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ABSTRACT Biofilms occur in a broad range of environments under heterogeneous

physicochemical conditions, such as in bioremediation plants, on surfaces of bio-

medical implants, and in the lungs of cystic fibrosis patients. In these scenarios, bio-

films are subjected to shear forces, but the mechanical integrity of these aggregates

often prevents their disruption or dispersal. Biofilms’ physical robustness is the result

of the multiple biopolymers secreted by constituent microbial cells which are also

responsible for numerous biological functions. A better understanding of the role of

these biopolymers and their response to dynamic forces is therefore crucial for un-

derstanding the interplay between biofilm structure and function. In this paper, we

review experimental techniques in rheology, which help quantify the viscoelasticity

of biofilms, and modeling approaches from soft matter physics that can assist our

understanding of the rheological properties. We describe how these methods could

be combined with synthetic biology approaches to control and investigate the ef-

fects of secreted polymers on the physical properties of biofilms. We argue that

without an integrated approach of the three disciplines, the links between genetics,

composition, and interaction of matrix biopolymers and the viscoelastic properties of

biofilms will be much harder to uncover.
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Polymers are ubiquitous in that they constitute the machinery of life and are found

in consumer and industrial products (1, 2). Bacteria are known to secrete a variety

of biopolymers that include exopolysaccharides, proteins, and extracellular DNA (eDNA)

that encase the cells, resulting in the formation of “slimy” aggregates called biofilms (3,

4). The arrangements and interactions of macromolecules and cells composing the

polymeric network confer upon the biofilm a dynamic architecture (5), allow it to resist

invasion from external threats (invaders [6], chemicals [7], and antibiotics [8, 9]), and

perform various other synergistic (10, 11) and/or antagonistic (8, 12) functions. To date,

our knowledge of the genetic origins, regulation of gene expression, secretion mech-

anisms, and organization of various polymers within the biofilm matrix is limited

(13–16), and discoveries of new biomolecules, along with their structure and biochem-

ical implications, continually reshape our knowledge (15, 17). Recent technological

advances are providing researchers with increasingly precise genetic tools in whole-

genome sequencing, gene synthesis, and high-throughput screening (18–20). This

opens the possibility of probing the role of single and/or multiple polymeric compo-

nents and their interactions within the extracellular matrix (ECM), thereby allowing

systematic investigation into the factors affecting the mechanical robustness of biofilms

in new and unprecedented ways.

Upon application of stress, a biofilm exhibits both elastic and fluid-like behavior, a
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time-dependent response known as viscoelasticity. Rheology is the study of such

viscous and elastic responses in materials and seeks to decipher the changes in the

underlying structure due to the application of forces. Biofilms are unique rheological

systems because they comprise living cells and a dynamic extracellular matrix. ECM

secretion is driven by the interplay between gene expression and environmental

conditions (21) resulting in compositional and spatial heterogeneity. The constituent

macromolecules self-assemble (22) via polymer interactions such as entanglement,

protein binding, and cross-linking to form a transient stress-bearing structure (Fig. 1A)

(16, 23, 24). Recent studies have shown that ECM constituents, such as proteins, eDNA,

and polysaccharides, dictate biofilm architecture as well as matrix viscoelasticity. How-

ever, there is a lack of understanding of the structural rearrangements, cross-linking,

and behavior of matrix biopolymers under large shear forces. Modern rheological

techniques like large-amplitude oscillatory shear (LAOS) and optical tweezing (OT)

allow us to record rheological signatures at a variety of strain amplitudes with high

temporal fidelity, thereby allowing us to advance our understanding of interlinking or

entanglement of cells and extracellular polymers from a mechanics viewpoint.

A variety of mechanical (25) and spectroscopic (26) techniques exist for character-

izing the viscoelasticity of biofilms at multiple length scales (27) (Fig. 2). Biofilms

growing under different environmental conditions are known to exhibit large variations

in viscoelasticity (28). Coupled with the complexity arising from a multiplicity of

measurement tools at different length scales, the need for standardized mechanical

measures has been highlighted (29). Matrix viscoelasticity is known to confer protection

against physical and chemical perturbations (30) and has also been attributed a role in

the virulence of Pseudomonas aeruginosa (31). While the literature alludes to the

FIG 1 General structural components and methods for control for bacterial biofilms. (A) Overview of some of the
components within a bacterial biofilm which can affect the architecture and viscoelasticity. (B) Direct induction of
ECM components; chemical induction methods can be used to activate or deactivate the expression of one or more
of the ECM components. (C) Synthetic QS-based control potentially allows different ECM components to be
expressed based on the population densities of different strains. QS also allows for signal amplification through the
biofilm structure, thereby complementing direct induction (as seen in panel B). (D) Optogenetic control mecha-
nisms can be used to direct the expression of certain structural components within a growing biofilm at precisely
controlled locations.
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structural role of biopolymers (28, 30), a systematic discussion on deciphering their

roles from a molecular biology and physical viewpoint is still lacking. Boudarel and

coworkers (29) called for a standardization of methods for characterizing and measur-

ing biofilm structure; however, we would go further than this. We argue that if

modeling approaches from soft matter physics are employed alongside data from

experimental rheology techniques, this would improve our ability to quantify and

characterize biofilms and their structures. Modeling approaches from soft matter

physics, in essence, would simplify the complexity of biofilms, treating them as mate-

rials that can be described by a set of physical parameters. Here, we review approaches

from synthetic biology (SynBio), experimental rheology, and soft matter physics. We

focus on where these methods have revealed new insights into biofilm structural

properties and where the techniques have begun to be used together to form new

multidisciplinary approaches to address questions in biofilm research.

