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The Interferon regulatory factors (IRFs) are a family of transcription factors that play pivotal

roles in many aspects of the immune response, including immune cell development

and differentiation and regulating responses to pathogens. Three family members, IRF3,

IRF5, and IRF7, are critical to production of type I interferons downstream of pathogen

recognition receptors that detect viral RNA and DNA. A fourth family member, IRF9,

regulates interferon-driven gene expression. In addition, IRF4, IRF8, and IRF5 regulate

myeloid cell development and phenotype, thus playing important roles in regulating

inflammatory responses. Thus, understanding how their levels and activity is regulated is

of critical importance given that perturbations in either can result in dysregulated immune

responses and potential autoimmune disease. This review will focus the role of IRF family

members in regulating type I IFN production and responses andmyeloid cell development

or differentiation, with particular emphasis on how regulation of their levels and activity

by ubiquitination and microRNAs may impact autoimmune disease.
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Interferon regulatory factors (IRFs) are a family of transcription factors that regulate many aspects
of innate and adaptive immune responses—including driving anti-viral responses, responding to
pathogens to drive pro-inflammatory responses and regulating immune cell differentiation (1).
Comprised of 9 family members, the IRFs share significant homology within their N-terminal
DNA-binding domain (DBD) of ∼120 amino acids which forms a helix-loop-helix motif that
recognizes specific DNA sequences similar to the interferon stimulated response element (ISRE).
The C terminal domain is more diverse amongst family members and confers their unique
function via regulating their ability to interact with each other and proteins outside of the
IRF family. In general, the C terminal domain of each IRF member contains a nuclear export
sequence, an autoinhibitory sequence, and an IRF-association domain which for most family
members contains serine residues that are phosphorylated to regulate activity. IRF family members
can both homodimerize and heterodimerize, forming both transcriptionally active or repressive
complexes as discussed below [reviewed extensively elsewhere (1–3)]. Given their central role as
transcriptional regulators of type I Interferon (IFN-α and -β) biology, they have been implicated
in in the pathology of several autoimmune and autoinflammatory conditions, including systemic
lupus erythematosus (SLE) in which overexpression of type I IFNs is thought to be a major
contributor to pathology (4, 5).

This review will address the role of IRF family members in regulating type I IFN production and
responses andmyeloid cell development or differentiation. Specifically, it will focus on providing an
update on how regulation of their levels and activity by microRNAs or ubiquitination may impact
IFN-driven autoimmune disease.
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IRF FAMILY—ROLE IN TYPE I IFN BIOLOGY

The type I IFN system comprises 13 subtypes of IFN-α, in
addition to IFN-β, IFN-ε, IFN-λ, and IFN-θ (6, 7). The main
function of these cytokines is to direct anti-viral immunity:
promoting differentiation of B cells into antibody producing
plasma cells, inducing differentiation of naïve T cells to effector
CD4 or CD8T cells, reducing proliferation of Treg cells and
driving the expression of MHC class I and II and costimulatory
molecules on dendritic cells and monocytes (8). Under normal
homeostatic conditions, IFN-α and IFN-β are produced in
response to detection of viral RNA and DNA by pattern
recognition receptors (PRRs). Toll like receptors 3, 7, and 9 are
the canonical and best described of the PRRs that recognize
viral RNA and DNA, but in more recent years cytosolic PRRs
that detect intracellular RNA and DNA, such as RIG-I, c-GAS,
and DDX41 have been recognized as key drivers of the antiviral
response and type I IFN production [reviewed in (9)]. Both TLRs
and cytosolic RNA and DNA can also recognize self RNA/DNA
and drive the production of type I IFNs also. Self RNA and DNA
released from dead or dying cells is detected by the endosomal
TLRs, TLR3, 7, and 9, whilst damaged DNA or oxidized DNA
released from damaged mitochondria is detected by cytosolic
DNA sensors (10). These pathways are the primary drivers of IFN
overproduction and IFN-driven pathology in SLE (11).

IRFs as Regulators of IFN Expression
IRF3, IRF5, IRF7, and IRF8 have been shown to be positive
regulators of type I interferon gene induction downstream of
pattern recognition receptors [Figure 1, reviewed in (12)].Whilst
IRF1 was the first IRF to be identified as an inducer of type
I IFNs (13, 14), subsequent analyses in Irf−/− MEFs suggested
IRF1 was non-essential for induction of IFNs in response to
cytosolic viruses (15). IRF3 and IRF7, the two family-members
with greatest structural homology, are now known to be the
principal mediators of IFN induction, acting downstream of
cytosolic RNA and DNA receptors and the TLRs (TLR3, TLR4,
TLR7, and TLR9) (9). IRF3 is ubiquitously expressed, whereas
IRF7 is expressed only at very low levels, except in plasmacytoid
DCs (pDCs) where it is relatively abundant (16). However, IRF7
expression is induced by type I IFNs, resulting in a feedforward
loop that maximally drives type IFN expression (17). IRF3 is
activated by phosphorylation (by kinases TBK1 and IKKε),
promoting dimerization, nuclear translocation, association with
the co-activator CREB-binding protein (CBP) and binding to
canonical interferon response element sequence (IRES) in the
promoter of IFN-β and IFN-α (18–21). Interestingly, a two-
step phosphorylation of IRF3 has been proposed which involves
TBK1 phosphorylation at site II (threonine 405 or serine 406)
to relieve an autoinhibitory loop and promoting interaction
with its co-factor Creb binding protein (CBP) and facilitating
phosphorylation and full activation at site I (serine 385/386)
(22–25). Activation of IRF3 occurs at intracellular vesicles via
assembly of adaptor complexes, which then recruit in TBK1
and IKKε. TLR3 and TLR4 both use the adaptor protein TRIF
to recruit in TBK1 to endosomes and phagosomes respectively,
whereas RIG-I/MDA5 recruit the adaptor protein IPS-1 to

recruit and activate TBK1 at the mitochondrial membrane.
The growing number of cytosolic DNA-detecting PRRs (c-GAS,
DDX41, IFI16) utilize the adaptor protein STING, found in the
ER membrane, which once activated, translocates to the Golgi
membrane to recruit and activate TBK1 (26). IRF3 can also
directly induce the expression of cytokines in addition to type
I IFNs, including CXCL10, RANTES, ISG56, IL-12p35, IL-23,
and IL-15, whilst inhibiting IL-12β and TGF-β (27–33). However,
it is currently unknown whether IRF3 activation can modulate
the expression of these additional cytokines in all cells and
downstream of all PRRs.

