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The replication origin and the initiator protein DnaA are the main targets for regulation of
chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while
DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has
accumulated in the cell, an active initiation complex can be formed at the origin resulting in
strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is
directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is
regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a
replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that
control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the
DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation.
The principle of replication-coupled negative regulation of DnaA found in E. coli is con-
served in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA
gene expression are also conserved in bacteria.

Bacteria typically contain few chromosomes,
each carrying a defined origin of replication

(Messer 2002). The model bacteria referred to in
this work (Escherichia coli, Bacillus subtilis, Cau-
lobacter crescentus, and Helicobacter pylori) all
have a single circular chromosome that is repli-
cated bidirectionally from the origin. Some bac-
teria, for instance E. coli and B. subtilis, grow
with overlapping replication cycles in rich media
(Fig. 1) (Kornberg and Baker 1992; Helmstetter
1996). This allows for cell doubling times that
are shorter than the replication phase, and re-
quires replication initiation to occur at 2, 4, or 8
origins, depending on the growth rate. Replica-

tion timing is maintained such that initiation
occurs simultaneously at all origins once per
generation (Skarstad et al. 1986).

The key protein responsible for DNA strand
opening at the origin and for the recruitment of
replisome components is the initiator protein,
DnaA (Kornberg and Baker 1992; Messer 2002;
Duderstadt and Berger 2008; Ozaki and Ka-
tayama 2009; Kaguni 2011; Leonard and Grim-
wade 2011). DnaA is an AAAþ type protein that
binds ATP and ADP with high affinity. DnaA
binds to high- and low-affinity sites in oriC
and forms an oligomeric structure (Fig. 2)
(Grimwade et al. 2000; Kawakami et al. 2005;
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Erzberger et al. 2006; Kawakami and Katayama
2010) that involves two types of DnaA–DNA
interactions, one with double-stranded and
one with single-stranded DNA (Speck and
Messer 2001; Fujikawa et al. 2003; Ozaki et al.
2008; Duderstadt et al. 2011; Ozaki and Ka-
tayama 2012). Only the ATP-bound form of
DnaA is capable of binding to low-affinity sites
(Fig. 2), which is supported by specific inter-
DnaA interaction mediated through its AAAþ

domain, resulting in the nucleoprotein struc-
tures required for initiation activity (McGarry
et al. 2004; Kawakami et al. 2005). Like ATP-
DnaA, ADP-DnaA binds to high-affinity 9-
mer DnaA boxes through its carboxy-terminal
dsDNA binding domain, but forms multimers
on oriC that are structurally distinct from those
of ATP-DnaA. The binding of IHF, another pos-

itive regulator of initiation, to oriC induces a
180 degree bend in the DNA (Dillon and Dor-
man 2010) and plays an important role in form-
ing an optimal initiation complex (Hwang and
Kornberg 1992; Hiasa and Marians 1994; Cass-
ler et al. 1995; Grimwade et al. 2000; Ryan et al.
2002; Leonard and Grimwade 2005; Ozaki and
Katayama 2012). Other nucleoid-associated
proteins (HU and Fis) also affect formation of
the initiation complex (Fig. 3) (Gille et al. 1991;
Hwang and Kornberg 1992; Hiasa and Marians
1994; Cassler et al. 1995; Wold et al. 1996; Mar-
gulies and Kaguni 1998; Ryan et al. 2002, 2004).
Transcription by RNA polymerase is required
for replication initiation (Kornberg and Baker
1992), though the mechanism by which this
occurs remains unclear. Transcription in or
around oriC is thought to facilitate opening of
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Figure 1. The replication cycle of the E. coli chromosome in slowly and rapidly growing cells. The chromosomal
replication cycle and the cell division cycle in E. coli are shown. When cells are growing slowly (in this example,
the doubling time t is 80 min), cell division occurs after replication of the sister chromosomes is completed.
When cells are growing rapidly (i.e., t is 35 or 25 min), replication initiation simultaneously occurs at each oriC
on the partially replicated chromosomes, and cell division occurs after the previous round of replication has
been completed. Closed circles, oriC.
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the DNA strands, and may be a prerequisite
for initiation in vivo under certain conditions,
for instance, when nucleoid-associated proteins
partially restrain negative superhelicity, thereby
impeding strand opening (Baker and Kornberg
1988; Skarstad et al. 1990; Bates et al. 1997). In
some circumstances, transcription through oriC
mayalso be inhibitory(Su’etsugu etal. 2003)and
for such transcription, the DnaA protein func-
tions as a transcriptional regulator (Weigel and
Messer 1997; Flåtten et al. 2009). Thus, DnaA
has two roles at oriC, one as an initiator and the
other as a transcription regulator.

After the DNA strands at oriC are separated,
the DnaB helicase, bound to the helicase loader
DnaC, is recruited to the initiation complex via
interactions with oriC-bound DnaA (Sutton
et al. 1998; Seitz et al. 2000; Messer 2002; Abe
et al. 2007; Duderstadt and Berger 2008; Leo-
nard and Grimwade 2010; Kaguni 2011). This
stage may involve a reorganization of the DnaA-

oriC complex and is influenced by the DiaA
protein (Fig. 3) (Keyamura et al. 2009). DiaA
binds to the amino terminus of DnaA and pro-
motes initiation (Ishida et al. 2004; Keyamura
et al. 2007). DiaA may also have a modulating
effect on DnaB loading, because it binds to
DnaA in the same place as DnaB, and inhibits
loading of DnaB in vitro (Keyamura et al. 2009).

