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Background: Molecular competition brings about trade-offs of shared limited resources among the cellular

components, and thus introduces a hidden layer of regulatory mechanism by connecting components even without

direct physical interactions. Several molecular competition scenarios have been observed recently, but there is still a

lack of systematic quantitative understanding to reveal the essence of molecular competition.

Methods: Here, by abstracting the analogous competition mechanism behind diverse molecular systems, we built a

unified coarse-grained competition motif model to systematically integrate experimental evidences in these processes

and analyzed general properties shared behind them from steady-state behavior to dynamic responses.

Results: We could predict in what molecular environments competition would reveal threshold behavior or display a

negative linear dependence. We quantified how competition can shape regulator-target dose-response curve,

modulate dynamic response speed, control target expression noise, and introduce correlated fluctuations between

targets.

Conclusions: This work uncovered the complexity and generality of molecular competition effect as a hidden layer of

gene regulatory network, and therefore provided a unified insight and a theoretical framework to understand and

employ competition in both natural and synthetic systems.
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Author summary: Competition for limited resources is ubiquitous in biological processes, playing as a hidden regulatory

mechanism with diverse functions. We built a unified coarse-grained competition motif model to quantitatively understand

and predict diverse phenomena mediated by molecular competition. We systematically analyzed the properties of competing

regulation from steady-state behavior to dynamic responses, evaluating how competition introduces indirect regulations and

constraints among the targets and how the existence of competitors could influence regulator-target response. These

properties provide new insights to understand natural biological systems, and can help to predict and refine the performance

of synthetic gene circuits.

INTRODUCTION

Competition for limited resources matters at all scales of

biology. Competition among different species can alter

population distributions and ecological niches [1–3].
Competition among individuals of the same species may
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slow down the growth rates of all competitors, driving

natural selection and evolution [4–6]. Competition among

adjacent cells in an organism can regulate their growth

and viability, and therefore enhance the dominance of

cells with better fitness [7–10]. In a microscopic scale,

biological molecules within cells also face competition.

Molecular competition brings about trade-offs of shared

limited resources among the cellular components [11–13],
and thus introduces a hidden layer of regulatory

mechanism by connecting components even without

direct physical interactions. Miscellaneous phenomena

caused by molecular competition have been reported in a

variety of biological processes in diverse organisms. For

example, DNA binding sites on plasmids can compete for

transcription factor (TF) LacI to dictate its target gene

expression in Escherichia coli [14]. Noncoding RNAs

transcribed from enhancer or promoter region can

competitively bind to TF Yin-Yang 1 to trap the TF

locally thus maintain gene expression stability in mouse

embryonic stem cells [15]. mRNA, long-noncoding RNA

(lncRNA) and circular RNA molecules can competitively

bind to microRNAs (miRNAs) to regulate various

processes, such as cell growth [16], cell differentiation

[17] and tumor suppression [18]. Competition between

RNA binding proteins PGL-3 and MEX-5 for mRNA

drives polar positioning of phase-separated liquid com-

partments in Caenorhabditis elegans embryos [19].

Comprehensive analysis on reconstructed lncRNA

regulatory networks also suggested that many lncRNAs

act as decoys to titrate miRNAs, TFs or RNA binding

proteins from their targets [20]. Furthermore, competition

effects are especially important in synthetic gene circuits.

Every synthetic gene inevitably competes for common

resources with each other in circuits and with endogenous

biological processes, introducing unexpected circuit fail-

ures or host metabolic burdens [21–23]. In addition, when
one genetic element drives two or more downstream

elements, competition will modulate the dynamics of

signal transduction [24,25]. As a result, characteristics of

each single component are insufficient for the accurate

prediction of the whole circuit behavior, posing a serious

obstacle in synthetic circuit design and application.

Several mathematical frameworks and synthetic gene

experiments have been built to quantitatively understand

the diverse biological phenomena caused by competition.

For example, a thermodynamic model was used to explain

the TF titration effect in E. coli [14]. Kinetic model has

been adopted to analyze competing endogenous RNA

(ceRNA) regulation [26,27], and we further quantified the

ceRNA effect through synthetic gene circuits in human

cell line [28]. A minimal model based on delay

differential equations was established to describe ribo-

some allocation between endogenous and synthetic genes

in E. coli [29]. Queueing theory was introduced to

describe the protein degradation process in E. coli, where

target proteins as queues compete for degradation

machine ClpXP as server [30,31]. However, there is

still a lack of a systematical and quantitative under-

standing of common properties and underlying mechan-

isms behind these diverse phenomena to reveal the

essence of molecular competition.

