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Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN).
We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hor-
mones, and inflammation, with a particular focus on early development and on lasting
effects of stress. Although the effects of acute and mild stress on AN are generally brief
and can be quickly overcome, chronic exposure or more severe forms of stress can induce
longer lasting reductions in neurogenesis that can, however, in part, be overcome by subse-
quent exposure to exercise, drugs targeting the stress system, and some antidepressants.
Exposure to stress, particularly during the sensitive period of early life, may (re)program
brain plasticity, in particular, in the hippocampus. This may increase the risk to develop
cognitive or anxiety symptoms, common to brain diseases like dementia and depression in
which plasticity changes occur, and a normalization of neurogenesis may be required for a
successful treatment response and recovery.

STRESS AND THE STRESS
RESPONSE

Environmental challenges are part of our daily
lives. In many instances, challenges can trig-

ger stress responses in an individual. Even
though stress is often perceived as being increas-
ingly present in our modern and demanding
industrialized society, the stress system itself is

a very old and essential alarm system that en-
ables an individual to adapt and respond to any
(perceived or real) threat in its environment.
Well conserved in evolution, yet highly sophis-
ticated, the stress system is activated in the brain
and body whenever a discrepancy occurs be-
tween the expectation of an organism and the
reality it encounters and when its homeostasis
is threatened.
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The Definition of Stress

Stressors can be psychological in nature, as in
the case of interpersonal, financial, and famil-
ial problems, a high psychosocial or job-related
demand, a loss of control, or lack of informa-
tion, which cause uncertainty about the future
outcome of a given situation or event (Ursin
and Eriksen 2004). Physical and more biological
changes, like severe blood loss or dehydration,
metabolic crises, or systemic inflammation, can
also elicit stress responses. On exposure to a
stressor, various sensory and cognitive signals
converge that trigger multiple processes in the
body and brain that help the individual to re-
gain homeostasis.

Stress is no single entity and different types
are distinguished. Stress can be acute (e.g., being
confronted with a predator) or chronic (living
in poverty or in a broken family). It may occur
only once, or may rather take place in a repeti-
tive manner that can eventually be anticipated.
Stress can be unpredictable and uncontrollable,
mild or severe, and occurring in or out of con-
text (e.g., of a learning experience). The percep-
tion of these stressors, and the magnitude and
duration of an individual’s response to it varies
considerably and depends to a large extent on
genetic background, sex, coping strategies, and
personality traits. Early life (EL) experiences,
epigenetics, and gene–environmental interac-
tions are also important (Joels et al. 2007,
2012; Koolhaas et al. 2011; Kim et al. 2013; Lu-
cassen et al. 2013b). Importantly, stress re-
sponses also occur following rewarding, “posi-
tive” and/or appetitive stimuli (e.g., winning a
competition, sexual activity). Although they are
often not considered as stressors in classic, gen-
erally “negative,” terms, the physiological re-
sponses they elicit can be as large as those seen
after more aversive stimuli. Here, stress is de-
fined as any environmental demand that ex-
ceeds the physiological regulatory capacity of
an organism, in particular, during situations
of unpredictability and uncontrollability. Hans
Selye already noted early on that the effects of
stress are generally first perceived and evaluated
via the brain and then develop in a stereotypic
manner. Thus, in response to a stressor, various

signals converge to orchestrate together an in-
tegrated response that “resets” many peripheral
and central processes and allows an individual
to adapt and, thereby, to restore and maintain
homeostasis.

Time Domains and Mediators of the Stress
Response

The physiological stress response can be divided
into a very quick and a more delayed response.
The first phase of the stress response, the
“alarm reaction,” or the “fight-fright-or-flight”
response, involves a rapid activation of the au-
tonomic nervous system (ANS) that causes epi-
nephrine and norepinephrine release from the
adrenal medulla. These hormones quickly ele-
vate basal metabolic rate, blood pressure, and
respiration, and increase blood flow to the or-
gans essential for the “fight-or-flight” response,
such as heart and muscles. At a later stage, the
hypothalamic–pituitary–adrenal (HPA) axis is
activated as well. In this classic neuroendocrine
circuit, limbic and hypothalamic brain struc-
tures coordinate emotional, cognitive, neuroen-
docrine, and autonomic inputs, which together
determine the magnitude and specificity of an
individual’s behavioral, neural, and hormonal
responses to stress (Joels and Baram 2009; Joels
et al. 2012).