In a similar manner IRF7 is activated by TBK1/IKKε

downstream of cytosolic RNA/DNA sensors and TRIF dependent
pathways. Here IRF7 can either homodimerize or heterodimerize
with IRF3 to induce IFN-α/β expression (34). Previously it was
thought that, IRF7 was not required for IFN-β expression in the
early phase of a response due to its low basal level in resting cells,
and that IRF3 in complex with CBP alone was required. However,
consistent with a role for IRF7 as the master regulator of IFN
responses (34), we now know from work in Irf7−/− MEFs that
IRF7 in complex with IRF3 and CBP is essential for both the early
and late phase induction of IFNs in response to single stranded
RNA viruses. In pDCs in which the TLR7/TLR9 pathway is
predominantly active, phosphorylation and activation of IRF7
is independent of TBK1/IKKε and instead involves recruitment
of MyD88, recruitment and activation of IRAK1/2/4 signaling
complex, resulting in IKKα activation and phosphorylation of
IRF7, thus driving IFN-α/β expression in response to ssRNA or
DNA viruses (35).

Together with IRF3 and IRF7, IRF5 is another important
member of the family involved in driving IFN production.
Indeed, a risk haplotype of IRF5 is associated with SLE
and results in enhanced production of type I IFN. IRF5 is
expressed predominantly in B cell, monocytes, macrophages
and pDCs. Activation of IRF5 involves phosphorylation by
IKKβ (36, 37) at conserved residues in the IAD domain.
Similar to IRF3 and IRF7, this releases an autoinhibitory loop,
promoting nuclear translocation and interaction with CBP.
For example, mice lacking Irf5 showed increased levels of
type I IFN in their serum following infection with the RNA
viruses vesicular stomatitis virus (VSV) or Newcastle disease
virus (NDV) (38). This implicated the RIG-I like receptor
signaling pathway in activating IRF5, which was confirmed by
over-expression of MAVs inducing IRF5 activation and IFN-
induction (36). In addition, bacterial sensing via nucleotide-
binding oligomerization domain containing (NOD)2 has been
shown to drive IRF5 phosphorylation (both via TBK1 and
RIP2), leading to enhanced type I IFN expression (39, 40).
In pDCs IRF5 is key to the induction of pro-inflammatory
genes (IL-12, IL-6, TNF-α, and IL-23) downstream of TLR7/9-
MyD88, featuring ubiquitination of IRF5 by TRAF6. Whereas,
IRF7 is activated from late endosomes in response to TLR7/9
ligation to drive IFN expression, IRF5 is activated from early
endosomes to drive inflammatory gene expression by binding
MD88 directly, which in turn facilitates its ubiquitination and
activation. Interestingly, IRF4 binds same region of MyD88 as
IRF5 and negatively regulates MyD88 dependent signaling (41).
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FIGURE 1 | Overview of RNA/DNA sensing pathways. E3 ligases and microRNAs regulating IRF family members are highlighted in text boxes. Green text box for

positive regulators and red for negative regulators.

IRF5 is also involved in driving IFN-β expression downstream
of C type lectin receptors (CLRs) such as Dectin-1 and Dectin-2
which recognize the β-glucan cell wall of C. albicans (42). Such
production requires Syk and Card9 in addition to IRF5 but is
independent of other IRFs.

Thus, the co-ordinate activity of IRF3, 5, and 7 downstream
of the various PRRs determines the extent of type I IFN

induction and the pattern of cytokines induced. As to which

IRF is activated in any given situation depends on both the
initiating signal and the cell type involved. For example, in NDV-

infected cells the IRF5/IRF7 heterodimer has an inhibitory effect
on the IFNA1 promoter, while IRF3 and IRF5 cooperatively

activate this promoter (43, 44). In addition, overexpression of
IRF5 or IRF7 results in expression of a different set of IFN-α
subtypes, with IRF5-overexpressing cells driving mainly IFN-

α8 expression, while IRF7-overexpressing cells produce mainly
IFN-α1 (45). Thus, the potential exists that different levels of
expression of IRF family members in different infection and
disease settings will determine the level and subtype of type I
IFN being produced. Indeed, given the central role for IRF3,
5, and 7 in regulating IFN expression, it is not surprising that
they have been implicated in diseases such as systemic lupus
erythematosus (SLE), which are driven in part by overexpression
of type I IFNs. IRF5, for example, has a strong genetic association
with disease (46), and a risk haplotype which results in enhanced
IRF5 expression in SLE was found to correlate with enhanced
levels of proinflammatory cytokines released from monocyte-
derived cells from healthy individuals stimulated with NOD2
and TLRs ligands, thus indicating the presence of a correlation
between IRF5 genetic variants and IRF5-mediated transcriptional

regulation of cytokine genes (47). Similarly, increased association
of IRF3with the promoter of IL-23 results in increased expression
of this cytokine in SLE monocytes (33). A non-synonymous
SNP in IRF7 is associated with enhanced IRF7 activity and is
associated with SLE (48).

