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Regulating TNCs: Should Uber and Lyft Set Their Own Rules?

Sen Lia, Hamidreza Tavafoghia, Kameshwar Poollaa,b, Pravin Varaiyab

aDepartment of Mechanical Engineering, University of California, Berkeley

bDepartment of Electrical Engineering and Computer Science, University of California, Berkeley

Abstract

We evaluate the impact of three proposed regulations of transportation network companies (TNCs) like
Uber, Lyft and Didi: (1) a minimum wage for drivers, (2) a cap on the number of drivers or vehicles, and
(3) a per-trip congestion tax. The impact is assessed using a queuing theoretic equilibrium model which
incorporates the stochastic dynamics of the app-based ride-hailing matching platform, the ride prices and
driver wages established by the platform, and the incentives of passengers and drivers. We show that a
floor placed under driver earnings pushes the ride-hailing platform to hire more drivers and offer more rides,
at the same time that passengers enjoy faster rides and lower total cost, while platform rents are reduced.
Contrary to standard economic theory, enforcing a minimum wage for drivers benefits both drivers and
passengers, and promotes the efficiency of the entire system. This surprising outcome holds for almost all
model parameters, and it occurs because the wage floors curbs TNC labor market power. In contrast to
a wage floor, imposing a cap on the number of vehicles hurts drivers, because the platform reaps all the
benefits of limiting supply. The congestion tax has the expected impact: fares increase, wages and platform
revenue decrease. We also construct variants of the model to briefly discuss platform subsidy, platform
competition, and autonomous vehicles.

Keywords: TNC, wage floor, ride-haling tax, regulatory policy.

1. Introduction

In December 2018, New York became the first US city to adopt a minimum wage for drivers working
for app-based transportation network companies (TNCs) like Uber and Lyft. The New York City Taxi
and Limousine Commission (NYTLC) established a “minimum per-trip payment formula” that gives an
estimated gross hourly driver earnings before expenses of at least $27.86 per hour and a net income of
$17.22 per hour after expenses, equivalent to the minimum wage of $15 per hour because, as “independent
contractors,” drivers pay additional payroll taxes and get no paid time off [1]. The NYTLC formula for
non-wheelchair accessible vehicles is

Driver pay per trip =

(

$0.631× Trip Miles

Company Utilization Rate

)

+

(

$0.287× Trip Minutes

Company Utilization Rate

)

+Shared Ride Bonus

(1)
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amounting to $23 for a 30-min, 7.5-mile ride.1 New York City’s $15/hour minimum wage for large employers,
which went into effect on December 31, 2018 doesn’t apply to drivers who work for ride-hailing apps.

The Commission imposed this wage floor based on testimony on driver expenses, meetings with stakeholders,
and on the report of labor economists J.A. Parrott and M. Reich [2] which showed that median driver
earnings had declined almost $3.00 per hour from $25.78 in September 2016 to $ 22.90 in October 2017, a
decrease of 11.17%. The TNCs imposed the $3.00 per hour wage cut during a period when the number of
drivers in the largest four TNCs (Uber, Lyft, Gett/Juno, and Via) had grown by 80,000 [1]. Uber would
be the largest for-profit private employer in New York City if its drivers were classified as employees rather
than independent contractors [2]. The ingenious wage formula (1) encourages TNCs to increase driver pay
through higher utilization, instead of trying to restrict the number of drivers through regulation. Lyft,
however, opposed the regulation saying that because of its larger size, Uber’s higher utilization rate gave
it an unfair advantage [3]. Lyft’s complaint was overruled [4].

The subminimum wage of drivers working for TNCs also prompted the Seattle City Council in April 2018 to
pass a unanimous resolution to explore setting a minimum base rate of $2.40 per mile for TNCs compared
with the prevailing rate of $1.35 per mile and the rate of $2.70 per mile charged by taxis [5]. The resolution
also asked TNCs to voluntarily hand over anonymous data on hours, trips, fares and compensation. Unlike
NYTLC, however, no other US city has access to TNC data to estimate what their drivers are paid or the
TNC impact on traffic. For example, the California Public Utilities Commission which regulates TNCs will
not share TNC data with San Francisco County Transportation Authority [6]. TNC regulation “follows an
elite political process dominated by concentrated actors and government decision makers largely acting ex
officio (committee heads, regulators, and judges)” [7].

In December 2018, Uber lost its case at the U.K. Court of Appeal against the October 2016 ruling that
its drivers should be classified as workers entitled to rights such as minimum wage and paid holidays. The
Court ruled against Uber’s claim that its drivers were just self-employed contractors who use its app in
exchange for a share of their fares at the level dictated by Uber [8]. The case can be used to challenge the
self-employed status of millions of gig-economy workers who work for companies like Airbnb and Deliveroo
on a freelance basis without fixed contracts. New York and London are the largest Uber markets in the US
and EU. The California state assembly recently passed bill AB5 that would make hundreds of thousands
of independent contractors including TNC drivers become employees. The bill now goes to the senate [9].
Uber and Lyft are aggressively campaigning against AB5. In its SEC filing, Uber states “If, as a result
of legislation or judicial decisions, we are required to classify Drivers as employees . . . we would incur
significant additional expenses [that would] require us to fundamentally change our business model, and
consequently have an adverse effect on our business and financial condition [10, p.28].”2

As of January 1, 2019, all trips by for-hire vehicles that cross 96th street in NYC will pay a congestion
surcharge of $2.75 per TNC trip, $2.50 per taxi trip, and $0.75 per pool trip. Further, NYC will also charge
a toll on every vehicle that enters the busiest areas, currently defined as south of 61st street. This ‘cordon’
price will raise about $1B per year (assuming a $11.52 toll) for the Metropolitan Transportation Authority.

Uber’s reaction to these adverse decisions was predictable. Responding to the NYTLC ruling Uber’s director
of public affairs stated, “legislation to increase driver earnings will lead to higher than necessary fare increases
for riders while missing an opportunity to deal with congestion in Manhattan’s central business district”
[12].3 Uber challenged the Seattle resolution: its general manager for Seattle said, “we are generally unclear

1The utilization rate is calculated as the total amount of time drivers spend transporting passengers on trips dispatched by
the base divided by the total amount of time drivers are available to accept dispatches from the base [1]. Wheelchair accessible
vehicles receive a higher rate.

2For a thoughtful discussion of labor-market trends in the gig-economy see [11].
3Lyft echoed the Uber response stating, “These rules would be a step backward for New Yorkers, and we urge the TLC to
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how nearly doubling per-mile rider rates would not result in an increased cost for riders”[5]. Uber also
declared it would fight the U.K. Appeal Court’s decision in the Supreme Court [8]. Contradicting Uber’s
claims, this study shows that raising driver wages will increase the number of drivers and riders at the
same time that passengers enjoy faster rides and lower total cost, while platform rents are reduced.

The aforementioned regulations are part of the political response to the public anxiety over the disruption
of the urban transportation system caused by the rapid growth of TNCs. Worldwide, the monthly number
of Uber users is forecast to reach 100 million in 2018, up from 75 million in 2017. In New York, the four
largest TNCs Uber, Lyft, Juno and Via combined dispatched nearly 600,000 rides per day in the first
quarter of 2018, increasing their annual trip totals by over 100 percent in 2016 and by 71 percent in 2017.
About 80,000 vehicles are affiliated with these four companies [2]. In San Francisco, 5,700 TNC vehicles
operate in peak times. They daily make over 170,000 vehicle trips, approximately 12 times the number of
taxi trips, and 15 percent of all intra-San Francisco trips, comprising at least 9 percent of all San Francisco
person trips [13]. This explosive growth of TNCs has raised two public concerns.

As noted earlier, one concern is with the working conditions of TNC drivers. The TNC business model
places much of the economic risk associated with the app sector on drivers, who are classified as independent
contractors. Furthermore, the model relies on having many idle cars and drivers, resulting in low driver pay
per hour and high TNC platform rents.4 TNCs need idle drivers to reduce passenger waiting time. Uber’s
annual revenue from passenger fares in New York City amounts to about $2 billion, of which it keeps about
$375 million in commissions and fees, for a markup estimated at six times its variable operating cost or 600
percent [2]. One common opinion is that “Uber’s driver-partners are attracted to the flexible schedules that
driving on the Uber platform affords . . . because the nature of the work, the flexibility, and the compensation
appeals to them compared with other available options [14].” In fact, more than 60 percent of New York
City drivers work full-time and provide 80 percent of all rides; their work hours are not flexible [2].

The second concern is with the negative impact of TNCs on a city’s traffic congestion and its public
transit ridership. A detailed 2017 report [15] examined the impact of TNC growth on traffic conditions
in Manhattan’s CBD. The analysis shows that, from 2013 to 2017, TNC trips increased 15 percent, VMT
increased 36 percent, traffic speed declined 15 percent, the number of vehicles increased 59 percent, and
the number of unoccupied vehicles increased 81 percent. The report suggested reducing the unoccupied
time of TNC vehicles as a means of congestion control. Responding to the increased congestion, the New
York City Council in 2018 passed a regulation freezing the number of TNC vehicles on the road for one
year. Supporters of the cap, including Mayor Bill de Blasio, said the regulation will protect drivers, fairly
regulate the industry and reduce congestion [16]. However, our analysis shows that imposing a cap hurts
drivers, because the TNC retains as profit the benefits of limiting supply.

Another detailed report [13] by San Francisco Transportation Authority provides information on the size,
location, and time-of-day characteristics of TNC activities in San Francisco. A follow-up report [17] iden-
tifies the impact of TNC activities on road congestion in San Francisco. It shows that after subtracting
the impact of employment growth, population change and network capacity change, TNCs contributed 51
percent of the increase in vehicle hours of delay, 47 percent of increase in VMT, and 55 percent of the
average speed decline between 2010 and 2016. Moreover, “TNC trips are concentrated in the densest and
most congested parts of San Francisco including the downtown and northeastern core of the city. At peak
periods, TNCs are estimated to comprise 25 percent of vehicle trips in South of Market.” The report cites
studies showing that “between 43 percent and 61 percent of TNC trips substitute for transit, walk, or bike
travel or would not have been made at all.”

reconsider them [12].”
4TNC expenditures comprise a fixed initial cost for setting up the platform and a small variable cost as the company grows.

Thus the average cost per trip falls and its profit margin increases as the TNC grows.
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This paper evaluates three TNC regulations: a minimum driver wage, a cap on the number of drivers or
vehicles, and a per-trip congestion tax. We analyze the impacts of these regulations on several aspects of
the app-based ride-hailing market, including ride prices and driver wages established by the platform, the
incentives of passengers and drivers, vehicle occupancy, and platform rent or profit. We use a model to
determine the arrival of passengers, number of drivers, ride prices and platform commissions, conditioned
on the imposed regulation. The model employs a queuing theoretic model with dynamic matching of
passengers and drivers, an equilibrium model that predicts the long-term average arrivals of passengers and
drivers, and an optimization model of platform decision-making. We summarize the key results.

• Imposing a minimum wage will motivate TNCs to hire more drivers and offer more rides, and pas-
sengers to enjoy faster rides and lower total cost, while TNC rent or profit shrinks. It indicates that
raising the minimum wage will benefit both drivers and passengers, while platform rent will decline.
This counter-intuitive result holds for almost all model parameters, and it occurs because the wage
floor curbs TNC labor market power.

• Contrary to common belief, a cap on the number of drivers will hurt driver earnings. This is because
when fewer drivers are permitted, the platform will hire cheaper labor by reducing driver pay. Thus,
the benefit of limiting the driver supply is retained by the platform.

• Imposing a congestion surcharge has a predictable impact: the numbers of passengers and drivers and
the platform revenue reduce as the congestion surcharge increases. Our numerical study shows that
a congestion surcharge of $2.75/trip significantly reduces the platform profit in NYC. This suggests
that the business model of TNC is vulnerable to the adverse effect of congestion policies.

We also present variants of our model to analyze platform subsidy, platform competition and autonomous
vehicles.