Regulation of initiation must fulfill two re-
quirements. It must prevent extra initiation
events, and it must ensure sufficient initiation
so that one initiation event occurs per genera-
tion per origin. Several mechanisms ensure that
extra initiation events do not occur (described
below), but less is known about the timing
of replication initiation, i.e., the rate-limiting
steps, and whether the same factor(s) are re-
quired under all conditions. The frequency of
replication must match the growth rate, other-
wise the cellular DNA concentration will be
altered. The cellular concentration of DnaA
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Figure 2. Structures of oriC, datA, and DARSs. (A) The E. coli chromosome is shown as a circle and the locations
of oriC (at the genome map position of 84.6 min), dnaA (at 83.6 min), datA (at 94.6 min), DARS1 (at 17.5 min),
DARS2 (at 64.0 min), and terC (around 36 min) are indicated. (B) Basic structures of oriC, datA, and DARSs are
schematically shown. Closed triangle, DnaA box (9-nucleotide sequence). Gray triangle, I-sites, and t-sites
(both 6-nucleotide sequence). As for datA, DnaA boxes 2 and 3 are most crucial in repression of initiation
(Ogawa et al. 2002). For details on low-affinity DnaA binding sites in datA, see Hansen et al. (2007). Open
triangle, 13-mer AT-rich motif within DUE. IHF, IHF-binding site; FIS, FIS-binding site; �, GATC sequence
within oriC.
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protein was found to be constant irrespective of
the growth media (Hansen et al. 1991a) and a
theoretical model has suggested that the pro-
duction of DnaA couples growth rate to replica-
tion frequency (Hansen et al. 1991b). The ratio
of ATP-DnaA to ADP-DnaA varies throughout
the cell cycle and peaks right before replication
initiation (Kurokawa et al. 1999). It has therefore
been suggested that the frequency of initiation is
determined by the accumulation of ATP-DnaA
at oriC during steady-state growth (Donachie
and Blakely 2003).

REGULATION AT THE ORIGIN
SEQUENCE IN E. coli

Origin Sequestration

There are, in principle, two ways to prevent ex-
cess initiation of replication, one is to hinder

origin usage, and the other is to inactivate the
factors that perform initiation. In E. coli, origin
usage is prevented by a process called origin se-
questration that depends on the binding of the
SeqA protein to newly replicated origins (Fig. 3;
Table 1) (Lu et al. 1994; Slater et al. 1995; Bren-
dler and Austin 1999; Waldminghaus and Skar-
stad 2009). Lack of SeqA causes untimely extra
initiations and asynchrony in initiation of mul-
tiple origins (i.e., asynchrony phenotype).

SeqA discriminates between new and old
origins by the methylation status of GATC se-
quences, which are present at high frequency
in the oriC DNA sequence. The adenines of
these sequences are recognized and methylated
by Dam methylase. Chromosomal GATC sites
remain hemimethylated for about a minute af-
ter the replication fork has passed (Camp-
bell and Kleckner 1990). The high frequency
of GATC sites in the origin (Fig. 2), however,

Cell cycle organizer?

? ? ?

The dnaA gene

ATP-DnaA Fis

IHF, DiaA

oriC

Replication

SeqA binding to oriC (temporal)
SeqA binding to dnaA (temporal)
DNA-loaded clamps

DARS

ADP-DnaA

DnaA-ATP hydrolysis by the ADP-Hda-
clamp-DNA complex (RIDA)
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Figure 3. The DnaA cycle and regulation of oriC initiation. Transcription of the dnaA gene is autoregulated. ATP-
DnaA is more active in inhibiting dnaA transcription than ADP-DnaA. Also, dnaA transcription increases before
replication initiation and is repressed after it in a SeqA-dependent manner. Newly synthesized DnaA molecules
adopt the ATP form. ATP-DnaA molecules are also generated by nucleotide exchange of ADP-DnaA in a DARS-
dependent manner, though the cell cycle-dependent regulation of DARS remains unclear. With the assistance of
DiaA and IHF, ATP-DnaA molecules form a multimeric complex on oriC in a cooperative manner. The resultant
oriC complex unwinds DUE and is then engaged in replisome formation. The clamps remain on the synthesized
DNA after Okazaki fragments are synthesized and form a complex with ADP-Hda, which interacts with and
promotes the hydrolysis of ATP-DnaA (i.e., RIDA). Broken lines indicate expected but unrevealed pathways for
cell cycle-coordinated regulation.
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results in origin DNA remaining hemimethy-
lated for about a third of a generation after rep-
lication (Campbell and Kleckner 1990; Lu et al.
1994; Bach and Skarstad 2005). During this
time, the origin is bound by SeqA, which, in
addition to preventing GATC methylation by
Dam methylase, inhibits replication initiation
(Fig. 3; Table 1) (Lu et al. 1994; Boye et al.
1996; Guarne et al. 2002; Fujikawa et al. 2004).
Also, DnaA itself contributes to origin seques-
tration, probably by hindering remethylation by
Dam at some of the GATC sites in oriC (Lu et al.
1994; Bach et al. 2008). In vitro, SeqA forms
fibers of head-to-head dimers (Guarne et al.
2005; Kang et al. 2005; Odsbu et al. 2005). Ad-
ditionally, the binding of SeqA multimers to
oriC can alter DNA superhelicity (Torheim et