GENETIC TOOLS FOR MANIPULATING THE VISCOELASTICITY OF BIOFILMS

Early research into the genetics of biofilms was predominantly based on screening

mutant libraries for biofilm deficiency (32–34). Molecular approaches have enabled the

creation of strains, where overexpression or deletion of particular matrix component

affects the biofilm structure and viscoelasticity. Experimentally controlling the spatio-

temporal dynamics of polymer secretion remains challenging because traditional over-

expression and deletion strains cannot be modulated in situ. SynBio has been widely

used in microbiology to produce novel metabolites, nanomaterials, and biosensors.

However, the use of SynBio tools in creating engineered biofilm-like materials and in

understanding rheology of biofilms is limited (35–37). The following section summaries

the various SynBio techniques that could be employed to manipulate the secretion of

ECM components and the type of control each method offers (Fig. 1B to D).

Chemical induction. Owing to the multiple regulatory, synthesis, and posttransla-

tional steps involved in the ECM assembly processes, engineering a phenotype beyond

on/off remains challenging. Several groups have demonstrated the advantages of

modulating the levels of expression of individual polymeric components using stan-

dard molecular biology approaches (38). For example, chemically induced gene ex-

pression (Fig. 1B) has been used in studies concerning the spatial structuring of both

Vibrio cholerae and P. aeruginosa biofilms. These techniques have assisted in revealing

the role of protein CdrA, which mediates cellular packing and cell aggregation in P.

aeruginosa biofilms in the absence of polysaccharides (17). A CdrA-rich biofilm matrix

has been found to have a compact architecture, and cross-linking of CdrA with Psl (one

of the polysaccharides produced by P. aeruginosa) has been found to confer protection

against proteolysis. Hartmann et al. (39) used single-cell microscopy in conjunction with

the control of RbmA (a mediator of cell-cell interaction) to understand how RbmA

FIG 2 Techniques for measuring rheology of biofilms arranged in decreasing order of the length scale. (A)
Extension/compression tests of biofilms/pellicles using force sensors. (B) Bulk/interfacial rheometry performed
using a rheometer and the different kinds of measurement geometries that can be used in a rheometer. (C)
Deformation of biofilms within fluidic chambers using flow forces or by using a microcantilever. (D) Microrheology
technique in which beads are trapped within biofilm and the motion of the beads is driven either by thermal
fluctuations or through an external force.
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expression influenced cellular positioning in the extracellular matrix of V. cholerae. By

measuring structural parameters such as intercellular distances and local density of

cells, they were able to derive a theoretical model (that considers interaction potential

between cells) to describe the microstructural architecture of the biofilm. Artificially

controlling the levels of cyclic di-GMP (c-di-GMP), a master regulator of biofilm forma-

tion in a number of bacterial species (40) using light-responsive promoters has been

used to assert temporal control over P. aeruginosa biofilm formation (41). Advance-

ments in understanding the organization of c-di-GMP networks open the door for

producing engineered strains with increasingly precise regulatory control (42). For

instance, the ability to construct strains where the retention and release of surface-

bound proteins could be controlled by c-di-GMP was recently demonstrated in the Lap

system of Pseudomonas fluorescens (43). These approaches could be used to study the

roles of individual ECM components on cell-cell interactions and the rheological

fingerprint of growing biofilm clusters.

Quorum sensing-based control. An alternative approach to exert control over ECM

components would be engineered quorum sensing (QS) systems (44, 45). QS is used to

coordinate inter- and intraspecies phenotype changes based on population density. QS

plays a role in regulating biofilm formation, surface and secreted virulence factors,

community interactions, and dispersion across many bacterial species (46, 47). Rational

bottom-up design using laboratory and modeling approaches has also resulted in the

design of ultrasensitive QS switches that can tightly regulate gene expression (48) and

force coordinated behavior between strains. These systems can mimic simple transistor

switches (Boolean logic) which have allowed investigators to exert sophisticated con-

trol over polymer secretion and competition dynamics (49, 50). Such systems have been

used in Komagataeibacter rhaeticus, where cellulose expression was repressed over a

10-fold range by the QS molecule acyl homoserine lactone (AHL) via a small RNA (sRNA)

repression mechanism (51). However, these approaches are dependent upon the

diffusive transport of QS autoinducers and therefore lack spatial control. By temporally

regulating polymer expression at different times, heterogeneous environments can be

created, resulting in a composite-like material (Fig. 1C). The structure and rheological

heterogeneity of such materials can then be studied using microrheological techniques,

such as optical tweezing.