Related Work: There are several studies of ride-hailing platforms. A recurrent concern is to evaluate
decisions that maximize platform profit, with particular attention to static vs. dynamic pricing. A queuing
model is proposed in [18] to study the profit maximizing prices of ride-hailing platforms. It shows that
the throughput and profit under dynamic pricing strategy can not exceed that under the optimal static
pricing strategy that is agnostic to stochastic dynamics of demands. On the other hand, dynamic pricing
is more robust to fluctuations in system parameters compared to static pricing. Hence, the platform can
use dynamic pricing to realize the benefits of optimal static pricing without perfect knowledge of system
parameters.

A similar question is studied in [19], with a focus on the self-scheduling capacity of for-hire drivers. It
is shown that the additional flexibility of drivers is beneficial to platforms, consumers and drivers. It
also suggests that when some periods have predictably higher demand than others (e.g., a rainy evening),
with static pricing it is hard to find service at peak demand times, so surge pricing is likely to benefit all
stakeholders. In the same vein, [20] suggests dynamic pricing for the platform to maximize the profit across
different time periods when the underlying operating characteristics change significantly. It is shown in [21]
that platform pricing can be more complicated when there is uncertainty in passenger’s valuation or driver’s
opportunity cost. A general economic equilibrium model is developed in [22] to evaluate the impacts of
ride-hailing services on deadhead miles and traffic congestion. Ride-hailing platforms are also examined as
a special kind of two-sided platforms. See [23] and [24] for a summary of literature on two-sided platforms,
and [25] for a general theory of monopoly pricing in multi-sided platforms.

The literature on regulation of the app-based ride-hailing marketplace is relatively limited. A ride-hailing
platform that manages a group of self-scheduling drivers to serve time-varying demand is studied in [26].
The study shows that under a wage floor, the platform starts to limit agent flexibility because it limits the
number of agents that can work in some time intervals.
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Figure 1: The TNC system includes the city council, platform, passengers and drivers.

The work closest to ours is by Parrott and Reich [2]. The authors use TNC administrative data collected by
the New York City Taxi and Limousine Commission (NYTLC) to examine the likely impact of the NYTLC’s
proposed regulations [1]. By numerical simulation, they show that the proposed policy will increase driver
earnings by 22.5 percent, while passengers will only experience moderate increase of trip fare (less than 5
percent) and waiting times (12 to 15 seconds). However, our analysis shows that both the trip cost and
the waiting time will decrease. This is because in our model we assume that the passengers are sensitive
to the pickup time of the ride-hailing services, which is not captured in [2].

2. TNC Environment

This section describes the TNC enviroment. Agents of the transportation system are comprised of the city
council, the app-based ride-hailing platform (TNC), a group of passengers and for-hire vehicle drivers (see
Figure 1). The city council sets legislation to regulate TNC operations. Examples of regulations include
minimum driver wage, maximum number of vehicles and regional licensing.5 The regulations are enforced
by auditing the operational data of TNCs. (See [1] for details of enforcement in New York.) The platform
responds to the regulations by setting profit-maximizing ride fares and driver commissions (or equivalently,
wages). These fares and wages are called ‘platform decisions’ in Figure 1. The platform decisions influence
the choices of passengers and drivers. For instance, passengers have diverse ride choices including TNC,
public transit, walking, and biking. They select an option based on the cost and convenience of each
choice. Drivers also have alternative job opportunities, such as delivering food, grocery, packages, and mail.
They take the job with the highest expected wage. The choices of passengers and drivers form a market
equilibrium, which determines the TNC profit or rent. The equilibrium is affected by regulations.

The objective of the paper is to understand how regulations impact the ride-hailing transportation system.
We consider three regulations: (a) a floor under driver wage; (b) a cap on total number of drivers; and (c)
a per-trip congestion tax. We analyze their impact from various perspectives of the ride-hailing system,
including ride fares, commission rate, passenger pickup time, driver earnings, platform rent, number of
riders, number of for-hire vehicles, and vehicle occupancy rate.

The rest of this paper is organized as follows. In Section 3 we introduce the market equilibrium model of
the response of passengers and drivers to a platform decision. In Section 4 we predict TNC decisions in
the absence of regulation. In Section 5 we examine TNC decisions operating with a floor under driver wage
rate. In Section 6 we consider TNC decisions when there is a cap on the number of drivers.In Section 7 we
study the impact of congestion surchage. Platform competition and other model variations are discussed
in Section 8. Conclusions are offered in Section 9. Several proofs are deferred to the appendix.

5Unlike TNCs, taxicabs are heavily regulated.
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3. Market Equilibrium Model

We now develop the market equilibrium model of the decisions of drivers and passengers in response to
the platform decision. The model is used to predict the average arrival rates of passengers and number of
drivers.

3.1. Matching Passengers and Drivers: M/G/N Queue

We use a continuous-time queuing process to model the matching of passengers and drivers. Consider N
TNC drivers or vehicles, each modeled as a server. A vehicle is ‘busy’ if there is a passenger on board, or
a passenger is assigned and the vehicle is on its way to picking her up. Otherwise, it is considered ‘idle’.
We assume that the arrival process of passengers is Poisson with rate λ > 0. Newly arrived passengers
immediately join the queue and wait until an idle vehicle is dispatched by the platform. Hence this is an
M/G/N queue, and the expected number of idle servers (vehicles) is NI = N − λ/µ, where µ−1 is the
average trip duration.

Remark 1. To ensure stability of the queue the model requires NI > 0, i.e., N > λ/µ. This is consistent
with the TNC business model that “relies upon very short wait times for passengers requesting rides, which
in turn depends on a large supply of available but idle drivers and vehicles” [2]. For instance, New York
has an average of 5089 TNC vehicle [15], 187 passenger per minute, and a trip takes 16.3 minutes, i.e.,
µ = 1/16.3 min−1. This gives NI = N − λ/u = 2041. Cities with limited supply of drivers (as in US
suburbs and in cities like Singapore) require a distinct model [18], [27].

3.2. Passenger and Driver Incentives

The passenger arrival rate λ and the number of drivers N are endogenously determined in the market
equilibrium.

Passenger Incentives: Passengers choose their rides from available options like app-based TNCs, public
transit, walking, or biking, by comparing their prices and waiting times. We model the cost of the app-based
ride-hailing service as

c = αtw + βpf , (2)

where tw is the average waiting time (from sending a request to being picked up), pf is the per trip fare of
the ride-hailing service 6, and α and β specify the passenger’s trade-off between convenience and money.
We refer to c as the total cost of a TNC trip, including the trip fare plus the money value of the trip time.

In the ride-hailing service, a ride is initiated when a passenger sends a request to the platform, and is
completed when the passenger is dropped off at the destination. We divide a ride into three periods:
(1) from the ride request being received to a vehicle being assigned; (2) from a vehicle being assigned to
passenger pickup; (3) from passenger pickup to passenger drop-off. Let tm, tp and to be the average duration
of these periods. Here tm is the average waiting time in the M/G/N queue. Assuming that the platform
matches the passenger to the nearest idle vehicle, tp depends on the distance of the nearest idle vehicle to
the passenger. Typically, tm ranges from a couple of seconds to a half minute, and tp is between three to
six minutes. The sum of tm and tp is the passenger waiting time, denoted as tw = tm + tp. Clearly, the
passenger waiting time depends on the average number of idle vehicles NI . We denote tw as a function of
NI , i.e., tw(NI), and impose the following assumption

6Most app-based ride-hailing platforms charge passengers based on the formula: total cost = base fare + price/mile ×
trip miles + price/time × trip time. pf represents the sum of these three costs.
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Assumption 1. The function tw : R+ → R+ is convex, decreasing and twice differentiable.

This assumption says that passenger waiting time decreases as NI increases, and the marginal benefit of
recruiting extra vehicles to reduce waiting time diminishes as NI increases. It is a standing assumption
throughout the paper.

In some special cases, the waiting time function tw(·) can be derived analytically. Let d(x) denote the
distance of a passenger requesting a ride at location x in a city to the nearest idle vehicle. Let NI0 be the
average number of idle TNC vehicles before regulatory intervention (more precisely specified later). We
have the following proposition.

Proposition 1. Consider a city with an arbitrary geometry . Assume that (1) the platform matches each
arriving passenger to the nearest idle vehicle available; (2) idle vehicles are uniformly and independently
distributed across the city; (3) location of passengers requesting a ride is uniformly distributed across the
city, independently of the position of idle vehicles. Then,

Ex{d(x)|NI idle vehicles}=
√

NI0√
NI

Ex{d(x)|NI0 idle vehicles}
(

1+O
(

max{N−1
I0
,N

1
8
I0
N

− 9
8

I ,N−1
I }
))

. (3)

The result implies that the average pickup time tp is (approximately) inversely proportional to the square

root of the number of idle vehicles since tp = Ex{d(x)|NI idlevehicles}
v , with v being the average traffic speed.

The result recalls Mohring’s “square root law” [28] and can be explained intuitively as follows. Consider a
square city of unit size with NI idle vehicles located in a grid with each idle car equally distant from its
four closest neighbors to its left, right, top, or bottom, then the shortest distance between idle cars is equal
to 1√

NI
. The exact proof of Proposition 1 for a city of general shape and when the locations of idle vehicles

and passengers are random is deferred to Appendix A.

Remark 2. Proposition 1 has a few limitations. First, the platform may wait to accumulate idle vehicles
and waiting passengers before matching [29]. This can potentially benefit the passenger/driver as they receive
a closer match after waiting for a few more seconds. We do not capture this in Proposition 1. Second, we
assume that both passengers and vehicles are uniformly and independently distributed across the city. In
practice, passengers/drivers may strategically choose their locations to wait for the next vehicle/customer.
This is also not considered in Proposition 1. Nevertheless, we emphasize that our analysis does not require
any specific form of function tw(·). The qualitative results of this paper hold as long as Assumption 1 is
satisfied, and the result of Proposition 1 is only used to generate the numerical results.

In (3) we select NI0 as a reference so that
Ex{d(x)|NI0

idlevehicles}
v can be computed from available TNC data

for a city. For instance, on average, Manhattan has 5089 TNC vehicles on the road. Every minute there
are 187 new TNC trips. Each trip takes around 16.3 minutes [15], and passengers wait 5 minutes for pickup
[30]. In this case we have N = 5089, λ = 187 trips/min, µ = 1/16.3 min−1, and the average pickup time is

≃ 5 min. Taking NI0 = N − λ/µ ≃ 2041, then
Ex{d(x)|NI0

idlevehicles}
v ≃ 5min, and the pickup time function

(3) becomes:

Ex{d(x)|NI idle vehicles} =
226√
NI

(

1 +O
(

max{2041−1, 2.59N
− 9

8
I , N−1

I }
))

,

The estimate in Proposition 1 has approximation error O(N−1
I0

+ (1+(
NI0
NI

)
1
8 )N−1

I ) for large NI and NI0 .

Medium to big sized cities usually have a few thousands of TNC vehicles7, so (3) is a good approximation
to the average pickup time for practical parameter values. In summary, we have:

7San Francisco has around 6000 active TNC vehicles on average [13], and Manhattan has more than 10, 000 TNC vehicles
during peak hours [15].
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Corollary 1. Assume that all the conditions in Proposition 1 hold, and the ride confirmation time tm is
negligible compared to tp, i.e., tw = tm + tp ≃ tp. Then

tw ≃ tp =
1

v
Ex{d(x)|NI idle vehicles} ≃ M√

NI
, (4)

where M = 1
v

√

NI0Ex{d(x)|N−1
I0

idle vehicles} and NI = N − λ/µ.

The ride-hailing platform has a distinctive supply-side network externality. As the number of drivers
increases, so do the number and spatial density of idle drivers which, in turn, reduces pickup time and
increases service quality. This enables larger platforms to offer the same service quality at a lower cost.
For instance, consider a small platform and a large platform with the same vehicle occupancy. Assume the
small platform is half the size of the large platform in terms of number of vehicles and passengers. Based on
(4), the waiting time for the small platform, tsw, is

√
2 times that of the large platform, tlw. Let tsw = 6 min,

then we have tlw = 4.2 min. The monetary value of this difference is α ∗ (tsw − tlw) = $5.7 (See Section 4.2
for the value of α). This indicates that the smaller platform has to lower the rider fare by $5.7 to attract
the same number of passengers of the larger platform.