A role for IRF8 in stabilizing the basal transcriptionmachinery
at type I IFN promoters to enhance IFN expression in
dendritic cells (DC) and monocytes has also been reported.
Whilst principally known for its role in proinflammatory gene
induction, IRF8 also reportedly takes part in a second phase of
interferon induction in dendritic cells in response to Newcastle
Disease virus (NDV) which triggers IFN induction via activation
of RIG-I dependent pathways (49). The role of IRF8 in DC-
induced IFN-β requires upregulation of IRF8 expression in a feed
forward loop which then works via prolonging the recruitment
of the basal transcription machinery to the promoters of IFN
genes in dendritic cells. This mechanism is also at play in
monocytes (50). Indeed, original investigations into a possible
role for IRF8 in DC function supports a role for IRF8 in
mediating the development of IFN-inducing DC subsets (51–53).
However, it should be noted that the role of RIG-I in IRF8-
mediated IFN induction in DCs may be indirect, driving the
expression of IRF8 for example rather than directly activating this
transcription factor.

Signaling Downstream of IFN Alpha
Receptor (IFNAR)
Canonical type I IFN signaling occurs following binding
of IFN to the ubiquitously expressed type I IFN receptor
(IFNAR), comprising two transmembrane proteins, IFNAR1 and
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FIGURE 2 | Overview of signaling downstream of the IFN-alpha receptor.

microRNAs targeting IRF9 are highlighted in the text box.

IFNAR2 (54). This results in activation of two cytoplasmic
kinases JAK1 and TYK2, which subsequently phosphorylate
the associated transcription factors STAT1 and STAT2 (55).
Once phosphorylated STAT1 and STAT2 dimerize and interact
with IRF9 to form the transcriptionally active complex, ISGF3,
which binds to IFN-stimulated response elements (ISRE) in
the promoter region of IFN-inducible genes (56, 57). In the
ISGF3 complex, DNA binding activity is facilitated by IRF9,
with STAT1 providing additional DNA contacts, thus stabilizing
the complex (58). STAT2 provides a transactivation domain to
enhance RNA pol II dependent gene expression but is unable to
bind directly to DNA (Figure 2). In addition to ISGF3-dependent
gene expression, STAT1 homodimers facilitate transcriptional
responses to IFN-γ (and type I IFNs to a lesser extent) by binding
to the IFN-γ activated site (GAS) DNA element. A type I IFN
gene signature in the peripheral blood of SLE patients has been
described which correlates with increased disease activity (59–
61). This may result from enhanced levels of IFN-α or -β, or from
constitutive activity of the JAK-STAT pathway, downstream of
the IFNAR complex. For example, the JAK-STAT pathway has
been shown to be activated in SLE patients (skin and kidney,
specifically) (62–64) and in murine models (65, 66), with elevated
levels of STAT1 protein detected both in monocytes and skin
lesions from SLE patients. With respect to ISGF3, in a mouse
model of pristane-inducible IFN-driven lupus, both IRF9 and
STAT1 were shown to be required for autoantibody production
and development of kidney disease (67).

Interestingly, the long-held paradigm that IFNα-driven
tyrosine phosphorylation of both STAT1 and STAT2 is a
prerequisite for interaction with IRF9 (68) has recently
been challenged [reviewed in (69)]. For example, STAT2
is also capable of STAT1–independent ISRE-dependent
gene expression, forming homodimers that interact with
IRF9 following phosphorylation in response to IFN-α (70).
However, Cheon et al. have recently demonstrated that
increased expression of STAT1 and STAT2 as a result of
constitutive low level IFN-β expression gives rise to a novel
transcriptional complex composed of unphosphorylated
STAT1 and STAT2 complexed to IRF9 (71), which drives a
subset of anti-viral genes that overlap directly with the most
highly expressed ISGs thus far identified in SLE patients.
Although many of these studies were conducted in non-
immune cells, they reveal the complexity of gene expression
patterns downstream of the IFNAR receptor complex and
highlight the possibility that overexpression of STAT1, STAT2,
or IRF9 can have a profound effect on ISG expression and
potentially allow ISG expression independent of signaling
through IFNAR.

