# Regulated Pushdown Automata 

Alexander Meduna and Dusan Kolar<br>Department of Computer Science and Engineering<br>Technical University of Brno<br>Bozetechova 2, Brno 61266, Czech Republic


#### Abstract

The present paper suggests a new investigation area of the formal language theory-regulated automata. Specifically, it investigates pushdown automata that regulate the use of their rules by control languages. It proves that this regulation has no effect on the power of pushdown automata if the control languages are regular. However, the pushdown automata regulated by linear control languages characterize the family of recursively enumerable languages. All these results are established in terms of (A) acceptance by final state, (B) acceptance by empty pushdown, and (C) acceptance by final state and empty pushdown. In its conclusion, this paper formulates several open problems.


Key Words: pushdown automata; regulated accepting; control languages

## 1 Introduction

Over the past three or four decades, grammars that regulate the use of their rules by various control mechanisms have played an important role in the language theory. Indeed, literally hundreds studies were written about these grammars (see [1], Chapter 5 in the second volume of [4], and Chapter V in [5] for an overview of these studies). Besides grammars, however, the language theory uses automata as fundamental language models, and this very elementary fact gives rise to the idea of regulated automata, which are introduced and discussed in the present paper.

More specifically, this paper introduces pushdown automata that regulate the use of their rules by control languages. First, it demonstrates that this regulation has no effect on the power of pushdown automata if the control languages are regular. Based on this result, it points out that pushdown automata regulated by analogy with the control mechanisms used in most common regulated grammars, such as matrix grammars, are of little interest because their resulting power coincides with the power of ordinary pushdown automata. Then, however, the present paper proves that the pushdown automata increase their power remarkably if they are regulated by linear languages; indeed, they characterize the family of recursively enumerable languages.

All results given in this paper are established in terms of (A) acceptance by final state, (B) acceptance by empty pushdown, and (C) acceptance by final state and empty pushdown. In its conclusion, this paper discusses some open problem areas concerning regulated automata.

## 2 Preliminaries

We assume that the reader is familiar with the language theory (see [3]). Set $\mathcal{N}=\{1,2, \ldots\}$ and $\mathcal{I}=\{0,1,2, \ldots\}$.

Let $V$ be an alphabet. $V^{*}$ represents the free monoid generated by $V$ under the operation of concatenation. The unit of $V^{*}$ is denoted by $\varepsilon$. Set $V^{+}=V^{*}-\{\varepsilon\}$; algebraically, $V^{+}$is thus the free semigroup generated by $V$ under the operation of concatenation.

For $w \in V^{*},|w|$ and $\operatorname{reversal}(w)$ denote the length of $w$ and the reversal of $w$, respectively. Set prefix $(w)=\{x \mid x$ is a prefix of $w\}$, suffix $(w)=$ $\{x \mid x$ is a suffix of $w\}$, and $\operatorname{alph}(w)=\{a \mid a \in V$, and $a$ appears in $w\}$.

For $w \in V^{+}$and $i \in\{1, \ldots,|w|\}, \operatorname{sym}(w, i)$ denotes the ith symbol of $w$; for instance, $\operatorname{sym}(a b c d, 3)=c$.

A linear grammar is a quadruple, $G=(N, T, P, S)$, where $N$ and $T$ are alphabets such that $N \cap T=\emptyset, S \in N$, and $P$ is a finite set of productions of the form $A \rightarrow x$, where $A \in N$ and $x \in T^{*}(N \cup\{\varepsilon\}) T^{*}$. If $A \rightarrow x \in P$ and $u, v \in T^{*}$, then $u A v \Rightarrow u x v[A \rightarrow x]$ or, simply, $u A v \Rightarrow u x v$. In the standard manner, extend $\Rightarrow$ to $\Rightarrow^{n}$, where $n \geq 0$; then, based on $\Rightarrow^{n}$, define $\Rightarrow^{+}$and $\Rightarrow^{*}$. The language of $G, L(G)$, is defined as $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$. A language, $L$, is linear if and only if $L=L(G)$, where $G$ is a linear grammar.

Let $G=(N, T, P, S)$ be a linear grammar. $G$ represents a regular grammar if for every $A \rightarrow x \in P, x \in T(N \cup\{\varepsilon\})$. A language, $L$, is regular if and only if $L=L(G)$, where $G$ is a regular grammar.

A queue grammar (see [2]) is a sixtuple, $Q=(V, T, W, F, S, P)$, where $V$ and $W$ are alphabets satisfying $V \cap W=\emptyset, T \subseteq V, F \subseteq W, S \in(V-T)(W-F)$, and $P \subseteq(V \times(W-F)) \times\left(V^{*} \times W\right)$ is a finite relation such that for every $a \in V$, there exists an element $(a, b, x, c) \in P$. If $u, v \in V^{*} W$ such that $u=a r b$, $v=r z c, a \in V, r, z \in V^{*}, b, c \in W$ and $(a, b, z, c) \in P$, then $u \Rightarrow v[(a, b, z, c)]$ in $G$ or, simply, $u \Rightarrow v$. In the standard manner, extend $\Rightarrow$ to $\Rightarrow^{n}$, where $n \geq 0$. Based on $\Rightarrow^{n}$, define $\Rightarrow^{+}$and $\Rightarrow^{*}$. The language of $Q, L(Q)$, is defined as $L(Q)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w f\right.$ where $\left.f \in F\right\}$.

Next, this paper slightly modifies the notion of a queue grammar.
A left-extended queue grammar is a sixtuple, $Q=(V, T, W, F, S, P)$, where $V, T, W, F, S, P$ have the same meaning as in a queue grammar; in addition, assume that $\# \notin V \cup W$. If $u, v \in V^{*}\{\#\} V^{*} W$ so $u=w \# a r b, v=w a \# r z c$, $a \in V, r, z, w \in V^{*}, b, c \in W$, and $(a, b, z, c) \in P$, then $u \Rightarrow v[(a, b, z, c)]$ in $G$ or, simply, $u \Rightarrow v$. In the standard manner, extend $\Rightarrow$ to $\Rightarrow^{n}$, where
$n \geq 0$. Based on $\Rightarrow^{n}$, define $\Rightarrow^{+}$and $\Rightarrow^{*}$. The language of $Q, L(Q)$, is defined as $L(Q)=\left\{v \in T^{*} \mid \# S \Rightarrow^{*} w \# v f\right.$ for some $w \in V^{*}$ and $\left.f \in F\right\}$.