Remark 3. The ride confirmation time tm is orders of magnitude smaller than the pickup time tp in large
cities in the US. For instance, New York city has an average of 5089 TNC vehicles, 187 passengers per
minute, and each trip takes 16.3 minutes [15]. If passenger arrivals are Poisson, then tm as the average
waiting time in the M/G/N queue is sub-second (virtually 0). In areas with limited supply of drivers, tm
could be significant and can not be neglected. We can add tm to the travel cost. We conjecture that in this
case if tm + tw satisfies Assumption 1 the qualitative results of the paper still hold.

Passengers have a reservation cost that summarizes their other travel options: if the TNC travel cost c
is greater than the reservation cost, the passenger abandons the TNC for an alternative transport mode.
We assume that the reservation costs of passengers are heterogeneous, and let Fp(c) be the cumulative
distribution of reservation costs. The passenger arrival rate then is given by

λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

rides/min, (5)

where λ0 is the arrival rates of potential passengers total travel demands in the city. Note that the trip
time to does not depend on λ or N , so we absorb it into Fp as a constant. According to (5), the passengers
that use the app-based ride-hailing service are all potential passengers except those that leave the platform
because its cost is greater than their reservation cost.

Driver Incentives: Drivers are sensitive to earnings and respond to the offered wage by joining or leaving
the platform. The average hourly wage of TNC drivers is

w =
λpd
N

, (6)

wherein pd is the per trip payment the driver receives from the platform. The platform keeps the difference
between pf and pd as its commission or profit. In 2018 Uber collected $41B from passengers of which
drivers received 78% corresponding to a 22% commission rate [10], and Lyft collected $8B from passengers
and received 26.8% as commission [31].

The average hourly wage (6) is derived as follows. The total platform payment to all drivers sums to
λpd $/min. Therefore the average hourly wage per driver is λpd × 60 $/hr divided by N , where the
constant 60 captures the time period of one hour.

8



Each driver has a reservation wage. He joins TNC if the platform wage is greater than his reservation wage.
We assume that the reservation wages of drivers are heterogeneous, and denote Fd(c) is the cumulative
distribution of reservation wages across the population of drivers. Hence

N = N0Fd

(

λpd
N

)

. (7)

Here N0 is the number of potential drivers (all drivers seeking a job). For ease of notation we drop the
constant factor 60 from the hourly wage formula and absorb it in the function Fd in (7). According to (7),
the number of TNC drivers is the number of potential drivers multiplied by the proportion that joins the
platform since their reservation wage is smaller than w.

Remark 4. In practice, both supply and demand of a ride-hailing system vary within a day. This can be
approximated in a quasi-static analysis by varying λ0 and N0 for peak and off-peak hours.

4. TNC decisions in absence of regulation

The objective of the app-based ride-hailing platform adapts over time. In the initial phase it subsidizes
passengers and drivers to grow the business. Eventually it shifts to maximizing the profit. Here we focus
on profit maximization assuming that the platform is unregulated. Platform subsidy and competition are
discussed in Section 8.

4.1. Pricing without Regulation

The platform rent or profit is
Π = λ(pf − pd). (8)

In a certain period (e.g., each minute), λ trips are completed. Since the platform pockets pf −pd from each
trip, the total rent in this period is (8).

In the absence of regulation, the platform maximizes its rent subject to the market equilibrium conditions:

max
pf≥0,pd≥0

λ(pf − pd) (9)















λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(10a)

N = N0Fd

(

λpd
N

)

(10b)

We have the following result on the existence of solution to (10):

Proposition 2. If Fp(αtw(N0)) < 1 and N0 > λ0/µ, there exist strictly positive λ,N, pf and pd that
constitute a market equilibrium satisfying (10).

The proof can be found in Appendix B. The assumption Fp(αtw(N0)) < 1 means that when the platform
recruits all potential drivers N0 and sets the ride price at 0 (pf = 0), there will be a positive number of
passengers. This assumption rules out the situation in which passenger reservation costs are so low and
driver reservation wages are so high that supply and demand curves do not intersect.

Since (9) is not a convex problem, it is not straightforward to determine its solution. One approach is via
numerical computation as in [20]. This is suitable for small problems. Instead, we proceed analytically.
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We view λ = λ(pf , pd) as a function of pf and pd determined implicitly by (10). The first order necessary
conditions of (9) then simplify to















∂λ

∂pf
(pf − pd) + λ = 0 (11a)

∂λ

∂pd
(pf − pd)− λ = 0 (11b)

in which (11a) is equivalent to
∂Π

∂pf
= 0 and (11b) is

∂Π

∂pd
= 0. For non-convex problems, these conditions

are only necessary. However, they are sufficient in the following case.

Proposition 3. Assume that (a) the waiting time function tw satisfies (4); (b) the reservation cost and the
reservation wage are uniformly distributed as Fp(c) = min{epc, 1} and Fd(w) = min{edw, 1}, with ep ∈ R

and ed ∈ R; (c) the profit maximizing problem (9) has at least one solution at which the objective value is
positive. Then the following equations have a unique solution (pf , pd, λ,N)8, which is the globally optimal
solution to (9).























































∂λ

∂pf
(pf − pd) + λ = 0 (12a)

∂λ

∂pd
(pf − pd)− λ = 0 (12b)

λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

(12c)

N = N0Fd

(

λpd
N

)

(12d)

The proof of Proposition 3 is deferred to Appendix C. It asserts that (9) can be effectively computed by
finding the unique solution to (12). Note that if the assumptions of Proposition 3 are not satisfied, we can
still solve (9) by brute-force computation.

4.2. Numerical Example

We present a numerical example and calculate the platform’s profit-maximizing decision (9). To apply
Proposition 3, we assume that the waiting time function tw satisfies (4), and that the reservation cost of
passengers and the reservation wage of drivers are both uniformly distributed. Below we specify the model
parameters used in the simulation.

Parameters: We take the TNC data for the Manhattan Central Business District (CBD) in New York
city. It records all trips that started from or ended in Manhattan CBD on a regular weekday. Let L denote
the average TNC trip distance. We obtain the following estimates based on [15]:

N = 5089, λ = 187 ride/min, L = 2.4 mile, to = 16.3 min, pf = $17/trip, pd = $10.2/trip. (13)

Note that to denotes the average TNC trip duration.

Our estimation proceeds as follows. Based on [15], each day TNC vehicles make 202,262 trips over 91,608
vehicle hours and 802,135 miles. On average, the vehicle are occupied 60% of the time [15]. Since there are

8Since pf = pd = λ = N = 0 is always a solution, throughout the paper by ‘solution’ we refer to strictly positive solutions
unless otherwise stated.
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Figure 2: Number of drivers under dif-
ferent potential passengers.
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Figure 3: Arrival rates of Passengers
(per minute).
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Figure 4: Occupancy rate under differ-
ent potential passengers.
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Figure 5: Per mile ride price and driver
payment.
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Figure 6: Driver wage per hour under
different potential passengers.
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Figure 7: Passenger travel cost under
different potential passengers.

virtually no rides between 1AM−7AM, we divide the daily numbers by 18 (hours) to get N = 91, 608/18 =
5089 and λ = 202, 262/18/60 = 187 ride/min. The average trip length is

total mileage

number of trips
× occupancy =

802, 135

202, 262
∗ 0.6 = 2.4 mile.

The average trip duration is

vehicle hours

number of trips
× occupancy =

91, 608

202, 262
∗ 0.6 ∗ 60 = 16.3 min.

We estimate that a 16-min, 2.4-mile ride In Manhattan costs $17. TNC drivers in New York earn an average
of $22.6 per hour before expenses [2]. This suggests w = λpd/N = $22.6, and so pd = 22.6N/λ = $10.2 per
trip.

Note that our estimates (13) are solutions to the profit-maximizing problem (9). We now utilize these
solutions to ‘reverse-engineer’ the model parameters (N0, λ0, α, β). In particular, we select (N0, λ0,α, β) so
that the solutions to (9) match the real data (13). This can be realized by substituting (13) into (12) and
solving the first-order conditions (12). We obtain:

N0 = 13, 512, λ0 = 1512/min, α = 3.2$/min, β = 1, ep = 0.0262, ed = 1,M = 226, µ = 1/16.3min−1.
(14)

Empirical study suggests that value of travel time (VOT) in the range $20 to $100 per hour [32] and value
of waiting time at 2 to 3 times that of in-vehicle travel time [33]. Our estimate of α = $3.2 per min
corresponds to a VOT between $64 and $96 per hour.

Results: We vary λ0 between 1000 and 2000 to study how the platform decision varies at different times
of the day (λ0 is large during peak hours). The results are shown in Figures 2-7. As λ0 increases, the
number of passengers (λ) and drivers (N) both increase. At the same time, occupancy rate (Figure 4), and
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the ride price increase (Figure 5). At peak hours, the drivers benefit since they earn more (Figure 6), but
the passengers travel at a higher cost (2) due to the increased trip fare.

Note that as the number (λ0 of potential passengers doubles from 1000 to 2,000 riders per minute, the
profit-maximizing fare (pf ) per ride set by the platform increases by 13 percent from $15.8 to $17.8 per
trip, driver payment (pd) increases by 16 percent from $9.4 to $10.9 per trip, and the platform’s share
increases by 8 percent from $6.4 to $6.9. The 33 percent increase in driver wages from $17.8 to $25.1 per
hour is due jointly to the increases in per trip payment to the driver and the vehicle occupancy (from 0.55
to 0.63). By the same token, a driver’s hourly wage declines by 33 percent from peak to off-peak hours.
Thus in the absence of a wage floor, drivers bear most of the risk of shifts in demand.

5. TNC decisions with wage floor

This section is devoted to platform pricing with a wage floor. A driver minimum wage w imposes the
constraint λpd/N ≥ w9. After a wage floor is imposed the platform may find it prohibitive to hire all
drivers who wish to join and, thus, limit the entry of new drivers. We capture this by relaxing (10b) to the
inequality (16b). The profit maximizing problem subject to a wage floor is

max
pf≥0,pd≥0,N

λ(pf − pd) (15)































λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(16a)

N ≤ N0Fd

(

λpd
N

)

(16b)

λpd
N

≥ w (16c)

Constraint (16b) indicates that the platform can hire up to the number of all available drivers. This
introduces an additional decision variable N . It can be solved via numerical computation as in [20].
Similarly to Proposition 2, we can show that (16) has at least one non-trivial solution if Fp(αtw(N0)) < 1.

5.1. A Cheap-Lunch Theorem

Example: Consider an example for which we calculate the profit-maximizing prices (15) for different
wage floors w. We assume that the waiting time function tw is of form (4), and that the reservation cost of
passengers and the reservation wage of drivers are both uniformly distributed. We set the model parameters
as (13) and (14). We emphasize that these assumptions are only needed for numerical simulations. Our
analysis does not depend on these assumptions or model parameters. Figures 8-16 reveal the market
response to different levels of the wage floor, including number of drivers, arrival rates of passengers,
vehicle occupancy rate, driver wage, passenger pickup time, platform prices, and platform profit. The
response has three distinct regimes:

• w < $22.6: the wage floor constraint (16c) is inactive and the solution to (15) is the same as that
to (9) because even in the absence of the minimum wage constraint the platform sets w = $22.6 to
attract enough drivers.

