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DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the
genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent
kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a
binary switch that permits the replication of each chromosome exactly once per cell cycle.
Work from several organisms has revealed a conserved strategy whereby inactive replication
complexes are assembled onto DNA during periods of low CDK and high APC activity but
are competent to execute genome duplication only when these activities are reversed.
Periods of high CDK and low APC/C serve an essential function by blocking reassembly
of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved
additional CDK-independent mechanisms for preventing rereplication.

The Eukarya include a wide spectrum of or-
ganisms, with genome sizes ranging from

�107 bp in yeasts to �1012 bp in protozoa.
Rapid duplication of large genomes is achieved
by distribution of the genetic material across
several chromosomes. Each of these chromo-
somes initiates replication from sites called rep-
lication origins, which must fire no more than
once per cell cycle to ensure a single error-free
copy of the genome. Generating replication forks
from an origin more than once leads to rerep-
lication, an event that creates multiple copies
of a single genomic region within a single cell.
This leads to gene amplification and promotes
genome instability (Green et al. 2010), a phe-
nomenon observed in many human cancers
(Lengauer et al. 1998). The process of genome
duplication is therefore under stringent control
to ensure that few, if any, defects are transmitted
from one generation to the next.

GENERAL STRATEGY FOR INITIATION
OF EUKARYOTIC DNA REPLICATION

Origin Licensing: Loading of the
Replicative Helicase

Eukaryotic cells initiate DNA replication in two
discrete steps. First, an inactive form of the
replicative helicase is assembled onto double-
stranded DNA (dsDNA) in a process called or-
igin licensing. This occurs during late mitosis
and G1 phase of the cell cycle. The six-subunit
origin-recognition complex (ORC) binds to
DNA sequences called origins of replication
and recruits the Cdc6 and Cdt1 proteins. To-
gether these three licensing factors direct the
loading of the helicase, the minichromosome
maintenance (MCM) complex, around dsDNA.
The MCM complex thus loaded is topologically
linked to DNA and forms a double hexamer
(Donovan et al. 1997; Rowles et al. 1999; Seki
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and Diffley 2000; Evrin et al. 2009; Remus et al.
2009; Gambus et al. 2011). This form of the
inactive helicase is also referred to as the pre-
replicative complex (pre-RC).

Origin Firing: Activation of the Replicative
Helicase

During S phase, the inactive pre-RC is convert-
ed into an active helicase that unwinds dsDNA,
thus allowing DNA polymerases to access and
copy the two template strands. This second step
of origin firing involves the formation of the
CMG complex, named after its components:
Cdc45, the MCM proteins, and the GINS com-
plex (Moyer et al. 2006; Aparicio et al. 2009).
The active CMG helicase is then coupled to a
DNA polymerase, either Pol 1 for the leading
strand or Pol d for the lagging strand (Kunkel
and Burgers 2008). This process requires the
activity of the Sld2, Sld3, Sld7, and Dpb11 pro-
teins as well as the two protein kinases cyclin-
dependent kinase (CDK) and Dbf4-dependent
kinase (DDK) (Bousset and Diffley 1998; Kami-
mura et al. 1998; Zou and Stillman 1998, 2000;
Kamimura et al. 2001; Masumoto et al. 2002;
Tanaka et al. 2007; Zegerman and Diffley 2007;

Tanaka et al. 2011b). These six firing factors
are essential for initiating DNA synthesis from
licensed origins.

CELL-CYCLE CONTROL OF THE INITIATION
OF DNA REPLICATION

Control of Initiation of Replication during
an Unperturbed Cell Cycle

The two steps of initiation described above are
isolated from each other in different stages of
the cell cycle. No origin firing can be allowed in
G1 while pre-RC complexes are assembled, lest
there be regions of the genome that have not
been properly licensed. Conversely, no origin
licensing can be permitted during S phase while
origin activation is triggered (Fig. 1). This en-
sures that multiple replication forks do not ini-
tiate from the same origin, thus preventing re-
replication. Insulation of these two steps is
achieved by the concerted action of two enzyme
complexes: the CDK and the anaphase-promot-
ing complex/cyclosome (APC/C).

Eukaryotes express different cyclin proteins
during different stages of the cell cycle, leading to
cell cycle stage-specific cyclin–CDK complexes
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Figure 1. Regulation of DNA replication in the cell cycle. A generic diagram summarizing the oscillation of CDK
activity in the cell cycle in response to the fluctuation of APC/C activity and the presence of CDK inhibitor
(CKI). The details of regulation in different organisms are described in the corresponding sections of the article.
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(Table 1). The cyclin subunit of the CDK con-
tributes to determining substrate specificity, thus
resulting in cell cycle stage-dependent phos-
phorylation of different target proteins. G1-
phase cyclin–CDKs (G1-CDKs) phosphorylate
proteins to promote S-phase entry, S-phase
cyclin–CDKs (S-CDKs) are required to activate
DNA replication, and mitotic cyclin–CDKs (M-
CDKs) regulate accurate chromosome segrega-
tion through mitosis. Although different cyclins
can confer some substrate specificity, experi-
ments in fission yeast have shown that a single
cyclin–CDK fusion can support a near-normal
cell cycle (Coudreuse and Nurse 2010).

The APC/C is a multisubunit E3 ubiquitin
ligase that polyubiquitinates different proteins
targeted to it by a substrate adaptor (e.g., Cdc20
or Cdh1) (Peters 2006). The resulting protein–
ubiquitin conjugates are then degraded by the
proteasome. The S-phase and G2/M-phase cy-
clins are targeted for APC/C-mediated degra-
dation. G1-phase cyclins are resistant to such
regulation. Instead, they are processed for deg-
radation during S phase by a different E3 ligase,
the Skp1–Cul1–F-box protein (SCF) complex
(Ang and Wade Harper 2005).