Let $R E G, L I N$, and $R E$ denote the families of regular, linear, and recursively enumerable languages, respectively.

## 3 Definitions

Consider a pushdown automaton, $M$, and a control language, $\Xi$, over $M$ 's rules. Informally, with $\Xi, M$ accepts a word, $x$, if and only if $\Xi$ contains a control word according to which $M$ makes a sequence of moves so it reaches a final configuration after reading $x$.

Formally, a pushdown automaton is a 7-tuple, $M=(Q, \Sigma, \Omega, R, s, S, F)$, where $Q$ is a finite set of states, $\Sigma$ is an input alphabet, $\Omega$ is a pushdown alphabet, $R$ is a finite set of rules of the form $A p a \rightarrow w q$, where $A \in \Omega, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$, and $w \in \Omega^{*}, s \in Q$ is the start state, $S \in \Omega$ is the start symbol, $F \subseteq Q$ is a set of final states. In addition, this paper requires that $Q, \Sigma, \Omega$ are pairwise disjoint.

Let $\Psi$ be an alphabet of rule labels such that $\operatorname{card}(\Psi)=\operatorname{card}(R)$, and $\psi$ be a bijection from $R$ to $\Psi$. For simplicity, to express that $\psi$ maps a rule, Apa $\rightarrow w q \in R$, to $\rho$, where $\rho \in \Psi$, this paper writes $\rho$.Apa $\rightarrow w q \in R$; in other words, $\rho$.Apa $\rightarrow w q$ means $\psi(A p a \rightarrow w q)=\rho$. A configuration of $M, \chi$, is any word from $\Omega^{*} Q \Sigma^{*}$. For every $x \in \Omega^{*}, y \in \Sigma^{*}$, and $\rho$.Apa $\rightarrow w q \in R, M$ makes a move from configuration xApay to configuration xwqy according to $\rho$, written as $x$ Apay $\Rightarrow x w q y[\rho]$. Let $\chi$ be any configuration of $M$. $M$ makes zero moves from $\chi$ to $\chi$ according to $\varepsilon$, symbolically written as $\chi \Rightarrow^{0} \chi[\varepsilon]$. Let there exist a sequence of configurations $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ for some $n \geq 1$ such that $\chi_{i-1} \Rightarrow \chi_{i}\left[\rho_{i}\right]$, where $\rho_{i} \in \Psi$, for $i=1, \ldots, n$, then $M$ makes $n$ moves from $\chi_{0}$ to $\chi_{n}$ according to $\rho_{1} \ldots \rho_{n}$, symbolically written as $\chi_{0} \Rightarrow^{n} \chi_{n}\left[\rho_{1} \ldots \rho_{n}\right]$.

Let $\Xi$ be a control language over $\Psi$; that is, $\Xi \subseteq \Psi^{*}$. With $\Xi, M$ defines the following three types of accepted languages:

$$
\begin{aligned}
& L(M, \Xi, 1) \text {-the language accepted by final state } \\
& L(M, \Xi, 2) \text {-the language accepted by empty pushdown } \\
& L(M, \Xi, 3) \text {-the language accepted by final state and empty pushdown }
\end{aligned}
$$

defined as follows. Let $\chi \in \Omega^{*} Q \Sigma^{*}$. If $\chi \in \Omega^{*} F, \chi \in Q, \chi \in F$, then $\chi$ is a 1-final configuration, 2-final configuration, 3-final configuration, respectively. For $i=1,2,3$, define $L(M, \Xi, i)$ as $L(M, \Xi, i)=\left\{w \mid w \in \Sigma^{*}\right.$, and $S s w \Rightarrow^{*}$ $\chi[\sigma]$ in $M$ for an $i-f i n a l$ configuration, $\chi$, and $\sigma \in \Xi\}$.

For any family of languages, $X$, set $\operatorname{RPD}(X, i)=\{L \mid L=$ $L(M, \Xi, i)$, where $M$ is a pushdown automaton and $\Xi \in X\}$, where $i=1,2,3$. Specifically, $R P D(R E G, i)$ and $R P D(L I N, i)$ are central to this paper.

## 4 Results

This section demonstrates that $C F=R P D(R E G, 1)=R P D(R E G, 2)=$ $R P D(R E G, 3)$ and $R E=R P D(L I N, 1)=R P D(L I N, 2)=R P D(L I N, 3)$.

Some of the following proofs involve several grammars and automata. To avoid any confusion, these proofs sometimes specify a regular grammar, $G$, as $G=(V[G], P[G], S[G], T[G])$ because this specification clearly expresses that $V[G], P[G], S[G]$, and $T[G]$ represent $G$ 's components. Other grammars and automata are specified analogously whenever any confusion may exist.

## Regular Control Languages

Next, this section proves that if the control languages are regular, then the regulation of pushdown automata has no effect on their power. The proof of the following lemma presents a transformation that converts any regular grammar, $G$, and any pushdown automaton, $K$, to an ordinary pushdown automaton, $M$, such that $L(M)=L(K, L(G), 1)$.

## Lemma 1

For every regular grammar, $G$, and every pushdown automaton, $K$, there exists a pushdown automaton, $M$, such that $L(M)=L(K, L(G), 1)$.

Proof: Let $G=(N[G], T[G], P[G], S[G])$ be any regular grammar, and let $K=$ $(Q[K], \Sigma[K], \Omega[K], R[K], s[K], S[K], F[K])$ be any pushdown automaton. Next, we construct a pushdown automaton, $M$, that simultaneously simulates $G$ and $K$ so that $L(M)=L(K, L(G), 1)$.

Let $f$ be a new symbol. Define the pushdown automaton $M=$ $(Q[M], \Sigma[M], \Omega[M], R[M], s[M], S[M], F[M])$ as $Q[M]=\{\langle q B\rangle \mid q \in Q[K], B \in$ $N[G] \cup\{f\}\}, \Sigma[M]=\Sigma[K], \Omega[M]=\Omega[K], s[M]=\langle s[K] S[G]\rangle, S[M]=S[K]$, $F[M]=\{\langle q f\rangle \mid q \in F[K]\}$, and $R[M]=\{C\langle q A\rangle b \rightarrow x\langle p B\rangle \mid a . C q b \rightarrow x p \in$ $R[K], A \rightarrow a B \in P[G]\} \cup\{C\langle q A\rangle b \rightarrow x\langle p f\rangle \mid a . C q b \rightarrow x p \in R[K], A \rightarrow a \in$ $P[G]\}$.