9New York City Taxi and Limousine Commission imposes the minimum driver payment (1). We assume a constant speed,
so per-minute price can be transformed to per-mile price, and we use pd to represent the sum of the first and second term in
(1). If we neglect the constant shared ride bonus, (1) is proportional to λpd/N .
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Figure 8: Number of drivers under dif-
ferent wage floors.
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Figure 9: Arrival rates of Passengers
(per minute).
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Figure 10: Occupancy rate under differ-
ent wage floors.
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Figure 11: Per mile ride price and driver
payment.
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Figure 12: Commission rate defined as
percentage of service fee in pf .
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Figure 13: Driver wage per hour under
different wage floors.
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Figure 14: Passenger pickup time under
different wage floor.
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Figure 15: Total cost of passengers un-
der different caps.
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Figure 16: Platform profit ($/hour) un-
der different wage floors.

• $22.6 ≤ w < $36.3: both (16b) and (16c) constraints are active. As the minimum wage increases,
the platform hires all drivers whose reservation wage is below the minimum wage, the ride cost (2)
goes down, the quality of service (pickup time) improves, driver wage increases, more passengers are
served, and the platform profit reduces.

• w ≥ $36.3: only the wage floor constraint (16c) is active. As the minimum wage exceeds $36.3, the
platform hires fewer drivers than wish to work, both ride fare (pf ) and pickup time (tp) increase,
fewer passengers take the ride-hailing option, the drivers who are hired earn more, and the platform
profit reduces further.

According to Theorem 1 below, the qualitative behavior of most variables, including number of drivers,
arrival of passengers, driver wage, travel cost, and platform rent remains consistent with Figures 8-16 for
all model parameters. The behavior of pf may depend on model parameters. When α is small, the trip
fare pf may decrease in the second regime of Figure 11. This is because for small α passengers are more
sensitive to trip fare, and the platform may find it more effective to attract passengers by reducing the
trip fare. However, we emphasize that the total travel cost (2) as the sum of pf and pickup time always
decreases in the second regime.
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Remark 5. When the wage floor reaches $39 per hour, the platform profit is 0. In this case, the platform
may exit the market. This regulatory risk associated with the ride-sharing business model is explicitly called
out by Uber and Lyft in their IPO registration statements [10, 31]. In practice, it is unlikely that regulations
will drive platform revenue to zero. New York city’s wage floor of $27.86 per hour (before expenses) will
predictably lead to 10.5% decrease in platform profit from $76K to $68K per hour.

Assuming the optimum solution to (15) is unique, write it as a function of w: (N∗(w), λ∗(w), p∗f (w), p
∗
d(w)).

We have the following theorem.

Theorem 1. Assume that (15) has a unique solution.10 For any parameters (N0, λ0, α, β) and any dis-
tributions Fp(·) and Fd(·) that satisfy Fp(αtw(N0)) < 1 and N0 > λ0/µ, we have ∇+N

∗(w̃) > 0 and
∇+λ

∗(w̃) > 0, where ∇+ denotes the right-hand derivative, and w̃ is the optimal driver wage in absence of
regulation, i.e., the solution to (9).

The proof of Theorem 1 can be found in Appendix D. Theorem 1 holds for every pickup time tw that
satisfies Assumption 1 and it does not assume any specific formula for pickup time or a specific matching
algorithm utilized by the platform. This implies that the second regime always exists: when w ≤ w̃, the
minimum floor constraint (16c) is inactive, so the solution is in regime 1. When w = w̃, the right-hand
derivative of N and λ are both strictly positive. This corresponds to the beginning of the second regime,
where the platform hires more drivers and serves more passengers. The increase in the number of drivers
and passengers implies that the wage of drivers increases and the total cost of passengers decreases.

Discussion: The effect of minimum wage on labor markets has been the subject of many studies in labor
economics since its inception as part of Fair Labor Standard Act of 1938, and it still remains a contentious
topic among economists. We provide a brief overview of the existing literature on the effect of the minimum
wage regulation on employment. We then discuss how our result connects to the current literature.

There is mixed empirical evidence on whether imposing a minimum wage has a positive or negative effect
on employment; for instance, the authors in [34, 35] and [36] use the data from fast-food industry in
Pennsylvania and New Jersey and draw drastically different conclusions on the impact of an increase in
the minimum wage. A recent meta-study [37] found that it is equally likely to find positive or negative
employment effect of the minimum wage in the literature; a similar observation is made in [38].11

A similar division in economic theory literature exists regarding the direction of the employment effect
of minimum wage [41]. One strand of work that assumes that the labor market is perfectly competitive
concludes that minimum wage has a negative effect on employment. Another strand of work considers a
monopsony framework where the employer has bargaining power over the wage, and the labor demand is
upward-sloping. This work contends that the minimum wage may actually increase employment [42].

Our results above are similar to those of the monopsony framework in the literature. In a ride-sharing
market, a TNC has market power over drivers as it explicitly sets price pd for drivers. Moreover, given the
significant size of its drivers (e.g. Uber is the largest for-profit employer in New York city if we consider
drivers as employees [2]), TNC does not face a perfectly competitive labor market. 12

Our model is different from the standard economic equilibrium model in which supply and demand are
equal. We consider a model where the supply (drivers N) must exceed the demand (riders λ), and the

10For almost all parameter values there will not be multiple solutions with the same optimal value.
11We refer the interested reader to [39, 40] for surveys of studies on the effects of minimum wage.
12We note that in labor economics, by monopsony they do not only refer to the traditional company town with a single

employer with full market power. The term monopsony applies more broadly to cases where the employer has some market
power to set wages and faces upward-sloping labor supply [43].
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difference between the supply and demand (idle cars NI) contributes to the total cost the riders faces
through waiting times tw(NI). Nevertheless, we can use the monopsony framework to provide an intuitive
explanation of Theorem 1 below.

Consider Figure 17, where curve W (L) depicts the wage corresponds to every employment level L and curve
MRP represents the resulting marginal-revenue product equivalent to employment level L. We note that in
deriving the MRP curve, we ignore the effect of waiting time tw and assume that c = βpf . The intersection
of W (L) and MRP (point E) determines the outcome in a competitive labor market with employment
L∗
c and wage ω∗

c . However, a TNC does not face a perfectly competitive labor market, and sets wages to
maximize its profit. From W (L) we can determine the marginal cost of labor MCL defined as the marginal
cost the TNC has to pay to hire one more driver; we note that to hire an additional driver the TNC has to
increase the wage for all of his existing drivers, thus, MLC curve lies above W (L). Figures 17-19 depicts
the resulting MCL curves for tree different regimes depending on the value of the minimum wage ωm. The
optimal employment level and wage can be determined by the intersection of MRP and MCL curves, i.e.
point A in the first regime, point B in the second regime, and point C in the third regime.

As the minimum wage ωm increases, it is easy to verify that the number of drivers is constant in the first
regime (Figure 17), increases in the second regime (Figure 18), and decreases in the third regime (Figure
19). Ignoring the effect of idle vehicles and waiting time tw on cost c, the number of riders follow a similar
pattern as the number of drivers. Consequently, the cost for riders is constant in the first regime, decreases
in the second regime, and increases in the third regime. The above monopsony argument does not capture
the presence of idle vehicles and their effect on waiting time tw. The results of Theorem 1 establishes the
result formally incorporating the impact of tw on total cost c to riders.

6. TNC decisions with cap on number of drivers

Let Ncap be the cap on the total number of drivers. With a cap constraint, the platform pricing problem is

max
pf≥0,pd≥0

λ(pf − pd) (17)
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

























λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(18a)

N = N0Fd

(

λpd
N

)

(18b)

N ≤ Ncap (18c)

It is unnecessary to relax (18b), since the platform can always lower pd to increase its profit. As with
Proposition 2 we can show that (18) admits a non-trivial solution if Fp(αtw(N0)) < 1. This is a non-convex
program. One approach is via numerical computation as in [20]. This is suitable for a small problem.
Alternatively, we can find the optimal solution based on first order conditions for the following special case:

Proposition 4. Assume that (a) the waiting time function tw satisfies (4); (b) the reservation cost and the
reservation wage are uniformly distributed as Fp(c) = min{epc, 1} and Fd(w) = min{edw, 1}, with ep ∈ R

and ed ∈ R; (c) the profit maximizing problem (17) has at least one solution at which the objective value is
positive. Then the first order conditions of (17) admit a unique solution (pf , pd, λ,N), which is the globally
optimal solution to (17).

The proof is deferred to Appendix E, and the first order conditions of (17) are defined in the proof.
Example: Consider an example where the platform solves the profit-maximizing problem (17) for different
levels of Ncap. We assume that the waiting time function tw is of form (4), and that the reservation cost of
passengers and the reservation wage of drivers are both uniformly distributed. We set the model parameters
as (13) and (14).

Figures 20-28 exhibit the market response to different caps on the total number of vehicles. These responses
include the arrival rates of passengers, occupancy rate, platform prices, driver wage, pickup time and
platform profit. It is more instructive to “read” the figures from right to left, as the cap decreases. As the
cap decreases, the supply of vehicles drops (Figure 20), so it is more difficult for passengers to find a ride.
In this case, pickup time increases (Figure 26), and the number of rides decreases (Figure 21). Here are
some interesting observations:

• The platform loses passengers faster than it loses drivers. This is evidenced by the drop in occupancy
(Figure 22).

• The pickup time increases at an increasing rate (Figure 26). This is just a counterpart of the afore-
mentioned network externality.

• Both trip fare and driver wage drop (Figures 23, 25).

These observations can be explained. As the cap reduces the number of drivers, the passenger pickup time
increases. Since tp is a decreasing convex function of N , it has an increasing derivative as N decreases.
Therefore customers leave the platform at an increasing rate as Ncap decreases. This rate is greater than
the decreasing rate of Ncap, so occupancy rate decreases. In this case, the platform loses passengers quickly,
and has to reduce trip prices to keep passengers from leaving. This further squeezes driver pay (Figure 25).

A surprising fact is that the cap on number of drivers hurts the earning of drivers (Figure 25). This is
contrary to the common belief that limiting their number will protect drivers, as expressed in the regulation
freezing the number of TNC vehicles in New York for one year [16]. This happens because the platform
hires drivers with lowest reservation wage first. That is, with a smaller cap on the number of drivers, the
platform responds by reducing driver pay and hiring drivers with lower reservation costs. Thus the benefit
of limiting supply is intercepted by the platform. This is in contrast with the situation of taxis that need
a medallion to operate. A limit on the number of medallions will increase their value and benefit their
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Figure 20: Number of drivers under dif-
ferent caps.
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Figure 21: Arrival rates of Passengers
(per minute).
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Figure 22: Occupancy rate under differ-
ent caps.
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Figure 23: Per mile ride price and driver
payment under different caps.
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Figure 24: Commission rate defined as
percentage of service fee in pf .
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Figure 25: Driver wage per hour under
different caps.
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Figure 26: Passenger pickup time under
different caps.
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Figure 27: total cost of passengers under
different caps.
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Figure 28: Platform profit ($/hour) un-
der different caps.

owners13, who may be taxi drivers. In the TNC case, the platform accumulates the increased value. This
conclusion holds in general and is not affected by the model parameters.