Role for IRFs in IFN-Driven Autoimmune
Disease
The role of IRFs in infection, protective immunity and primary
immunodeficiencies has been reviewed extensively elsewhere
in this focused issue (72). Given the role of IRF proteins in
regulating both the production and downstream signaling of
type I (and type II) interferons, it is hardly surprising that
they have been both genetically and biochemically shown to
be important mediators of IFN driven autoimmunity (4, 73,
74). Systemic lupus erythematosus (SLE) is amongst the best
characterized for the involvement of IFNs in disease pathology.
For example, in SLE, elevated IFN-α is observed in over
50% of patients and correlates with disease severity, flare and
tissue involvement (specifically skin, kidney, and central nervous
system). In recent years a type I IFN gene signature in the
peripheral blood of SLE patients has been described which
correlates with increased disease activity (59–61). More recently,
Rheumatoid Arthritis (RA) patients have been found to have
a type I IFN signature which correlates with autoantibody
production (75), indicating that type I IFNs play an important
role in driving a subset of RA (75). The various effects of
type I IFNs on both the innate and the adaptive immune
system contribute to the breaking of immune tolerance to
self, overactivation of myeloid cells, B and T lymphocytes and
differentiation or polarization of myeloid cells (monocytes and
neutrophils) and T cells to more pathogenic sub-types. With
respect for a role for IRFs in mediating these effects, genetic
association studies have identified IRF5 and IRF7 as being risk
factors for developing SLE (76–80). IRF5, like IRF7, is an IFN-
inducible gene and is found to be significantly upregulated in
PBMCs from SLE patients compared to healthy controls. IRF5
was found to be constitutively activated in monocytes from
SLE patients resulting in enhanced levels of IL-6, TNF-α, and
IFN-α (81, 82). IRF5 has been shown to be critical for the
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development of SLE in MRL-LPR mice (80), with alteration
in function or expression of IRF5 affecting both myeloid cells
and B cells in SLE-like models (79, 83). The role for IRF7
has been suggested not only for is critical role in regulating
IFN-a production by pDCs, but also genetic association studies
showing certain SNPs in IRF7 to confer enhanced risk for
developing SLE. Functionally these genetic variants were found
to be associated with increased serum IFN-α in SLE patients
with autoantibodies against DNA and the Smith autoantigen
(84). Interestingly, IRF3 has also been shown to be associated
with enhanced IFN-α levels in SLE patients, the study also
identifying a novel genetic association in a Mexican cohort of
SLE patients, suggesting that IRF3 may play an important but
as yet underappreciated role in driving IFN expression in SLE
(85). IRF3 is also strongly associated with RA—elevated levels
of phosphorylated IRF3 have been identified in the synovial
tissue of RA patients and IRF3 has also been strongly associated
with ISG expression in RA (86, 87). Regarding a role for
other IRFs in IFN-driven disease, we recently demonstrated that
IRF9 expression is enhanced in SLE monocytes and positively
correlates with ISG expression (88), indicating that perturbations
of IRF9 levels may alter functional activity of the ISGF3 complex
and potentially contribute to disease activity. The ability of
IRFs to regulate IFN production and downstream signaling
thus makes them important potential targets for therapeutic
intervention—highlighting the importance of understanding
how their activity is controlled in molecular detail. One aspect
that is rarely considered in IRF biology is the effect that
conventional treatments for autoimmune diseases via their ability
to alter IFN expression may also affect the expression of IRFs
in patients, given the fact that IRF3, 5 7, and 9 are all IFN-
regulated genes. For example, glucocorticoids, the mainstay
treatment for autoimmune and inflammatory disorders, inhibit
the expression of IFN stimulated genes. They therefore not
only alter the expression of IFN-regulated IRFs but can directly
impact their activity by targeting an interaction between the
glucocorticoid-sensitive coactivator GRIP1/NCOA2 and IRF
family members—IRF9 and IRF3 specifically (89, 90). Thus, in
IFN driven diseases glucocorticoid treatment would be expected
to reduce the expression and activity of the IFN signature as
has been shown for SLE (91) and RA (92). Another mainstay
for treating IFN-driven diseases (particularly SLE) also has a
direct effect on the expression of IFNs and can therefore affect
IRF levels. These are the anti-malarial 4-aminoquinoline drugs
chloroquine and hydroxychloroquine which accumulate in the
endolysosomal compartment of cells and inhibit signaling of
endosomal TLRs such as TLR3, 7, and 9 and hence IFN-
induction. In SLE, patients on chloroquine/Plaquenil show a
reduction in IFN levels and would therefore be expected to show
corresponding changes in IFN-regulated IRF expression (93).
Interestingly, chloroquine is implicated in directly regulating
IRF3 activity via increased expression of the deubiquitinating
enzyme USP25, which enhances IRF3 nuclear translocation and
results in increased LPS-induced IFN-β expression (94). This
raises the possibility that chloroquine can directly or indirectly
affect the activity and expression of IRF proteins in SLE or other
IFN-driven diseases.

Several anti-IFN therapies have been clinically evaluated in
SLE in recent years with varying degrees of success. Sifalimumab
improved disease in patients with moderate to severe active
disease, reducing the level of IFN stimulated genes (ISGs) in
patients with initially high ISG scores, whereas the effects of
Rontalizumab were greatest in patients with low to moderate
levels of ISGs (95, 96). Anifrolumab, a blocking antibody against
the IFN receptor (as opposed to targeting IFN-α isoforms),
has reportedly better efficacy, although responses are far from
complete (97). Another contribution IFN-driven disease that
cannot be discounted in the potential role of intracellular
RNA/DNA receptors in regulating type I IFN production. The
recent identification that mutations in STING or TREX1 (which
both work to regulate IFN-β production) drive monogenic forms
of IFN-driven disease (interferonopathies) have suggested that
dysregulation of these pathways may contribute to interferon
driven diseases such as SLE or Sjogren’s syndrome (98). Indeed,
DNA released from stressed mitochondria in SLE neutrophils
has been shown to drive IFN responses via the cGAS-STING
pathway (99–101). More recently the cGAS-STING pathway has
been shown to contribute to ISG regulation, independent of
type I signaling through the IFNAR complex, indicating that
other mechanisms may be at play in driving ISG expression in
cells (102).Whether cGAS-STING activation of IRF3/IRF5 drives
ISG expression directly in this scenario, or whether it drives
expression of type III IFNs (IL-28A, IL-28B, and IL-29) which can
also drive expression of ISGs (103), remains to be fully explored.
These studies highlight the need to understand these pathways in
molecular detail and underscore the complexity of targeting the
IFN system therapeutically.

IMMUNE CELL DEVELOPMENT
AND DIFFERENTIATION

In addition to regulating IFN production IRFs have important
roles in regulating immune cell development and differentiation
(Figure 3). Whilst IRFs have been shown to regulate both
lymphoid and myeloid cell development and differentiation,
possibly their most influential role is observed in regulating
dendritic cell (DC) subset development and macrophage
differentiation/polarization, with obvious consequences for
inflammatory outcomes.

Myeloid Cell Development
Hematopoietic stem cells give rise to both the myeloid and
lymphoid arms of hematopoietic lineage. Myeloid cells derive
primarily from the Common Myeloid Progenitor (CMP)
whereas the lymphoid arm derive from the Common Lymphoid
Progenitor (CLP). The CMP can give rise to all types of
myeloid cells, including monocytes, neutrophils and most types
of dendritic cells (DCs). A unique subset of DCs, termed
plasmacytoid DCs derive from CLP. IRFs play an integral role
in both DC and monocyte development. DCs are essential for
antigen presentation and act as the bridge between innate and
adaptive immune responses. They comprise four main subsets
of DCs—conventional DCs (cDCs), plasmacytoid DCs (pDCs),
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FIGURE 3 | Overview of IRF involvement in myeloid cell development and macrophage differentiation. E3 ligases and microRNAs regulating IRF family members are

highlighted in text boxes. Green text box for positive regulators and red for negative regulators. CMP, common myeloid progenitor; CLP, common lymphoid progenitor;

Mo, Monocyte; Neut, Neutrophil; DC, Dendritic cell; M8, macrophage.

monocyte-derived DCs, and Langerhans cells. Conventional DCs
in mice are further sub-grouped into cDC1 and cDC2 subsets
with differentmarkers for human andmurine counterparts (104).