Here we propose that regulations by competition are

ubiquitous, essential and multifunctional through diverse

biological regulatory processes. By abstracting the

analogous competition motif shared by diverse molecular

systems, we built a unified coarse-grained kinetic model

to systematically integrate experimental evidences in

diverse biological processes and analyze the common

properties shared among them. We organized these

properties from steady-state behavior to dynamic

responses, to quantify how competition could introduce

constraints and indirect regulations among the targets and

how the existence of competitors might influence

regulator-target response characteristics. This work

demonstrated the complexity and generality of the

molecular competition effect as a ubiquitous hidden

regulatory mechanism with diverse functions throughout

different biological processes, and therefore provided a

unified insight and a theoretical framework to understand,

control and take advantage of competition in both natural

and synthetic systems.

RESULTS

A unified coarse-gained competition motif model

To grasp the essence of molecular competition, we

summed up several representative competition scenarios

following the life cycle of gene expression (Figure 1),

including competitions for transcription factors by DNA

binding sites (Figure 1B), competitions for miRNAs and

ribosomes by RNA molecules (Figure 1C and 1D), and

competitions for degradation enzymes by target proteins

(Figure 1E). Inspired by previous models studying

ceRNA effect [26,28], we proposed a generalized

competition motif model, in which two target molecule

species (target #1 and #2, T1 and T2) competitively bind

with a shared regulatory molecule species (regulator, R)

(Figure 1A), to describe the similar competition topology

these cases share. In this model, each molecule species is

produced and degraded with certain rates, and the

regulator is dynamically bound to targets following

biochemical mass-action laws to form complexes (Figure

1F, see details in the Supplementary Materials). Loss rates

of regulator (α) and its competing targets (β) were

introduced to describe reactions from pure stoichiometric

(α ~ 1, β ~ 1) to pure catalytic (α ~ 1, β ~ 0 where enzymes

act as competitors, or α ~ 0, β ~ 1 when substrates act as
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competitors) [26]. In different biochemical scenarios,

experimentally measured signals may reflect different

component levels of the competition motif. For example,

the activity of targets could be mainly reflected by the

abundance of complexes (T C) when the regulator is an

activator, or by the abundance of the free targets (T F)

when the regulator is a repressor.

This unified model can describe competitions in

Figure 1. The coarse-gained competition motif model. (A) Basic structure of the competition motif. Downstream products can be

produced from either free targets or complexes. (B–E) Competition motifs abstracted from diverse competition scenarios. (B) DNA

binding sites competing for TFs. (C) RNA molecules competing for miRNAs. (D) mRNA molecules competing for ribosomes. (E)

Proteins competing for proteases. (F) Unified kinetic model of the competition motif.
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various biological processes (Supplementary Figure

S1A–S1D). Despite of different parameter settings, all

these cases share the core competition motif structure,

suggesting that they may share common characteristics.

In the following sections, we used this model to analyze,

in the scenario of either steady-state behavior or dynamic

response, how the competition introduces indirect

regulations between targets and how the existence of

the competitors influences the property of regulator-target

response.

Relative abundance determines the regulatory
patterns between competitors

Competition can cause crosstalk between targets. By

quantifying the competition effect of one target upon the

abundance of another target, recent studies have reported

two apparently different steady-state behaviors named

“threshold behavior” of ceRNA regulation in mammalian

cells [26] and “negative linear dependence” behavior of

synthetic gene expression in bacteria [32,33]. How

could competition generate such two vastly different

phenomena?