7. TNC decisions with congestion surcharge

As of Jan 2019, all trips by for-hire vehicles that cross 96th street in NYC incur a congestion surcharge of
$2.75 per TNC trip. We model the likely impact of this policy by adding a congestion surcharge pc to the
travel cost (2). The profit-maximizing problem for the platform now is

max
pf≥0,pd≥0

λ(pf − pd) (19)

13The platform revenue (sum of platform rent and driver payments) divided by the number of drivers increases as the cap
decreases.
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Figure 29: Number of drivers under dif-
ferent surcharge.
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Figure 30: Arrival rates of Passengers
(per minute).
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Figure 31: Per mile ride price and driver
payment under different surcharge.
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Figure 32: Driver wage per hour under
different surcharge.
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Figure 33: Total cost of passengers un-
der different surcharge.
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Figure 34: Platform profit ($/hour) un-
der different surcharge.
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λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf + βpc

)]

(20a)

N = N0Fd

(

λpd
N

)

(20b)

As with Proposition 2, we can show that the constraint set (20) is non-empty if Fp

(

αtw(N0) + βpc

)

<

1. Since (19) is not a convex program, one approach to solve (19) is via brute-force computation [20].
Alternatively, we can show that the first order conditions are sufficient for global optimization for some
special cases:

Proposition 5. Assume that (a) the waiting time function tw satisfies (4); (b) the reservation cost and the
reservation wage are uniformly distributed as Fp(c) = min{epc, 1} and Fd(w) = min{edw, 1}, with ep ∈ R

and ed ∈ R; (c) the profit maximizing problem (19) has at least one solution at which the objective value
is positive. Then the following equations have a unique solution (pf , pd, λ,N), which is the globally optimal
solution to (19).
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∂λ

∂pf
(pf − pd) + λ = 0 (21a)

∂λ

∂pd
(pf − pd)− λ = 0 (21b)

λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf + βpc

)]

(21c)

N = N0Fd

(

λpd
N

)

(21d)

The proof is similar to that for Proposition 3, and is therefore omitted.
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We estimate the platform’s response to various values of congestion surcharge pc by numerical simulation.
In this example, we impose the same assumptions and model parameters as in Section 4.2. Simulation
results, presented in Figure 29-34, show that under a congestion surcharge of $2.75 per trip, the number of
TNC vehicles drops by 11.9% from 5089 to 4480, TNC rides reduce by 17.1% from 187/min to 155/min,
and platform revenue shrinks by 37.3% from $76, 006/hour to $47,686 per hour. This also suggests that
the TNC business model is vulnerable to regulatory risk.

8. Extensions

We formulate some extensions of the basic model to examine platform subsidy, platform competition and
autonomous mobility on demand.

8.1. Platform Subsidy

The ride-hailing platform company is not always a short-term profit maximizer. In its early stages, it tries
to grow its business via subsidies to both passengers and drivers. To model this, we consider a ride-hailing
platform that sets prices to maximize the number of rides or passengers λ subject to a reservation revenue
R, which may be positive or negative (negative R indicates subsidy):

max
pf≥0,pd≥0

λ (22)
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λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(23a)

N = N0Fd

(

λpd
N

)

(23b)

λ(pf − pd) ≥ R (23c)

For notational convenience, let (λ⋆, p⋆f , p
⋆
d) be the solution to (22), and denote (λ̃, p̃f , p̃d) as the solution to

the non-subsidy case (9).

We define subsidy as ǫf = p⋆f − p̃f and ǫd = p̃d − p⋆d, where ǫf and ǫd represent the subsidy to passengers
and drivers, respectively. Note that this definition essentially compares (p⋆f , p

⋆
d) to the profit-maximizing

prices. For ease of understanding, we define B = λ̃(p̃f − p̃d)−R as the subsidy budget. When reservation
revenue is the maximal profit, i.e., R = λ̃(p̃f − p̃d), the subsidy budget is 0, and ǫf = ǫd = 0.

We estimate the platform’s ridership under different levels of subsidy. In the numerical example we impose
the same assumptions and model parameters as in Section 4.2. Simulation results presented in Figure 35-37
show that the platform should always subsidize both sides of the market, regardless of the subsidy level.
Another interesting observation is that the platform should subsidize drivers more than it does passengers.
This conclusion, however, depends on the elasticities of demand and supply because the platform has to
grow both sides of the market to maximize profit. Under a fixed budget, the platform allocates more
subsidy to the less price-sensitive side as it costs more to grow this side of the market by one unit.

8.2. Platform Competition

Consider two platforms (e.g., Uber and Lyft) competing with each other to maximize their profits. The
profits are coupled through the market response to the joint decisions of both platforms: passengers choose
the platform with lower overall cost, and drivers work for the platform with a higher wage rate. This
subsection modifies the model to capture this competition.
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Figure 35: Subsidies to passengers and
drivers under different subsidy budgets.
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Figure 36: Arrival rate of passengers un-
der different subsidy budgets.
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Figure 37: Number of drivers under dif-
ferent subsidy budgets.

Each platform selects its passenger fare and driver wage. Passengers and drivers respond to the platform
prices until the market settles down. Assume that when the market settles down, both platforms survive
with a positive profit. In this case neither passengers nor drivers deviate from their choice of platform at
the market equilibrium, so the passenger costs and driver wages for the two platforms are equal. This gives
rise to the following profit maximization problem for one platform, given the pricing decisions (p′f , p

′
d) of

its competitor:
max

pf≥0,pd≥0
λ(pf − pd) (24)


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αtw(N − λ/µ) + βpf = αtw(N
′ − λ′/µ) + βp′f (25a)

λpd
N

=
λ′p′d
N ′ (25b)

λ+ λ′ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(25c)

N +N ′ = N0Fd

(

λpd
N

)

(25d)

Constraints (25a) and (25b) guarantee that if both platforms have positive number of passengers and drivers,
then the passenger cost and driver wage in the two platforms are the same, so no passenger or driver has
an incentive to switch platforms. Note that the market outcomes (N,λ,N ′, λ′) are not given. Instead, they
are governed by the market equilibrium conditions (25a)-(25d) and the platform prices (pf , pd, p

′
f , p

′
d). One

difference between (24)-(25d) and the monopoly case (9)-(10b) is that in the former the waiting time for
each TNC depends on the number of its own idle vehicles rather than on the sum of the idle vehicles of the
two platforms. The second difference, by contrast, is that the wage rate (25d) is determined by the sum of
the demand for drivers by both platforms.

Analogously, the second platform’s decisions (p′f , p
′
d) will maximize its own profits given the decisions

(pf , pd) of the first. The solution of the two decision problems will be a Nash equilibrium.

Due to non-convexity of (24), the question of existence and uniqueness of Nash equilibrium remains open.
It is possible that the two platforms will split the heterogeneous passengers, with one platform offering
a higher fare, lower waiting time, luxury rides to passengers with higher reservation cost; the emergence
of such equilibrium outcomes with product quality differentiation was first demonstrated by [44, 45] in
oligopolies.

8.3. Autonomous Vehicles

Autonomous vehicles (AV) will revolutionize road transportation [46]. AV companies claim they will banish
94 percent of all accidents attributed to human error [47]. So commuters can sit back and relax, work, or
entertain themselves. Eventually there will be hardly any need for human drivers. The impact on our lives
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will be profound. Uber and Lyft have R&D efforts to build self-driving ride-hailing vehicles. Billions of
venture capital are flowing into the race to develop AVs.

We model a company that owns and operates a fleet of autonomous vehicles to provide autonomous mobility
on demand (AMoD) service [48, 49], and compare it to a ride-hailing service with human drivers. We modify
the model (9)-(10b) to relate the decisions of an AMoD monopoly and those of a TNC monopoly. The
AMoD monopoly will set its ride rates to maximize its profit (26) subject to demand (27):

max
pf≥0,N≥0

λ(pf −Ncav) (26)

s.t. λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(27)

Here N is the number of deployed AVs and cav is the per ride investment and operating cost of an AV.
Comparing this with the TNC decision making model (9)-(10b) we get a straightforward formal identifica-
tion:

number of AVs deployed
.
= number of drivers hired, and wage rate w

.
= cav vehicle cost.

Following the NYTLC ruling, we take w = $27.86 per hour or an annual cost of $55,000 for 2,000 hours per
year of driver (plus vehicle) service. So for the AMoD monopoly to be as profitable as the TNC monopoly
(26) implies that an AV’s annual investment and operating cost should be smaller than $55,000. How likely
is this?

Today’s AVs do not meet this cost target. In records submitted to the California Department of Motor
Vehicles (DMV) Waymo reported that in its 2017 AV tests its safety drivers disengaged autonomous driving
once every 5,500 miles [47]. Waymo reports a disengagement when its evaluation process identifies the event
as having ‘safety significance’, so this rate is almost 100 times worse than the estimated 500,000 miles per
accident in 2015 for human drivers. With this poor safety performance, each AV will require a safety driver,
making its total cost more than twice today’s TNC cost. Of course AV safety will improve over time with
more and more testing and R&D but it’s anyone’s guess as to when an AV will perform as safely as human
drivers.

Alternatively, AMoD service can be scaled back to very controlled environments that reduce the risk of
accidents by a factor of 100. That direction is also being pursued. For example, Waymo is providing rides
to 400 people in the calm, sunny suburb of Chandler, AZ [50]. These AMoD rides use AVs with a safety
driver.

One additional piece of evidence also suggests that the cost of AVs is very high. Two proposed contracts
show the leasing cost of AV cars and shuttles of well over $100,000 each per year [51]. EasyMile is charging
more than $27,000 a month per small electric shuttle for cities that sign up for one year of service. Drive.ai
charges $14,000 monthly per vehicle for one year. Considering that a TNC driver (with car) costs $55,000
per year or $4,400 per month, it seems unlikely that these are viable business models, except in selective
subsidized niche markets.14

9. Conclusion

This paper analyzed the impact of three regulations on the ride-hailing app-based platforms or TNCs like
Uber and Lyft: (a) a floor under driver wage; (b) a cap on total number of drivers; and (c) a per-trip

14According to [51], “Arlington, Texas, a suburb of Dallas, hired Drive.ai to run three on-demand self-driving shuttles in
the entertainment district. For the yearlong program, the city will foot 20% of the $435,000 price tag and a federal grant will
cover the rest.”
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congestion tax that goes to the public transit. We constructed a general equilibrium model to predict
market responses to the platform’s decision on fares and wages, with and without these regulations. We
showed that imposing a wage floor increases driver employment, lowers pickup time, decreases ride cost, and
attracts more passengers, over a wide range of parameters. Our analysis suggests that a higher minimum
wage benefits both drivers and passengers, at the expense of platform profits. On the other hand, a cap
on the number of drivers or vehicles hurts drivers, as the platform benefits by hiring cheaper drivers when
supply is limited. Variants of our model were analyzed from other perspectives as well, including platform
subsidy, platform competition and autonomous vehicles.

Our study advocates a wage floor for TNC drivers. Our simulation shows that increasing driver wage by
23.3% (from $22.6 to $27.86 per hour before expense) will increase the number of TNC vehicles by 23.3%
(from 5089 to 6276), increase TNC ridership by 24.6% (from 187 to 233 per min), improve the pickup time
by 10% (from 5 min to 4.5 min), decrease the travel cost by 3.6% (from $33.4 to $32.2 per trip), and reduce
the platform rent by 10.5% (from $76K to $68K per hour). This indicates that enforcing a minimum wage
for drivers benefits both drivers and passengers. Under the wage floor, the platform is motivated hire more
drivers to attract more passengers so as to increase the platform sales. As a consequence, more drivers are
hired, more passengers are delivered, each driver earns more, and each passenger spends less. The wage
floor squeezes the monopoly profit of the platform and improves the efficiency of the system. It thus boosts
the TNC economy without costing taxpayer money.

A congestion surcharge will relieve traffic congestion by reducing the number of TNC vehicles. Numerical
simulation suggests that a surcharge of $2.75 per trip in New York will reduce TNC vehicles by 11.9% (from
5089 to 4480) and TNC rides by 17.1% (from 187 to 155 per min). More importantly, the funds raised from
this surcharge can be used to subsidize public transit. In New York, it is estimated that the congestion
surcharge will yield $1M per day. The money goes to the Metropolitan Transportation Authority to upgrade
the subway system. It can be used to make public transportation cleaner, faster, and safer, so that more
residents will commute by transit. Increased public transit ridership will improve the efficiency of the city’s
transportation system, and reduce the environmental footprint of transportation, which accounts for 28%
percent of the total carbon emissions in the US.

Interest in TNC regulation has been driven by concerns about working conditions of TNC drivers and by
the deleterious impact on urban transport of TNC growth. This paper deals only with the impact on driver
wage and ride fare. There is a debate whether TNC drivers are more like ‘independent contractors’ or
more like employees [52]. This paper contributes to that debate in showing that TNC driver wages can be
significantly increased and passenger fares decreased at the cost of lower TNC profits.
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Appendix

A: Proof of Proposition 1

Proof. We prove the result in two steps. (i) First, we consider the case of a passenger located at the
origin and NI = N − λ/µ idle vehicles uniformly and independently distributed in a disk of radius R
centered at the origin. We show that the expected distance of the passenger to the closest idle vehicle is
√

NI0E{d(NI0)} 1√
NI

(1 + O(max{N−1
I0

, N−1
I })). (ii) Second, based on the result of part (i), we show that

for a city with any two-dimensional area A, the expected shortest distance to an idle vehicle of a passenger
is also given by

√

NI0E{d(NI0)} 1√
NI

(1 +O(max{N−1
I0

, N−1
I })).