This second HPA response is mediated by
glucocorticoid (GC) hormones (corticosterone
in rodents and cortisol in humans). These
steroid hormones are transcriptional regulators
of GC-responsive genes and, thus, act in a
slow, genomic manner. Nongenomic, much
faster GC actions have also been described and
their actions are mediated by membrane-bound
receptors. It should be emphasized that other
signaling pathways act in concert with the HPA
axis, like the gonadal axis, the adipose–meta-
bolic system, and the immune system. All of
these help to (re)direct energy resources such
that attention can be focused on the most ur-
gent and important elements of the challenge.
Consequently, other less urgent “maintenance”
functions (e.g., food digestion or reproduc-
tion) are temporarily suppressed (Joels et al.
2012).
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HPA Axis, Stress, and Depression

Activation of the HPA axis is triggered by corti-
cotropin-releasing hormone (CRH) in the para-
ventricular nucleus (PVN) that induces adreno-
corticotropic hormone (ACTH) release from the
pituitary, which, in turn, releases GCs from the
adrenal. Regulation occurs through negative
feedback after GC binding to high-affinity min-
eralocorticoid (MR) and lower affinity gluco-
corticoid receptors (GRs) (de Kloet et al. 2005).
The GR helps to maintain GC levels within phys-
iological limits (Kretz et al. 1999; Erdmann et al.
2008), and aberrant GR expression has been im-
plicated in hypercortisolism, stress resistance,
anxiety, and depression (de Kloet et al. 2005;
Ridder et al. 2005; Wei et al. 2007). Furthermore,
GC plasma levels are under strict circadian and
ultradian control (Qian et al. 2012; Liston et al.
2013), which, together with GR and MR, deter-
mine sensitivity to stress (Sousa et al. 2008;
Pruessner et al. 2010; Harris et al. 2013; Medina
et al. 2013).

On their release in the periphery, GCs affect
energy, inflammatory responses, and lipid me-
tabolism, among others. Given the involvement
of many organs and neuronal systems, imbal-
ances in stress-hormone regulation can have del-
eterious consequences (de Kloet et al. 2005).
This is particularly relevant for the brain, in
which powerful corticosteroid hormones can in-
fluence memory, fear, and attention. Although
acute and short-term stress is generally adaptive,
exposure to chronic stress may cause an MR/GR
imbalance or down-regulation (de Kloet et al.
2005; Qi et al. 2013), which can alter HPA feed-
back and results in overexposure of the brain and
body to stress hormones and may increase the
risk for psychopathology.

The large number of GRs in the brain and
particularly in the hippocampus make this
structure highly responsive to changes in stress
hormones (de Kloet et al. 2005; Swaab et al.
2005; Wang et al. 2013; Lucassen et al. 2014).
In contrast to the relative paucity of GRs in the
rhesus monkey (Sánchez et al. 2000), the rodent
and human hippocampus show abundant GR
expression, both in CA1 and dentate gyrus (DG)
neurons and astrocytes, although MRs are pres-

ent in the hippocampus too. Both receptors have
considerable genetic diversity in humans, and
changes in GR/MR variants have been implicat-
ed in disorders related to chronic stress, like ma-
jor depressive disorder (MDD) and in the asso-
ciated reductions in hippocampal volume (Czéh
and Lucassen 2007; Wang et al. 2012, 2013, 2014;
Vinkers et al. 2014).

Functionally, chronic stress is associated
with reductions in hippocampal excitability,
long-term potentiation, and hippocampal
memory, but positive effects of stress have been
described too that depend on, among other fac-
tors, the timing, type, and controllability of a
stressor (Joels et al. 2007, 2012). The morpho-
logical consequences of chronic stress include
hippocampal volume reductions as well as a
number of cellular changes, most notably den-
dritic atrophy and a suppressed rate of adult
neurogenesis (AN) (see below) (Sapolsky et al.
1985, 1990; Lucassen et al. 2014).