al. 1999) and inhibit ATP-DnaA binding to low-
affinity sites (Nievera et al. 2006), both of which
can inhibit the initiation reaction (Fig. 3; Table
1) (Lee et al. 2001; Waldminghaus and Skarstad
2009).

Microscopy of fluorescently labeled SeqA
indicates that the majority of cellular SeqA
forms relatively compact structures with the
hemimethylated DNA at replication forks (Hi-
raga 1998, 2000; Brendler et al. 2000; Molina
and Skarstad 2004; Yamazoe et al. 2005; Fossum
et al. 2007). These structures are dynamic and
trail the replication forks, and always bind to the
most newly synthesized DNA (Yamazoe et al.
2005; Waldminghaus et al. 2012). Because extra
SeqA foci representing sequestered origins have
not been detected, it has been suggested that

Table 1. Regulatory pathways for replication initiation

Regulation

in E. coli

Target of

regulation

Representative

regulatory factor

Representative phenotype

when regulation is

disrupted

Possible analogs in

other organisms

Sequestration oriC SeqA Extra initiations,
asynchrony phenotype

Regulation by Soj in
B. subtilis

Regulation by CtrA in
C. crescentus

dnaA transcription dnaA gene DnaA, SeqA Extra initiations,
asynchrony phenotype
(when SeqA function is
inhibited or dnaA is
overexpressed)

dnaA autoregulation in
B. subtilis

Cell cycle-coupled
transcription in
C. crescentus

Binding of DnaA to
sites other than
oriC

DnaA datA Extra initiations, changed
timing in some growth
conditions, asynchrony
phenotype

Regulation by DnaA box
clusters in B. subtilis and
Streptomyces coelicolor

DnaA reactivation ADP-DnaA DARS Inhibition of initiation,
asynchrony phenotype

Unknown, but DARS-
homologous sequences
are conserved in certain
bacterial genomes
(Fujimitsu et al. 2009)

Stimulation of
DnaA
multimerization

ATP-DnaA DiaA Inhibition of initiation,
asynchrony phenotype

Regulation by HobA in
H. pylori

DnaA inactivation
(RIDA)

ATP-DnaA Hda Severe amount of extra
initiations, asynchrony
phenotype

Inhibition of cell division
and cell proliferation

Regulation by YabA-clamp
complex in B. subtilis

Regulation by HdaA-clamp
complex in C. crescentus

Regulation by Cul4-DDB1-
PCNA (clamp) complex
in eukaryotes
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sequestered origins bound by SeqA are situated
at, or near, the replication fork structures (Mo-
lina and Skarstad 2004; Bach and Skarstad 2005;
Morigen et al. 2009).

Regulation by Transcription at and
near the Origin

Transcription around and at oriC can affect rep-
lication initiation and may also contribute to
regulation of initiation frequency. The mioC
and gidA genes are located at the right and left
side of oriC, respectively (Fig. 2). The mioC gene
does not have a strong terminator and its tran-
scripts read through oriC (Messer and Weigel
1997). The gidA gene is transcribed away from
oriC. The mioC promoter region contains a
DnaA box cluster and DnaA binding negatively
regulates mioC gene transcription (Messer and
Weigel 1997; Hansen et al. 2007). Transcription
of mioC is repressed before replication initiation
and is derepressed after it (Theisen et al. 1993;
Ogawa and Okazaki 1994; Bogan and Helmstet-
ter 1997). Constitutive transcription of mioC
impedes initiation (Su’etsugu et al. 2003). The
transcriptional pattern of gidA is opposite to that
of mioC (Theisen et al. 1993; Ogawa and Okazaki
1994;Bogan andHelmstetter 1997).Deleting the
promoters of these genes does not affect initia-
tion regulation in wild type cells during steady-
state growth, although the transcription of these
genes can stimulate initiation in cells bearing a
mutation impeding initiation (Bates et al. 1997).

REGULATION OF THE DnaA
PROTEIN IN E. coli

Overview

The production and activity of E. coli DnaA
protein is regulated in several ways: by transcrip-
tion, intracellular localization, and conforma-
tion (Katayama et al. 2010; Leonard and Grim-
wade2010;Kaguni 2011).DnaAprotein is stable,
but replication cycle-specific dnaA gene tran-
scription is important for sustaining well-timed
initiation of replication (Bogan and Helmstetter
1997; Riber and Løbner-Olesen 2005). This can
be explained by the role of ATP-DnaA in activat-

ing initiation(Kurokawaetal.1999;Nishidaetal.
2002) and the idea that newly synthesized DnaA
preferentially binds ATP, the cellular level of
which is 10-fold higher than that of ADP (Fig. 3).