M-CDK-dependent phosphorylation of the
APC/C results in activation of this E3 ligase
(Rudner and Murray 2000; Kraft et al. 2003).
This results in ubiquitination of S-phase and
G2/M-phase cyclins, leading to their degrada-
tion and a subsequent loss of associated S-CDK
and M-CDK activity. Mitosis ensues and is fol-
lowed by a period of high APC/C-Cdh1 activity
that defines the G1 phase in cycling cells and the
G0 phase in differentiated/quiescent cells. In ac-
tively proliferating cells, growth factor stimula-
tion induces transcription of G1-phase cyclins,
resulting in an accumulation of G1-CDK ac-
tivity. Phosphorylation of the APC/C adaptor

Cdh1 by G1-CDK prevents it from binding to
and activating the APC/C, effectively inhibiting
its function and allowing S-CDK activity to ac-
cumulate (Zachariae et al. 1998; Jaspersen et al.
1999). S-CDK then inhibits and switches off the
APC/C during S and G2 phases. Hence, CDK
and APC/C enzymes regulate each other, and
their peak activity times are mutually exclusive
in the cell cycle, setting up biphasic oscillations
(Fig. 1). Vertebrate cells have additionally evolv-
ed proteins that inhibit APC/C function during
S phase, such as Emi1 and Emi2 (Reimann et al.
2001; Tung et al. 2005). During prometaphase,
Cdc2 and Plk1 cooperate to phosphorylate these
inhibitors, presenting them for SCFb-TrCP-me-
diated degradation, thus relieving the inhibition
of the APC/C and promoting mitosis (Naka-
yama and Nakayama 2006).

Origin licensing occurs exclusively during
late mitosis and G1, when APC/C activity is
high and S-CDK activity is low. S-CDK phos-
phorylation inhibits pre-RC assembly during S,
G2, and M phases, and thus all origins must be
licensed before cells can enter S phase, because
high CDK activity in the rest of the cell cycle
would prevent any further licensing. If large re-
gions of a chromosome are left unlicensed, it is
possible that adjacent replication forks are un-
able to travel far enough to fuse into each other,
leaving unreplicated stretches of DNA in be-
tween (Blow et al. 2011). Hence, several origins
are licensed but only subsets are used to generate
replication forks in every cell cycle, leaving clus-
ters of dormant origins as a backup system. This
ensures that every last base of the parental DNA
gets copied. Pre-RCs that do not fire normally
get displaced by passing replication forks, thus
marking chromosome regions that have already
been duplicated. Because many more origins
need to be licensed than are used per cell divi-

Table 1. Regulators of cyclin-dependent kinase (CDK) in different organisms

Saccharomyces cerevisiae Schizosaccharomyces pombe Metazoans

G1-CDK Cln1, Cln2, Cln3-Cdc28 Cig1, Puc1-Cdc2 Cyclin D–CDK4, cyclin E–CDK2
S-CDK Clb5, Clb6-Cdc28 Cig2-Cdc2 Cyclin A–CDK2
M-CDK Clb1, Clb2, Clb3, Clb4-Cdc28 Cig2, Cdc13-Cdc2 Cyclin A–CDK1, cyclin B–CDK1
CKI Sic1 Rum1 p21, p27

CKI, CDK inhibitor.
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sion, it is proposed that cells are prevented from
entering S phase until complete assembly of rep-
lication complexes (Shreeram et al. 2002) and
that conditions that decrease the total number
of active replication complexes may result in ge-
nome instability (Kawabata et al. 2011).

Control of DNA Replication on Exposure
to Genotoxic Stress

Cells have evolved checkpoint pathways to re-
spond to external genotoxic insults by arresting
the cell cycle, so that the cell can pause replica-
tion and correct mutations and lesions rather
than segregating chromosomes with errors to
daughter cells (Harper and Elledge 2007). The
S-phase checkpoint acts to prevent licensed or-
igins from firing and also stabilizes ongoing rep-
lication forks so that polymerases may resume
activity once the damage has been corrected;
these details are discussed in a separate article.

REGULATION OF REPLICATION INITIATION
IN Saccharomyces cerevisiae

Cell-Cycle Regulation of Pre-RC Assembly

On exit from mitosis, CDK activity is lowered in
two ways: by ubiquitin-mediated degradation of
mitotic cyclin Clb2 by the 26S proteasome
(Schwab et al. 1997; Visintin et al. 1997) and by
Sic1 inhibition ofG1-CDKactivity (Nugroho and
Mendenhall 1994; Schwob et al. 1994). During
this period, the Cdc14 phosphatase also pro-
motes pre-RC assembly. First, it dephosphory-
lates Cdh1, thereby promoting its association
with APC/C (Visintin et al. 1998; Zachariae
et al. 1998; Jaspersen et al. 1999). Cdc14 also de-
phosphorylates the transcription factor Swi5,
promoting its nuclear localization to activate
transcription of Sic1 and Cdc6 (Knapp et al.
1996; Visintin et al. 1998). Finally, Cdc14 dephos-
phorylates Sic1, stabilizing it from SCFCdc4-me-
diated degradation (Visintin et al. 1998). Cdc6
also acts as an M-CDKinhibitor by direct binding
to Clb2 (Elsasser et al. 1996; Calzada et al. 2001).

During G1 phase a cell begins the next com-
plete round of cell cycle on reaching a sufficient-
ly large cell size (Skotheim et al. 2008). Passage

through the point of no return, or “Start,” is
initiated by the G1-CDK Cln-Cdc28 (Tyers
et al. 1993; Dirick et al. 1995; Stuart and Witten-
berg 1995). Two transcription factor complexes,
SBF (Swi4–Swi6) and MBF (Mbp1–Swi6), are
activated by phosphorylation of their allosteric
inhibitor Whi5 (Costanzo et al. 2004; de Bruin
et al. 2004). Whereas SBF activates transcription
of Cln cyclins (Nasmyth and Dirick 1991; Spell-
man et al. 1998; Eser et al. 2011), MBF promotes
transcription of Clb5 along with other replica-
tion genes (Lowndes et al. 1992; Koch et al. 1993;
Spellman et al. 1998; Eser et al. 2011).