Each DC subset develops under the control of differential

expression of IRF4 and IRF8 in collaboration with transcription
factors such as PU.1, ID2, and KLF4 (105–108). For conventional
DCs, IRF8 regulates cDC1 subset development in mouse and
humans, characterized by expression of CD8 or CD103 in mice
or CD141 in humans and by the expression of IL-12 following
TLR engagement. IRF4 on the other hand regulates cDC2 subsets,
which express high levels of CD11b and CD172 in both mouse
and humans and are highly efficient at inducing CD4+ T cell
effector function and expansion. High expression of IRF8 in
combination with E2-2 and Bcl11A are required for development
of pDCs, which secrete high amounts of type I IFN in response
to stimulation. IRF1 and IRF2 also appear to be important in
regulating DC subset development—Irf−/− mice show a loss
of splenic and epidermal DCs (due to augmented type I IFN
signaling) (109, 110) whereas Irf1−/− exhibit an increase in
pDCs and a decrease in CD8+ DCs in mice, along with an
increase of IL-10 and TGF-β (111). In addition to regulating
DC differentiation, IRF8 also promotes the commitment of
myeloid progenitors to the monocyte/macrophage lineage, whilst
inhibiting development of neutrophils (112). Irf8−/− mice lack
bone marrow resident macrophages, in addition to CD8+ DCs
and pDCs in lymphoid organs (53, 113, 114). IRF4 has also
been shown to promote macrophage differentiation and impair
granulocyte formation, but its role in these events is secondary
to IRF8 (115). A recent role for IRF4 in negatively regulating

myeloid-derived suppressor cell (MDSC) development and
immunosuppressive function in tumors has recently been
described (116), indicating the importance of understanding IRF-
dependent regulation of myeloid cell development and function
for disease.

M1/M2 Macrophage Polarization
Like DCs, macrophages play an important role in sensing
pathogens, initiating innate immunity, and cross-talking with the
adaptive immune system to generate an appropriate immune
response. Like DCs and T cells, subsets of macrophages with
differing functions have been identified [reviewed extensively
in (117, 118)]. Broadly speaking they can be divided into
inflammatory M1 macrophages and anti-inflammatory or
resolving M2 macrophages. M2 macrophages can be further
subdivided intoM2a-M2d subsets. Stimuli such as GM-CSF, LPS,
and IFN-γ are potent drivers of M1 polarization for example,
whereas fungal products, immune complexes, M-CSF and IL-
4, IL-13, IL-10, and TGF-β all promote M2 macrophages. M1
macrophages are characterized as secreting high levels of TNF-
α, IFN-γ, IL-12, and IL-23, promoting strong microbiocidal
functions and production of reactive nitrogen and oxygen
species and promotion of Th1/Th17 responses. In contrast
M2 macrophages regulate parasitic infections, promote tissue
remodeling and repair and secrete immunosuppressive cytokines
IL-10 and TGF-β. Regarding the different M2 subsets, M2a
subtype is driven by IL-4, IL-13, and fungal and helminth
infections. M2b is driven by immune complexes, IL-1/IL-18 and
LPS, whilst M2c is elicited by IL-10, TGF-β and glucocorticoids.
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Functionally, M2a and c secrete IL-10 and TGF-β and are
generally immunosuppressive, whereas M2b secrete IL-1, IL-12,
and IL-10 and are implicated in inflammatory diseases such as
SLE. M2d macrophages have only been identified in mice thus
far and are induced from M1 macrophages following exposure
to ATP (119, 120). Phenotypically they play a role in tissue
remodeling and repair and have been shown to be associated with
angiogenesis through secretion of VEGF (121).

Regarding IRF involvement in M1/M2 differentiation, IRF4
is strongly associated with M2 polarization, interacting with
other transcription factors and chromatin remodelers to drive
M2a or M2c subsets (122). The histone demethylase Jumonji
domain containing-3 (Jmjd3) is involved in depressing M2-
associated genes by reversing epigenetic modifications and has
been shown by Satoh et al to work in concert with IRF4 to induce
M2 polarization (123). Both IRF4 and Jmjd3 induce expression
of M2-specific genes, arginase 1, FIZZ1, Ym1, and mannose
receptor (MR) in response to IL-4 stimulation. Both Jmjd3 and
IRF4 expression is driven by IL-4 in macrophages, and they in
turn reciprocally regulate expression of each other (123, 124).
Thus, IRF4 and Jmjd3 regulate M2a polarization downstream of
IL-4 and IL-13. IRF4 also antagonizes IRF5 binding to MyD88
and in this way promotes M2 over M1 differentiation (125).
Whether IRF4 is required for M2b, M2c, or M2d polarization is
currently unknown.

IRF5 is the key transcription factor regulatingM1 polarization
(126, 127). Various inflammatory stimuli such as GM-CSF, LPS,
and IFN-γ can upregulate the expression of IRF5. Enhanced
expression of IRF5 in M1 macrophages is required to drive
transcription of M1 markers such as IL-12, TNF-α, and
IFN-γ and repress IL-10 (128). IRF5 has also been shown
to regulate IL-23 secretion from macrophages, thus triggering
the differentiation of Th17 cells (126). Thus, by influencing
macrophage polarization toward an M1 phenotype, IRF5 plays
an important role in regulating downstream adaptive immune
responses and T helper cell differentiation toward a Th1 or
Th17 phenotype. IRF1 seems to facilitate M1 polarization in
general—priming expression of inflammatory genes associated
with an M1 phenotype, such as IL-12p35 and IL-12p40 and
synergizing with IRF8 to drive IL-12 production. IRF1 can also
directly co-operate with IRF5 in order to drive M1 polarization
in response to IFN-γ (125) and IRF1 and IFN-β work together to
enhance IRF5 expression and as a consequence, M1 polarization
in U937 cells. Thus, IRF1 promotes M1 polarization through its
ability to enhance IRF5 levels and activity. The ability of IRF4 to
compete with IRF5 for MyD88 binding and hence activation of
downstream signals, suggests that relative levels of IRF4 and IRF5
in macrophages are important determinants of whether cells will
polarize toward M1 or M2 phenotype.