Spatiotemporal control. Depending on the species, stage of growth, and environ-

mental stresses, biofilms can develop into heterogeneous structures. A biofilm’s local

rheology varies with spatial location and temporal dependence of the polymeric

secretions. Therefore, controlling the initial spatial distribution and spatiotemporal

secretion of polymers (Fig. 1D) in developing biofilms would be advantageous. The

ability to synthetically differentiate cells within a population based on location has

recently gathered attention, as it can help in the production of biological materials with

microscale patterns (52). A number of methods have been used to bind microbes to

specific locations on a two-dimensional (2D) surface (53). These include using surface-

bound antibodies and binding proteins specific to individual strains, as well as chem-

ically binding DNA to sugars on the microbial surface (54). The microbially bound

sequences then hybridize to a corresponding sequence which can be arrayed in a

predetermined pattern on a 2D surface. A toolbox for preprogramming cell-cell adhe-

sion and manipulating microbes into predetermined structures without the need for

surface binding has also recently been developed (55). Methods of in situ precise

spatiotemporal control over gene expression have been achieved using optogenetics

to induce formation and control the shape of P. aeruginosa biofilms (41).

Theoretically, the use of SynBio tools could allow the programming of a microbial

population where strains are organized into precise locations on a surface before being

allowed to generate biofilms of different compositions. Polymers could then be in-

duced at different times or locations across a homogenous or heterogenous population

to form precisely controlled microscale structures. Such fine-tuned spatial and compo-

sitional control would enable experimenters to use rheological methods, such as optical
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tweezing and LAOS, to perform experiments characterizing both structural and micro-

or macrorheological changes. In a very recent example, Bacillus subtilis (56) was

engineered as a living biomaterial by linking secreted TasA amyloid monomers to

functional proteins, including pollutant degradation enzymes. The modification of TasA

resulted in biofilms with lower viscoelasticity; as a result, the engineered biofilms could

be three-dimensionally (3D) printed into predetermined shapes. This idea demonstrates

the unique ability of SynBio tools for designing artificial living materials where the

rheological fingerprint could be fine-tuned artificially, thereby allowing researchers to

study the roles of individual polymers more precisely than before. For a recent

perspective on engineered living biomaterials (ELMs), we recommend a paper by

Gilbert and Ellis (52).

EXPERIMENTAL TECHNIQUES TO QUANTIFY THE RHEOLOGY OF BIOFILMS

Owing to the variability in composition, cultivability, and stiffness, a variety of

multiscale techniques have been used to measure biofilm rheology (Fig. 2). At the scale

of few centimeters, bulk elastic moduli have been determined by performing uniaxial

compression (57) or tension (58) tests on biofilms. Internal compressive stresses gen-

erated by a growing pellicle have also been measured using a customized apparatus

(59, 60) (Fig. 2A). Dynamic oscillatory (61) or interfacial rheology (62) tests use a

rheometer fitted with different measurement geometries (Fig. 2B) and have been used

to probe the elastic and viscous moduli at the centimeter scale. The technique has

revealed that the variation of the moduli span orders of magnitude among different

species of microbes (63–66). The effects of genetic modification and chemicals, such as

divalent or trivalent cations and surfactants (31, 67–72), in altering biofilm rheology

have also been quantified using a rheometer. Imaging techniques that rely on mea-

suring the deformation of biofilm through application of fluid shear (73, 74) have

shown the transition in behavior from viscoelastic solid to liquid-like beyond a thresh-

old stress (75) and have also demonstrated stiffening of biofilms due to large forces

(76). Deflection of biofilms using a microcantilever (77) has revealed an increase in

strength of biofilms when the force is applied at a high strain rate (78) (Fig. 2C). At

microscale, a variety of active and passive microrheology techniques use micrometer-

sized beads trapped within the biofilm network to probe the rheological characteristics.

Passive microrheology uses the ambient energy in the surrounding environment, which

results in Brownian motion of the beads, while active microrheology uses an external

driving force (light beam or magnetic field) to manipulate the motion of the

micrometer-sized beads within the medium. Various microrheology techniques (Fig.

2D), like particle tracking rheology (79–82), diffusing wave spectroscopy (22, 83), optical

tweezing (84), and magnetic tweezing (85, 86), have been used to investigate how

architecture, environmental fluctuations, and genetically mediated changes in ECM

composition result in rheological heterogeneity in different species of biofilms.