A key barrier to origin firing during G1 phase
is the CDKinhibitor Sic1, which must be degrad-
ed before cells can initiate DNA synthesis (Don-
ovan et al. 1994; Schwob et al. 1994; Schneider
et al. 1996). Simultaneous phosphorylation on
multiple CDK consensus sites by Cln-Cdc28 and
Clb-Cdc28 targets Sic1 for SCF-mediated poly-
ubiquitination and proteolysis (Feldman et al.
1997; Verma et al. 1997a,b; Koivomagi et al.
2011a).

Another barrier to origin firing in G1 phase
is APC/C-Cdh1 activity, which actively de-
grades Clb cyclins. During late G1 phase Cln2-
Cdc28 and Clb5-Cdc28 phosphorylate Cdh1
and prevent its association with APC/C (Zacha-
riae et al. 1998; Jaspersen et al. 1999). This allows
accumulation of Clb5-Cdc28 activity essential
for origin firing.

CDK Control of Origin Licensing

CDK phosphorylates several initiation proteins
to inhibit pre-RC assembly. Clb-Cdc28 is re-
cruited to ORC in an RxL-dependent manner
(Weinreich et al. 2001; Wilmes et al. 2004) and
phosphorylates Orc2 and Orc6 (Nguyen et al.
2001). These mechanisms inhibit interaction
between ORC and Cdt1 (Chen et al. 2007), im-
peding loading of MCM complexes onto DNA
(Chen and Bell 2011).

Cln-Cdc28 and Clb-Cdc28 phosphorylate
Cdc6 to promote its subsequent degradation
by the SCFCdc4 complex (Drury et al. 1997,
2000; Elsasser et al. 1999; Perkins et al. 2001).
During mitosis, binding of Clb2 to phosphory-
lated Cdc6 not only protects itself from SCF-
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mediated degradation but also prevents Cdc6
from interacting with ORC, rendering Cdc6
inactive for pre-RC assembly (Mimura et al.
2004). On mitotic exit, degradation of Clb2 by
the APC/C releases Cdc6 to promote pre-RC
assembly in the subsequent G1 phase.

As a result of a stable interaction with the
MCM complex, Cdt1 and MCM are regulated as
a single unit in budding yeasts (Tanaka and
Diffley 2002). Phosphorylation of CDK consen-
sus sites in Mcm3 results in soluble Cdt1/
Mcm2–7 being transported out of the nucleus
(Labib et al. 1999; Nguyen et al. 2000; Liku et al.
2005), where they are retained during G2. Inter-
estingly, every cell cycle requires a new round of
MCM gene transcription, and “old” MCM pro-
teins are degraded by ubiquitin-mediated pro-
teolysis at the end of mitosis (Cheng et al. 2002;
Braun and Breeden 2007).

CDK phosphorylation of pre-RC compo-
nents is the primary barrier to rereplication in
budding yeasts. The inhibition of ORC, Cdc6,
and Cdt1 creates redundant pathways that must
be simultaneously deregulated to result in sig-
nificant overreplication of DNA in a single cell
(Nguyen et al. 2001). Yeast strains that are mu-
tated in either one or two of these modules show
undetectable or mild rereplication phenotypes
(Green et al. 2006), suggesting that CDK-medi-
ated prevention mechanisms work together to
ensure that rereplication becomes an extremely
rare event (Diffley 2011).

CDK Control of Origin Firing

Phosphorylation of Sld2 and Sld3 by S-CDK
promotes interaction of these proteins with the
amino-terminal and carboxy-terminal BRCT
domains of Dpb11, respectively (Tanaka et al.
2007; Zegerman and Diffley 2007; Muramatsu
et al. 2010). Cln-Cdc28 cannot phosphorylate
Sld2 and Sld3 during G1 phase, possibly because
of substrate specificity conferred by cyclin (Koi-
vomagi et al. 2011b).

Yeast strains expressing an Sld3–Dpb11 fu-
sion protein in combination with a phosphomi-
metic mutant of Sld2 can promote CDK-inde-
pendent DNA synthesis in G1-arrested cells,
thereby bypassing the requirement for S-CDKs

(Zegerman and Diffley 2007). This indicates
that Sld2 and Sld3 are the minimal set of CDK
substrates required for DNA replication. Inter-
estingly, the Jet1 allele of Cdc45 bypasses the
Sld3 phosphorylation requirement for cell sur-
vival, thus implicating Cdc45 in the interaction
between Sld3 and Dpb11 (Tanaka et al. 2007).

DDK Control of Origin Firing

The first evidence that DDK promotes initiation
via Mcm2–7 came from the isolation of a mu-
tant allele of Mcm5 (mcm5-bob1), which by-
passed the requirement for DDK (Hardy et al.
1997). Purified DDK phosphorylates Mcm2,
Mcm4, and Mcm6 subunits within double hex-
amers bound to DNA and has weak or no ac-
tivity toward subunits within soluble hexamers
(Francis et al. 2009). DDK phosphorylation
of an amino-terminal region in Mcm4 facili-
tates Mcm–Cdc45 complex formation during
S phase (Sheu and Stillman 2006). Mutational
analysis of Mcm4 reveals that the unstructured
amino terminus of this protein contains an in-
hibitory activity that is alleviated on DDK phos-
phorylation. Accordingly, deletion of this re-
gion results in an Mcm4 protein that promotes
DDK-independent DNA synthesis in cells ar-
rested at G1 phase and rescues the viability of
strains lacking functional DDK (Sheu and Still-
man 2010). These data suggest that Mcm2, -4,
and -6 are essential substrates for DDK in vivo.
The exact mechanism by which DDK promotes
origin firing is currently unclear and may in-
volve the recruitment of firing factors such
as Sld3, Sld7, and Cdc45 to origins (Tanaka et
al. 2011a) perhaps via a DDK-phosphorylated
MCM complex.

Activity of DDK is restricted to S phase as a
result of APC/C-mediated degradation of the
regulatory Dbf4 subunit (Oshiro et al. 1999;
Weinreich and Stillman 1999; Ferreira et al.
2000). This has been proposed to prevent pre-
mature firing of origins during G1 phase. Al-
though expression of a nondegradable Dbf4
mutant does not induce significant rereplica-
tion (Ferreira et al. 2000), overproduction of
Dbf4 in the CDK bypass yeast strain (see above)
is lethal (Zegerman and Diffley 2007). This
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observation highlights the importance of regu-
lated origin firing to prevent premature initia-
tion events during G1 phase.