The model predicted that the relative abundance

between regulator and target determines the diverse

behaviors. Figure 2A and Supplementary Figure S2A

illustrates how molecular abundance changes along with

the gradual increment of T2’s production rate. The system

went through three regimes: “R abundant”, “R near-

equimolar” and “R scarce”, which are mainly determined

by the production rates of each component (kT1, kT2 and

kR), the loss rates of regulator (α1 and α2) and the loss

rates of targets (β1 and β2) (see details in the Supplemen-

tary Materials), and the threshold distinguish regimes of

the system (Figure 2A) can be approximated as

α1

β1
kT1 þ

α2

β2
kT2=kR: (1)

When the left-hand side (LHS) of Equation (1) is far

smaller than the right-hand side (RHS), the system enters

the “R abundant” regime, in which free T1 level (T1
F) is

not sensitive to the increment of free T2 level (T2
F).

However, when the system enters the “R near-equimolar”

regime (LHS of Equation (1) approximately equals to

RHS), T1
F becomes more sensitive to T2

F changes, thus

generates the threshold behavior (Figure 2B and Supple-

mentary Figure S2B). In contrast, T1 complex level (T1
C)

is substantially unchanged with respect to T2 complex

level (T2
C) except in the “R scarce” regime (LHS of

Equation (1) is far bigger than RHS), where T1
C displays a

negative linear dependence with T2
C (Figure 2C).

In the case of ceRNA regulation, where miRNA is a

repressor, target activity can be reflected by the free

mRNA level. Increments of ceRNA2 (T2
F) can raise free

ceRNA1 (T1
F) level indirectly by sequestering shared

miRNAs. Such derepression caused by ceRNA effect is

negligible when the level of ceRNA2 is far less than that

of miRNA (in the “R abundant” regime), but becomes

detectable when the level of ceRNA2 is comparable to that

of miRNA (in the “R near-equimolar” regime) [26,28]. In

contrast, when the regulator is an activator, target activity

can be represented by the level of complexes. Recently a

phenomenon called “isocost line” behavior, originally

studied in economics, was also found in synthetic

biological systems [32,33] that the expressions of two

fluorescent proteins in E. coli displayed negative linear

dependence, which was caused by competition for the

transcription and translation resources (acting as activa-

tor) by the two synthetic genes. Due to the high

expression level of these genes, the system was always

restricted to the “R scarce” regime, thus showed negative

linear dependence.

In summary, threshold behavior and negative linear

dependence are two aspects generated by the same

competition motif. The threshold behavior is observed

when the regulator is a repressor and the system transfers

from the “R abundant” to the “R near-equimolar” regime;

while the negative linear dependence occurs when the

regulator is an activator and the system is restricted to the

“R scarce” regime.

Competition can shape dose-response curve

How does competition modulate the response of target to

varying levels of a regulator? The dose-response curve,

which quantitatively describes the magnitude of such

responses, was systematically analyzed. Firstly, the dose-

response curve of free T1 (T1
F) level to the total regulator

(R) level without competition effect (without T2) was

calculated as the baseline. As expected [34–36], T1
F was

not sensitive to the regulator changes in the “R scarce”

regime, but became sensitive in the “R near-equimolar”

regime, thus forming some “threshold behavior” (black

line in Figure 2D and 2E). Then we analyzed how the

molecular levels and the kinetic parameters of the

competitor T2 might influence the shape of the R–T1
F

dose-response curve. We first considered the case that T1
and T2 have the same kinetic parameters to bind R.

Increments of T2 production could elevate the maximum

sensitivity to enhance the threshold behavior, and shift the

position of the maximum sensitivity to a higher R level in

the new “R near-equimolar” regime (Figure 2D and 2E).

We next fixed T2’s production rate and analyzed the

influence of other kinetic parameters. The relative binding

affinity was found as the key parameters to modulate the

R–T1
F dose-response curve. If T2

C was formed slowly

(small k2+) or dissociated rapidly (large k2–), T2 could

hardly alter the R–T1
F response. Along with the increment
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Figure 2. Steady state behaviors of competition systems. (A–C) Regimes of competition systems. (A) Abundances changes of each

component with the increment of T2’s production rate (kT2). (B) Abundance of T1
F as a function of that of T2

F. (C) Abundance of T1
C as

a function of that of T2
C. Blue, white and green areas represent “R abundant”, “R near-equimolar” and “R scarce” regime respectively.