Most techniques that are applied to measure biofilm viscoelasticity use small strains

in the linear viscoelastic region, which means that the initial biofilm structure remains

preserved (Fig. 3A1). However, in both natural and artificial environments, biofilms can

experience large forces or rapidly applied loads, causing structural rearrangement that

results in a nonlinear material response (76, 78). The nonlinear responses manifest as

stiffening or softening and thickening or thinning. The emergence and magnitude of

each characteristic behavior are dependent on the breakage of bonds, cross-links, and

entanglements between a variety of polymeric components (Table 1) and the spatial

organization of biofilm architecture (Fig. 1A). Rheology measurement techniques, like

LAOS and optical tweezing microrheology (OT-�R), described in the following sections,

allow us to probe both the linear and nonlinear and steady-state and time-dependent

response of biofilms, with a focus toward understanding the interactions between the

components of a biofilm’s matrix.

Rheometer operation. Rheometers are versatile instruments for studying soft

matter systems like colloids, suspensions, and gels. In the past few decades, they have

also become invaluable for investigating the viscoelasticity of biofilms. The notable
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components in a rheometer consist of a fixed flat-bottom plate on which the sample is

usually placed and a top geometry that can be bought in contact with the sample to

apply a controlled amount of deformation/force (Fig. 2B). Rotational rheometers rely on

the application of controlled oscillatory shear stress (�) or strain (�) on the biofilm

sample and recording the material response. By knowing the amplitude (�o) and

frequency (�) of the input strain waveform, as well as the amplitude (�o) of the output

FIG 3 (A1) Microscopic picture of biofilms. In small-amplitude oscillatory shear (SAOS), the material structure remains intact, whereas the application of
large-amplitude oscillatory shear (LAOS) causes the material to irreversibly deform. (A2) Amplitude sweep showing the variation of elastic G= and viscous moduli
G� as a function of strain amplitude. (A3) Application of SAOS results in a sinusoidal stress output indicating linearity of the material, while LAOS results in stress
output that is nonsinusoidal, indicating a nonlinear response. (B) Representative Lissajous-Bowditch plots in the SAOS and LAOS regime, the small/large strain
moduli for those plots and the formulae to calculate stiffening (S) and thickening (T) indices. (C) In SPP, stress is plotted as a function of strain and strain rate
in 3D space. At each of the successive points, the transient moduli [G=t(t) and G�t(t)] are used to generate Cole-Cole plots, which can be used to study
stiffening/thickening of biofilms.
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stress signal with respect to time (t) and the phase lag (�), one can use equations

described by Ferry (87) to calculate the elastic and viscous responses of the material.

The measures commonly known as the elastic modulus (G=) and loss modulus (G�)

describe the rigidity and fluidity of the material. The calculation of elastic and loss

moduli assumes that infinitesimal strain is applied on the material so that both input

and output waveforms are sinusoidal (Fig. 3A3). The most common test performed in

rheology is known as amplitude sweep, and it involves subjecting the material to

sinusoidal strain waveforms of increasing amplitude (keeping the oscillation frequency

constant). Figure 3A2 shows a typical result of amplitude sweep for biofilms. The elastic

and viscous moduli exhibit constant values at small strain amplitudes; this regime is

typically referred to as the linear viscoelastic region (LVER). In the LVER, the input

(strain) and output (stress) signals remain sinusoidal, describing a linear response of the

material. As seen in Fig. 3A1, the material structure remains completely intact due to

the application of small strain. At larger values of strain (beyond the LVER), the stress

waveform is no longer a sinusoid. In this nonlinear region, polymer entanglements

break, material structure gets rearranged, and local stiffening/softening or yielding of

material can occur depending on the magnitude of the input strain. Since the linear

viscoelastic analysis does not take into consideration the shapes of the stress wave-

forms, important information describing the above-mentioned physical processes oc-

curring in the material is lost. In the following sections, we describe the techniques of

large-amplitude oscillatory shear (LAOS), which analyses the shape of waveforms to

provide some measures of quantifying the nonlinear rheological behavior occurring

within the materials.

LAOS. (i) Lissajous-Bowditch plots and Chebyshev polynomial analysis. An

increase in the magnitude of strain amplitude beyond the LVER results in the stress

waveform transitioning from a sinusoid to nonsinusoidal shape (Fig. 3A3). A geomet-

rical way of looking at these nonsinusoidal waveforms is to eliminate the parameter

time (t) in strain (�) versus time (or strain rate [�̇] versus time) and stress (�) versus time

plots, and to look at the plot of stress (�) versus strain (�) (or stress [�] versus strain rate

TABLE 1 Proteins and polysaccharides present in the ECM of different species of biofilms and their structural role

Species Component Polymer type Function (reference)

E. coli Cellulose Polysaccharide Architectural element in biofilms, together with CsgA,
contributes to elasticity (139)

Curli/CsgA Protein Constituent of curli fibers, forms composite with cellulose (139)
Curli/CsgB Protein Nucleates polymerization of curli fibers (14)
Antigen43 Protein Promotes cell-cell adhesion (14)
FliC/MotA Protein Controls wrinkle formation (139)