REGULATION OF INITIATION IN
Schizosaccharomyces pombe

Origin Licensing in Fission Yeasts

In Schizosaccharomyces pombe origin licensing
requires the combined actions of ORC (Orp1 to
-6), Cdc18, Cdt1, and the MCM complex (Hof-
mann and Beach 1994; Nishitani and Nurse
1995; Grallert and Nurse 1996; Maiorano et al.
1996; Muzi Falconi et al. 1996; Ogawa et al.
1999; Nishitani et al. 2000). No consensus au-
tonomously replicating sequence has been de-
fined for this species, and ORC binds to AT-rich
sequences in the genome by virtue of nine AT-
hook motifs on the amino terminus of Orp4
(Chuang and Kelly 1999; Kong and DePamphi-
lis 2001; Lee et al. 2001; Hayashi et al. 2007).
Accordingly, the binding to AT-rich sequences
by Orp4 is ATP-independent (Chuang and Kelly
1999), whereas ORC in budding yeasts binds to
origin DNA in the ATP-bound state (Bell and
Stillman 1992; Klemm and Bell 2001). However,
the evolutionary conservation of the ATP-bind-
ing sites in ORC suggests an essential role of the
ATPase activity in licensing, most likely during
the loading of the MCM helicase.

Origin Firing in Fission Yeasts

In fission yeasts Hsk1 activity is required for Sld3
recruitment to origins during G1 phase (Naka-
jima and Masukata 2002), but Sld3 associates
with origins independently of Sna41 (Yamada
et al. 2004). This is followed by the sequential
recruitment of Cut5, GINS, and Sna41 (Dolan
et al. 2004; Yabuuchi et al. 2006). Cdc23 is also
required for Sna41 association within the pre-
initiation complex (pre-IC) (Gregan et al. 2003).
However, the details of how the replicative heli-
case is activated currently remain unclear.

CDK Control of Origin Licensing

Orp2 is phosphorylated by Cdc2 in vivo, and a
fission yeast strain expressing a nonphosphory-

latable Orp2 protein is sensitized to rereplica-
tion (Vas et al. 2001). Overexpression of Cdc18
in such a strain results in more rereplication than
that observed on overexpression in a wild-type
strain. This suggests that CDK phosphorylation
of Orp2 is redundant with Cdc18 regulation in
rereplication control in fission yeasts. The mi-
totic cyclin Cdc13 localizes to replication origins
in an ORC-dependent manner during G2 phase
and early mitosis. A yeast strain expressing a
tagged Orp2 that reduces Cdc13 origin associa-
tion shows hypersensitivity to endoreduplica-
tion, suggesting a role for Orp2–Cdc13 associ-
ation in rereplication control (Wuarin et al.
2002). The mechanism behind this regulation
is currently unknown, but it is possible that di-
rect binding of Cdc13 to Orp2 somehow reduces
the accessibilityof other pre-RC assembly factors
to ORC. This scenario is similar to the Clb5-
Orc6 and Clb2-Cdc6 interactions in budding
yeasts, where direct binding may play a role in
inhibiting factors involved in pre-RC assembly
(see above).

Cdc18 is an unstable protein, and its levels
are regulated throughout the cell cycle. Cdc18
accumulation begins in late mitosis and de-
creases during S phase. Cdc10 controls the tran-
scription of Cdc18, which accumulates during
G1 phase (Kelly et al. 1993; Nishitani and Nurse
1995; Muzi Falconi et al. 1996; Baum et al.
1998). On S-phase entry, Cig2-Cdc2 phosphor-
ylates Cdc18 and targets it for polyubiquitina-
tion by the SCF complex and degradation by the
proteasome (Jallepalli et al. 1997, 1998; Komi-
nami and Toda 1997; Kominami et al. 1998; Lo-
pez-Girona et al. 1998; Wolf et al. 1999). Over-
production of wild-type Cdc18 alone induces
rereplication (Nishitani and Nurse 1995; Muzi
Falconi et al. 1996), and Cdc18 mutants lacking
CDK consensus sites promote rereplication even
more efficiently than the wild-type proteins (Jal-
lepalli et al. 1997; Lopez-Girona et al. 1998).
Expression of either of these mutants at a low
level, however, is not sufficient to induce rerepli-
cation.

Cdt1 levels peak during late M phase as a
consequence of Cdc10-mediated transcription-
al control, and protein levels decline during S
phase as a result of proteolysis (Hofmann and
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Beach 1994; Nishitani et al. 2000). Cdt1 degra-
dation is mediated by CRL4-Cdt2 in a prolif-
erating cell nuclear antigen (PCNA)-dependent
manner (Hu and Xiong 2006; Ralph et al. 2006;
Guarino et al. 2011), and chronic, low-level ex-
pression of both Cdt1 and Cdc18 is required to
induce rereplication, suggesting that these two
proteins are redundantly regulated (Gopala-
krishnan et al. 2001).

Although fission yeast MCMs are consti-
tutively nuclear (Yanow et al. 2001), their asso-
ciation with chromatin is cell-cycle-regulated.
MCM complex assembly may also be regulat-
ed by the action of Mcb1 (MCM-binding pro-
tein) during the cell cycle (Ding and Forsburg
2011).

CDK Control of Origin Firing

Fission yeast Drc1 and Sld3 are phosphorylated
by S-phase CDK to promote formation of a
ternary complex with Cut5 (Nakajima and Ma-
sukata 2002; Noguchi et al. 2002; Fukuura et al.
2011). The interaction recruits the complex to
chromatin and may generate a platform for the
formation of CMG complex. An Sld7 homolog
in fission yeast has not been identified, and it is
not clear if pre-IC factors are limiting for repli-
cation initiation in fission yeast or if they are
targeted during checkpoint-dependent inhibi-
tion of late origin firing.