(i) To prove the first step, let d(n) := min(|x1|, · · · , |xn|) be the shortest distance to the origin among n
idle vehicles where xi ∈ R2 is the location of the ith idle vehicle. Then the cumulative distribution function
(cdf) of d(n) is

P{d(n) ≤ r} = 1− P{d(n) > r} = 1− P{|xi| > r, ∀i} = 1− (1− πr2

πR2
)n

Therefore, the probability density function (pdf) of d is

fd(n)(r) = n(1− r2

R2
)n−1 2r

R2
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Consequently,

E{d(n)} =

∫ R

0
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in which the fifth equality follows from an iterative application of integration by parts (similar to the one
that leads to the third equality). Therefore, (for any NI0)

E{d(NI)} =
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Next, we prove that
∏n

i=m

(

2i
2i+1

)

=
√
m√
n
(1 +O(m)) for m < n. We have,

ln

(

n
∏

i=m

(

2i

2i+ 1

)

)

=
n
∑

i=m

ln

(

1− 1

2i+ 1

)

.

For x ∈ [0,∼ 0.43], we have −x− x2 ≤ ln(1− x) ≤ −x. Thus,

−1

2

n
∑

i=m

1

i+ 1
2

−
n
∑

i=m

1

(2i+ 1)2
≤

n
∑

i=m

ln

(

1− 1

2i+ 1

)

≤ −
n
∑

i=m

1

2i+ 1

⇐⇒

−1

2

n
∑

i=m

1

i+ 1
2

− 1

2

n
∑

i=m

[

1

i− 1
2

− 1

i+ 1
2

]

≤
n
∑

i=m

ln

(

1− 1

2i+ 1

)

≤ −1

2

n
∑

i=m

1

2i+ 1

=⇒

−1

2
ln
( n

m

)

+O(m−1)− 1

2

[

1

m− 1
2

− 1

n+ 1
2

]

≤
n
∑

i=m

ln

(

1− 1

2i+ 1

)

≤ −1

2
ln
( n

m

)

+O(m−1).

Therefore,
∏n

i=m

(

2i
2i+1

)

=
√
m√
n
(1 +O(m−1)) for m < n. Consequently,

E{d(NI)} =







E{d(NI0)}
√

NI0√
NI

(1 +O(N−1
I0

)) if NI > NI0

E{d(NI0)}
√

NI0√
NI

+ (1 +O(N−1
I )) if NI < NI0

=
√

NI0E{d(NI0)}
1√
NI

(1 +O(max{N−1
I0

, N−1
I }))
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(ii)We cannot directly apply the result of part (i) for a passenger with an arbitrary location inside A.
Nevertheless, based on the result of part (i) we can iteratively provide an approximation. For every point
x ∈ A consider a disk Br(x) of radius r > 0 around x, r > 0. We partition A into two sets C and D,
where (a) C = {x ∈ A : Br(x) ⊂ A} is the set of points such that Br(x) is contained in A , and (b) let
D := {x ∈ A : Br(x) 6⊂ A} is the set of points such that Br(x) is not completely contained in A.

In the following, we first determine an approximate of E{d(x)|NI idle vehicles} for x ∈ C. We then provide
an upper bound approximation for E{d(x)|NI idle vehicles} for x ∈ D. Putting the results of (ii-a) and
(ii-b) together we provide an approximate equation for a general shape A; see (Iteration 1). We then use
the approximation provided in (Iteration 1), to provide a better approximation for E{d(x)|NI idle vehicles}
for x ∈ D, and improve our approximation for a general shape A; see (Iteration 2). We repeat the above
process iteratively, and determine the best approximation by analyzing the limit point of the above iterative
process which leads to the final approximation

√

NI0E{d(NI0)} 1√
NI

(1 +O(max{N−1
I0

, N−1
I })).

Let |A| and L denote the area and length of the (assumed smooth) boundary of A, respectively. Then the
areas of C and D are |C| := A−O(Lr) and |D| := O(Lr), respectively.

(ii-a) First consider an arbitrary point x ∈ C. Suppose NI idle vehicles are uniformly and independently
distributed in A. Then the pdf of the number m of these vehicles that lie in Br(x) is a binomial distribution

B(NI ,
πr2

A ) with mean NI
πr2

A and variance NI
πr2

A

(

1− πr2

A

)

.

Let l := {max |y − z| : x, y ∈ A} denote the largest distance between two points in A. Then, for ev-
ery realization of m > 1, the conditional expected shortest distance of an idle vehicle to x is given by
√

NI0πr
2E{d(NI0πr

2)} 1√
m

(

1 +O
(

max{(NI0πr
2)−1,m−1}

))

1{m > 0} + O(l)1{m = 0} from part (i)

where 1{·} denotes the indicator function. Note that we modify the expression from part (i) since the

shortest distance of an idle vehicle cannot exceed l when m = 0. Moreover, we substitute NI0 with NI0
πr2

A
to reflect the fact among the NI0 idle vehicles uniformly distributed in A, on average NI0

πr2

A vehicles are
inside Br(x).

Taking the expectation with respect to m, the expected shortest distance of an idle vehicle to x is given by

E{d(x)|NI idlevehicles}=Em

{

√

NI0

πr2

A E{d(NI0

πr2

A )} 1√
m

(

1+O
(

max{(NI0

πr2

A )−1,m−1}
))

1{m> 0}+O(l)1{m=0}
}

(28)

We can write the first term in this expectation as

Em

{

√

NI0

πr2

A E{d(NI0

πr2

A )} 1√
m

(

1 +O
(

max{(NI0

πr2

A )−1,m−1}
))

1{m > 0}
}

=

√

NI0

πr2

A E{d(NI0

πr2

A )} 1
√

NI
πr2

A

Em















1
√

1+
m−NI

πr2

A

NI
πr2

A

(

1+O
(

max{(NI0

πr2

A )−1, (NI
πr2

A )−1(1+
m−NI

πr2

A

NI
πr2

A

)−1}
))

1{m> 0}















=
√

NI0E{d(NI0

πr2

A )} 1√
NI

(

1 +O
(

max{N−1
I0

, N−1
I }

))

P{m > 0} (29)

where the last equality is by Taylor expansion for terms 1
√

1+
m−NI

πr2
A

NI
πr2
A

and (1+
m−NI

πr2

A

NI
πr2

A

)−1, along with the

fact that Em{m−NI
πr2

A } = 0 and Em

{

(

m−NI
πr2

A

NI
πr2

A

)2
}

= O(N−1
I ) .
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Moreover, we have P{m = 0} = (1− πr2

A )NI . Using inequality ln((1− x)n) ≤ −nx, we have

P{m = 0} = exp(ln((1− πr2

A )NI )) ≤ exp(−NI
πr2

A ).

Set r = O(N
−1
2
+δ

I ) for some δ ∈ (0, 1/2]. Then we have

P{m = 0} = O(exp(−N2δ
I )). (30)

Consequently, P{m > 0} = 1− P{m = 0} = 1 +O(exp(−N2δ
I )). Substituting P{m > 0} and P{m = 0} in

(28), we get

E{d(x)|NI idle vehicles} = E{d(x)|NI0 idle vehicles}
√

NI0√
NI

(

1 +O
(

max{N−1
I0

N1−2δ
I , N−2δ

I , exp(−N2δ
I )}

))

(31)

for x ∈ C(x) and δ ∈ (0, 1/2].

(ii-b) For points x ∈ D, consider the intersection of Br(x) and A. We assume that |Br(x)∩A|
r2

= O(1) since
A has a smooth boundary. (Here |R| is the area of R.) Apply an argument similar to the one given in
(ii-a) for Br(x) ∩ A, and we can show that with large enough probability the closest idle vehicles to x has
a distance smaller than r. More precisely,

E{d(x)|NI idle vehicles} ≤ O(r) +O(exp(−NIr
2)) = O(N

−1
2
+δ

I ) +O(exp(−N2δ
I )) (32)

for x ∈ D, where the last equality follows from r = O(N
−1
2
+δ

I ). Therefore, from (32),

E{d(x)|NI idlevehicles} −
√

NI0√
NI

E{d(x)|NI0 idlevehicles} ≤ O(N
−1
2

+δ

I ) +O(exp(−N2δ
I ))−

√

NI0√
NI

E{d(x)|NI0 idlevehicles}

= O(N
−1
2

+δ

I ) +O(exp(−N2δ
I )) +

√

NI0√
NI

[

O(N
−1
2

+δ

I0
) +O(exp(−N2δ

I0 ))

]

= O(N
−1
2

+δ

I ) +O(exp(−N2δ
I )) +

(

O(N
−1
2

I Nδ
I0) +O(N

1
2
I0
N

− 1
2

I exp(−N2δ
I0 )

)

for x ∈ D, where the first equality follows from

0≤
∣

∣

∣

∣

∣

√

NI0√
NI

E{d(x)|NI0 idle vehicles}
∣

∣

∣

∣

∣

≤
√

NI0√
NI

[

O(N
−1
2
+δ

I0
)+O(exp(−N2δ

I0 ))

]

.

Therefore, for x ∈ D, we can write

E{d(x)|NI idlevehicles}=
√

NI0√
NI

E{d(x)|NI0 idlevehicles}+O
(

max{N
−1
2

+δ

I , exp(−N2δ
I ), N

−1
2

I Nδ
I0, N

1
2
I0
N

− 1
2

I exp(−N2δ
I0 )}

)

(33)

(Iteration 1) Using (31) for x ∈ C and (33) for x ∈ D, along with P{x ∈ D} = |D|
|A| = O( Lr|A|) = O(N

− 1
2
+δ

I ),
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we have,

Ex∈A{d(x)|NI idlevehicles} =
[

Ex{d(x)1{x ∈ C}|NI idlevehicles}
]

+
[

Ex{d(x)1{x ∈ D}|NI idlevehicles}
]

=

[

√

NI0√
NI

Ex∈C{d(x)|NI0 idlevehicles}
(

1+O
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N1−2δ
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I , exp(−N2δ
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]
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O
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1
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+
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]

=

√

NI0√
NI
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+
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[

O(1)O
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I , exp(−N2δ
I )}
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(1− P{x ∈ D})

+

√
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√
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1

O(N
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O
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1
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)
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]

=

√
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+

√
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[

O
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I , N−2δ

I , exp(−N2δ
I )}

)

(1−O(N
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2
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I ))

+
√
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I exp(−N2δ
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O(N
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]

=

√

NI0√
NI

Ex∈A{d(x)|NI0 idlevehicles}
(

1 +O(maxN−1
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N1−2δ
I , N−2δ

I , exp(−N2δ
I ), N

−1
2
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I , Nδ
I exp(−N2δ

I ), N
− 1

2
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I Nδ
I0 ,

N
1
2
I0
N

−1
2

+δ

I exp(−N2δ
I0 ))

)

,

for δ ∈ (0, 12 ].

Setting δ = 1
8 we have,

Ex∈A{d(x)|NI idle vehicles}=
√

NI0√
NI

Ex{d(x)|NI0 idle vehicles}
(

1+O
(

max{N−1
I0

N
3
4
I , N

− 1
4

I , N
− 3

8
I N

1
8
I0
}
))

. (34)

where we neglect O(exp(−N
1
4
I )), O(N0.125

I exp(−N
1
4
I )) and O(N0.5

I0
N−0.375

I exp(−N
1
4
I )) in comparison to

O
(

N
− 1

4
I

)

.