Grey lines represent the approximate threshold (Supplementary Materials and Methods). (D–G) Dose-response curves modulated by

competition. (D–E) R–T1
F dose-response curves (D) and their derivatives (E) with different T2’s production rate (kT2). (F–G) R–T1

F

dose-response curves (F) and their derivatives (G) with different T2
C
’s dissociation rate (k2–). R represents the total abundance of

regulator (RF + T1
C + T2

C). Black lines represent the dose response curve without T2 (kT2= 0). (H) RF–T1 dose-response curves with

different kT2. T1
0 represents the abundance of T1

FwithoutR. Black line represents the dose response curve without T2 (kT2= 0). All the

curves with different kT2 are exactly overlapped. (I) Repression folds of all targets are determined by the same RF abundance in a

multi-target repression system.
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of T2 binding affinity (increasing k2+ or decreasing k2–),
T2’s competition blunted the sensitivity in the R~T1 near-

equimolar regime considering only R and T1, meanwhile

enhanced the sensitivity in the R~T1+ T2 near-equimolar

regime in the presence of T2 (Figure 2F–2G and

Supplementary Figure S2C–S2E).
The model analysis is consistent with the experimental

observations in diverse molecular competition scenarios

reported previously. In the case of ceRNA (Figure 1C),

the RNA competitors with comparable binding affinities

can enhance the maximum sensitivity and shift their

positions in the miRNA-target dose-response curve, and a

higher competing RNA level can cause a stronger

enhancement and shift [28]. Similarly, in the studies on

the TF titration effect (Figure 1B), introducing high

affinity competitive binding sites can greatly shift and

sharpen the response of primary target gene expression to

the TF [14,37]. In contrast, in the case of buffer solutions

in chemistry, for example the ammonium buffer, the weak

base NH4
+ compete with H+ for OH –, and NH4

+ has a

much lower binding affinity with OH – than H+

(Supplementary Figure S1E). When a mild change of

OH – (e.g., adding moderate amounts of NaOH or HCl) is

introduced into the solution, NH4
+ can buffer the response

of free H+ to OH –, thus keeping pH (potential of

hydrogen) almost constant in a certain range (see details

in the Supplementary Materials). In summary, introducing

the competitors can shape the R–T1
F dose-response curve.

A high affinity competitor can enhance the maximum

sensitivity and shift its position to a higher R level; while a

low affinity competitor may buffer the response. The

extents of such modulations are dictated by the abundance

of competitors.

However, it should be noticed that when it comes to the

response curve of a free primary target to the level of a

free regulator (RF–T1
F), the curve was not influenced by

the existence of competitor at all (Figure 2H). This is

because, rather than the total regulator abundance, the free

regulator abundance is the one that effectively determines

the kinetic reaction rate with each single target [38].

Thus, responses of two or more targets to the shared

regulator are mutually independent given the level of RF,

which provides an efficient way, by using RF level as the

medium, to analyze the relative regulatory efficiency

among multi-targets [39]. Once given the dose-response

of each component (RF–Ti
F, which could be separately

measured or calculated) and the expected regulatory

efficiency of a specific target, the level of all other targets

could be immediately predicted because they are all

exposed to the same free regulator level (Figure 2I, see

details in the Supplementary Materials). Such property is

especially important for designing synthetic circuits,

where we know the characteristics of each single part

and would like to predict the whole system’s behavior

when putting them together. This property has been

applied to siRNA design principle: by both in silico

simulation and experimental validation, we found that the

influence of a high off-target gene expression level could

be compensated by introducing a suitable number of

siRNAs, whereas off-target genes with strong binding

affinity should be avoided [28,39]. In summary, the dose-

response to the free regulator level is not influenced by

any competitors, therefore providing an efficient way to

extract the relative response relations in multi-target

networks.

Competition can delay or accelerate dynamic
response

How does the existence of competitors influence the

dynamic behavior of the system in response to a time-

varying regulator? To answer this question, we simulated

the response of a switching system with regulator level

changing between “ON” and “OFF” states (Figure 3A).

On the rising edge of R’s change, the existence of T2’s

competition always delays the response of both T1
F and

T1
C, because it can sequester R from binding with T1 and

may cause additional R loss via T2
C degradation, both of

which resist the increment of available R to regulate T1.