REGULATION OF REPLICATION
INITIATION IN METAZOANS

Current knowledge on DNA replication in
metazoans is based on studies performed pri-
marily using three model systems: Xenopus
egg extracts, Drosophila embryos and cell lines,
and immortalized or cancerous mammalian cell
lines. Advances in RNA interference (RNAi) and
transgenesis have enabled genetic studies in cell
culture or whole animals to elucidate regulation
of these pathways. The details of origin recogni-
tion, origin licensing, and origin firing in these
systems are summarized below. Plant DNA rep-
lication is discussed in detail elsewhere and is not
included here.

Regulation of Origin Recognition in
Metazoans

The replicon model proposed that initiation of
DNA replication is determined by the binding
of initiator proteins to a specific sequence of
DNA at the origin of replication, termed the
replicator (Jacob and Brenner 1963). Although
this model holds true for prokaryotes and cer-
tain animal viruses, replicators in eukaryotes do
not share a consensus sequence. Budding yeast
ORC is the only known eukaryotic initiator that
displays sequence specificity and binds to an 11-
bp autonomously replicating sequence element
in vivo. However, in vitro, ORC from all species
has intrinsic nonspecific DNA-binding activity
and is capable of assembling pre-RCs onto di-
verse DNA sequences. Recruitment of a Gal4–
ORC fusion protein to a plasmid in cultured
human cells converts the sequence adjacent to
the Gal4-binding sites into an origin of replica-
tion and confers on it the property of once-
per-cell-cycle replication (Takeda et al. 2005b).
Thus, ORC binding to DNA is a primary re-
quirement for any sequence to function as an
origin. In vivo, ORC can be recruited by differ-
ent sequence-specific binding proteins to chro-
mosomal loci, for example, to telomeres by in-
teraction with telomeric repeat-binding factor
2 (TRF2) (Tatsumi et al. 2008) or to the chorion
gene cluster in Drosophila by Myb (Beall et al.
2002). Such a mechanism may also be used by
viral genomes, for example, Epstein–Barr virus,
that can recruit ORC to oriP in an Epstein–Barr
nuclear antigen 1 (EBNA1)-dependent process
(Dhar et al. 2001). There is increasing evidence
that CpG islands and G-rich elements that can
form G-quadruplexes influence origin recogni-
tion in vivo, and these are discussed in greater
detail in a separate article (see article by Leonard
and Méchali 2013, and references therein).

ORC binds to nucleosome-free regions of
DNA in vivo (Sequeira-Mendes et al. 2009; Kar-
nani et al. 2010; MacAlpine et al. 2010), and the
nature of the chromatin around chromosomal
ORC-binding sites influences origin licensing.
Recruitment of ORC to different regions of
the genome is necessary but not sufficient for
pre-RC formation in vivo. For example, ORC
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binding to HP1 protein has no apparent role in
origin determination; rather, it has been impli-
cated in gene silencing and heterochromatin for-
mation in many species (Pak et al. 1997; Shareef
et al. 2001; Prasanth et al. 2010).

The retinoblastoma protein interacts with
ORC in human and fly cells and negatively reg-
ulates DNA replication (Bosco et al. 2001; Men-
doza-Maldonado et al. 2010), likely by recruit-
ing histone deacetylase (HDAC) activities that
generate repressive chromatin marks (Brehm
et al. 1998). In support of this idea, stage 10
mosaic embryos derived from flies with muta-
tions in Rpd3/Hdac1 are capable of replication
across the entire genome in follicle cells, whereas
this is restricted to the chorion genes in wild type
(Aggarwal and Calvi 2004). Hdac11 has also
been implicated as an inhibitor of origin licens-
ing in mammalian cells (Wong et al. 2010).

To counter these deacetylating activities,
ORC and Cdt1 recruit Hbo1, a histone acetyl-
transferase that binds to origins and acetylates
surrounding chromatin during G1 to promote
MCM loading (Miotto and Struhl 2008, 2010).
Reduction of Hbo1 levels by small interfering
RNA (siRNA) treatment results in defective li-
censing and cell-cycle arrest. Increased acetyla-
tion and open chromatin is thus a common
feature of most origins in both flies and human
cells, as revealed by genome-wide mapping of
origins in fly and human cell lines (MacAlpine
et al. 2010; Mesner et al. 2011).

The Set8 histone methyltransferase also reg-
ulates origin licensing in human cells (Tardat
et al. 2010). Targeting of Gal4–Set8 fusion pro-
tein to Gal4-binding sites on plasmid DNA in
cultured cells is sufficient to promote MCM
loading on adjacent sequences. Set8 is a sub-
strate of the CRL4-Cdt2-dependent degrada-
tion pathway in S phase (see below), and expres-
sion of a nondegradable Set8 protein results in
rereplication in cultured human cells.

In rapidly dividing Xenopus embryos, DNA
synthesis initiates at intervals of �10 kb in spe-
cific clusters (Blow et al. 2001). This allows a
large amount of DNA to be replicated in a rela-
tively short phase of 20 min. Although exoge-
nous AT-rich asymmetric sequences can out-
compete replication complexes (Stanojcic et al.

2008), the nature of the DNA sequences at the
initiation sites and the composition of histone
modifications around the chromosomal initia-
tion sites are unknown.

Regulation of Origin Licensing in Metazoans

ORC, Cdc6, and Cdt1 are essential for origin
licensing in Xenopus egg extracts, Drosophila
embryos, and cultured mammalian cells (Whit-
taker et al. 2000; Gillespie et al. 2001; Rialland
et al. 2002; Mailand and Diffley 2005; Svitin and
Chesnokov 2010; Gambus et al. 2011). Whereas
fly ORC contains six subunits, similar to yeast,
ORC in both vertebrates exists as a stable Orc1–
Orc5 assembly, with little or no Orc6 protein
associated. This five-subunit complex is func-
tional for MCM loading and sequence-in-
dependent replication of DNA substrates in a
reconstituted system (Gillespie et al. 2001; Va-
shee et al. 2003). The absence of stoichiomet-
ric amounts of Orc6 subunit suggests that the
mechanism of MCM loading in higher eukary-
otes may be different from that in budding
yeasts, where Orc6–Cdt1 interactions are crit-
ical for licensing (Chen et al. 2007; Chen and
Bell 2011). Despite significant homology be-
tween metazoan Orc6 proteins (Dhar and Dutta
2000), human Orc6 interacts weakly with ORC,
compared with its fly counterpart (Chesnokov
et al. 1999; Vashee et al. 2003; Siddiqui and Still-
man 2007). However, it is still required for DNA
synthesis and may have evolved to perform oth-
er roles in origin recognition (Prasanth et al.
2002; Balasov et al. 2007; Thomae et al. 2008,
2011).