Also, timely initiation of replication dur-
ing the cell cycle requires specific chromosom-
al regions termed DARS (DnaA-reactivating
sequence) 1 and DARS2. These regions bind
ADP-DnaA molecules and promote the regen-
eration of ATP-DnaA by nucleotide exchange
(Figs. 2 and 3) (Fujimitsu et al. 2009).

It has been estimated that there are 500–
2000 DnaA molecules per cell, depending on
strain backgrounds and growth rates (Sekimizu
et al. 1988; Chiaramello and Zyskind 1989; Han-
sen et al. 1991a). oriC can bind 10–20 DnaA
molecules (Messer 2002). A considerable num-
ber of DnaA molecules can be titrated at a spe-
cific chromosomal locus termed datA that is
required for repressing rifamcipin-resistant un-
regulated initiation events (Figs. 2 and 3) (Kita-
gawa et al. 1998; Morigen et al. 2005).

The ATP-DnaA level fluctuates during the
replication cycle, peaking around the time of
initiation (Kurokawa et al. 1999). ATP-DnaA
hydrolysis is required to reduce ATP-DnaA levels
after initiation (Fig. 3). This regulation, termed
RIDA (regulatory inactivation of DnaA), is cou-
pled with the action of the DNA polymerase III
holoenzyme. RIDA is crucial for regulating ini-
tiation so that it occurs only once per generation
(Katayama et al.1998; Kato and Katayama 2001;
Su’etsugu et al. 2004; Camara et al. 2005).

Regulation of DnaA Gene Transcription

The cellular DnaA concentration was found to
be constant irrespective of growth medium and
the cell cycle (Hansen et al. 1991a). However, the
transcription of the dnaA gene varies in a rep-
lication cycle-dependent manner (Bogan and
Helmstetter 1997). The main reason for the fluc-
tuation seems to be that the dnaA gene promot-
er is sequestered by SeqA for almost the same
duration as the origin (Fig. 3; Table 1) (Camp-
bell and Kleckner 1990; Lu et al. 1994; Riber and
Løbner-Olesen 2005). During sequestration,
the promoter is unavailable to the transcription
machinery. Because the dnaA gene is situated
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near oriC, this contributes to reducing the pro-
duction of DnaA and thus the initiation poten-
tial (i.e., the ability to initiate replication) soon
after new replication forks have been launched
(Riber and Løbner-Olesen 2005). The dnaA pro-
moter area also contains DnaA boxes and the
promoter was found to be capable of autoregu-
lation (Fig. 3; Table 1) (Messer and Weigel 1997;
Hansen et al. 2007). Translation of dnaA mRNA
has not been well characterized, but it is known
that the start codon, GTG, functions inefficient-
ly in E. coli.

Binding of DnaA to Sites Other than oriC

As mentioned, the DnaA protein functions not
only as the initiator but also as a gene regulatory
protein. There are about 300 high-affinity DnaA
binding sites and a very large number of low-
affinity sites around the chromosome (Kitagawa
et al. 1996; Roth and Messer 1998; Hansen et al.
2007). As the chromosome is replicated, the
DnaA binding sites are duplicated and contrib-
ute to titration of DnaA away from oriC. The
main titration site, datA, is situated near oriC
and is duplicated soon after initiation of repli-
cation (Kitagawa et al. 1996, 1998; Ogawa et al.
2002; Morigen et al. 2003, 2005). In vivo studies
indicate that the datA site binds on average 60
DnaA molecules (Hansen et al. 2007). The datA
site should therefore contribute to reducing the
initiation potential at oriC when oriC is still in
sequestration. The datA site is about 1 kb in size
and contains five high-affinity DnaA binding
sites and about 25 low-affinity sites (Fig. 2; Table
1) (Kitagawa et al. 1996, 1998; Hansen et al.
2007). High-affinity DnaA boxes 2 and 3 are
crucial for efficient binding of DnaA to datA.
It is possible that the DnaA bound to these sites
function as a core for further cooperative DnaA
binding (Ogawa et al. 2002). The production
of DnaA protein as cells grow and the generation
of binding sites as the chromosome is replicat-
ed, as well as sequestration and RIDA, has been
simulated in silico (Hansen et al. 1991; Brow-
ning et al. 2004; Atlas et al. 2008) and may in-
dicate that initiation occurs as soon as enough
ATP-DnaA has accumulated at oriC. How-
ever, cells with similar numbers of origins and

chromosomal DnaA binding sites but differ-
ent growth conditions have been reported to
contain different amounts of DnaA per ori-
gin at initiation (Torheim et al. 2000; Flåtten
et al. 2009). So, although origin firing as soon
as enough ATP-DnaA has accumulated is an
attractive model of cell cycle regulation, a com-
plete understanding of regulation encompass-
ing different growth conditions is still lacking
even in the well-characterized E. coli bacterium.