However, on the falling edge, competing can either

accelerate or delay the response depending on the kinetic

parameters (Figure 3B, 3C and Supplementary

Figure S3A–S3F, see details in the Supplementary

Materials). On the one hand, T2
C dissociation could

compensate R’s decrease, but on the other hand, T2
C

degradation may cause R loss, and these two opposing

effects can dominate the final modulation of the dynamic

response. T2 with a large complex degradation rate (g2)

and a large loss rate (α2) could lead to a quick response by

mediating more R loss (Figure 3B); while T2 with

different binding affinities could either accelerate or

delay the response under different parameter settings

(Figure 3C and Supplementary Figure S3C–S3F),
because T2 with a strong binding affinity can enhance

both R compensation and R loss via T2
C degradation at the

same time.

Recently, it has been experimentally observed that the

competition for LacI binding in E. coli delayed the rising

edge response, but accelerated the falling edge response

because of the loss of the regulator binding with targets

through degradation and dilution (large α2) [25]. On the

contrary, the existence of competitive binding sites for

transcription factor SKN7m in S. cerevisiae was found to

delay the response of the primary target on both the rising

and the falling edges [40], which implied that the

regulator might be protected from degradation when

binding with targets (g2 is small) [25,41]. In summary,

competition can modulate the dynamic response of some
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Figure 3. Dynamic properties of competition systems. (A) Quantitative measurements of response time. Δtr and Δtf represent the

alteration of response time on the rising and falling edge of R’s change respectively. Here response time is defined as the time taken

by T1
C level to change from 0% to 90% between its initial and final steady states. (B–C) Heatmaps of Δtf under different α2 and g2 (B),

or k2+ and g2 (C). (D) Schematic diagram of the target expression noise in the miRNA-target competition scenario.

(E–H) Modification of target expression noise by competition. (E) Product expression noise (CV(P1)) with different R’s production

rates (kR). (F) CV(P1) with different T2’s production rates (kT2) where T2 acts as a strong competitor. (G) CV(P1) with different kT2

where T2 acts as a weak competitor. (H) Comparison of CV(P1) with or without competition. Here miRNA-RNA competing system is

taken as an example. Black lines represent systemwithoutR. Dashed blue lines are highlighted as the basal lines in (F) and (G). The

thick blue and green lines in (H) are taken from (E) and (G) respectively. Black dots represent the approximate threshold (there are

no black dots on some curves because kT2 is too large to form the threshold). (I–K) Correlated fluctuations introduced by

competition. (I) Stochastic simulations of each component’s abundance in competition motif. (J–K) Correlations of T1
F and T2

F (J), or

T1
C and T2

C (K) changing with T2’s production rate (kT2). Black dots represent the approximate threshold.
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targets to their upstream regulators. This may implicate a

general parameter tuning method to adjust the response

dynamics in the presence of the competitors.

Competition can modify target expression noise
level

Competition can modulate the sensitivity and the speed of

a target response to a changing regulator, both of which

are highly relevant to target fluctuation [42,43]. A natural

question is how the existence of competitors may

influence noise in the system? Here we took miRNA

regulation as an example to analyze the noise level of

protein products (Figure 3D, see details in the Supple-

mentary Materials). In systems without R and T2, T1
expression noise is derived from fluctuations in transcrip-

tion, translation and degradation, and the coefficient of

variance (CV) of T1 gene expression approaches the

“power law”, as expected by the “1=
ffiffiffiffi

N
p

rule” proposed

by Schrödinger [44]. The introduction of R (miRNA) as

repressor can decrease the noise of lowly expressed

genes, meanwhile generate a noise peak in the “R near-

equimolar” regime for highly expressed genes (Figure

3E), consistent with previous studies [45,46].

Theoretical results indicated that the competition effect

of T2 could modify T1 expression noise significantly. As

expected, introducing T2 weakens R’s ability to suppress

T1, thus may impair the noise reduction in the low

expression zone. Interestingly, in the high expression

zone of T1, T2 with strong binding affinity with R may

elevate T1 noise level (Figure 3F); while T2 with weak

binding affinity may substantially depress T1 noise level

(Figure 3G). Therefore, comparing with the one-regula-

tor-one-target scenario, introducing higher level of

miRNAs and compensable weak competitors could

reduce target expression noise at the low expression

zone and suppress the noise peak introduced by miRNA

at the high expression zone at the same time, thus could

repress gene expression noise in a wide range (Figure

3H). In summary, competition effects may modulate gene

expression noise level, and in particular, abundant weak

competitors have the capability to buffer gene expression

noise globally (Supplementary Figure S3G–S3J).