The function of ORC is restricted to G1

phase by regulated ORC–DNA interactions
across the cell cycle. Xenopus ORC is released
from chromatin on licensing (Sun et al. 2002)
and is only weakly associated with chromatin
later in G2/M (Rowles et al. 1999). Mammalian
ORC undergoes complex disassembly during
S phase as a consequence of ubiquitination of
the Orc1 subunit. Ubiquitination results in Orc1
degradation in human cells (Mendez et al. 2002;
Tatsumi et al. 2003) but, interestingly, not in
hamster nuclei (Natale et al. 2000; Li and De-
Pamphilis 2002). Human Orc1 ubiquitination
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is mediated by the SCFSkp2 ubiquitin ligase,
which is known to act on phosphorylated sub-
strates. Hence, it has been suggested that Orc1
degradation in human cells may be promoted
by CDK phosphorylation, representing a CDK-
dependent mechanism to prevent relicensing.
Drosophila cells uniquely regulate ORC and the
APC/C ubiquitinates Orc1 for degradation after
mitosis, in a situation similar to human Cdc6
(see below).

In metazoan cells ORC exhibits cell-cycle-
dependent complex assembly. Human Orc4 pro-
tein requires an intact ATP-binding site for
complex assembly in vitro, and this subunit
does not associate stably with ORC across the
cell cycle in vivo (Ranjan and Gossen 2006; Sid-
diqui and Stillman 2007). Immunofluorescence
studies show that as cells proceed from G1 to
G2/M, the chromatin-bound fraction of Orc2
and Orc3 decreases significantly (Prasanth et al.
2004; Siddiqui and Stillman 2007), and chro-
matin immunoprecipitation reveals a loss of
ORC subunits at origins across the cell cycle
(Gerhardt et al. 2006). This may also be pro-
moted via CDK phosphorylation of Orc2, be-
cause a nonphosphorylatable Orc2 protein is
found associated with origins during G2/M
(Lee et al. 2012). It is therefore possible that
assembly of ORC itself may be one mechanism
to prevent unscheduled licensing.

Both Xenopus and human Cdc6 are phos-
phorylated by S-CDK, and ectopically expressed
protein, on phosphorylation, is transported out
of the nucleus into the cytoplasm (Petersen et al.
1999; Coverley et al. 2000; Pelizon et al. 2000;
Delmolino et al. 2001). This is postulated to be a
CDK-dependent control to prevent relicensing
and may be redundant with other mechanisms,
as expression of a nonphosphorylatable mu-
tant of Cdc6 alone does not result in significant
rereplication. It has been reported, however,
that a significant fraction of native phosphory-
lated Cdc6 is retained on chromatin across S and
G2/M in human cells (Coverleyet al. 2000; Men-
dez and Stillman 2000; Alexandrow and Hamlin
2004) and may regulate entry into mitosis (Clay-
Farrace et al. 2003; Lau et al. 2006). At the end
of mitosis, human Cdc6 is targeted for APC/
C-Cdh1-mediated degradation (Petersen et al.

2000) and degraded in early G1 phase. The con-
sequence of having undegraded Cdc6 in cycling
human cells is, at present, unknown. However,
APC/C-mediated degradation may be a way of
preventing unscheduled licensing in quiescent
G0-phase cells. On cell-cycle reentry in cultured
human cells, cyclin E–CDK2-mediated phos-
phorylation of Cdc6 blocks Cdh1 binding and
stabilizes Cdc6 earlier than geminin, generat-
ing a window of opportunity to license origins
(Duursma and Agami 2005; Mailand and Dif-
fley 2005). We note that the APC/C-dependent
degradation sequence in Drosophila Orc1 is
bounded by a consensus CDK site, similar to
the situation in human Cdc6. It is possible that
the cyclin E-dependent association of Droso-
phila MCMs with chromatin may be via Orc1
stabilization (Su and O’Farrell 1997, 1998).

Metazoan Cdt1 is regulated by multiple
pathways. Chromatin-bound Cdt1 is ubiquiti-
nated during S phase by CRL4-Cdt2 ubiquitin
ligase and targeted for degradation (Arias and
Walter 2005; Li and Blow 2005). This pathway is
dependent on its interaction with PCNA and is
essential to prevent rereplication during S phase
(Arias and Walter 2006; Senga et al. 2006).

Additionally, a second SCFSkp2-dependent
pathway also promotes Cdt1 degradation
throughout the cell cycle (Li et al. 2003; Nishi-
tani et al. 2006). Although Cdt1 binds cyclin A
in an RxL-dependent manner and is phosphor-
ylated at consensus CDK sites (Li et al. 2003;
Sugimoto et al. 2004), mutations of these motifs
do not result in significant rereplication (Takeda
et al. 2005a; Nishitani et al. 2006), implying that
the SCFSkp2-dependent proteolysis is a minor
pathway. The CRL4-Cdt2 pathway is essen-
tial for Cdt1 degradation from fission yeasts to
metazoans (Jin et al. 2006; Guarino et al. 2011).
However, a role for the SCFSkp2 in Cdt1 degra-
dation has only been shown in human cells, and
this pathway may have arisen recently in evolu-
tion (Kim and Kipreos 2007).