(Iteration 2) We can now use (34) to provide a better approximation for x ∈ D in part (ii-b) and iterate

the process. Note that the number of idle vehicles in D (on average) is equal to |D|
|A|NI = O(r)NI = N

1
2
+δ

I ;
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similarly, we need to substitute NI0 with NI0O(r) = NI0N
−1
2
+δ

I in (34).15 Therefore,

E{d(x)|NI idlevehicles} =

√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1 +O
(

max{N−1
I0

N
7
8
− 1

4
δ

I , N
− 1

8
− 1

4
δ

I , N
1
8
I0
N

−1
4

− 1
4
δ

I }
))

(35)

for x ∈ D.16

Using (31) for x ∈ C and (35) for x ∈ D, along with |D| = O(r) = O(N
−1
2
+δ), we have

Ex∈A{d(x)|NI idlevehicles} = Ex{d(x)1{x ∈ C}|NI idlevehicles}+ Ex{d(x)1{x ∈ D}|NI idlevehicles}

=

√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1+O
(

max{N−1
I0

N1−2δ
I , N−2δ

I , N−1
I0

N
3
8
+ 3

4
δ

I , N
− 5

8
+ 3

4
δ

I , N
1
8
I0
N

− 3
4
+ 3

4
δ

I , exp(−N2δ
I )}

))

.

Setting δ = 5
22 , we have an improved approximation

Ex∈A{d(x)|NI idlevehicles} =

√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1 +O
(

max{N−1
I0

N
6
11
I , N

− 5
11

I , N
1
8
I0
N

− 5
11

− 1
8

I }
))

, (36)

where we neglect O(exp(−N
5
11
I )) in comparison to O

(

N
− 5

11
I

)

.

(Iteration K) We can iterate the same process similar to the one described in iteration 2. Assume that
at the end of iteration K − 1 we show that

Ex∈A{d(x)|NI idlevehicles}=
√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1+O
(

max{N−1
I0

N
α(K−1)
I ,N

−(1−α(K−1))
I ,N

1
8
I0
N

−(1−α(K−1))− 1
8

I }
))

.

(37)

where α(K − 1) ∈ (0, 12 ]. Note that in iteration 2 we have α(2) = 6
11 . We now use (37) to provide a

better approximation for x ∈ D and iterate the process another time. Once again note that the number

of idle vehicles in D (on average) is equal to |D|
|A|NI = O(r)NI = N

1
2
+δ

I ; similarly, we substitute NI0 with

NI0O(r) = NI0N
−1
2
+δ

I in (36). Consequently,

E{d(x)|NI idlevehicles} =
√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1 +O
(

max{N−1
I0

N
1+α(K−1)

2
−(1−α(K−1))δ

I , N
−

1−α(K−1)
2

−(1−α(K−1))δ

I

, N
1
8
I0
N

−
1−α(K−1)

2
−(1−α(K−1))δ− 1

8
I }

))

, (38)

for x ∈ D.

Using (31) for x ∈ C and (38) for x ∈ D, along with |D| = O(r) = O(N
−1
2
+δ), we have

Ex∈A{d(x)|NI idlevehicles} = Ex{d(x)1{x ∈ C}|NI idlevehicles}+ Ex{d(x)1{x ∈ D}|NI idlevehicles}

=

√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1+O
(

max{N−1
I0

N1−2δ
I , N−2δ

I , N−1
I0

N
α(K−1)

2
+α(K−1)δ

I , N
−

2−α(K−1)
2

+α(K−1)δ

I ,

N
1
8
I0
N

−
2−α(K−1)

2
+α(K−1)δ− 1

8
I , exp(−N2δ

I )}
))

.

15We note that the number of vehicles in D is a random variable. Nevertheless, considering the variation in the number of

vehicles around the average of N
1
2
+δ

I one can follow a similar approach we used in (ii-a) using Taylor expansion, and show
that the error term due to such a randomness is smaller than other error terms and does not affect the result.

16We note that the closest idle vehicles for x ∈ D does not necessarily belong to D and can be inside C. Nevertheless, we can
still use (34) for the expected distance of the closest idle vehicle for x. This is because for area D we can follow an argument
similar to the one that leads to (34), and divide it to an interior region C̃ and an exterior region D̃, ; however, we consider
the border of D that separates it from C as a part of the interior region C̃ (and not D̃). Consequently, equation (34) is also
applicable for x ∈ D.
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Setting δ = 2−α(K−1)
2(2+α(K−1)) , we have an improved approximation for iteration K as

Ex∈A{d(x)|NI idlevehicles}=
√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1+O
(

max{N−1
I0

N
2α(K−1)

2+α(K−1)

I , N
−

2−α(K−1)
2+α(K−1)

I , N
1
8
I0
N

−
2−α(K−1)
2+α(K−1)

− 1
8

I }
))

=

√

NI0√
NI

Ex{d(x)|NI0 idlevehicles}
(

1 +O
(

max{N−1
I0

N
α(K)
I , N

1−α(K)
I , N

1
8
I0
N

1−α(K)− 1
8

I }
))

, (39)

where α(K) = 2α(K−1)
2+α(K−1) and we neglect O(exp(−N

2−α(K−1)
2+α(K−1)

I )) in comparison to O
(

N
− 2−α(K−1)

2+α(K−1)

I

)

.

Iterating the above process, it is easy to show that the sequence of α(K) = 2α(K−1)
2+α(K−1) converges to α∗ = 0.

Therefore, we have

Ex∈A{d(x)|NI idle vehicles} =

√

NI0√
NI

Ex{d(x)|NI0 idle vehicles}
(

1 +O
(

max{N−1
I0

, N−1
I , N

1
8
I0
N

− 9
8

I }
))

.

B: Proof of Proposition 2

Proof. We can represent (N,λ, pf , pd) as a function of total travel cost c and driver wage w:



































λ = λ0 [1− Fp(c)] (40a)

N = N0Fd(w) (40b)

pf =
1

β

[

c− αtw

(

N0Fd(w)− λ0[1− Fp(c)]/µ

)]

(40c)

pd =
wN

λ
= w

N0Fd(w)

λ0 [1− Fp(c)]
(40d)

where (40c) and (40d) are obtained based on the definition of c and w, i.e., (2) and (6). To prove Proposition
2, it suffices to show that there exists c > 0 and w > 0 such that



















c > αtw

(

N0Fd(w)− λ0[1− Fp(c)]/µ

)

(41a)

Fp(c) < 1 (41b)

Fd(w) > 0 (41c)

Note that (41a) corresponds to pf > 0, and (41b) and (41c) guarantee that pd > 0, N > 0 and λ > 0.
As tw is decreasing (see Assumption 1), it suffices to prove that there exists c > 0 and w > 0 such that
Fp(c) < 1, Fd(w) > 0 and that:

c > αtw

(

N0 − λ0[1− Fp(c)]/µ

)

. (42)

The left hand side of (42) is an increasing function of c, while the right hand side is decreasing function.
Define c∗ = infc{c|Fp(c) = 1}. It suffices to show that c∗ > αtw(N0). This is equivalent to Fp(αtw(N0)) < 1,
which completes the proof.
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C: Proof of Proposition 3

Proof. To prove Proposition 3, we first show that there is at most one solution to (12). Then we show that
this solution exists, and it coincides with the globally optimal solution to (9).

Uniqueness: let fp(c) and fd(w) be the probability density function of c and w, respectively. Since c and
w are subject to uniform distribution, we have: fp(c) = ep ∗ ✶epc≤1 and fd(w) = ed ∗ ✶edw≤1, where ✶A is
the indicator function of A. Assume for the moment that (12) admits a non-trivial solution. Denote it as
(p̃f , p̃d, λ̃, Ñ), and denote c̃ and w̃ as the corresponding passenger cost and driver wage, respectively. We
first show that epc̃ ≤ 1 and edw̃ ≤ 1. This is because if epc̃ > 1, then λ = N = 0, this is a trivial solution.

If edw̃ > 1, we can decrease p̃d without affecting λ̃, indicating that
∂Π

∂pd
< 0, which contradicts with (12b).

Therefore, we can rewrite (12c) and (12d) as:



















λ = λ0

[

1− ep

(

αM
√

N − λ/µ
+ βpf

)]

N = N0ed

(

λpd
N

)

.

This can be further simplified to:

λ = λ0

[

1− ep

(

αM
√√

N0edλpd − λ/µ
+ βpf

)]

(43)

It suffices to show that there exists at most one set of (p̃f , p̃d, λ̃) that satisfies (12a), (12b) and (43). Using

the implicit function theorem on (43), we can derive
∂λ

pf
and

∂λ

pd
, thus (12a)- (12b) becomes:











































−λ0βep
(√

N0edpdλ− λ/µ
)3/2

(√
N0edpdλ− λ/µ

)3/2 − 1

2
αMepλ0

[

1

2

√

N0edpd/λ− 1/µ

](pf − pd) + λ = 0 (44a)

1

4
λ0epαM

√

N0edλ/pd

(√
N0edpdλ− λ/µ

)3/2 − 1

2
αMepλ0

[

1

2

√

N0edpd/λ− 1/µ

](pf − pd)− λ = 0 (44b)

This reduces to:






















1

4
λ0epαMpf

√

N0edλ/pd = λ
(

√

N0edpdλ− λ/µ
)3/2

+ αMepλ0λ/2µ (45a)

β
√

pd/λ
(

√

N0edpdλ− λ/µ
)3/2

=
1

4
αM

√

N0ed (45b)

pfλ0epβ
√

N0ed =
√

N0edλ+ 2
√

λpdepλ0β/µ, (45c)

where (45a) directly follows from (44b), (45b) follows from (44a) and (44b), and (45c) are derived by
plugging (45b) into (45a).

Assume there is another solution, denoted (p′f , p
′
f , λ

′, N ′). Without loss of generality, suppose p′f ≤ p̃f . If
p′f < p̃f , then there are three cases:

• p′d ≥ p̃d. Based on (43), we have λ′ > λ̃. However, (45c) dictates that λ′ < λ̃. A contradiction.

32



• p′d < p̃d and
√

N0edp
′
dλ

′ − λ′/µ ≥
√

N0edp̃dλ̃− λ̃/µ. Note that (45a) is equivalent to:

1

4
λ0epαM

√

N0edλpf =
√

pdλ

[

(

√

N0edpdλ− λ/µ
)3/2

+ αMepλ0/2µ

]

(46)

Therefore, based on (46), p′dλ
′ < p̃dλ̃. On the other hand, since

√

N0edp
′
dλ

′−λ′/µ ≥
√

N0edp̃dλ̃−λ̃/µ

and p′f < p̃f , based on (43), we have λ′ > λ̃. This indicates that
√

N0edp
′
dλ

′−λ′/µ <

√

N0edp̃dλ̃−λ̃/µ.
A contradiction.

• p′d < p̃d and
√

N0edp
′
dλ

′ − λ′/µ <

√

N0edp̃dλ̃− λ̃/µ. Note that (45b) is equivalent to:

β
√
pd(
√

N0edpd −
√
λ/µ)

(

√

N0edpdλ− λ/µ
)1/2

=
1

4
αM

√

N0ed (47)

As p′d < p̃d and
√

N0edp
′
dλ

′ − λ′/µ <

√

N0edp̃dλ̃ − λ̃/µ, (47) indicates that λ′ < λ̃. On the other

hand, (45b) also indicates that p′d/λ
′ > p̃d/λ̃. Note that (43) can be written as

λ = λ0

[

1− ep

(

αM
√√

λN0edpd − λ/µ
+ βpf

)]

(48)

As p′f < p̃f and p′d/λ
′ > p̃d/λ̃, (48) indicates that λ′ > λ̃. A contradiction.

If p′f = p̃f and p′d < p̃d, then we can find a contradiction by exactly the same argument. In addition, if
p′f = p̃f and p′d = p̃d, then λ and N are uniquely determined by (45).