Competition can introduce correlated fluctuation
between targets

Competition can not only modify the strength of target

fluctuation, but also couple fluctuations between these

targets (Figure 3I). Dynamic analysis of the model’s

behavior around steady state with different molecular

environments predicted that the free T1 (T1
F) and T2 (T2

F)

are positively correlated (Figure 3J), while the competitor

complexes (T1
C and T2

C) are negatively correlated (Figure

3K). The correlation strengths in both cases are

maximized in the “R near-equimolar” regime, and

gradually decrease with the system away from the regime.

This phenomenon has been predicted as the “correla-

tion resonance” by some previous theoretical analysis on

gene translation [47] and protein degradation [30,31].

Two kinds of proteins (T1
F and T2

F) competing for

degradation enzyme ClpXP (R) showed positive corre-

lated fluctuation, which reached the maximum when the

sum of two protein production rates approached to the

ClpXP’s processing capacity [30,31]. Another theoretical

analysis showed that in translation process, fluctuations of

mRNA-ribosome complexes (T1
C and T2

C) were nega-

tively correlated [47]. In summary, competition can

introduce negatively correlated fluctuation between free

targets and positively correlated fluctuation between

complexes, and both of their strength reach the maximum

in the “R near-equimolar” regime.

Regulator allocation to multiple targets

Regulators often bind more than two target species

simultaneously. How will a regulator be allocated to

multiple target species? A system with multiple targets

competing for the same regulator can be described by the

set of allocation equations (Figure 4A), where the

proportion of the regulator occupied by a certain target

in steady state is mainly determined by this target’s

abundance and its capabilities to bind to (and hence to

consume) the regulator (see details in the Supplementary

Materials). It was noticed that, the form of the regulator

allocation equation is analogous to Kirchhoff’s laws in

current divider circuits, where R’s production rate is

analogous to the total current, the capability of Ti
C to

consume R is analogous to the i-th branch current, and the

capability of Ti
F to occupy R is analogous to the i-th

branch conductance (the reciprocal of resistance)

(Figure 4B). Therefore, electronic circuits and biological

systems with competition may exhibit similar properties,

such as the “negative linear dependence” behavior when

resources are insufficient (in the “R scarce” regime) [33].

Such allocation equations have displayed in diverse

mathematical models, such as the reaction rates of product

formation in enzymatic reactions when multiple sub-

strates competing for the same catalytic enzyme under the

Michaelis-Menten kinetics [48], and the probabilities of

promoter-TF binding when multiple promoters competing

for the same TF under the thermodynamic model [49].

Meanwhile, this property has helped quantify the

allocations of the transcription or the translation resources

for synthetic gene circuits [23,33]. We also applied such

property to predict the miRNA occupancy on each target

site in a specific cell type with the miRNA and the target

RNA expression levels, and significantly improved the
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accuracy of the miRNA target prediction [50]. Those

miRNAs with significant occupancy changes during

tumorigenesis could serve as potent biomarkers in

addition to differentially expressed miRNAs.

DISCUSSION

Competition for limited resources is ubiquitous through-

out diverse molecular reactions in both natural and

synthetic biological systems. Using a coarse-gained

mathematical model, we systematically analyzed the

steady-state behavior and the dynamic properties of

various competition network motifs, from the view of

indirect regulations among the competitors as well as the

effects of the competitors on the regulator-target response

(Table 1). It should be noticed that, most of the mentioned

properties are connected with the concept of the regimes

determined by the regulator-target relative abundance

(Figure 2A–2C): threshold behavior occurs when system

transfers from the “R abundant” to the “R near-equimolar”

regime, and linear negative dependence happens when

system is in the “R scarce” regime; while the sensitivity of

the dose-response curve, the correlated fluctuation, and

the noise of the target level are all maximized in the “R

near-equimolar” regime.

Competition motif is a common network component. It

seldom functions as an isolated module in real-world

biological systems, but often interacts with other

components to form complex networks. For example,

simulation analysis on ceRNA regulation suggested that

additional targets and regulators connected with different

topology could enhance or weaken the ceRNA effect [26].