P. aeruginosa Pel Polysaccharide Scaffold for the biofilm, maintains intercellular interactions (16)
Psl Polysaccharide Initiates biofilm by modulating cell-surface and cell-cell

attachment (140, 141)
Alginate Polysaccharide Overproduction results in mucoid phenotype and alters the

viscosity of biofilm (72)
CdrA Protein Controls cellular packing and protects matrix components from

proteases by linking with Psl (17)

B. subtilis Unnamed Polysaccharide Part of matrix, exact composition unknown (14)
BslA Protein Forms hydrophobic coating at the periphery of the biofilm and

contributes to the rugosity (14)
TasA Protein Helps in formation of amyloid-like fibers and is responsible for

rugosity (14).
TapA Protein Facilitates TasA fiber assembly and attachment (14)

V. cholerae Vibrio polysaccharide (VPS) Polysaccharide Scaffolding material of the extracellular matrix (70)
Bap1 Protein Helps in cell-surface adhesion and cross-links with VPS,

controls elasticity of pellicles (70)
RbmA Protein Connects neighboring cells by dimerizing with VPS (70)
RbmC Protein Cross-links with VPS and helps in cell-surface adhesion

(homologous to Bap1) (70)
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[�̇]). These plots of (�) versus (�) (or [�] versus [�̇]) are known as elastic (or viscous)

Lissajous-Bowditch (LB) plots, respectively, and provide a geometric way of describing

the state of the material. The elastic LB plot takes the shape of an ellipse, and the

viscous LB plot takes the shape of a circle in the linear regime, as seen in Fig. 3B. At

large strain amplitudes, the LB plots can exhibit parallelogram-like or sigmoidal shapes

depending on the extent of nonlinearity of the material (Fig. 3B). The material state

based on the shapes of LB plots is best described through numerical values of intracycle

strain stiffening (S) or intracycle shear thickening (T) indices, which are the ratios of

minimum and large strain moduli (Fig. 3B); minimum strain modulus (G=M/�=M) is

defined as the slope of the tangent to the elastic/viscous LB plots at zero strain, and

large strain modulus (G=L/�=L) is the slope of the line joining the origin to maximum

stress (Fig. 3B). Depending on the shapes of the LB plots, the values of S and T can go

either positive or negative, with S � 0 (T � 0) indicating intracycle strain stiffening

(shear thickening) and S � 0 (T � 0) indicating intracycle strain softening (shear

thinning). These measures (S, T) at various points in the Pipkin diagram (strain ampli-

tude versus frequency) allow one to generate rheological fingerprints. Rühs et al. used

similar concepts for studying the pH-mediated stiffening of �-lactoglobulin fibrils,

peptides, and monomers using an interfacial rheology setup (88). By generating

fingerprints of stiffening index, they found that maximum stiffening occurs in

�-lactoglobulin fibrils at intermediate pH and attribute this to the formation of multi-

layer aggregates. A similar interfacial rheology setup was also used to quantify the

differences in stiffening indices (based on elastic LB plots) of Pseudomonas putida

pellicles at various stages of development during a 60-h growth period (89).

Another approach to analyzing the resulting nonsinusoidal stress waveforms was

developed by Ewoldt et al. (90) and is implemented in the freely available software

MITlaos (91). The technique approximates the shape of nonsinusoidal waveforms using

mathematical functions (subject to mathematical assumptions [92]) like Chebyshev

polynomials and calculates the contributions of first-, third-, and fifth-order harmonics

to determine the elastic and viscous components of stresses. The first-order harmonic

describes the linear response of the material and gives the same measures as the elastic

and loss moduli. A positive value of the third-order elastic or viscous coefficient (e3 or

v3, respectively) indicates stiffening or thickening, while a negative value indicates

softening or thinning, respectively. A detailed description on the calculation of these

measures can be found in references 93 and 94. This technique was recently applied to

single- and double-stranded DNA solutions, which revealed that the double-stranded

DNA solution showed persistent intracycle stiffening for strain amplitudes greater than

100% and shear thinning behavior across all strain amplitudes (95). However, single-

stranded DNA exhibited a complex mixture of stiffening/softening or thickening/

thinning behavior at various strain amplitudes. Pronounced strain stiffening char-

acteristics have also been observed for the mucus of gastropods that impose large

oscillatory strain while moving on surfaces (96). Extracellular components, like eDNA,

form an essential part of P. aeruginosa, Myxococcus xanthus, Streptococcus mutans, and

various other biofilms. eDNA is known to cross-link with polysaccharides to provide

structural support to the biofilms (97). It is also suspected to increase the microcolony

strength (98, 99) and increase the viscoelastic relaxation times in biofilms (64). If the

cross-linking between these polymers results in stiffening/thickening, the LAOS mea-

sures described above can help decipher the nature of mechanical interactions.