Observe that a move in $M$ according to $C\langle q A\rangle b \rightarrow x\langle p B\rangle \in R[M]$ simulates a move in $K$ according $a . C q b \rightarrow x p \in R[K]$, where $a$ is generated in $G$ by using $A \rightarrow a B \in P[G]$. Based on this observation, it is rather easy to see that $M$ accepts an input word, $w$, if and only if $K$ reads $w$ and enters a final state after using a complete word of $L(G)$; therefore, $L(M)=L(K, L(G), 1)$. A rigorous proof that $L(M)=L(K, L(G), 1)$ is left to the reader.

## Theorem 2

For $i \in\{1,2,3\}, C F=R P D(R E G, i)$.
Proof: To prove $C F=R P D(R E G, 1)$, notice that $R P D(R E G, 1) \subseteq C F$ follows from Lemma 1. Clearly, $C F \subseteq R P D(R E G, 1)$, so $R P D(R E G, 1)=C F$.

By analogy with the demonstration of $R P D(R E G, 1)=C F$, prove that $C F=$ $R P D(R E G, 2)$ and $C F=R P D(R E G, 3)$.

Let us point out that most fundamental regulated grammars use control mechanisms that can be expressed in terms of regular control languages (c.f. Theorem V.6.1 on page 175 in [5]). However, pushdown automata introduced by analogy with these grammars are of little or no interest because they are as powerful as ordinary pushdown automata (see Theorem 2 above).

## Linear Control Languages

The rest of this section demonstrates that the pushdown automata regulated by linear control languages are more powerful than ordinary pushdown automata. In fact, it proves that $R E=R P D(L I N, 1)=R P D(L I N, 2)=R P D(L I N, 3)$.

## Lemma 3

For every left-extended queue grammar, $K$, there exists a left-extended queue grammar $Q=(V, T, W, F, s, P)$ satisfying $L(K)=L(Q)$, ! is a distinguished member of $(W-F), V=U \cup Z \cup T$ such that $U, Z, T$ are pairwise disjoint, and $Q$ derives every $z \in L(Q)$ in this way

$$
\begin{aligned}
\# S & \Rightarrow^{+} x \# b_{1} b_{2} \ldots b_{n}! \\
& \Rightarrow x b_{1} \# b_{2} \ldots b_{n} y_{1} p_{2} \\
& \Rightarrow x b_{1} b_{2} \# b_{3} \ldots b_{n} y_{1} y_{2} p_{3} \\
& \vdots \\
& \Rightarrow x b_{1} b_{2} \ldots b_{n-1} \# b_{n} y_{1} y_{2} \ldots y_{n-1} p_{n} \\
& \Rightarrow x b_{1} b_{2} \ldots b_{n-1} b_{n} \# y_{1} y_{2} \ldots y_{n} p_{n+1}
\end{aligned}
$$

where $n \in N, x \in U^{*}, b_{i} \in Z$ for $i=1, \ldots, n, y_{i} \in T^{*}$ for $i=1, \ldots, n$, $z=y_{1} y_{2} \ldots y_{n}, p_{i} \in W-\{!\}$ for $i=1, \ldots, n-1, p_{n} \in F$, and in this derivation $x \# b_{1} b_{2} \ldots b_{n}$ ! is the only word containing !.

Proof: Let $K$ be any left-extended queue grammar. Convert $K$ to a left-extended queue grammar, $H=(V[H], T[H], W[H], F[H], S[H], P[H])$, such that $L(K)=$ $L(H)$ and $H$ generates every $x \in L(H)$ by making two or more derivation steps (this conversion is trivial and left to the reader).

Define the bijection $\alpha$ from $W$ to $W^{\prime}$, where $W^{\prime}=\left\{q^{\prime} \mid q \in W\right\}$, as $\alpha(q)=\left\{q^{\prime}\right\}$ for every $q \in W$. Analogously, define the bijection $\beta$ from $W$ to $W^{\prime \prime}$, where $W^{\prime \prime}=\left\{q^{\prime \prime} \mid q \in W\right\}$, as $\beta(q)=\left\{q^{\prime \prime}\right\}$ for every $q \in W$. Without any loss of generality, assume that $\{1,2\} \cap(V \cup W)=\emptyset$. Set $\Xi=\{\langle a, q, u 1 v, p\rangle \mid(a, q, u v, p) \in$ $P[H]$ for some $a \in V, q \in W-F, v \in T^{*}, u \in V^{*}$, and $\left.p \in W\right\}$ and $\Gamma=$ $\left\{\langle a, q, z 2 w, p\rangle \mid(a, q, z w, p) \in P[H]\right.$ for some $a \in V, q \in W-F, w \in T^{*}, z \in$ $V^{*}$, and $\left.p \in W\right\}$. Define the relation $\chi$ from $V[H]$ to $\Xi \Gamma$ so for every $a \in V$, $\chi(a)=\{\langle a, q, y 1 x, p\rangle\langle a, q, y 2 x, p\rangle \mid\langle a, q, y 1 x, p\rangle \in \Xi,\langle a, q, y 2 x, p\rangle \in \Gamma, q \in W-$
$\left.F, x \in T^{*}, y \in V^{*}, p \in W\right\}$. Define the bijection $\delta$ from $V[H]$ to $V^{\prime}$, where $V^{\prime}=\left\{a^{\prime} \mid a \in V\right\}$, as $\delta(a)=\left\{a^{\prime}\right\}$. In the standard manner, extend $\delta$ so it is defined from $(V[H])^{*}$ to $\left(V^{\prime}\right)^{*}$. Finally, define the bijection $\phi$ from $V[H]$ to $V^{\prime \prime}$, where $V^{\prime \prime}=\left\{a^{\prime \prime} \mid a \in V\right\}$, as $\phi(a)=\left\{a^{\prime \prime}\right\}$. In the standard manner, extend $\phi$ so it is defined from $(V[H])^{*}$ to $\left(V^{\prime \prime}\right)^{*}$.