Cdt1 activity is also regulated by its interac-
tion with geminin (Wohlschlegel et al. 2000;
Tada et al. 2001), a protein discovered as an in-
hibitorof DNA replication in Xenopus (McGarry
and Kirschner 1998). Geminin is targeted for
degradation by APC/C-Cdh1 and is hence
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absent from latemitosisuntil theend ofG1,when
licensing occurs (Nishitani et al. 2001). In Dro-
sophila and mammalian cells, a major CDK-in-
dependent block to rereplication appears to re-
quire geminin, and reduction of protein levels
by RNAi is sufficient to promote rereplication
in many different cell lines (Quinn et al. 2001;
Mihaylov et al. 2002; Melixetian et al. 2004; Zhu
et al. 2004). Reduction of geminin levels by im-
munodepletion from Xenopus egg extracts or
by injecting antisense oligonucleotides in em-
bryos does not induce rereplication (McGarry
and Kirschner 1998; McGarry 2002). However,
expression of nondegradable Cdt1 promotes
more rereplication in a geminin-depleted ex-
tract, suggesting that both these pathways may
be important for rereplication control in this
species (Kerns et al. 2007).

Similar to yeast and Xenopus, mammalian
MCMs are loaded onto the chromatin at the end
of mitosis and are removed from chromatin as
the cells pass through S phase (Mendez and
Stillman 2000). The MCM-BP protein is im-
ported into the nucleus late in S phase and in-
teracts strongly with Mcm7 and may promote
disassembly of the CMG complex (Nishiyama
et al. 2011). Treatment of HeLa cells with
siRNAs against MCM-BP results in G2/M-ar-
rested cells with MCMs persisting on chromatin
for longer periods of time. The interaction be-
tween MCM-BP and MCMs appears to be rep-
lication-dependent, as nuclear MCM-BP does
not stimulate disassembly of MCMs in aphidi-
colin-arrested cells.

Regulation of Origin Firing in Metazoans

Homologs of essential firing factors are known
in metazoans, and CDK-dependent activation
of replication origins has been verified, with
roles for cyclin E in initiation of S phase and
cyclin A during the elongation phase (Strausfeld
et al. 1996; Mahbubani et al. 1997; Coverley et
al. 2002). Cyclin E is essential only in quiescent
mouse fibroblasts that are reentering the cell
cycle on growth factor stimulation (Geng et al.
2003) and may be redundant with cyclin A in
most other cases (Kalaszczynska et al. 2009).
DDK activity is similarly required for G1/S

transition and DNA synthesis in mammalian
cells and in Xenopus (Strausfeld et al. 1994; Jack-
son et al. 1995; Jiang et al. 1999; Walter 2000;
Jares et al. 2004)

Despite highly divergent sequences to the
budding yeast counterparts, the vertebrate ho-
mologs of Sld2 (RecQL4) and Sld3 (Treslin/
Ticrr) have been identified and are essential
for replication initiation (Sangrithi et al. 2005;
Kumagai et al. 2010; Sanchez-Pulido et al. 2010;
Sansam et al. 2010; Boos et al. 2011). Analysis
of TopBP1 (Dpb11 homolog) has revealed that
it contains nine BRCT domains, referred to as
BRCT0 to BRCTVIII (Makiniemi et al. 2001;
Huo et al. 2010). Treslin binds to BRCTI/II do-
mains of TopB1 in a CDK-dependent manner
(Boos et al. 2011; Kumagai et al. 2011), simi-
lar to budding yeast Sld3–Dpb11 interaction.
Based on homology between BRCTIII/IV of
Dpb11 and BRCTIV/V of TopBP1, RecQL4
is expected to interact with TopBP1 via this
domain. In contrast to the yeast proteins, the
RecQL4–TopBP1 interaction is CDK-indepen-
dent (Matsuno et al. 2006). Also, an amino-ter-
minal fragment of TopBP1 containing BRCTI-
III repeats is necessary and sufficient for Treslin
function in Xenopus extracts (Kumagai et al.
2010). It is presently unclear if RecQL4 can in-
teract with this amino-terminal fragment, per-
haps via BRCTIII or other proteins that may be
essential for initiation. Recently, GEMC1 and
DUE-B have been identified as proteins that
are phosphorylated in vivo that interact with
Cdc45 and TopBP1 and have essential roles in
vertebrate DNA synthesis (Balestrini et al. 2010;
Chowdhury et al. 2010). It is unknown if these
interactions are regulated across the cell cycle
and what their specific roles are in activating
the replicative helicase. RecQL4 may be a part
of the active helicase in mammals, owing to
its stable interaction with the CMG complex
during S phase (Xu et al. 2009). These observa-
tions suggest significant differences in the regu-
lation of yeast and metazoan DNA replication,
and further work is required to elucidate these
mechanisms.

The Mcm10 protein is essential during early
steps of DNA synthesis. Recombinant Mcm10
interacts with single-stranded DNA (ssDNA)
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via an evolutionarily conserved oligonucle-
otide/oligosaccharide binding (OB)-fold do-
main. Mcm10 also recruits polymerase a–pri-
mase complex (Zhu et al. 2007), which is
required to initiate de novo replication. This
recruitment is dependent on the And-1/Ctf4
protein. Based on its known interaction part-
ners, it is possible that Mcm10 either mediates
the initial melting reaction or stabilizes ssDNA
generated during the initial unwinding reac-
tion. If this is the case, then the activity of
Mcm10 must be regulated because it is reported
to bind chromatin independently of CDK or
Cdc7 activities. (Van Hatten et al. 2002; Wohl-
schlegel et al. 2002). Mcm10 appears to be im-
portant for CMG complex assembly (Im et al.
2009) and may couple helicase to polymerase in
replisomes in a Ctf4-dependent process (Zhu
et al. 2007). Interestingly, Mcm10 stabilizes in-
teractions between CMG and RecQL4 (Xu et al.
2009), and CDK phosphorylation of Mcm10
may be required to release RecQL4 during ori-
gin firing. These data raise the possibility that
Mcm10 may be partly responsible for determin-
ing the temporal order of replication timing in
metazoan cells, and the mechanisms underlying
regulation of these interactions will be an im-
portant focus of future studies.