ADULT NEUROGENESIS

AN refers to the production of new neurons,
derived from stem cells present in the adult
brain. Following different subsequential stages
of proliferation, selection, fate specification,
migration, and neuronal differentiation, new,
functional neurons are eventually integrated
into the pre-existing adult hippocampal net-
work (Abrous et al. 2005; Zhao et al. 2008; Kem-
permann 2012; Jessberger and Gage 2014). AN
is dynamically regulated by various environ-
mental factors and declines with age. Indica-
tions of AN have also been reported in other
brain structures like the amygdala, striatum, hy-
pothalamus, and neocortex, with differences
between species and often in response to spe-
cific challenges or injury. Neurogenesis in the
DG is potently stimulated by exercise and en-
vironmental enrichment, parallel to changes
in hippocampal function (Kempermann et al.
2010; Vivar et al. 2013). Rewarding experi-
ences stimulate neurogenesis, and aversive ex-
periences like stress generally decrease neuro-
genesis (Balu and Lucki 2009; Lucassen et al.
2010a).

Neurogenesis, (Early) Stress, and Inflammation
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Stress Regulates Adult Hippocampal
Neurogenesis

Stress is one of the best-known environmental
suppressors of AN. Both psychosocial (Gould
et al. 1997; Czéh et al. 2002) and physical stres-
sors (Malberg and Duman 2003; Pham et al.
2003; Vollmayr et al. 2003) can inhibit one or
more phases of the neurogenesis process (Mi-
rescu and Gould 2006; Lucassen et al. 2010a). In
classical studies, rodents exposed to the odor of
a predator generated a strong stress hormone
response that was associated with significant re-
ductions in hippocampal proliferation. Both
acute and chronic stress exposure can suppress
proliferation (Gould et al. 1997; Czéh et al. 2002;
Heine et al. 2004a,b; Schoenfeld and Gould
2013; Wu et al. 2014), although different types
of stress, including physical restraint, social de-
feat, inescapable foot shock, sleep deprivation,
and mixed types of multiple, unpredictable, or
mild stressors, also decrease numbers of new
neurons in the DG. Interestingly, increases in
neurogenesis have also been reported after stress
in some instances, but in these studies, the
stressors were predictable and mild and may
actually have enriched an otherwise boring en-
vironment and could have been perceived as
rewarding experiences (Parihar et al. 2011). In
fact, reward, possibly mediated through dopa-
mine, is known to enhance neurogenesis.

When no other transmitter systems are al-
tered and the stressor is unpredictable and its
nature severe, stress generally reduces neurogen-
esis. In fact, this type of stress can reduce multiple
stages of the neurogenic process, including the
initial phase of proliferation of the neural stem
cells and amplifying progenitor cells, as well as
subsequent neuronal differentiation phase and
dendritic expansion. Stress not only reduces pro-
liferation and neurogenesis in many different
species, it may also shift neural stem cells away
from neuronal differentiation and instead “redi-
rect” them toward the generation of oligodendro-
cytes (Chettyet al. 2014). Although not studied in
great detail yet, such stress-induced fate shifts may
have important functional consequences, for
example, for the myelination of axons and/or
mossy fibers and, hence, network connectivity.

Although different types of stress trigger dif-
ferent behavioral and functional responses, the
adrenal glucocorticoid hormones (GCHs, cor-
ticosterone in rodents, and cortisol in man) are
considered the main common pathway that is
instrumental in mediating the effects of stress
on new neuron production (Schoenfeld and
Gould 2013). Exogenous administration of
GCs to animals has similar effects on cell pro-
liferation, neuronal differentiation, and cell sur-
vival, as well as on the production of oligoden-
drocytes and microglia responses. Moreover,
the reductions in neurogenesis after stress, and
many molecular alterations as well (Datson
et al. 2012), can be prevented by blocking GC
release from the adrenal, or by blocking the GR
or other HPA parameters using, for example,
CRH antagonists (Alonso et al. 2003). Follow-
ing a 3-wk exposure to multiple unpredictable
stressors, a short treatment of 1 or 2 days with
the GR antagonist mifepristone normalized the
reduction in hippocampal neurogenesis (Mayer
et al. 2006; Oomen et al. 2007; Hu et al. 2012).

