈¶f 〉 →e | f ∈ F [M]}. Increase Q[M] and R[M]
by performing A through D, following next.

A. R[M] = R[M] ∪ {〈£bs〉.as → abs | a ∈ Ω [M]− {S [M]}, b ∈ Ω [M]− {$}};

B. R[M] = R[M]∪ {〈£$s〉.as → ab | a ∈ V [Q]} ∪ {〈£a〉.ab→ b | a ∈ V [Q]};

C. R[M] = R[M] ∪ {〈£@〉.ab→ a〈¶!〉 | a ∈ Z};

D. for every (a, p, x, q) ∈ P [Q], where p, q ∈ W [Q], a ∈ Z, x ∈ (T [Q])∗,

Q[M] =Q[M] ∪ {〈¶p〉} ∪ {〈¶qu〉 | u ∈ prefix(x)}
R[M] =R[M] ∪ {〈£b〉.a〈¶qy〉b → a〈¶qyb〉 | b ∈ T [Q], y ∈ (T [Q])∗,

yb ∈ prefix(x)} ∪ {〈£apxq〉.a〈¶qx 〉 → 〈¶p〉}.

The construction of M is completed.
Notice that several components of G and M have this form: 〈x〉. Intuitively, if

x begins with £, then 〈x〉 ∈ T [G]. If x begins with ¶, then 〈x〉 ∈ Q[M]. Finally,
if x begins with a symbol different from £ or ¶, then 〈x〉 ∈ N [G].

First, we only sketch the reason why L(Q) contains L(M,L(G), 3). Ac-
cordinng to a word from L(G), M accepts every word w as

§w1 . . . wm−1wm ⇒+ §bm . . . b1an . . . a1sw1 . . . wm−1wm

⇒ §bm . . . b1an . . . a1bw1 . . . wm−1wm

⇒n §bm . . . b1bw1 . . . wm−1wm

⇒ §bm . . . b1〈¶q1〉w1 . . . wm−1wm

⇒|w1| §bm . . . b1〈¶q1w1〉w2 . . . wm−1wm

⇒ §bm . . . b2〈¶q2〉w2 . . . wm−1wm

⇒|w2| §bm . . . b2〈¶q2w2〉w3 . . . wm−1wm

⇒ §bm . . . b3〈¶q3〉w3 . . . wm−1wm
...
⇒ §bm〈¶qm〉wm

⇒|wm| §bm〈¶qmwm〉
⇒ §〈¶qm+1〉
⇒ e

where w = w1 . . . wm−1wm, a1 . . . anb1 . . . bm = x1 . . . xn+1, and R[Q] contains
(a0, p0, x1, p1), (a1, p1, x2, p2), . . . , (an, pn, xn+1, q1), (b1, q1, w1, q2), (b2, q2, w2, q3),
. . . , (bm, qm, wm, qm+1). According to these members of R[Q], Q makes

#a0p0 ⇒ a0#y0x1p1 [(a0, p0, x1, p1)]
⇒ a0a1#y1x2p2 [(a1, p1, x2, p2)]
⇒ a0a1a2#y2x3p3 [(a2, p2, x3, p3)]
...
⇒ a0a1a2 . . . an−1#yn−1xnpn [(an−1, pn−1, xn, pn)]
⇒ a0a1a2 . . . an#ynxn+1q1 [(an, pn, xn+1, q1)]
⇒ a0 . . . anb1#b2 . . . bmw1q2 [(b1, q1, w1, q2)]
⇒ a0 . . . anb1b2#b3 . . . bmw1w2q3 [(b2, q2, w2, q3)]
...
⇒ a0 . . . anb1 . . . bm−1#bmw1w2 . . . wm−1qm [(bm−1, qm−1, wm−1, qm)]
⇒ a0 . . . anb1 . . . bm#w1w2 . . . wmqm+1 [(bm, qm, wm, qm+1)]

Therefore, L(M,L(G), 3) ⊆ L(Q).
More formally, to demonstrate that L(Q) contains L(M,L(G), 3), consider

any h ∈ L(G). G generates h as

S[G]⇒ 〈£§s〉〈qm+1 〉
⇒|wm|+1 〈£§s〉〈qm〉tm〈£bmqmwmqm+1 〉
⇒|wm−1|+1 〈£§s〉〈qm−1 〉tm−1 〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1 〉
...
⇒|w1|+1 〈£§s〉〈q1 〉o
⇒|w1|+1 〈£§s〉〈q1 , 1 〉〈£@〉o