Define the left-extended queue grammar

$$
Q=(V[Q], T[Q], W[Q], F[Q], S[Q], P[Q])
$$

so that $V[Q]=V[H] \cup \delta(V[H]) \cup \phi(V[H]) \cup \Xi \cup \Gamma, T[Q]=T[H], W[Q]=$ $W[H] \cup \alpha(W[H]) \cup \beta(W[H]) \cup\{!\}, F[Q]=\beta(F[H]), S[Q]=\delta(S[H])$, and $P[V]$ is constructed in this way

1. if $(a, q, x, p) \in P[H]$ where $a \in V, q \in W-F, x \in V^{*}$, and $p \in W$, then add $(\delta(a), q, \delta(x), p)$ and $(\delta(a), \alpha(q), \delta(x), \alpha(p))$ to $P[Q]$;
2. if $(a, q, x A y, p) \in P[H]$, where $a \in V, q \in W-F, x, y \in V^{*}, A \in V$, and $p \in W$, then add $(\delta(a), q, \delta(x) \chi(A) \phi(y), \alpha(p))$ to $P[Q]$;
3. if $(a, q, y x, p) \in P[H]$, where $a \in V, q \in W-F, y \in V^{*}, x \in T^{*}$, and $p \in W$, then add $(\langle a, q, y 1 x, p\rangle, \alpha(q), \phi(y),!)$ and $(\langle a, q, y 2 x, p\rangle,!, x, \beta(p))$ to $P[Q]$;
4. if $(a, q, y, p) \in P[H]$, where $a \in V, q \in W-F, y \in T^{*}$, and $p \in W$, then add $(\phi(a), \beta(q), y, \beta(p))$ to $P[Q]$.

Set $U=\delta(V[H]) \cup \Xi$ and $Z=\phi(V[H]) \cup \Gamma$. Notice that $Q$ satisfies properties 2 and 3 of Lemma 3. To demonstrate that the other two properties hold as well, observe that $H$ generates every $z \in L(H)$ in this way

$$
\begin{aligned}
\# S[H] & \Rightarrow^{+} \\
& x \# b_{1} b_{2} \ldots b_{i} p_{1} \\
& \Rightarrow \quad x b_{1} \# b_{2} \ldots b_{i} b_{i+1} \ldots b_{n} y_{1} p_{2} \\
& \Rightarrow \\
& \vdots b_{1} b_{2} \# b_{3} \ldots b_{i} b_{i+1} \ldots b_{n} y_{1} y_{2} p_{3} \\
& \Rightarrow \quad x b_{1} b_{2} \ldots b_{i-1} \# b_{i} b_{i+1} \ldots b_{n} y_{1} y_{2} \ldots y_{i-1} p_{i} \\
& \Rightarrow \quad x b_{1} b_{2} \ldots b_{i} \# b_{i+1} \ldots b_{n} y_{1} y_{2} \ldots y_{i-1} y_{i} p_{i+1} \\
& \vdots \\
& \Rightarrow \quad x b_{1} b_{2} \ldots b_{n-1} \# b_{n} y_{1} y_{2} \ldots y_{n-1} p_{n} \\
& \Rightarrow \quad x b_{1} b_{2} \ldots b_{n-1} b_{n} \# y_{1} y_{2} \ldots y_{n} p_{n+1}
\end{aligned}
$$

where $n \in \mathcal{N}, x \in V^{+}, b_{i} \in V$ for $i=1, \ldots, n, y_{i} \in T^{*}$ for $i=1, \ldots, n$, $z=y_{1} y_{2} \ldots y_{n}, p_{i} \in W$ for $i=1, \in, n, p_{n+1} \in F . Q$ simulates this generation of $z$ as follows

$$
\begin{aligned}
\# S[Q] & \Rightarrow^{+} \delta(x) \# \chi\left(b_{1}\right) \phi\left(b_{2} \ldots b_{i}\right) \alpha\left(p_{1}\right) \\
& \Rightarrow \delta(x)\left\langle b_{1}, p_{1}, b_{i+1} \ldots b_{n} 1 y_{1}, p_{2}\right\rangle \#\left\langle b_{1}, p_{1}, b_{i+1} \ldots b_{n} 2 y_{1}, p 2\right\rangle \\
& \Rightarrow \phi\left(b_{2} \ldots b_{i} b_{i+1} \ldots b_{n}\right)! \\
& \Rightarrow \delta(x) \chi\left(b_{1}\right) \# \phi\left(b_{2} \ldots b_{n}\right) y_{1} p_{2} \\
& \Rightarrow \delta(x) \chi\left(b_{1}\right) \phi\left(b_{2}\right) \# \phi\left(b_{3} \ldots b_{n}\right) y_{1} y_{2} p_{3} \\
& \Rightarrow \delta(x) \chi\left(b_{1}\right) \phi\left(b_{2} \ldots b_{n-1}\right) \# \phi\left(b_{n}\right) y_{1} y_{2} \ldots y_{n-1} p_{n} \\
& \Rightarrow \delta(x) \chi\left(b_{1}\right) \phi\left(b_{2} \ldots b_{n}\right) \# y_{1} y_{2} \ldots y_{n} p_{n+1}
\end{aligned}
$$

Q makes the first $|x|-1$ steps of $\# S[Q] \Rightarrow^{+} \delta(x) \# \chi\left(b_{1}\right) \phi\left(b_{2} \ldots b_{i}\right) \alpha\left(p_{1}\right)$ according to productions introduced in 1 ; in addition, during this derivation, $Q$ makes one step by using a production introduced in 2. By using productions introduced in $3, Q$ makes the two steps

$$
\begin{array}{ll}
\delta(x) \# \chi\left(b_{1}\right) \phi\left(b_{2} \ldots b_{i}\right) \alpha\left(p_{0}\right) & \Rightarrow \\
\delta(x)\left\langle b_{1}, p_{1}, b_{i+1} \ldots b_{n} 1 y_{1}, p_{2}\right\rangle \#\left\langle b_{1}, p_{1}, b_{i+1} \ldots b_{n} 2 y_{1}, p_{2}\right\rangle \phi\left(b_{2} \ldots b_{i} b_{i+1} \ldots b_{n}\right)! & \Rightarrow \\
\delta(x) \chi\left(b_{1}\right) \# \phi\left(b_{2} \ldots b_{n}\right) y_{1} p_{2} & \Rightarrow
\end{array}
$$

with

$$
\chi\left(b_{1}\right)=\left\langle b_{1}, p_{0}, b_{i+1} \ldots b_{n} 1 y_{1}, p_{1}\right\rangle\left\langle b_{1}, p_{0}, b_{i+1} \ldots b_{n} 2 y_{1}, p 2\right\rangle .
$$

$Q$ makes the rest of the derivation by using productions introduced in 4.
Based on the previous observation, it easy to see that $Q$ satisfies all the four properties stated in Lemma 3, whose rigorous proof is left to the reader.