Also, by plotting the intracycle stiffening (S) and intracycle thickening (T) indices in

the Pipkin diagram, the limits of environmental, chemical, or pH-based fluctuations

that these biofilms can withstand mechanically can be determined. A similar

polymeric interaction-mediated change in viscoelasticity occurs in P. aeruginosa

biofilm, wherein the matrix protein CdrA cross-links with Psl to confer protection

against proteases (17, 27). LAOS can be a useful tool for probing such polymeric

interactions that cause stiffening or thickening of the matrix or to examine changes in

the nonlinear behavior of biofilms formed by deletion mutants of Psl or CdrA in P.

aeruginosa.
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(ii) Sequence of physical processes. One of the limitations of Chebyshev polyno-

mial analysis is the requirement for steady-state full-cycle stress and strain waveforms

(Fig. 3A3) which are used to calculate an average value of higher-harmonic compo-

nents. In addition, the mathematical assumption behind Chebyshev polynomial anal-

ysis (92) can be violated for a variety of samples that are tested in the laboratory (100).

To overcome these challenges, a new method known as sequence of physical processes

(SPP) (101, 102) was proposed. SPP uses a differential geometry-based approach and

represents the stress, strain, and strain rate (derivative of strain with time) as indepen-

dent axes in a three-dimensional space, as seen in Fig. 3C. Using the mathematical

relations described in reference 103, each point along the oscillation cycle can be used

to compute the transient moduli, i.e., G=t(t) (transient elastic modulus) and G�t(t)

(transient loss modulus) as a function of time. A parametric plot of G=t(t) and G�t(t)

allows material response to be represented using Cole-Cole plots (Fig. 3C), from which

stiffening, softening, thinning, and thickening dynamics can be understood. Figure 3C

describes the series of physical processes a material goes through in response to an

applied strain waveform. The first step involves a slight thickening along with softening,

followed by a large thickening and stiffening event; finally, the material exhibits

thinning with little change in the transient elastic modulus. This series of processes can

also be phenomenologically understood in terms of stretching, breaking, and reforma-

tion of nearest-neighbor cages or bonds, a framework commonly used to describe the

microstructural response in colloidal suspensions and gels (104). Recent experiments

with biofilms produced by matrix-producing and matrix-nonproducing strains of V.

cholerae exhibit a 3-fold difference in viscosity. The motion of tracer beads in the

nonproducing strain has been found to exhibit caging-like dynamics owing to the

dynamic formation and breakage of cellular clusters arising due to cell death (105).

The method has also been applied successfully in explaining the dynamics of biological

fluids, such as human blood and hyaluronic acid (106, 107). SPP allows temporal

representation of biofilm yielding, perhaps enabling the detection of subtle genotypic

changes influencing cell-cell adhesion and ECM-cell interaction.

Optical tweezing microrheology. The development of optical tweezers (OT) is a

Nobel Prize-winning technique (108). Within biological systems, OT have been used to

measure stretching profiles of DNA, determine the binding strength of actin to cross-

linking polymers, and measure the deformability of red blood cells (109), the cytoskel-

eton (110), and cell membranes (111). OT rely on the use of a highly focused laser beam

to provide a force that is able to manipulate micrometer-sized particles, either by

attracting or repelling them. For reviews on the operation, setup, and physics, see

references 112 and 113, and for the application of optical tweezing microrheology, see

reference 114.

Advances in microrheology have led to the application of both optical and magnetic

tweezers to measure the viscoelasticity of complex fluids using active forces in a

noninvasive manner (115). Active microrheology (like OT) involves driving microspheres

through a material, usually in a sinusoidal manner (by using a sensitive piezo stage or

a piezo mirror) and measuring the mechanical response. Trapped beads can be

controlled to nanometer and millisecond precision (114, 115), allowing the forces to be

measured with subpiconewton accuracy. By controlling the strain amplitude and the

frequency, both the linear and nonlinear material responses (Fig. 4) can be recorded,

and the material measures can be calculated using the relationships described in

reference 114. OT systems are calibrated by measuring trap stiffness, which depends

upon particle size, the laser power that is reaching the sample, and the wavelength of

the trapping laser. Values can range from 0.1 to 4,000 pN �m�1W�1 for the silica and

polystyrene microparticles (116) commonly used in OT-�R. OT-�R in conjunction with

click chemistry (117) (using functionalized beads) can allow one to probe the rheologi-

cal dynamics of individual polymers or their interactions with other molecules within

the biofilm with high spatial resolution, thereby making it a useful tool in probing the
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heterogeneity of the biofilm matrix. Applications of OT-�R in measuring the viscoelas-

ticity of biofilms are discussed below.