[〈q1〉 → 〈q1, 1〉〈£@〉]

⇒ 〈£§s〉ζ(reversal(xn+1))〈pn , 1 〉〈£an〉〈£@〉o

[〈q1, 1〉 → reversal(ζ(xn+1))〈pn, 1〉〈£an〉〈£@〉]

⇒ 〈£§s〉ζ(reversal(xnxn+1))〈pn−1 , 1 〉〈£an−1 〉〈£an〉〈£@〉o
[〈pn, 1〉 → reversal(ζ(xn))〈pn−1, 1〉〈£an−1 〉]

...

⇒ 〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1 , 1 〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o
[〈p2, 1〉 → reversal(ζ(x2))〈p1, 1〉〈£a1 〉]

⇒ 〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$s〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o
[〈p1, 1〉 → reversal(ζ(x1))〈£$s〉]

where n,m ∈ N ; ai ∈ U for i = 1, . . . , n; bk ∈ Z for k =
1, . . . ,m; xl ∈ V ∗ for l = 1, . . . , n + 1; pi ∈ W for i = 1, . . . , n;
ql ∈ W for l = 1, . . . ,m + 1 with q1 = ! and qm+1 ∈ F ; tk =
〈£sym(wk , 1)〉 . . . 〈£sym(wk , |wk | − 1)〉〈£sym(wk , |wk |)〉 for k = 1, . . . ,m; o =
t1〈£b1q1w1q2 〉 . . . 〈£§s〉〈qm−1 〉tm−1 〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1 〉;
h = 〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o.

In greater detail, G makes S[G] ⇒ 〈£§s〉〈qm+1 〉 according to S[G] →
〈£§s〉〈qm+1 〉. Furthermore, G makes

〈£§s〉〈qm+1 〉
⇒|wm|+1 〈£§s〉〈qm〉tm〈£bmqmwmqm+1 〉
⇒|wm−1|+1 〈£§s〉〈qm−1 〉tm−1 〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1 〉
...
⇒|w1|+1 〈£§s〉〈q1 〉o

according to productions introduced in step 1. Then, G makes

〈£§s〉〈q1 〉o ⇒ 〈£§s〉〈q1 , 1 〉〈£@〉o

according to 〈!〉 → 〈!, 1〉〈£@〉 (recall that q1 =!). After this step, G makes

〈£§s〉〈q1 , 1 〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(xn+1))〈pn , 1 〉〈£an〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(xnxn+1))〈pn−1 , 1 〉〈£an−1 〉〈£an〉〈£@〉o
...
⇒ 〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1 , 1 〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o

according to productions introduced in step 2. Finally, according to 〈p1, 1〉 →
reversal(ζ(x1))〈£$〉, which is introduced in step 3, G makes

〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1 , 1 〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$〉〈£a1 〉〈£a2 〉 . . . 〈£an〉〈£@〉o

If a1 . . . anb1 . . . bm differs from x1 . . . xn+1, then M does not accept according to
h. Assume that a1 . . . anb1 . . . bm = x1 . . . xn+1. At this point, according to h, M
makes this sequence of moves

§w1 . . . wm−1wm ⇒+ §bm . . . b1an . . . a1sw1 . . . wm−1wm

⇒ §bm . . . b1an . . . a1bw1 . . . wm−1wm

⇒n §bm . . . b1bw1 . . . wm−1wm

⇒ §bm . . . b1〈¶q1〉w1 . . . wm−1wm

⇒|w1| §bm . . . b1〈¶q1w1〉w2 . . . wm−1wm

⇒ §bm . . . b2〈¶q2〉w2 . . . wm−1wm

⇒|w2| §bm . . . b2〈¶q2w2〉w3 . . . wm−1wm

⇒ §bm . . . b3〈¶q3〉w3 . . . wm−1wm
...
⇒ §bm〈¶qm〉wm

⇒|wm| §bm〈¶qmwm〉
⇒ §〈¶qm+1〉
⇒ e

In other words, according to h, M accepts w1 . . . wm−1wm. Return to the
generation of h in G. By the construction of P [G], this generation im-
plies that R[Q] contains (a0, p0, x1, p1), (a1, p1, x2, p2), . . . , (aj−1, pj−1, xj, pj),
. . . , (an, pn, xn+1, q1), (b1, q1, w1, q2), (b2, q2, w2, q3), . . . , (bm, qm, wm, qm+1).