## Lemma 4

Let $Q$ be a left-extended queue grammar that satisfies the properties of Lemma 3. Then, there exist a linear grammar, $G$, and a pushdown automaton, $M$, such that $L(Q)=L(M, L(G), 3)$.

Proof: Let $Q=(V[Q], T[Q], W[Q], F[Q], s[Q], P[Q])$ be a left-extended queue grammar satisfying the properties of Lemma 3. Without any loss of generality, assume that $\{@, £, \mathbb{\Psi}\} \cap(V \cup W)=\emptyset$. Define the coding, $\zeta$, from $(V[Q])^{*}$ to $\{\langle £ a s\rangle \mid a \in V[Q]\}^{*}$ as $\zeta(a)=\{\langle £ a s\rangle\}(s$ is used as the start state of the pushdown automaton, $M$, defined later in this proof).

Construct the linear grammar $G=(N[G], T[G], P[G], S[G])$ in the following way. Initially, set

$$
\begin{aligned}
& N[G]=\{S[G],\langle!\rangle,\langle!, 1\rangle\} \cup\{\langle f\rangle \mid f \in F[Q]\} \\
& T[G]=\zeta(V[Q]) \cup\{\langle £ \S s\rangle,\langle £ @\rangle\} \cup\{\langle £ \S f\rangle \mid f \in F[Q]\} \\
& P[G]=\{S[G] \rightarrow\langle £ \S s\rangle\langle f\rangle \mid f \in F[Q]\} \cup\{\langle!\rangle \rightarrow\langle!, 1\rangle\langle £ @\rangle\}
\end{aligned}
$$

Increase $N[G], T[G]$, and $P[G]$ by performing 1 through 3, following next.

1. for every $(a, p, x, q) \in P[Q]$ where $p, q \in W[Q], a \in Z, x \in T^{*}$,

$$
\begin{aligned}
& N[G]=N[G] \cup\{\langle\operatorname{apxq}\rangle\rangle|k=0, \ldots,|x|\} \cup\{\langle p\rangle,\langle q\rangle\} \\
& T[G]=T[G] \cup\{\langle £ \operatorname{sym}(y, k)\rangle|k=1, \ldots,|y|\} \cup\{\langle £ a p x q\rangle\} \\
& P[G]=P[G] \cup\{\langle q\rangle \rightarrow\langle a p x q| x| \rangle\langle £ \operatorname{£apxq}\rangle,\langle a p x q 0\rangle \rightarrow\langle p\rangle\} \\
& \cup\{\langle a p x q k\rangle \rightarrow\langle a p x q(k-1)\rangle\langle £ \operatorname{sym}(x, k)\rangle|k=1, \ldots,|x|\} ;
\end{aligned}
$$

2. for every $(a, p, x, q) \in P[Q]$ with $p, q \in W[Q], a \in U, x \in(V[Q])^{*}$,

$$
\begin{aligned}
& N[G]=N[G] \cup\{\langle p, 1\rangle,\langle q, 1\rangle\} \\
& P[G]=P[G] \cup\{\langle q, 1\rangle \rightarrow \operatorname{reversal}(\zeta(x))\langle p, 1\rangle \zeta(a)\} ;
\end{aligned}
$$

3. for every $(a, p, x, q) \in P[Q]$ with $a p=S[Q], p, q \in W[Q], x \in(V[Q])^{*}$,

$$
\begin{aligned}
& N[G]=N[G] \cup\{\langle q, 1\rangle\} \\
& P[G]=P[G] \cup\{\langle q, 1\rangle \rightarrow \operatorname{reversal}(x)\langle £ \$ s\rangle\} .
\end{aligned}
$$

The construction of $G$ is completed. Set $\Psi=T[G]$. $\Psi$ represents the alphabet of rule labels corresponding to the rules of the pushdown automaton $M=(Q[M], \Sigma[M], \Omega[M], R[M], s[M], S[M],\{7\})$, which is constructed next.

Initially, set $Q[M]=\{s[M],\langle\boldsymbol{\Pi}!\rangle, L\rceil$,$\} (throughout the rest of this proof,$ $s[M]$ is abbreviated to $s), \Sigma[M]=T[Q], \Omega[M]=\{S[M], \S\} \cup V[Q], R[M]=$ $\{\langle £ \S s\rangle . S[M] s \rightarrow \S s\} \cup\{\langle £ \S f\rangle . \S\langle\boldsymbol{\top} f\rangle \rightarrow\rceil \mid f \in F[M]\}$. Increase $Q[M]$ and $R[M]$ by performing A through D , following next.
A. $R[M]=R[M] \cup\{\langle £ b s\rangle . a s \rightarrow a b s \mid a \in \Omega[M]-\{S[M]\}, b \in \Omega[M]-\{\$\}\} ;$
B. $R[M]=R[M] \cup\{\langle £ \$ s\rangle . a s \rightarrow a\lfloor\mid a \in V[Q]\} \cup\{\langle £ a\rangle . a\lfloor\rightarrow\lfloor\mid a \in V[Q]\}$;
C. $R[M]=R[M] \cup\{\langle £ @\rangle . a\lfloor\rightarrow a\langle\boldsymbol{\Phi}!\rangle \mid a \in Z\} ;$
D. for every $(a, p, x, q) \in P[Q]$, where $p, q \in W[Q], a \in Z, x \in(T[Q])^{*}$,

$$
\begin{aligned}
& Q[M]=Q[M] \cup\{\langle\boldsymbol{T} p\rangle\} \cup\{\langle\boldsymbol{\Psi} q u\rangle \mid u \in \operatorname{prefix}(x)\} \\
& R[M]=R[M] \cup\left\{\langle £ b\rangle . a\langle\boldsymbol{\Phi} q y\rangle b \rightarrow a\langle\boldsymbol{\top} q y b\rangle \mid b \in T[Q], y \in(T[Q])^{*},\right. \\
& y b \in \operatorname{prefix}(\mathrm{x})\} \cup\{\langle £ a p x q\rangle \cdot a\langle\boldsymbol{\Phi} q x\rangle \rightarrow\langle\boldsymbol{\Phi} p\rangle\} .
\end{aligned}
$$

The construction of M is completed.
Notice that several components of $G$ and $M$ have this form: $\langle x\rangle$. Intuitively, if $x$ begins with $£$, then $\langle x\rangle \in T[G]$. If $x$ begins with $\mathbb{\Pi}$, then $\langle x\rangle \in Q[M]$. Finally, if $x$ begins with a symbol different from $£$ or $\mathbf{\Pi}$, then $\langle x\rangle \in N[G]$.