POST-TRANSLATIONAL REGULATION OF
IRFS—UBIQUITINATION AND
NON-CODING microRNA

Given the critical function of IRF family members in regulating
IFN production and downstream signaling, and their role in

regulating immune cell differentiation, means to regulate their
activity are critical to preventing overstimulation of pathways
and cells and consequent autoimmune disease. We will discuss
two mechanisms to negatively regulate IRF family members—
the post-translational modification of IRFs by ubiquitin and
ubiquitin-like proteins and the epigenetic mechanism of
microRNA (miR) targeting.

Ubiquitination
Ubiquitination, like phosphorylation, is a reversible process
regulated by E3 ligases that add ubiquitin chains to targets
and de-ubiquitinases that remove these chains [reviewed in
(129, 130)]. Ubiquitin itself is a small, ubiquitously expressed,
76 amino acid (8.6 kDa) protein that is conjugated to an
internal lysine of a target via the formation of an isopeptide
bond between its C terminal glycine reside and the ε-amino
residue of the lysine on the target protein. Ubiquitin chains
are then formed on this initiating ubiquitin and the internal
lysine targeted for polyubiquitination determines function—for
example Lysine 48 (K48) linked chains target the protein for
degradation, whereas K27 and K63 linked chains alter the activity
of the protein target. Again, like phosphorylation, ubiquitination
is a rapid method for activating or deactivating pathways.
Indeed, signaling downstream of the PRRs is widely regulated
by ubiquitination, both in order to activate signaling and to
turn it off pathways once the response is deemed sufficient
(131, 132). For example, the adaptor protein STING is regulated
by multiple E3 ligases such as TRIM56, TRIM32 and AMFR,
each activated by specific pathways in order to confer a specific
outcome—i.e., STING activation, inactivation or relocalization.
TRIM56 and TRIM32 catalyze K63-linked polyubiquitination of
STING, driving dimerization and promoting its ability to interact
with TBK1 and drive IFN-β expression (133, 134). K48-linked
ubiquitination of STING by RNF5 and TRIM30a has also been
reported, resulting in proteasomal degradation of STING and
subsequent downregulation of cytosolic DNA-mediated signaling
and IFN production (135, 136). AMFR on the other hand, in
complex with INSIG1, catalyzes K27-linked polyubiquitination
of STING, which acts as a platform to recruit in TBK1 and
facilitating translocation to perinucleosomes and antiviral gene
expression (137). Recently, ubiquitination of STING on K224
by the E3 ligase MUL1 has recently been shown to regulate its
trafficking from the endoplasmic reticulum (ER) to the Golgi
(138). In addition to ubiquitin, SUMO (small ubiquitin-like
modifier) can also be covalently linked to lysine residues in
target proteins, acting to regulate localization, protein-protein
interactions, and activity of target proteins, a process known as
SUMOylation. Indeed, TRIM38 has also been shown to regulate
SUMOylation of STING during early responses to DNA virus,
to promote its stability and enhance its activity (139). Thus,
ubiquitination of proteins or addition of ubiquitin-like modifiers
such SUMO is a highly dynamic, versatile, and effective means of
regulating protein function and levels in cells.

The activity of IRF proteins is tightly controlled through
both ubiquitination and SUMOylation. In general, ubiquitination
and phosphorylation of IRFs are integrally linked, with one
modification often being a pre-requisite for the other to take
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place (140). For example, ubiquitination of IRF7 by TRAF6 at
lysine 444, 446, and 452 is required prior to TBK1/IKKε driven
phosphorylation at serine 477 and 479 (141). The juxtaposition
of both the ubiquitination site and phospho-acceptor site on
IRF7 and other IRFs suggests that such these post-translational
modifications work sequentially to recruit in all the players
necessary for activation. And similar to STING, it appears that
competing ubiquitin or ubiquitin-likemodifications work to fine-
tune and regulate IRF protein stability and function. For example,
both IRF3 and IRF7 are negatively regulated by SUMOylation
following viral infection in order to turn off and limit responses
(142). TRIM28 is the E3 ligase that regulates IRF7 SUMOylation
at K444 and K446 (143).

Regulation of IRF3 activity by ubiquitination or other
ubiquitin like modifiers such as SUMO or ISG15, is highly
complex, and most likely is highly dependent on context and
cell type. IRF3 stability is regulated by K48-linked ubiquitination
by TRIM21 promoting proteasomal degradation post TLR-
stimulation in order to turn off and limit responses (144).
Indeed, TRIM21 deficient mice develop SLE-like symptoms,
accompanied by enhanced IFN levels, accompanied by sustained
IRF3 levels post TLR-activation (145). TRIM21 also plays
a role in autophagy and has been shown to interact with
the p62 sequestersome protein, thus facilitating removal of
IRF3 by targeted autophagy (146–148). In contrast, TRIM21
ubiquitination of IRF3 has also been shown to stabilize IRF3
activity via disrupting an interaction between IRF3 and Pin1,
a protein that promotes IRF3 degradation (148–150). Both
published and unpublished results from our group indicate that
TRIM21-mediated regulation of IRF3 is complex and that it may
in fact act to stabilize IRF3 in resting cells (as evidenced by
decreased basal levels of IRF3 in TRIM21-deficient BMDMs) but
then become activated, potentially by phosphorylation (151), to
promote ubiquitination and proteolysis of IRF3 in order to limit
and turn off anti-viral responses. TRIM21 also regulates IRF7
stability downstream of viral TLRs in order to limit antiviral
responses (152). Like TRIM21, the E3 ligase RAUL adds K48-
linked ubiquitin chains to both IRF3 and IRF7 and ultimately acts
as a brake on the system in response to viral infection (153).