CDK-Dependent Control of Replication
Licensing

CDK phosphorylation of Cdc6 plays a positive
role in promoting licensing during G0 ! G1

transition in mammalian cells (Mailand and
Diffley 2005). Unlike in yeasts, it is unclear if
CDK phosphorylation of the pre-RC proteins
prevents rereplication during S phase in meta-
zoans. Mammalian ORC, Cdc6, and Cdt1 all
bind cyclin–CDKs directly and are substrates
of CDKs in vitro (Saha et al. 1998; Petersen
et al. 1999; Mendez et al. 2002; Sugimoto et al.
2004; Hemerly et al. 2009). However, studies us-
ing phosphorylation mutants of these proteins
in vivo have not conclusively shown a role for
such modifications in preventing rereplication
during the cell cycle. Deletion of the amino-
terminal region of Orc1 abolishes CDK phos-
phorylation in vitro but has no effect on ubiq-

uitination in vivo (Mendez et al. 2002). Over-
expression of Cdt1 mutants that are unable to
bind cyclin or are not phosphorylatable shows
more rereplication than wild-type protein (Ta-
keda et al. 2005a), but because such mutants are
degraded normally during S phase, it is likely
that they promote relicensing in other cell-cycle
stages (Nishitani et al. 2006). The essential func-
tion of CDKs in preventing relicensing, there-
fore, appears to be during the G2/M phase of
the cell cycle. Chemical inhibition of CDK ac-
tivity during this period results in relicensing of
chromatin even in the presence of geminin (Bal-
labeni et al. 2004; Vassilev et al. 2006). The es-
sential targets of CDK for this G2/M-specific
inhibition are unknown; however, both Cdt1
and geminin are phosphorylated by CDKs in
nocodazole-treated extracts and are potential
candidates for this CDK-mediated regulation.

CDK-Independent Control of Replication
Licensing

Metazoans have evolved CDK-independent
pathways to prevent rereplication, and these
are largely devoted to Cdt1 regulation. In con-
trast to yeast, deregulation of metazoan Cdt1
alone is sufficient to induce significant rerepli-
cation during S phase (Melixetian et al. 2004;
Zhu et al. 2004; Jin et al. 2006; Lovejoy et al.
2006; Sansam et al. 2006). Consequently, Cdt1
protein levels and activity are tightly regulated.
This is achieved by a combination of Cdt2-
Ddb1-dependent degradation of chromatin-
bound Cdt1 during S phase and interaction of
Cdt1 with geminin during S and G2/M phases.
Degrading geminin during S phase by prema-
ture activation of the APC/C leads to significant
rereplication, and this can be suppressed by ex-
pression of a nondegradable mutant of geminin
(Di Fiore and Pines 2007; Machida and Dutta
2007), highlighting the important role of this
protein in maintaining genome ploidy.

Geminin inhibits licensing by blocking the
Cdt1–MCM interaction (Wohlschlegel et al.
2000; Yanagi et al. 2002). Crystal structures
have suggested a cell-cycle-dependent transition
between two possible conformations of Cdt1-
geminin (Lee et al. 2004; De Marco et al. 2009).

Regulating DNA Replication in Eukarya

Cite this article as Cold Spring Harb Perspect Biol 2013;5:a012930 11

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


A heterotrimeric (Cdt1-geminin-geminin) state
exposes the surface on Cdt1 that interacts with
the MCMs and thus permits licensing. This
alternates with a heterohexameric [Cdt1-(gem-
inin)2]2 state, in which the Cdt1–MCM in-
teraction surface is hidden and is thus inhibi-
tory to origin licensing. These observations are
explained byafeedback model, wherebygeminin
functions cooperatively to inhibit licensing at
multiple origins, therefore creating a critical
threshold resulting in all-or-none inhibition of
replication licensing (Ode et al. 2011). It is pro-
posed that geminin and Cdt1 interact at individ-
ual origins and the ability of these two proteins
to oligomerize promotes interactions between
proteins at adjacent origins, thereby propagat-
ing the inhibition of licensing and clustering or-
igins into subnuclear foci. This clustering does
not affect MCM complexes that are already load-
ed onto origins during G1. Based on the expres-
sion profiles of these proteins, geminin serves its
essential function in preventing rereplication
primarily during G2/M, when it not only inhib-
its Cdt1 degradation but also releases it for li-
censing in the subsequent G1 (Ballabeni et al.
2004), much like Clb2-Cdc6 in budding yeasts.

CONCLUDING REMARKS

Although CDK-dependent pathways are pri-
marily responsible for maintaining genome
stability in budding yeasts, it is clear that CDK-
independent mechanisms play a critical role in
maintaining genome stability in multicellular
organisms. Several cyclin subunits and CDK2
can be knocked out in mice (Sherr and Roberts
2004; Malumbres and Barbacid 2009), suggest-
ing significant redundancy among the functions
of cyclin–CDK complexes. Redundant mecha-
nisms targeting ORC, Cdc6, and Cdt1-MCM in-
hibit rereplication in yeasts. In contrast, it ap-
pears that some mammalian cancer cell lines
are particularly sensitive to Cdt1 deregulation
alone, because RNAi-mediated silencing of
geminin or Cdt2 is sufficient to induce signifi-
cant rereplication in some cell lines but not oth-
ers (Melixetian et al. 2004; Zhu et al. 2004; Jin
et al. 2006; Lovejoy et al. 2006; Sansam et al.
2006). Although deregulating either ORC or

Cdc6 alone does not have a similar outcome,
overexpression of these proteins can enhance
the rereplication seen on Cdt1 overexpression
(Vaziri et al. 2003; Sugimoto et al. 2009).

Deregulated licensing has emerged as a sen-
sitive and early indicator of tumor development
in human cancers (Freeman et al. 1999; Davies
et al. 2002). Recent work has proposed that
cancer cells may respond differently to licensing
inhibition than primary cells (Shreeram et al.
2002; Zhu and DePamphilis 2009), and this
could be exploited in designing therapies that
selectively target cancer cells. The next few years
will witness the identification of new replica-
tion factors (e.g., vertebrate Sld7) and lead to
a better understanding as to how the divergence
of proteins such as Orc6, Treslin, and RecQL4
confers unique properties to replication control
in metazoan cells.
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