Osterman et al. (118) carried out one- and two-particle OT-�R to measure temporal

changes in the viscosity of bacterial cultures and showed that polymeric constituents

play a subtle role in changing the viscoelastic characteristics of media at different

stages of growth. Sjojković and coworkers (119) demonstrated the suitability of OT-�R

toward characterizing the interactions between DNA and levan, which phase separate

when mixed together. Levan is a natural polysaccharide known to be important in

stabilizing biofilm formation (120). Macroscopic rheometer measurements indicated

negligible interaction between levan clusters and DNA; however, OT-�R showed oth-

erwise. The result was confirmed by the addition of DNase, which caused levan

aggregates to disperse, indicating the ability of OT-�R to probe more subtle interac-

tions between the polymeric components of the matrix. The sensitivity of the OT was

also used to understand the early mechanical coupling between bacterial cells in

cultures. Sretenovic et al. (84) used optical tweezers to move bacterial cells and found

that they could be tethered over distances ranging from 60 to 140 �m, indicating the

formation of loosely connected aggregates. Transmission electron microscopy (TEM)

and scanning electron microscopy (SEM) imaging confirmed that ECM did indeed bind

the cells together, and the mechanical coupling varied between the species. The

tweezers were also used to perform active microrheology measurements on the

cultures, revealing that the extracellular matrix material is viscoelastic. As with all

active-matter rheology experiments, one should be careful that the measurement time

scale is sufficiently small so that system characteristics do not change (121) over the

measurement period. The activity within biofilms can be minimized by using appro-

priate buffer solutions allowing the measurement time scales to be increased.

MATHEMATICAL MODELING APPROACHES FROM SOFT MATTER PHYSICS

Mathematical models that describe biofilm rheology are important because they

allow one to capture a wide spectrum of behaviors using minimal variables. Carefully

constructed models can account for not only for polymeric interaction-mediated effects

(like softening and thinning) but also the effect of extraneous factors like metal

ion-mediated cross-linking of the matrix, etc. Until recently, biofilms have been de-

scribed as continuous materials which can be considered to consist of springs and

dashpots that capture the macroscopic elastic and viscous behavior. The springs or

dashpots can be connected in series (Maxwell model) or parallel (Kelvin-Voigt model)

or more complex arrangements (Burger/Jeffreys models) and have been extremely

successful in capturing the creep and relaxation behaviors of biofilms (63, 65, 68,

122–124). In addition, the nonlinear Burger model (122), linear springs (125), and

phase-field models (126, 127) have been used to describe the deformation behavior of

biofilms subjected to fluid shear. However, most of these models only describe the

linear response of biofilms while ignoring the details of polymeric interactions in the

FIG 4 Schematic of working. (A) Schematic of an optical tweezer on a microscope. (B) Forces experienced by
the particle in an optical trap. (C) Linear microrheology carried out using optical trapping to oscillate a bead.
(D) Nonlinear microrheology, moving the trapped bead with a large strain out of the range of linear
viscoelasticity. The traps can also be turned off, and recovery of the material can be measured by tracking the
beads.
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biofilm matrix. The following section describes two modeling approaches from soft

matter physics that can be used to capture the details of the nonlinear rheological

behavior in biofilms.

Discrete model(s) with interaction potential. Until recently, the ability to acquire

precise in situ microscale biofilm structural parameters was limited. However, the

advent of single-cell resolution microscopy platforms and sophisticated image segmen-

tation algorithms has enabled the calculation of a plethora of structural parameters

(128). By taking a minimal number of experimental parameters, like bacterial number

density and pair correlation function (describes the probability of finding another cell

within a specified distance), the macroscale rheology of a biofilm system can be

computed. One such model is called the point process model (129), and it has been

used to evaluate the effect of microscale cellular position and bacterium-bacterium

interaction on the bulk rheology of biofilms (Fig. 5A). Implementation of these models

has generated insights into how microstructural variability increases macroscopic

strength, and rheological predictions from the model have matched closely with the

results from experiments (129). Incorporating additional complexity, by accounting for

the contribution of ECM components within the point process theory, can be made

possible by using network models (130, 131). For example, to model the role of

polymeric components on the microscale structure of V. cholerae biofilms, a pairwise

potential model was used. The potential function incorporated terms which accounted

for cell-cell- and cell-ECM-mediated repulsive or attractive interactions. The model was

able to describe the structural rearrangement of biofilms in response to fluid shear and

found good agreement with previous experiments (39). These models in conjunction

with SynBio tools, which offer spatiotemporal control of polymer production, can help

understand how local variances in structure alter the micro- and macrorheology and

stability of biofilms.

Soft glassy rheology model. The soft glassy rheology (SGR) model is phenome-

nological in nature and has been used to describe the rheology of glasses, foams, and

emulsions (132). The model has been recently adapted to include active force gener-

ation and applied to active-matter systems, such as eukaryotic cells that contract and

relax via polymerization and depolymerization of actin and myosin (133). The central

assumption behind the model is that the material consists of infinite mesoscopic

FIG 5 Modeling approaches that can capture microstructural and rheological details of biofilms. (A)
Discrete model(s) with interaction potential. Top, structure of biofilms in which cells are embedded
within the ECM. Bottom, simplified description, in which only the positions of the bacteria are taken
into account and a potential function is used to describe their interactions. (B) Soft glassy rheology
model. Top, the bacteria interact not just with each other but also with the ECM. Factors like steric
interactions, charge effects, etc. can play a role in the biofilm rheology. Bottom, for modeling
purposes, each of the different interactions can be thought of as a potential well with varied height.
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elements, with each element being linked to others through weak interactions. The