Regulation of the DnaA Nucleotide Form
by DARS and Acidic Phospholipids

E. coli cells can convert ADP-DnaA to ATP-
DnaA by nucleotide exchange (Fig. 3) (Kuro-
kawa et al. 1999; Fujimitsu et al. 2009). The
DARS1 and DARS2 sequences promote this re-
action and are located halfway within the inter-
genic region between oriC and terC, to the right
and left of oriC, respectively (Fig. 2A) (Fujimitsu
et al. 2009). A common feature of DARS1 and
DARS2 is the presence of a DnaA box cluster, in
which three DnaA boxes are similarly oriented
and are located at a similar distance (Fig. 2B).
Multiple ADP-DnaA molecules can form com-
plexes with DARS, which facilitates the release of
ADP from DnaA. The resultant apo-DnaA mol-
ecules are likely released from DARS because of
reduced complex formation activity, which al-
lows the binding of ATP and DnaA reactivation.
Increasing the cellular copy number of DARS1
or DARS2 increases the ATP-DnaA level, in-
ducing extra initiation events, whereas deleting
both DARS1 and DARS2 causes a delay in ini-
tiation (Fujimitsu et al. 2009). Newly translated
DnaA protein binds ATP, providing cells with
a basal level of ATP-DnaA. However, this alone
is not enough to initiate replication in a timely
manner. Thus, the function of DARSs is crucial
for timely initiation (Fig. 3; Table 1). Functional
regulation of DARS remains to be clarified,
except for the fact that each DARS contains a
regulatory region in addition to the common
sequence bearing the DnaA box cluster (Fuji-
mitsu et al. 2009; Leonard and Grimwade
2009). In addition to DARS, acidic phospho-
lipids such as cardiolipin and phosphatidylgly-
cerol play an important role in the nucleotide
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release of ADP-DnaA (Sekimizu and Kornberg
1988), and DnaA is reactivated by exchange of
the bound nucleotide in vitro in the presence
of oriC and ATP (Crooke et al. 1992). Reduction
of the acidic phospholipids in vivo can inhibit
initiation at oriC (Xia and Dowhan 1995), but
exactly how acidic phospholipids affect DnaA
activity during the cell cycle remains to be elu-
cidated.

Regulation of DnaA Multimer
Formation by DiaA

DiaA forms homotetramers and each protomer
contains a specific site for binding to DnaA do-
main I (Fig. 3) (Ishida et al. 2004; Keyamura
et al. 2007, 2009). These features allow a single
DiaA tetramer to bind multiple molecules of
DnaA, which can stimulate cooperative binding
of DnaA to oriC and the unwinding reaction
(Fig. 3; Table 1). The binding of ATP-DnaA to
low-affinity binding sites within oriC is en-
hanced by DiaA (Fig. 1) (see Bell and Kaguni
2013; Leonard and Méchali 2013). In diaA-dis-
rupted mutant cells, replication initiation is de-
layed and initiation at sister oriC copies occurs
asynchronously in rapidly growing cells (Ishida
et al. 2004; Keyamura et al. 2007, 2009). These
data are consistent with the observation that
replication is initiated asynchronously in mu-
tants bearing DnaA box R4-deleted oriC (Bates
et al. 1995), because the binding of DnaA to
high-affinity DnaA box R4 enhances coopera-
tive DnaA binding to low-affinity sites.

After DUE unwinding in oriC complexes,
DiaA must be released from DnaA (Keyamura
et al. 2009). The DiaA-binding site of DnaA
domain I is also used to bind DnaB helicase.
However, the mechanism of DiaA-DnaA disso-
ciation has not yet been elucidated.

DiaA orthologs are evolutionarily conserved
in bacterial species (Keyamura et al. 2007). In
addition, the HobA protein of Helicobacter pylo-
ri (Hp), a member of 1-Proteobacteria, displays
functional and structural similarity to DiaA,
although there is no significant sequence sim-
ilarity (Table 1) (Natrajan et al. 2007, 2009; Za-
krzewsak-Czerwinska et al. 2007; Zawilak-Paw-
lik et al. 2007, 2011; Terradot et al. 2010).

Regulation of the DnaA Nucleotide
Form by RIDA

After ATP-DnaA promotes replication initia-
tion, it is hydrolyzed in a manner dependent
on a complex consisting of ADP-Hda protein
and the DNA-loaded clamp (Fig. 4; Table 1)
(Katayama et al. 1998; Kato and Katayama 2001;
Su’etsugu et al. 2008). The resultant ADP-DnaA
is inactive in initiation. This system is termed
RIDA (regulatory inactivation of DnaA). RIDA
is crucial for DnaA inactivation and thereby ef-
fectively supports once-per-generation initia-
tion (Kurokawa et al. 1999; Camara et al. 2005;
Riber et al. 2009). The hda gene is required for
promoting cell proliferation, decreasing cellu-
lar ATP-DnaA levels and repressing overinitia-
tion (Kato and Katayama 2001; Fujimitsu et al.
2008; Charbon et al. 2011). Incubation of tem-
perature-sensitive hda mutant cells at the restric-
tive temperature leads to overinitiation of repli-
cation and induces inhibition of cell division,
producing filamentous cells (Fujimitsu et al.
2008). Inhibition of cell division is thought to
be a consequence of checkpoint regulation, but
the exact mechanism by which this occurs re-
mains unknown. DnaA AAAþ sensor II motif
Arg-334 is specifically required for ATP-DnaA
hydrolysis and expression of a DnaA R334A mu-
tant protein causes overinitiation and inhibition
of cell growth in an oriC-dependent manner
(Table 1) (Nishida et al. 2002).