Theoretical analysis predicted that competition for

degradation enzyme could either promote or suppress

the robustness of biological oscillating circuit with

different topological structures [51]. In addition, competi-

tion motif could perform a variety of functions by

combining with other network motifs. For example,

cooperating with the positive feedback motif, competition

can generate the winner-take-all (WTA) behavior [52],

which have been applied to design in vitro molecular

circuits for supervised learning and pattern classification

using DNA strand displacement [53,54].

The unified competition model gives inspirations for

transferring knowledge among different molecular

scenarios, since similar molecular network topologies

may perform similar functions. For example, the case that

ceRNA competition can sharpen the dose-response curve

of miRNA regulation [28] is quite similar to that observed

for TF titration effect [14]. Such generality and feasibility

give us confidence to make new predictions based on the

competition model. For instance, the properties of pH

buffer solutions demonstrated that some weak competi-

tors could desensitize the response of the primary target to

the regulator, which implies the potential role of many

competitors as noise buffer. Functions of numerous

miRNA target sites have long been a mystery that each

miRNA species in mammalian cell could bind to

hundreds target RNA species, but only a small portion

of the targets with multiple high affinity binding sites

could be moderately repressed (rarely exceeds 2-folds).

That is to say, in most cases, miRNA binding are not

functioned as intensive repression [55]. Why are there so

many evolutionary conserved miRNAs and potential

targets if this is an inefficient regulatory mechanism? The

competition model provides a possible explanation that

Figure 4. Regulator allocation for multi-target competition. (A) Regulator allocation equations and schematic graph

representation. Rtotal represent the total abundance of regulator including free regulator and regulator in complexes. (B) Kirchhoff’s

laws in current divider circuits.

Table 1 Properties of regulation by competition

Regulation between targets
Influences on regulator-

target response

Steady-state

behavior

Threshold behavior

Negative linear

dependence

Regulator allocation

Shaping dose-response

curves

Dynamic

responses

Correlated fluctuation Response time modula-

tion Noise modifica-

tion
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such widespread miRNA competitors with low binding

affinity could buffer noise and stabilize gene expression.

Competition effect is one of the major challenges for

circuits design in synthetic biology. Synthetic gene

expression can lead to intracellular resource reallocation,

which may affect the performance of both exogenous

gene circuits and host gene networks simultaneously. It

may change the network structure of the original designed

circuits by introducing a hidden layer of regulation,

making it difficult to predict the whole circuit’s behavior

based on the characteristic of each individual component.

For example, competition for cellular resources may

reshape the response of genetic activation cascades in

E. coli [23], and multiple downstream genes competing

for upstream signal molecules may accentuate the “retro-

activity” [56]. It has been found that the induction

strength of the synthetic gene oscillator could influence

the growth rate of host cell, the expression of endogenous

genes, and the performance of the oscillator, such as

amplification and period [12]. On the other hand,

interestingly, using competition effect properly to reba-

lance synthetic circuits’ relation to the host cell is

emerging as an effective way to refine circuits perfor-

mance. For example, the robustness of the synthetic

oscillator can be greatly improved by introducing

competing binding sites for TF LacI to sharpen target

gene dose response curves and suppress gene expression

noise [57]. Models incorporating circuit-host competition

effects can predict synthetic gene behaviors better [58].

Reallocating the cellular translational resources by

introducing the endoribonuclease MazF circuit can

significantly enhance exogenous enzyme expression to

promote metabolite production [59]. Utilizing synthetic

miRNA and its competitive binding RNA sponges, a

RNA-based AND gate circuit was designed for selec-

tively triggering T cell-mediated killing of cancer cells

[60].

As discussed in this paper, competition of molecules

matters in diverse biological processes, not only con-

voluting regulations in cell, but also introducing plentiful

functions. The concept of regulation by competition and

its coarse-gained model provides a unified insight to

understand diverse molecular competition scenarios as

instances of a common underlying competition motif.

This view may help transfer knowledge between different

biological systems and provide a natural approach to

modulate biological networks by coupling or decoupling

components on the hidden layer.

MATERIALS AND METHODS

Detailed information about mathematical derivations and

simulations is available in the Supplementary Materials.

Parameters for simulations are shown in Supplementary

Table S1.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-018-0162-5.
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