First, we only sketch the reason why $L(Q)$ contains $L(M, L(G), 3)$. Accordinng to a word from $L(G), M$ accepts every word $w$ as

$$
\begin{aligned}
& \S w_{1} \ldots w_{m-1} w_{m} \Rightarrow^{+} \quad \S b_{m} \ldots b_{1} a_{n} \ldots a_{1} s w_{1} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{1} a_{n} \ldots a_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow^{n} \quad \S b_{m} \ldots b_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow \quad \S b_{m} \ldots b_{1}\left\langle\boldsymbol{\Psi} q_{1}\right\rangle w_{1} \ldots w_{m-1} w_{m} \\
& \Rightarrow{ }^{\left|w_{1}\right|} \quad \S b_{m} \ldots b_{1}\left\langle\boldsymbol{\Psi} q_{1} w_{1}\right\rangle w_{2} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{2}\left\langle\boldsymbol{\top} q_{2}\right\rangle w_{2} \ldots w_{m-1} w_{m} \\
& \Rightarrow{ }^{\left|w_{2}\right|} \quad \S b_{m} \ldots b_{2}\left\langle\boldsymbol{\Psi} q_{2} w_{2}\right\rangle w_{3} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{3}\left\langle\boldsymbol{\Psi} q_{3}\right\rangle w_{3} \ldots w_{m-1} w_{m} \\
& \text { ! } \\
& \Rightarrow \quad \S b_{m}\left\langle\uparrow q_{m}\right\rangle w_{m} \\
& \Rightarrow\left|w_{m}\right| \quad \S b_{m}\left\langle\boldsymbol{\uparrow} q_{m} w_{m}\right\rangle \\
& \Rightarrow \quad \S\left\langle\boldsymbol{\top} q_{m+1}\right\rangle \\
& \Rightarrow \quad \text { - }
\end{aligned}
$$

where $w=w_{1} \ldots w_{m-1} w_{m}, a_{1} \ldots a_{n} b_{1} \ldots b_{m}=x_{1} \ldots x_{n+1}$, and $R[Q]$ contains $\left(a_{0}, p_{0}, x_{1}, p_{1}\right),\left(a_{1}, p_{1}, x_{2}, p_{2}\right), \ldots,\left(a_{n}, p_{n}, x_{n+1}, q_{1}\right),\left(b_{1}, q_{1}, w_{1}, q_{2}\right),\left(b_{2}, q_{2}, w_{2}, q_{3}\right)$, $\ldots,\left(b_{m}, q_{m}, w_{m}, q_{m+1}\right)$. According to these members of $R[Q], Q$ makes

$$
\begin{array}{rlr}
\# a_{0} p_{0} & \Rightarrow a_{0} \# y_{0} x_{1} p_{1} & \\
& \Rightarrow a_{0} a_{1} \# y_{1} x_{2} p_{2} & {\left[\left(a_{0}, p_{0}, x_{1}, p_{1}\right)\right]} \\
& \Rightarrow a_{0} a_{1} a_{2} \# y_{2} x_{3} p_{3} & {\left[\left(a_{2}, p_{1}, x_{2}, x_{3}, p_{2}\right)\right]} \\
& \vdots & \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n-1} \# y_{n-1} x_{n} p_{n} & {\left[\left(a_{n-1}, p_{n-1}, x_{n}, p_{n}\right)\right]} \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n} \# y_{n} x_{n+1} q_{1} & {\left[\left(a_{n}, p_{n}, x_{n+1}, q_{1}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \# b_{2} \ldots b_{m} w_{1} q_{2} & {\left[\left(b_{1}, q_{1}, w_{1}, q_{2}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} b_{2} \# b_{3} \ldots b_{m} w_{1} w_{2} q_{3} & {\left[\left(b_{2}, q_{2}, w_{2}, q_{3}\right)\right]} \\
& \vdots & \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \ldots b_{m-1} \# b_{m} w_{1} w_{2} \ldots w_{m-1} q_{m} & {\left[\left(b_{m-1}, q_{m-1}, w_{m-1}, q_{m}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \ldots b_{m} \# w_{1} w_{2} \ldots w_{m} q_{m+1} & {\left[\left(b_{m}, q_{m}, w_{m}, q_{m+1}\right)\right]}
\end{array}
$$

Therefore, $L(M, L(G), 3) \subseteq L(Q)$.
More formally, to demonstrate that $L(Q)$ contains $L(M, L(G), 3)$, consider any $h \in L(G)$. $G$ generates $h$ as

$$
\begin{aligned}
S[G] & \Rightarrow \\
& \Rightarrow\left|w_{m}\right|+1
\end{aligned} \quad\langle £ \S s\rangle\left\langle q_{m+1}\right\rangle .
$$

$$
\begin{aligned}
& {\left[\left\langle q_{1}, 1\right\rangle \rightarrow \operatorname{reversal}\left(\zeta\left(x_{n+1}\right)\right)\left\langle p_{n}, 1\right\rangle\left\langle £ a_{n}\right\rangle\langle £ @\rangle\right] } \\
\Rightarrow \quad & \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{n} x_{n+1}\right)\right)\left\langle p_{n-1}, 1\right\rangle\left\langle £ a_{n-1}\right\rangle\left\langle £ a_{n}\right\rangle\langle £ @\rangle_{o} \\
& {\left[\left\langle p_{n}, 1\right\rangle \rightarrow \operatorname{reversal}\left(\zeta\left(x_{n}\right)\right)\left\langle p_{n-1}, 1\right\rangle\left\langle £ a_{n-1}\right\rangle\right] }
\end{aligned}
$$