Hda protein consists of a short amino-ter-
minal region containing the clamp-binding mo-
tif and an AAAþ domain that is homologous
to DnaA domain III (Fig. 4) (Dalrymple et al.
2001; Kato and Katayama 2001; Kurz et al. 2004;
Su’etsugu et al. 2005; Xu et al. 2009). The Hda
clamp-binding motif is commonly present in
clamp-binding proteins such as DNA polymer-
ase III core subunit a (Dalrymple et al. 2001). It
binds to the hydrophobic pocket of the clamp,
which is the same site to which DNA polymerase
III subunit a binds (Dalrymple et al. 2001; Kurz
et al. 2004; Su’etsugu et al. 2005). The Hda
AAAþ domain specifically binds ADP, but not
ATP (Su’etsugu et al. 2008). ADP-Hda is mono-
meric and active in RIDA, whereas apo-Hda is
multimeric and inactive in RIDA (Su’etsugu
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et al. 2008). The Hda AAAþ domain bears a
specific Arg residue (i.e., Arg finger) that is cru-
cial for promoting DnaA-ATP hydrolysis (Su’et-
sugu et al. 2005). This residue may participate in
forming the ATP hydrolysis catalytic center by
direct DnaA-Hda interaction. This is a common
characteristic of many AAAþproteins (Neuwald
et al. 1999; Ogura et al. 2004; Indiani and
O’Donnell 2006). In addition to the Arg finger,
specific residues within the AAAþ domains of
DnaA and Hda are required for DnaA-Hda in-
teraction and DnaA-ATP hydrolysis (Nakamura
et al. 2010). DnaA domain IV (DNA binding
domain) promotes this interaction by binding
to Hda (Fig. 4) (Keyamura and Katayama 2011).

During DNA elongation, the clamps remain
onthe lagging strandafterOkazaki fragments are
synthesized and the DNA polymerase III core is
released (Yuzhakov et al. 1996; Balakrishnan

and Bambara 2013; Goodman and Woodgate
2013; Hedglin et al. 2013; MacAlpine and
Almouzni 2013). DNA-loaded, DNA polymer-
ase-free clamps bind ADP-Hda, resulting in the
activation of RIDA (Su’etsugu et al. 2004, 2008).
In addition, it is possible that because a clamp is
a homodimer, Hda and DNA polymerase III
subunit a bind to each protomer of the same
clamp to allow Hda to hydrolyze DnaA-ATP as
soon as replication forks are under way (John-
sen et al. 2011). DNA-free clamps are inactive in
RIDA, although they can bind Hda, which en-
sures the timely and replication-coupled activa-
tion of RIDA. The dsDNA region flanking the
clamp is required for RIDA, and may be recog-
nized by DnaA (Fig. 4) (Su’etsugu et al. 2004).

The ADP-Hda-clamp-DNA complex is sta-
ble, whereas the affinity of this complex for
DnaA is weak (Su’etsugu et al. 2008). This is

ADP-Hda

DNA-loaded, polymerase-free clamp

DNA-loaded clamp-Hda complex

DnaA-ATP hydrolysis complex

DnaA

N
R

ADP

ADP

ADP

ADP

ATP

N

N

IV

IV

I-II

I-II

III

III

R

R

Figure 4. The basic mechanism of RIDA. When DNA polymerase III holoenzyme completes Okazaki fragment
synthesis on the lagging strand, the clamp subunit is released from the DNA polymerase III core and remains on
the synthesized DNA. ADP-Hda binds to the hydrophobic pocket of the DNA-loaded form of the clamp via the
clamp-binding motifs in the amino terminus of Hda. The resultant ADP-Hda-clamp-DNA complex interacts
with and promotes the DnaA-bound ATP hydrolysis, releasing ADP-DnaA back into the DnaA cycle. The
interaction between the AAAþ domains of Hda and DnaA is crucial, and is assisted by the interaction between
Hda and DnaA domain IV (DNA-binding domain). N, Hda-amino terminus; I-II, DnaA domain I-II; III, DnaA
domain III (AAAþ domain); IV, DnaA domain IV (DNA-binding domain).
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consistent with the fact that the complex is re-
used for cyclically interacting with multiple
ATP-DnaA molecules, and that there are only
about 100 Hda molecules per cell (Katayama
et al. 2010).

The main principle of RIDA, which is the use
of DNA-loaded clamps for replication-coupled
negative feedback to the initiator protein, is evo-
lutionarily conserved from bacteria to eukary-
otes, including yeast, Xenopus, and human cells
(Table 1) (Katayama et al. 2010; Zielke et al.
2012).