Thus, in Q,

#a0p0 ⇒ a0#y0x1p1 [(a0, p0, x1, p1)]
⇒ a0a1#y1x2p2 [(a1, p1, x2, p2)]
⇒ a0a1a2#y2x3p3 [(a2, p2, x3, p3)]
...
⇒ a0a1a2 . . . an−1#yn−1xnpn [(an−1, pn−1, xn, pn)]
⇒ a0a1a2 . . . an#ynxn+1q1 [(an, pn, xn+1, q1)]
⇒ a0 . . . anb1#b2 . . . bmw1q2 [(b1, q1, w1, q2)]
⇒ a0 . . . anb1b2#b3 . . . bmw1w2q3 [(b2, q2, w2, q3)]
...
⇒ a0 . . . anb1 . . . bm−1#bmw1w2 . . . wm−1qm [(bm−1, qm−1, wm−1, qm)]
⇒ a0 . . . anb1 . . . bm#w1w2 . . . wmqm+1 [(bm, qm, wm, qm+1)]

Therefore, w1w2 . . . wm ∈ L(Q). Consequently, L(M,L(G), 3) ⊆ L(Q).
A proof that that L(Q) ⊆ L(M,L(G), 3) is left to the reader. As L(Q) ⊆

L(M,L(G), 3) and L(M,L(G), 3) ⊆ L(Q), L(Q) = L(M,L(G), 3). Therefore,
Lemma 4 holds.

Theorem 5
For i ∈ {1, 2, 3}, RE = RPD(LIN , i).

Proof : Obviously, RPD(LIN , 3) ⊆ RE . To prove RE ⊆ RPD(LIN , 3), consider
any recursively enumerable language, L ∈ RE. By Theorem 2.1 in [2], L(Q) = L,
for a queue grammar. Clearly, there exists a left-extended queue grammar, Q′,
so L(Q) = L(Q′). Furthermore, by Lemmas 3 and 4, L(Q′) = L(M,L(G), 3), for
a linear grammar, G, and a pushdown automaton, M . Thus, L = L(M,L(G), 3).
Hence, RE ⊆ RPD(LIN , 3). As RPD(LIN , 3) ⊆ RE and RE ⊆ RPD(LIN , 3),
RE = RPD(LIN , 3).

By analogy with the demonstration of RE = RPD(LIN , 3), prove RE =
RPD(LIN , i) for i = 1, 2.

5 Future Investigation

This section suggests some open problem areas concerning regulated automata.
First, it states four new areas of investigation. Then, it makes a note about a
relation of regulated automata to the classical formal language theory.

New investigation areas

A. For i = 1, . . . , 3, consider RPD(X, i), where X is a language family satis-
fying REG ⊂ X ⊂ LIN ; for instance, set X equal to the family of minimal
linear languages. Compare RE with RPD(X, i).

B. Investigate special cases of regulated pushdown automata, such as their
deterministic versions.

C. By analogy with regulated pushdown automata, introduce and study some
other types of regulated automata.

D. Investigate the descriptional complexity of regulated pushdown automata.

Classical investigation areas

As already pointed out, this paper has discussed regulated automata as a new
investigation field of the formal language theory. Therefore, it has defined all
notions and established all results in terms of this new field. However, this ap-
proach does not rule out a relation of the achieved results to the classical formal
language theory. Specifically, Theorem 5 can be viewed as a new characteriza-
tion of RE and compared with other well-known characterizations of this family
(see pages 180 through 184 in the first volume of [4] for an overview of these
characterizations).

References

[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory .
Springer, New York, 1989.

[2] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular
Pattern Grammars, Acta Informatica, Vol. 20, pp. 391–411, 1983.

[3] Meduna, A.: Automata and Languages: Theory and Applications . Springer,
London, 2000.

[4] Rozenberg, G. and Salomaa, A. (eds.): Handbook of Formal Languages;
Volumes 1 through 3 . Springer, 1997.

[5] Salomaa, A.: Formal Languages . Academic Press, 1973.