strength of the interactions can be thought of as a particle in a potential well where the

depth of each well is different (Fig. 5B). Each well (having a different depth) represents

different interactions within biofilms, like binding energies of polymers to each other,

cross-linking strengths, steric effects, charge-mediated interactions, etc., that occur in

the system under consideration (e.g., biofilms and eukaryotic cells). The mesoscopic

elements cannot escape the well because of thermal fluctuations only and need

significant energy to overcome the potential barrier. The motion within the wells is

representative of elastic deformations in the material. And, as the element escapes the

well (due to increased energy), yielding occurs and energy is dissipated as heat. This

theoretical framework assists in the description of structural transition events, like

elastic deformation, yielding, and reformation of bonds, akin to SPP, thereby allowing

for comparisons between experiments and models. Advanced models, like glassy

worm-like chain, stiff filaments with flexible linkers (133) that provide accurate descrip-

tion of geometric interactions between the various polymers, can also be employed to

study the polymeric interactions within the ECM. Some of these models have already

been used to understand stiffening, power law rheology, and changes in terminal

relaxation within eukaryotic cells (133).

DISCUSSION

In summary, we have discussed various tools from SynBio, experimental rheology,

and modeling techniques that can be employed together to address multidisciplinary

questions in the area of viscoelasticity of biofilms. These physical approaches allow

bacterial biofilms to be considered as living colloidal gels, wherein the cell secretes a

number of polymeric substances which are regulated by gene expression and the

genotype of the cell. The production of multiple polymeric components might be a

bet-hedging strategy employed by bacteria to ensure survivability in unpredictable

environments. It is also starting to become clear that interactions between polymers are

a critical determinant of the rheological behavior of biofilms and their functionalities

(17, 31). SynBio tools could play a crucial role in deciphering such interactions by

controlling the levels of expression of the various polymers. For example, cross-linking

between anionic eDNA and cationic polysaccharide Pel is proposed to confer P.

aeruginosa biofilms their structural stability, but the exact details of the interaction and

rheological ramifications remain unclear. A combination of polysaccharide-protein

interactions in P. aeruginosa biofilms (17) also could be investigated, where focus lies

on characterizing matrix viscoelasticity, as well as functionality and understanding the

trade-off between the two. The active rheological techniques of LAOS and optical

tweezing have an important role to play in constructing rheological fingerprints, which

could lead to a more robust understanding of the matrix polymers (or their interac-

tions) which affect the architecture and mechanics of biofilms. A similar confluence of

a few of the above-mentioned techniques was employed by Huang et al. (56) to design

biofilms with tunable mechanical characteristics that could be 3D printed and possess

pollutant-degrading functionalities.

In all the above-mentioned situations, rheological modeling approaches (from soft

matter theory) have a major role to play in defining and testing structure-function

relationships. Experimental macrorheology tools provide the ability to record signa-

tures with high throughput and fidelity that can be indicative of stiffening, cross-

linking, stress overshoot, etc. However, these tools cannot directly visualize the poly-

meric interactions. In these scenarios, by employing an SGR model and drawing

analogies to similar colloidal systems, numerical tools can present a picture of the

molecular interactions and their effects on bulk biofilm viscoelasticity. Machine learning

tools applied to materials science (134–136) are set to accelerate discoveries in this field

and open up the possibility of designing artificial biofilms in conjunction with envi-

ronmental functionalities (56, 137). A confluence of ideas and techniques from all three

different disciplines is crucial to answering fundamental questions about biofilm
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structure-function relationships, and for the development of biofilm-inspired synthetic

biomaterials.

APPENDIX

GLOSSARY

amplitude sweep A plot showing the variation of elastic and loss modulus versus

strain amplitude.

Boolean logic Simple “and” and “or” gates that can be genetically encoded using

bottom-up design approaches.

Chebyshev polynomials A class of polynomials with special properties that can be

used to approximate various functions.

creep The slow progressive deformation of material under a constant stress.

elastic modulus The elastic-like behavior (ability to store and release energy) of a

material.

harmonics A signal whose frequency is an integer multiple of the frequency of a

reference signal. Harmonic analysis refers to a mathematical technique that deals

with representation of complex waveforms using a combination of some basic

waves.

intracycle shear thickening Increase in loss modulus with increase in strain rate (138).

intracycle strain stiffening Increase in elastic modulus with increase in strain.

loss modulus Flowability (ability to dissipate energy as heat) of the material.

linear viscoelastic region A region in the amplitude sweep where the elastic and loss

modulus remain constant.

Pipkin diagram The material response in 2D space; one of the axes is applied

frequency, while the other axis is the magnitude of strain amplitude.

transient moduli The instantaneous elastic or viscous response of a material. Calcu-

lated using the formulae described in reference 103.
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