Coordination of Regulation for oriC and DnaA

SeqA binds to hemimethylated oriC immediate-
ly after initiation and replication of the oriC re-
gion. In aculturewith a doubling time of 30 min,
the binding of SeqA to oriC lasts for about
10 min. The ratio of ATP-DnaA to ADP-DnaA
peaks at initiation, and then undergoes a gradual
decrease because of RIDA activity. It takes ap-
proximately 15 min to decrease this ratio to the
lowest levels, and probably less than 10 min to
decrease the ratio enough to prevent initiation
from occurring when the origins are released af-
ter 10 min of sequestration. Thus, SeqA inacti-
vates oriC early during the inter-initiation peri-
od, whereas RIDA represses the DnaA initiation
activity for the remainder of this period. Coor-
dination of these two steps is crucial for repress-
ing untimely initiation events (Fig. 3) (Lu et al.
1994; Kurokawa et al. 1999; Skarstad and Løb-
ner-Olesen 2003; Katayama et al. 2010). During
multifork replication, in which replication goes
on continuously and only the number of re-
plication forks under way changes through the
cycle (Fig. 1), it could be that RIDA needs to be
temporarily inhibited to achieve a high enough
ratio of ATP-DnaA to ADP-DnaA at initiation.
Whether such a temporary inhibition occurs
remains to be elucidated.

The balance between Dam methylase and
SeqA activities governs the duration of the se-
questration period (Bach et al. 2003). If Dam
methylase is overexpressed, extra rounds of rep-
lication occur (Boye and Løbner-Olesen 1990),
indicating that high levels of Dam methylase
shorten the sequestration period, resulting in

origin availability before the initiation poten-
tial has dropped (Skarstad and Løbner-Olesen
2003). Likewise, if DnaA is overexpressed or
DnaA inactivation by RIDA has not occurred,
extra rounds of DNA replication occur because
the initiation window has stretched beyond the
sequestration window (Atlung et al. 1987; Skar-
stad et al. 1989; Nishida et al. 2002; Camara et al.
2003).

Regulation of replication initiation in E. coli
does not involve control over the concentration
of origins. All origins present in the cell are
initiated at the same time once per generation
irrespective of how many there are. This can be
seen when minichromosomes (plasmids depen-
dent on an oriC sequence for replication initia-
tion) are present in the cell; they initiate at the
same time as the chromosomal oriCs (Helm-
stetter and Leonard 1987; Løbner-Olesen 1999).
Thus, the mechanism is the following: all origins
are initiated during a short time interval and all
new origins are sequestered until initiation is no
longer possible. Although replication fork speed
can vary significantly (Morigen et al. 2009;
Odsbu et al. 2009; Stokke et al. 2012), it is not
known whether the speed of each individual rep-
lication fork is regulated. In Bacillus subtilis, it
has been found that replication elongation can
be regulated by ppGpp (Wang et al. 2007) and
metabolic enzymes (Janniere et al. 2007).

Regulation of oriC and DnaA in B. subtilis
and C. crescentus

Regulation by the Clamp-Binding Protein

Bacillus subtilis (Bs) is a representative of Gram-
positive bacteria and is a member of Firmicutes,
whereas E. coli is representative of Gram-neg-
ative bacteria and is a member of g-Proteo-
bacteria. This means that these species are evo-
lutionarily distant. In B. subtilis, the dnaA gene
is located between the clusters of the cognate
DnaA boxes on the genome (Messer 2002)
that form the replication origin (Moriya et al.
1992, 1994; Krause et al. 1997; and see Leonard
and Méchali 2013) and dnaA gene transcription
is autoregulated like in E. coli (Table 1) (Ogura
et al. 2001).
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Subcellular localization analysis indicates
that a considerable number of BsDnaA mole-
cules are titrated to the replication forks in a
clamp- and YabA-dependent manner (Noirot-
Gros et al. 2006; Soufo et al. 2008; Goranov et al.
2009). Although YabA has no sequence sim-
ilarity to E. coli Hda, it binds the clamp and
BsDnaA, like Hda (Table 1) (Noirot-Gros et al.
2006; Cho et al. 2008). The YabA-clamp system is
required to repress overinitiation of replication
(Noirot-Gros et al. 2006; Soufo et al. 2008; Gor-
anov et al. 2009), which may be sustained by the
sequestration of many DnaA molecules from
oriC. Whether DNA-clamp-YabA complexes in-
duce BsDnaA-ATP hydrolysis is not yet known.

Caulobacter crescentus (Cc) is an a-Proteo-
bacterial species that is evolutionarily distant
from both E. coli and B. subtilis. C. crescentus cells
undergo asymmetrical cell division, yielding
a stalked cell and a swarmer cell; only a stalked
cell can replicate the chromosome whereas a
swarmercellmust first differentiate into a stalked
cell before replication can occur (Marczynski
and Shapiro 2002). In C. crescentus, HdaA, the
E. coli Hda ortholog, colocalizes with replisomes
and is required to repress overinitiation (Table 1)
(Collier and Shapiro 2009). CcDnaA Arg-357
corresponds to the E. coli DnaA AAAþ sensor
II motif Arg-334, and, like E. coli DnaA R334A,
CcDnaA R357A can cause overinitiation of the
cognate chromosomal replication (Fernandez-
Fernandez et al. 2011). Taken together, the data
indicate that replication-dependent DnaA-ATP
hydrolysis is important for repressing CcDnaA
activity and extra initiation events.