$\Rightarrow \quad\langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{2} \ldots x_{n} x_{n+1}\right)\right)\langle p 1,1\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle o$ $\left[\left\langle p_{2}, 1\right\rangle \rightarrow \operatorname{reversal}\left(\zeta\left(x_{2}\right)\right)\left\langle p_{1}, 1\right\rangle\left\langle £ a_{1}\right\rangle\right]$
$\Rightarrow \quad\langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{1} \ldots x_{n} x_{n+1}\right)\right)\langle £ \$ s\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle o$ $\left[\left\langle p_{1}, 1\right\rangle \rightarrow \operatorname{reversal}\left(\zeta\left(x_{1}\right)\right)\langle £ \$ s\rangle\right]$
where $n, m \in \mathcal{N} ; a_{i} \in U$ for $i=1, \ldots, n ; b_{k} \in Z$ for $k=$ $1, \ldots, m ; x_{l} \in V^{*}$ for $l=1, \ldots, n+1 ; p_{i} \in W$ for $i=1, \ldots, n$; $q_{l} \in W$ for $l=1, \ldots, m+1$ with $q_{1}=$ ! and $q_{m+1} \in F ; t_{k}=$ $\left\langle £ \operatorname{sym}\left(w_{k}, 1\right)\right\rangle \ldots\left\langle £ \operatorname{sym}\left(w_{k},\left|w_{k}\right|-1\right)\right\rangle\left\langle £ \operatorname{sym}\left(w_{k},\left|w_{k}\right|\right)\right\rangle$ for $k=1, \ldots, m ; o=$ $t_{1}\left\langle £ b_{1} q_{1} w_{1} q_{2}\right\rangle \ldots\langle £ \S s\rangle\left\langle q_{m-1}\right\rangle t_{m-1}\left\langle £ b_{m-1} q_{m-1} w_{m-1} q_{m}\right\rangle t_{m}\left\langle £ b_{m} q_{m} w_{m} q_{m+1}\right\rangle ;$ $h=\langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{1} \ldots x_{n} x_{n+1}\right)\right)\langle £ \$\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle o$.

In greater detail, $G$ makes $S[G] \Rightarrow\langle £ \S s\rangle\left\langle q_{m+1}\right\rangle$ according to $S[G] \rightarrow$ $\langle £ \S s\rangle\left\langle q_{m+1}\right\rangle$. Furthermore, $G$ makes

$$
\begin{array}{ll} 
& \langle £ \S s\rangle\left\langle q_{m+1}\right\rangle \\
\Rightarrow{ }^{\left|w_{m}\right|+1} & \langle £ \S s\rangle\left\langle q_{m}\right\rangle t_{m}\left\langle £ b_{m} q_{m} w_{m} q_{m+1}\right\rangle \\
\left.\Rightarrow\right|^{\left|w_{m-1}\right|+1} & \langle £ \S s\rangle\left\langle q_{m-1}\right\rangle t_{m-1}\left\langle £ b_{m-1} q_{m-1} w_{m-1} q_{m}\right\rangle t_{m}\left\langle £ b_{m} q_{m} w_{m} q_{m+1}\right\rangle \\
\vdots & \\
\Rightarrow{ }^{\left|w_{1}\right|+1} & \langle £ \S s\rangle\left\langle q_{1}\right\rangle o
\end{array}
$$

according to productions introduced in step 1. Then, $G$ makes

$$
\langle £ \S s\rangle\left\langle q_{1}\right\rangle o \Rightarrow\langle £ \S s\rangle\left\langle q_{1}, 1\right\rangle\langle £ @\rangle_{o}
$$

according to $\langle!\rangle \rightarrow\langle!, 1\rangle\langle £ @\rangle$ (recall that $q_{1}=$ !). After this step, $G$ makes

$$
\begin{aligned}
& \langle £ \S s\rangle\left\langle q_{1}, 1\right\rangle\langle £ @\rangle_{o} \\
\Rightarrow & \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{n+1}\right)\right)\left\langle p_{n}, 1\right\rangle\left\langle £ a_{n}\right\rangle\langle £ @\rangle o \\
\Rightarrow & \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{n} x_{n+1}\right)\right)\left\langle p_{n-1}, 1\right\rangle\left\langle £ a_{n-1}\right\rangle\left\langle £ a_{n}\right\rangle\langle £ @\rangle o \\
\vdots & \\
\Rightarrow & \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{2} \ldots x_{n} x_{n+1}\right)\right)\left\langle p_{1}, 1\right\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle o
\end{aligned}
$$

according to productions introduced in step 2. Finally, according to $\left\langle p_{1}, 1\right\rangle \rightarrow$ $\operatorname{reversal}\left(\zeta\left(x_{1}\right)\right)\langle £ \$\rangle$, which is introduced in step $3, G$ makes

$$
\begin{aligned}
& \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{2} \ldots x_{n} x_{n+1}\right)\right)\left\langle p_{1}, 1\right\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle_{o} \\
\Rightarrow & \langle £ \S s\rangle \zeta\left(\operatorname{reversal}\left(x_{1} \ldots x_{n} x_{n+1}\right)\right)\langle £ \$\rangle\left\langle £ a_{1}\right\rangle\left\langle £ a_{2}\right\rangle \ldots\left\langle £ a_{n}\right\rangle\langle £ @\rangle o
\end{aligned}
$$

If $a_{1} \ldots a_{n} b_{1} \ldots b_{m}$ differs from $x_{1} \ldots x_{n+1}$, then $M$ does not accept according to $h$. Assume that $a_{1} \ldots a_{n} b_{1} \ldots b_{m}=x_{1} \ldots x_{n+1}$. At this point, according to $h, M$ makes this sequence of moves

$$
\begin{aligned}
& \S w_{1} \ldots w_{m-1} w_{m} \Rightarrow^{+} \quad \S b_{m} \ldots b_{1} a_{n} \ldots a_{1} s w_{1} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{1} a_{n} \ldots a_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow^{n} \quad \S b_{m} \ldots b_{1}\left\lfloor w_{1} \ldots w_{m-1} w_{m}\right. \\
& \Rightarrow \quad \S b_{m} \ldots b_{1}\left\langle\boldsymbol{\Psi} q_{1}\right\rangle w_{1} \ldots w_{m-1} w_{m} \\
& \Rightarrow{ }^{\left|w_{1}\right|} \quad \S b_{m} \ldots b_{1}\left\langle\boldsymbol{\top} q_{1} w_{1}\right\rangle w_{2} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{2}\left\langle\boldsymbol{\Psi} q_{2}\right\rangle w_{2} \ldots w_{m-1} w_{m} \\
& \Rightarrow{ }^{\left|w_{2}\right|} \quad \S b_{m} \ldots b_{2}\left\langle\boldsymbol{\Psi} q_{2} w_{2}\right\rangle w_{3} \ldots w_{m-1} w_{m} \\
& \Rightarrow \quad \S b_{m} \ldots b_{3}\left\langle\boldsymbol{\uparrow} q_{3}\right\rangle w_{3} \ldots w_{m-1} w_{m} \\
& \vdots \\
& \Rightarrow \quad \S b_{m}\left\langle\uparrow q_{m}\right\rangle w_{m} \\
& \Rightarrow\left|w_{m}\right| \quad \S b_{m}\left\langle\uparrow q_{m} w_{m}\right\rangle \\
& \Rightarrow \quad \S\left\langle\backslash q_{m+1}\right\rangle \\
& \Rightarrow \quad 7
\end{aligned}
$$