Similar to IRF7, IRF3 is also regulated by other ubiquitin-like
modifiers: addition of SUMO and another modifier interferon
stimulated gene 15 (ISG15) to on the N terminal DBD
works to sustain IRF3 levels by protecting these sites from
ubiquitination. Ubc9 for example SUMOylates IRF3 (142) whilst
SENP2 is a deSUMOylating enzyme that removes SUMO for
IRF3, presumably then allowing TRIM26 to ubiquitinate these
residues with K48-linked chains, promoting IRF3 degradation
(154, 155). ISGylation of IRF3 by HERC5 inhibits the interaction
between IRF3 and PIN1, thus preventing Pin1-dependent IRF3
degradation (156). Thus, competing ubiquitin-like modifications
on IRF3 work to either stabilize or degrade IRF3.

IRF5 stability is also regulated by ubiquitination. K63-linked
ubiquitination of IRF5 by Pelino-1 for example positively
regulates M1 polarization downstream of TLR4/IFN-γ. This
study also linked the Pellino-1-IRF5 axis to regulation of
glucose intolerance in obesity, with BMDMs from mice lacking
Pellino-1 showing improved glucose intolerance when fed a

high-fat diet (157). Work from our own lab has shown that
TRIM21 differentially ubiquitinates different isoforms of IRF5,
with IRF5-V1 and V-5 targeted or degradation by TRIM21
whereas IRF5-V2 and IRF5-V3 (IRF5-V2 linked to susceptibility
to SLE) are resistant to TRIM21-mediated degradation, with
obvious implications for downstream activity (158). TRIM28,
a SUMO E3 ligase, is an additional negative regulator of IRF5
activity, promoting epigenetic modifications of IRF5-dependent
genes (159).

Interestingly, ubiquitination of IRF1 is linked with stability
and seems to be required for IL-1-induced expression of the
chemokines CXCL10 and CCL5, thus promoting inflammatory
cell recruitment (160). The E3 ligase responsible is the apoptosis
inhibitor cIAP2, whose activity is enhanced by the sphigosphine-
1-phosphate, catalyzing the addition of K63-linked chains onto
IRF1. Recently Src family kinases have been shown to positively
regulate K63-linked ubiquitination and accumulation of IRF1 in
response to TLR7/8 signaling in monocytes and B cells (161).

As to whether other IRF proteins that are involved in
regulating IFN production or downstream signaling pathways
are regulated by ubiquitin-like post-translational modification
remains to be determined. Given the fact that type I IFNs
themselves rapidly induce expression of both E3 ligases
[particularly the TRIM family (162)] that target IRFs, it is hardly
surprising that many of these mechanisms are being considered
as targets for therapeutic intervention in diseases driven by
interferons such as SLE.

microRNAs Targeting IRF proteins
microRNAs (miRs) are important regulators of gene expression
in a whole host of cellular processes and immune responses
(163, 164). They are an evolutionarily conserved family of
small (∼22 nucleotides long) non-coding RNAs that function
to bind the 3′ UTR of mRNA targets and thus regulate
gene expression. Like coding RNA, non-coding RNAs such as
microRNA can be either constitutively expressed or inducible—
and the inducibility of these small epigenetic modifiers allows
cells to exquisitely regulate and control various pathways—
including those regulated by IRF proteins. Binding can trigger
degradation of the target mRNA (as occurs in the majority of
cases), prevent translation, or in rarer cases, stabilize the mRNA
leading to positive regulation. The biogenesis and functions of
microRNA have been reviewed extensively elsewhere (165–168).
The focus here will be to review the role microRNAs play in
regulating the levels of IRF protein members and how this
contributes to both homeostasis and to disease.

There is a body of evidence to support a role for miRs in the
regulation of pathways producing type I interferons and those
downstream of the IFN receptor complex. For example, miRs
have been implicated at all levels of TLR signaling, including
manipulation of TLR levels themselves (169, 170). Downstream
of the TLRs, miR-146 has been shown to target a number
of signaling molecules, including IRAK1 and TRAF6 (171–
173). The ability of a single miR to target multiple players on
a particular pathway is a unique feature of these epigenetic
regulators and suggests that they have evolved to regulate
pathways and processes in the cell rather than individual players.
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Regarding the IRFs that regulate IFN-α and -β production, both
IRF5 and IRF7 have been shown to be targeted by specific miRs.
miR-302a for example is induced by influenza A and targets IRF5
directly, in order to control and limit IFN production (174).
Regarding regulating IRF5 to influence M1/M2 transition, IL-
10 induces miR-146b, which in turn directly targets IRF5 to
promote M2 differentiation (175). microRNAs that target IRF7
on the other hand have been linked to its role in regulating
oncogenesis and apoptosis rather than IFN induction per se—for
example in breast cancer cells, miR-762 targets IRF7, inhibiting
proliferation and invasion in a matrigel assay (176). In a separate
study, miR-541 was shown to promote vascular smooth muscle
cell proliferation by targeting IRF7 and thus inhibiting apoptosis
(177). Regarding how microRNAs might target IRF7 in order
to regulate IFN production, miR-144 was shown to target
the TRAF6-IRF7 axis, targeting TRAF6 in order to attenuate
attenuating the host response to influenza virus, indicating
that mechanisms to regulate IRF7 activity by microRNAs exist
whether direct or indirect (178).