Regulation by oriC-Binding and Various
Factors

In B. subtilis, the chromosome partition proteins
Soj and Spo0J play regulatory roles in replication
initiation at oriC (Ogura et al. 2003; Lee and
Grossman 2006; Murray and Errington 2008;
Scholefield et al. 2011). Soj and Spo0J are mem-
bers of the same protein family as ParA and ParB
that are plasmid-partitioning proteins. The ParS
region is a centromere-like region located near
oriC and partitions the sister oriC regions by
binding to both Soj and Spo0J. DNA-free Soj

binds to DnaA assembled on oriC, and represses
untimely initiation events (Table 1). ATP-bound
Soj bindsto ParS and stimulates initiation. Spo0J
negatively regulates this Soj action by stimulat-
ing Soj-ATP hydrolysis and dissociation from
the DNA (Murray and Errington 2008; Schole-
field et al. 2011). In addition, the binding of
BsDnaA to DnaA box clusters near oriC is also
important for preventing premature initiation
(Okumura et al. 2012). Similar role for DnaA
box clusters is also found in Streptomyces (Table
1) (Smulczyk-Krawczyszyn et al. 2006).

When B. subtilis cells sporulate, the initia-
tion of chromosome replication is inhibited by
SirA (Wagner et al. 2009; Rahn-Lee et al. 2011).
SirA is expressed specifically on sporulation and
binds BsDnaA, which inhibits BsDnaA-oriC
binding. E. coli does not contain homologs of
Soj, Spo0J, and SirA, whereas B. subtilis does not
contain homologs of SeqA and Dam (Table 1).

In C. crescentus, CtrA is a major cell cycle-
dependent transcriptional regulator present in
swarmer cells. It binds to the cognate oriC,
thereby inhibiting replication initiation (Table 1)
(Quan et al. 1998). ClpP degrades CtrA when
swarmer cells differentiate into stalked cells
(Gorbatyok and Marczynski 2005; McGrath
et al. 2006). Homologs of SeqA and Dam are
absent in this bacterium.

The Stringent response is activated on car-
bon starvation and primarily inhibits transcrip-
tion (Strivatsan and Wang 2008). Carbon star-
vation activates the synthesis of ppGpp from
GDP by RelA or SpoT. ppGpp directly binds to
RNApolymeraseandalterstranscriptionmodes,
specifically repressing stable RNA (rRNA and
tRNA) synthesis. In E. coli, the initiation of
chromosomal replication is inhibited on carbon
starvation, which may be caused by changes in
RNA polymerase function (Zyskind and Smith
1992) but the entire mechanism is not revealed.
In B. subtilis, elongation, but not initiation, is
inhibited on carbon starvation, which is indi-
cated to be caused by ppGpp-dependent inac-
tivation of primase (Wang et al. 2007). Similar
mechanisms may also exist in E. coli (Maciag
et al. 2010). In C. crescentus, SpoT, the ppGpp
synthetase, degrades DnaA on carbon starva-
tion (Lesyley and Shapiro 2008).
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CONCLUDING REMARKS

Multiple systems regulate oriC and DnaA in a
concerted manner to ensure that replication ini-
tiation occurs only once per origin per genera-
tion. Some of these regulatory systems are cou-
pled with specific events that are important for
cell cycle regulationorchromosomal replication.
In E. coli, oriC becomes hemimethylated tem-
porarily just after initiation, which allows the
binding of SeqA, an inhibitor of initiation. The
DNA-loaded clamps bind Hda protein, and the
resultant complexes stimulate DnaA-ATP hy-
drolysis, thereby inactivating DnaA. This clamp-
dependent feedback regulation is also conserved
in eukaryotes. Also, dnaA gene transcription is
repressed in a SeqA-dependent and temporal
manner. These three negative-feedback mecha-
nisms regulate initiation in a replication-depen-
dent manner in E. coli. In addition, excessive
DnaA molecules are titrated to the datA locus
on the chromosome, which adds another level
of negative regulation. dnaA transcription is also
autoregulated in both E. coli and B. subtilis.
DARS reactivates DnaA by stimulating ADP-
to-ATPexchange, thereby supporting timely ini-
tiation as well as the DnaA-DiaA interaction.

The B. subtilis clamp-YabA complex and
the C. crescentus clamp-HdaA complex regulate
initiation in a replication-dependent, negative-
feedback manner. YabA and HdaA are consid-
ered to be the functional homologs of E. coli
Hda, but only HdaA displays structural similar-
ity with Hda. In B. subtilis, the ordered interac-
tion of Soj, Spo0J, and the parS locus regulates
the initiation activity and assembly of BsDnaA
at oriC in a cell cycle-coordinated manner. Like
E. coli datA, DnaA box clusters near oriC are also
important for repressing initiation potential.
SirA, which is expressed specifically before spor-
ulation, inhibits the binding of BsDnaA to oriC.
In C. crescentus, the cell cycle-specific binding of
CtrA to the origin may regulate initiation. The
stringent response, which is induced on carbon
starvation and increases the level of ppGpp, an
RNA polymerase inhibitor, stimulates DnaA
degradation in C. crescentus, and inhibits elon-
gation in B. subitilis through the ppGpp-pri-
mase interaction and initiation in E. coli.
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