In other words, according to $h, M$ accepts $w_{1} \ldots w_{m-1} w_{m}$. Return to the generation of $h$ in $G$. By the construction of $P[G]$, this generation implies that $R[Q]$ contains $\left(a_{0}, p_{0}, x_{1}, p_{1}\right),\left(a_{1}, p_{1}, x_{2}, p_{2}\right), \ldots,\left(a_{j-1}, p_{j-1}, x_{j}, p_{j}\right)$, $\ldots,\left(a_{n}, p_{n}, x_{n+1}, q_{1}\right),\left(b_{1}, q_{1}, w_{1}, q_{2}\right),\left(b_{2}, q_{2}, w_{2}, q_{3}\right), \ldots,\left(b_{m}, q_{m}, w_{m}, q_{m+1}\right)$.

Thus, in Q,

$$
\begin{array}{rlr}
\# a_{0} p_{0} & \Rightarrow a_{0} \# y_{0} x_{1} p_{1} & \\
& \Rightarrow a_{0} a_{1} \# y_{1} x_{2} p_{2} & {\left[\left(a_{0}, p_{0}, x_{1}, p_{1}\right)\right]} \\
& \Rightarrow a_{0} a_{1} a_{2} \# y_{2} x_{3} p_{3} & \\
& \vdots & \\
& \left.\left.\Rightarrow a_{1}, p_{1}, x_{2}, p_{2}\right)\right] \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n-1} \# y_{n-1} x_{n} p_{n} & \\
& \Rightarrow a_{0} a_{1} a_{2} \ldots a_{n} \# y_{n} x_{n+1} q_{1} & {\left[\left(a_{n-1}, p_{n-1}, x_{n}, p_{n}\right)\right]} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \# b_{2} \ldots b_{m} w_{1} q_{2} & {\left[\left(a_{n}, p_{n}, x_{n+1}, q_{1}\right)\right]} \\
& \vdots & a_{0} \ldots a_{n} b_{1} b_{2} \# b_{3} \ldots b_{m} w_{1} w_{2} q_{3} \\
& \Rightarrow a_{0} \ldots a_{n} b_{1} \ldots b_{m-1} \# b_{m} w_{1} w_{2} \ldots w_{m-1} q_{m} & {\left[\left(b_{1}, q_{1}, w_{1}, q_{2}\right)\right]} \\
& \Rightarrow a_{0-1} \ldots a_{n} b_{1} \ldots b_{m-1} \# w_{1} w_{2} \ldots w_{m} q_{m+1} & \\
& & {\left[\left(b_{m}, q_{m}, w_{m}, q_{m+1}\right)\right]}
\end{array}
$$

Therefore, $w_{1} w_{2} \ldots w_{m} \in L(Q)$. Consequently, $L(M, L(G), 3) \subseteq L(Q)$.
A proof that that $L(Q) \subseteq L(M, L(G), 3)$ is left to the reader. As $L(Q) \subseteq$ $L(M, L(G), 3)$ and $L(M, L(G), 3) \subseteq L(Q), L(Q)=L(M, L(G), 3)$. Therefore, Lemma 4 holds.

## Theorem 5

For $i \in\{1,2,3\}, R E=R P D(L I N, i)$.

Proof: Obviously, $R P D(L I N, 3) \subseteq R E$. To prove $R E \subseteq R P D(L I N, 3)$, consider any recursively enumerable language, $L \in R E$. By Theorem 2.1 in [2], $L(Q)=L$, for a queue grammar. Clearly, there exists a left-extended queue grammar, $Q^{\prime}$, so $L(Q)=L\left(Q^{\prime}\right)$. Furthermore, by Lemmas 3 and $4, L\left(Q^{\prime}\right)=L(M, L(G)$, 3), for a linear grammar, $G$, and a pushdown automaton, $M$. Thus, $L=L(M, L(G), 3)$. Hence, $R E \subseteq R P D(L I N, 3)$. As $R P D(L I N, 3) \subseteq R E$ and $R E \subseteq R P D(L I N, 3)$, $R E=R P D(L I N, 3)$.

By analogy with the demonstration of $R E=R P D(L I N, 3)$, prove $R E=$ $\operatorname{RPD}(L I N, i)$ for $i=1,2$.

## 5 Future Investigation

This section suggests some open problem areas concerning regulated automata. First, it states four new areas of investigation. Then, it makes a note about a relation of regulated automata to the classical formal language theory.

## New investigation areas

A. For $i=1, \ldots, 3$, consider $\operatorname{RPD}(X, i)$, where $X$ is a language family satisfying $R E G \subset X \subset L I N$; for instance, set $X$ equal to the family of minimal linear languages. Compare $R E$ with $R P D(X, i)$.
B. Investigate special cases of regulated pushdown automata, such as their deterministic versions.
C. By analogy with regulated pushdown automata, introduce and study some other types of regulated automata.
D. Investigate the descriptional complexity of regulated pushdown automata.

## Classical investigation areas

As already pointed out, this paper has discussed regulated automata as a new investigation field of the formal language theory. Therefore, it has defined all notions and established all results in terms of this new field. However, this approach does not rule out a relation of the achieved results to the classical formal language theory. Specifically, Theorem 5 can be viewed as a new characterization of $R E$ and compared with other well-known characterizations of this family (see pages 180 through 184 in the first volume of [4] for an overview of these characterizations).

## References

[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York, 1989.
[2] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular Pattern Grammars, Acta Informatica, Vol. 20, pp. 391-411, 1983.
[3] Meduna, A.: Automata and Languages: Theory and Applications. Springer, London, 2000.
[4] Rozenberg, G. and Salomaa, A. (eds.): Handbook of Formal Languages; Volumes 1 through 3. Springer, 1997.
[5] Salomaa, A.: Formal Languages. Academic Press, 1973.