Existence and Optimality: Based on (40), we can represent (N,λ, pf , pd) as a function of total travel
cost c and driver wage w. Therefore, the platform profit λ(pf − pd) is a function of c and w:

R = λ0[1− Fp(c)] ∗
[

c

β
− α

β
tw

(

N0Fd(w)− λ0[1− Fp(c)]/µ

)

− w
N0Fd(w)

λ0 [1− Fp(c)]

]

(49)

Note that R is well-defined if λ > 0, N > 0, and the number of idle vehicle is positive, i.e., N0Fd(w) >
λ0[1− Fd(c)]/µ. Therefore, R is a continuous function of c and w defined in

D = {(c, w)|0 ≤ c < 1/er, 0 < w ≤ 1/er, N0edw > λ0(1− epc)/µ}.

It can be verified that R ≤ 0 on the boundary of D. Based on our assumption, there exists (c∗, w∗) ∈ D
at which R > 0. This indicates that the optimal solution to (9) is in the interior of D, which solves (12).
Since (12) has at most one solution, this completes the proof.

D: Proof of Theorem 1

Proof. We will first prescribe a procedure to compute the optimal solution to (15), then we use the procedure
to prove that ∇+N

∗(w̃) > 0 and ∇+λ
∗(w̃) > 0.

Computation procedure: Let (p∗f , p
∗
d, λ

∗, N∗) denote the optimal solution to (15). Note that (16b) at
equality uniquely defines an increasing mapping from N to λpd. Denote this mapping as λpd = g(N), then
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(16b) reduces to λpd ≥ g(N), (16c) reduces to λpd ≥ Nw. Therefore, (16b) and (16c) can be combined as
λpd ≥ max{g(N), wN}, and (15) is equivalent to:

max
pf ,N

λpf −max{g(N), wN} (50)

s.t. λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

.

Consider the following problem:

max
pf ,N

λpf − g(N) (51)

s.t. λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

. (52)

Let (p̄f , N̄ , λ̄) be the optimal solution to (51), and denote the optimal value as R̄. To facilitate our discussion,
define Π1(N) as a function representing the optimal value of (51) for any given N , then R̄ = maxN Π1(N).
Similarly, define:

max
pf ,N

λpf − wN (53)

s.t. λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

. (54)

Let (p̂f , N̂ , λ̂) be the optimal solution to (53), and denote the optimal value as R̂. Define Π2(N) as the

optimal value of (53) for any given N , then R̂ = maxN Π2(N).

Lemma 1. There are three cases for the solution to (15):
(a) if Π1(N̄) < Π2(N̄), then the solution to (15) is given by that to (51);
(b) if Π2(N̂) < Π1(N̂), then the solution to (15) is given by that to (53);
(c) if Π1(N̄) ≥ Π2(N̄) and Π2(N̂) ≥ Π1(N̂), then the solution to (15) is given by:

max
pf ,N

λpf − wN (55)











λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

(56a)

N = N0Fd(w) (56b)

The proof of Lemma 1 can be found in Appendix F. It provides a procedure to compute the solution to
(15): first compute N̄ and N̂ by solving (51) and (53) respectively, then identify which case of (a), (b), (c)
applies, and obtain N∗ correspondingly.

Driver: We first prove that ∇+N
∗(w̃) > 0. Based on Lemma 1, there are three cases: (a) Π1(N̄) < Π2(N̄),

(b) Π2(N̂) < Π1(N̂), (c) Π1(N̄) ≥ Π2(N̄) and Π2(N̂) ≥ Π1(N̂). In case (a), the constraint (16c) is inactive
at the optimal solution to (15) (see proof of Lemma 1). Therefore, case (a) corresponds to w ≤ w̃. When
w > w̃, the minimum wage constraint is active, and either case (b) and (c) applies.

Note that in case (c), both (16b) and (16c) are active at the optimal solution (see proof of Lemma 1).
Therefore, when w increases, N also increases. Then it suffices to show that there exists w̄ > w̃, such that
the condition of case (c) holds when w̃ < w ≤ w̄.

Assume not, then there exists w̄′ > w̃ such that the conditions of case (b) holds when w̃ ≤ w ≤ w̄′. In this
case, we have Π1(N̄) < Π2(N̄) for w ≤ w̃ and Π2(N̂) < Π1(N̂) for w̃ ≤ w ≤ w̄′. Since Π2(N) is continuous
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with respect to w, let w approaches w̃ from the let, then we have Π1(Ñ) ≤ Π2(Ñ). Let w approaches w̃
from the right, then we have Π1(Ñ) ≤ Π2(Ñ). This implies that Π1(Ñ) = Π2(Ñ).

In other words, the optimal solution to (51) and (53) are the same when w = w̃. This indicates that
partial derivative of their objective functions with respect to N at N = N∗ are the same, i.e., ∇g(N∗) = w̃.
Note that w = w̃ indicates N∗ = Ñ . Therefore, we have ∇g(Ñ) = w̃. Since x = g(N) is defined as
N = N0Fd(x/N), applying implicit function theorem, we can obtain ∇g(N) and derive that ∇g(Ñ) = w̃ is
equivalent to

1 + fd(λ̃p̃2/Ñ)N0λ̃p̃2/Ñ
2

fd(λ̃p̃2/Ñ)N0/Ñ
=

λ̃p̃2

Ñ
, (57)

which is clearly impossible. A contradiction.

Passenger: We now prove that ∇+λ
∗(w̃) > 0. Consider w such that w̃ < w < w̄. In this regime, both

(16b) and (16c) are active at the optimal solution. Therefore (15) is equivalent to:

max
pf≥0

λpf −Nw (58)







λ = λ0

[

1− Fp

(

αtw(N − λ/µ) + βpf

)]

(59a)

N = N0Fd(w) (59b)

We can plug (40a), (40b) and (40c) into the objective function of (58), transforming (58) to:

max
c

λ0[1− Fp(c)] ·
1

β

[

c− αtw

(

N0Fd(w)− λ0[1− Fp(c)]/µ

)]

−N0Fd(w) · w. (60)

Note that w is exogenous. The first order condition dictates that the derivative of (60) with respect to c is
0 at the optimal solution:

Φ(c, w) = −λ0fp(c) ·
1

β
[c− αtw(NI)] + λ0[1− Fp(c)] ·

1

β

[

1− αt′w(NI)λ0fp(c)/µ
]

= 0, (61)

where NI = N0Fd(w)− λ0[1− Fp(c)]/µ. Based on (40a), λ is a decreasing function of c, thus it suffices to

show that the positive partial derivative of c with respect to w is strictly negative, i.e.,
∂c

∂+w
< 0. According

to implicit function theorem, we have:
∂c

∂+w
= − ∂Φ

∂+w
/
∂Φ

∂c
.

If c∗ is local maximum for (60), then Φ(c, w) > 0 in the neighborhood c∗ − ǫ < c < c∗ and Φ(c, w) < 0 in

c∗ < c < c∗ + ǫ. This indicates that
∂Φ

∂c∗
< 0, thus it suffices to show that

∂Φ

∂+w
< 0. We have:

∂Φ

∂+w
= λ0Fp(c)

α

β
t′w(NI)N0fd(w)− λ0[1− Fp(c)]

αλ0

βµ
t′′w(NI)fp(c)N0fd(w) < 0.

This completes the proof.

E: Proof of Proposition 4

Proof. To solve (17), we first obtain the solution to (9) and denote it as (p̃f , p̃d, λ̃, Ñ). If Ñ ≤ Ncap, then
the cap constraint (18c) is inactive, and (17) reduces to (9).

35



If Ñ > Ncap, then (18c) is active. In this case, (18a) and (18b) is equivalent to


















λ = λ0

[

1− ep

(

αM
√

Ncap − λ/µ
+ βpf

)]

(62a)

Ncap = N0ed
λpd
Ncap

(62b)

According to (62b), λpd =
N2

cap

N0ed
. Therefore, the objective function is R = λpf −

N2
cap

N0ed
. Apply implicit

function theorem on (62a), we can obtain
∂λ

∂pf
and further

∂R

∂pf
. The first order condition becomes

λ0epβµpf = λ0epαM
λ

2(Ncap − λ/µ)3/2
+ λµ. (63)

Uniqueness: we first show that there is at most one set of λ > 0, pf > 0 and pd > 0 that satisfy (62a),
(62b), and (63). Assume not, i.e., (λ, pf , pd) and (λ′, p′f , p

′
d) are both solutions to (62a), (62b), and (63). If

pf = p′f , then it is easy to verify that pd = p′d and λ′ = λ. Therefore, we consider p′f > pf without loss of
generality. Based on (62a), we have λ′ < λ. However, (63) dictates that λ′ > λ, A contradiction.

Existence and Optimality: Note that for any pf ≥ 0 such that

ep

(

αM
√

Ncap

+ βpf

)

< 1. (64)

There is a unique λ > 0 that satisfies (62a). This is because the righthand side of (62a) is a concave function
λ which has a unique intersection with the left-hand side of (62a). We can therefore view λ as a function
of pf determined by (62a), denoted by λ = h1(pf ). Apply implicit function theorem on (62a), we have
∂λ

∂pf
< 0. Therefore, it is a decreasing function such that h1(0) > 0, and it can be verified that h1(pf ) → 0

for sufficiently large pf that satisfies (64). On the other hand, (63) prescribes λ as an increasing function
of pf . We denote it as as λ = h2(pf ), and we have h2(0) = 0. To prove existence, it suffices to show that
h1(pf ) intersects with h2(pf ) at some p∗f > 0, which is clearly true.

p∗f is either local minimum or local maximum. Note that pf is bounded between 0 and an upper bound
determined by (64). On the boundary the objective value R is smaller than that in the interior where
λ > 0 and pf > 0 (since the revenue λpf on the boundary is 0). This indicates that p∗f has to be local
maximum. Since there is a unique solution to the first order conditions, p∗f is the globally optimal solution.
This completes the proof.

F: Proof of Lemma 1

Proof. Let (p∗f , λ
∗, N∗), (p̄f , λ̄, N̄) and (p̂f , λ̂, N̂) be the optimal solution (50), (51) and (53), respectively.

Define R∗, R̄ and R̂ as the corresponding optimal values. Note that R∗ ≤ R̄ and R∗ ≤ R̂. This is because
the objective value of (50) is smaller than that of (51) and (53). We consider the following three cases:

• Π1(N̄) < Π2(N̄). Given N , the optimization problems (51) and (53) are equivalent (since the second
term of the objective functions are constants). Therefore, the corresponding optimal solution (i.e.,
λ and pf ) are the same when N are the same, and Π1(N) − Π2(N) = wN − g(N) for any N . This
indicates that g(N̄) > wN̄ . It further implies that the objective value of (50) can attain R̄ when
N = N̄ . Since R∗ is upper bounded by R̄, we conclude that N∗ = N̄ .
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• Π2(N̂) < Π1(N̂). In this case we have N∗ = N̂ . Proof is the same as case (a).

• Π1(N̄) ≥ Π2(N̄) and Π2(N̂) ≥ Π1(N̂). In this case, we can show that g(N∗) = wN∗. Assume
not, then without loss of generality, consider the case where g(N∗) > wN∗. Consider the following
problem:

max
pf ,N

λpf − g(N) (65)











λ = λ0

[

1− Fp

(

αM
√

N − λ/µ
+ βpf

)]

(66a)

g(N) ≥ wN (66b)

We conclude that N∗ is the optimal solution to (65). This is because if not, then there exists another
solution that satisfies (66) and obtains a higher value than R∗, which contradicts with the fact that
N∗ is optimal solution to (50). Since g(N∗) > wN∗, the constraint (66b) is inactive at the optimal
solution to (65), therefore, it is equivalent to (51), i.e., N∗ = N̄ . In this case, g(N∗) > wN∗ implies
g(N̄) > wN̄ . Since Π1(N) − Π2(N) = wN − g(N) for any N , we have Π1(N̄) < Π2(N̄). This
contradicts with the assumption that Π1(N̄) ≥ Π2(N̄). Therefore, g(N∗) = wN∗. This indicates that
both (16b) and (16c) are active at the optimal solution to (15), which leads to (55).

This completes the proof.
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