To date however, no miR has been uncovered that specifically
targets IRF3—instead many have been identified that regulate
upstream adaptor proteins and hence the activity of IRF3. For
example, miR-3570 targets the adaptor protein IPS-1/MAVs in
order to shut-off RIG-I dependent signaling. miR-576-3p was
shown to be induced in response to RNA and DNA viruses
via IRF3-depependent IFN-β production, in order to shut off
and limit anti-viral responses. It achieves this by targeting
STING, MAVS, and TRAF3, all 3 critical players in regulating
IRF3 activity or facilitating type I IFN expression. Therefore,
IRF3 drives a negative regulatory loop involving miR-576-
3p (179, 180).

Regarding signaling downstream of the type I IFN receptor
(IFNAR), IRF9 levels and activity are critical in mediating
STAT1/STAT2 driven responses. A number of microRNAs have
been published that target IRF9 directly. miR-373 for example
is upregulated by Hepatitis C virus (HCV) and targets IRF9
and JAK1 in order to turn off and limit anti-viral defense
mechanisms (181). Our own work has shown the IRF9 is also
targeted directly by miR-302d. In this study we observed that
miR-302d, an estrogen regulated microRNA, is decreased in SLE
monocytes, resulting in enhanced expression of IRF9 (88). The
level of expression of IRF9 positively correlated with levels of
interferon stimulated gene (ISG) expression and also disease
activity, indicating that disruption of the microRNA balance in
cells may have important consequences for immune cell function,
particularly in the context of autoimmune disease.

Regarding a role for microRNAs in targeting IRFs to influence
myeloid cell development or differentiation, one would expect
that targeting IRF4, IRF8, or IRF5 would directly influence
these events. Indeed, as mentioned above, miR-302a targets
IRF5 to influence M1/M2 levels in response to viral infection
(174). miR-125a has recently been shown to regulate M1/M2
differentiation and inflammation, targeting negative regulators
of inflammation such as A20 and promoting an M1 or pro-
inflammatory phenotype (182, 183). A recent study showed
that Notch-dependent upregulation of miR-125a in tumors
inhibited tumor associated macrophage function and promoted

M1 macrophages via its ability to regulate HIF1-a and IRF4
(184). Regarding regulating DC development or differentiation,
IRF8 is the natural target as it positively regulates pDC over
cDC. In this context, miR-22 directly targets IRF8 and was
shown to be highly expressed in cDCs compared with pDCs and
directly influence DC differentiation (185). Thus, understanding
the role of microRNAs that target IRFs involved in myeloid
cell function and development may have important relevance to
disease pathology.

Given the numerous roles microRNAs play in fine tuning TLR
and IFN responses, it is not surprising that the dysregulation of
these molecules has been implicated in SLE. To date numerous
examples of dysregulated SLE associated microRNAs have been
identified (186–189). Best characterized in SLE are miR-146 and
miR-125, which in addition to targeting IRF5 and IRF4, also
upregulate IFN-α and RANTES, respectively, thus contributing
to disease activity (190, 191). miR-125a, is downregulated in
SLE, has been found to negatively correlate with levels of the
chemokine RANTES, a major player in organ inflammation (192)
and lupus nephritis (193). Investigations into the mechanism
behind this revealed a role for miR-125a in negatively regulating
Kruppel-like factor 13 (KLF13) expression, a transcription factor
that binds and activates the RANTES promoter, thereby inducing
its expression in T cells (194). Our own work has also confirmed
miR-125a expression decreased in SLE monocytes and identified
a novel target, IL-16, which regulates CXCL10 expression in
lung epithelial cells and helps drive lung inflammation in an
autoimmune context (195). Given that monocyte and neutrophil
subsets in SLE patients are key drivers of inflammation,
understanding how microRNA changes in patients regulate IRF
protein levels and hence contribute to myeloid cell development
may be key in uncovering novel therapeutic targets.

FUTURE PERSPECTIVES

Numerous mechanisms exist to control the innate immune
response and myeloid cell differentiation in order to prevent
inflammatory and autoimmune disease. As IRF family members
are critical in this respect, tight regulation of their levels and
activity is one mechanism of maintaining tolerance to self-
antigens such as self-nucleic acids. But in different diseases
it appears individual IRFs have greater or lesser involvement
[reviewed in (4)]. For example—IRF3 seems to be more
important in synovial inflammation in RA and responsible for
ISG induction, whereas its involvement in SLE does not seem
to be as important. IRF5 may perhaps be more important in
SLE. So rather than targeting a single IRF for all IFN-mediated
diseases, we must first understand the complex interplay between
the individual IRFs in specific diseases 9 and potentially sub-types
of disease in order to understand how targeting individual family
members will impact the immune response as a whole.

Regarding potential targeting strategies: Ubiquitination of
IRFs is a rapid and versatile way to regulate both levels
and activity of IRFs, whereas epigenetic targeting of IRFs by
microRNAs can fine tune IRF expression levels. Both work in
concert to tailor immune responses appropriately. However,
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many questions remain regarding the IRFs and how they are
regulated as it pertains to IFN biology: for example—what role
do IRFs play in IFNAR-independent induction of ISGs? Is it
possible that different combinations of STATs and IRFs can
replace the canonical ISGF3 transcriptional complex? What role
does regulation of availability of IRFs by microRNA targeting
play in this process? And finally, can we target E3 ligases to
fine tune IRF function and levels? Answering these questions
will undoubtedly contribute to our understanding regarding how
IRFs contribute to the pathology of autoimmune diseases such
as SLE, but its biggest impact will be in explaining the following:
firstly how we can improve on current IFN-targeting strategies—
i.e., will JAK inhibition provide enhanced efficacy compared
with IFNAR targeting strategies? And secondly, potentially
uncover additional new therapeutic targets—be they modulators

of E3 ligase activity or RNA-targeting strategies. As central

regulators of monocytes function and IFN biology, addressing
these questions promises to have a big impact in IFN-driven
autoimmune disease.
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