Although more information has become
available on its molecular control (Schouten et
al. 2012; Anacker et al. 2013; Fitzsimons et al.
2013; Miller et al. 2013), the precise mechanism
by which GCs decrease the number of new neu-
rons remains unknown, but N-methyl-D-aspar-
tate (NMDA) receptors, GRs and MRs, are pres-
ent on the new cells, albeit in different ratios
over time, and they likely act in concert to me-
diate effects of stress on the neurogenic process
(Montaron et al. 2003; Wong and Herbert 2004,
2005). Notably, GR knockdown, selectively in
cells of the hippocampal neurogenic niche,
accelerates their neuronal differentiation and
migration. GR knockdown further induced ec-
topic positioning of a subset of the new granule
cells, altered their dendritic complexity, and
increased their number of mature dendritic
spines. Consistent with the increase in synaptic
contacts, newborn cells with GR knockdown
show increased basal excitability, parallel to im-
paired contextual freezing during fear condi-
tioning (Fitzsimons et al. 2013). Hence, GR ex-
pression in the newborn hippocampal cells is
important in mediating synaptic connectivity,
structural as well as functional integration into
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the mature hippocampal circuits involved in
fear memory. Furthermore, the precursors are
located close to blood vessels. This proximity
suggests a strong interaction with the vascula-
ture, which is of relevance as it is indeed this
population that is particularly sensitive to stress
(Heine et al. 2005). Also, astrocytes are impor-
tant as this cell type supports the survival of
developing neurons, possess GR, and are affect-
ed by some, but not all, types of stress (Czéh
et al. 2006; Banasr and Duman 2008; Oomen
et al. 2009).

Stress further slows down neuronal differ-
entiation, as evidenced by the up-regulation of
markers indicating cell-cycle arrest, the expres-
sion of immature neuronal markers, and related
changes in granule cell dendritic trees. Further-
more, stress and the resulting rise in GCs reduce
the survival of neurons produced before the
stressful experience. Although the underlying
mechanism is largely unknown, this is thought
to be mediated by inhibitory effects of stress on
the expression of neurotrophins and survival-
promoting factors like brain-derived neurotro-
phic factor (BDNF) (Schmidt and Duman
2007). The reduction in survival likely also in-
volves microglia, which are known to phagocy-
tose the new neurons in the DG (Sierra et al.
2010; Hinwood et al. 2012; Morris et al. 2013).
Indeed, stress influences microglia numbers, as
well as their responsivity, which may modulate
their efficiency in cleaning up debris left behind
by dead new neurons. Alternatively, microglia
could play an active role in reducing new neuron
survival, either by releasing cytokines with neu-
rotoxic effects, or by actively engulfing new neu-
rons before their demise.

Although a role for (nor)adrenaline has not
been studied in detail with respect to the stress-
induced suppression of neurogenesis, an im-
portant difference among several studies is
whether GC levels remain elevated after the ex-
posure to the stressor has ended. In some psy-
chosocial stress models, the GC “milieu” is al-
tered and GC levels remain elevated long term,
which has stronger inhibitory effects on AN
than apparently severe, but predictable, physical
stressors like restraint (Wong and Herbert
2004). Several examples exist of a persistent

and lasting inhibition of AN after an initial stres-
sor, despite a later normalization of GC levels
(e.g., Czéh et al. 2002; Mirescu and Gould 2006;
Schoenfeld and Gould 2013). Also, GC levels
can remain elevated after the onset of the first,
often psychosocial, stressor that suppresses neu-
rogenesis for prolonged periods. In other milder
models of stress, stress hormone levels generally
normalize, yet neurogenesis remains reduced
(Van Bokhoven et al. 2011; Schoenfeld and
Gould 2013). This suggests that, although GCs
are involved in the initial suppression of prolif-
eration, they are not always necessary for the
maintenance of this effect.

When studying effects of stress on AN in
laboratory conditions, it is further important
to realize that many variables influence the out-
come of such studies. Interindividual and gen-
der differences in stress coping, handling, time of
day at sacrifice, and previous exposure to stress-
ful learning tasks can all influence stress respons-
es and changes in neurogenesis (e.g., Holmes
et al. 2004; Ehninger and Kempermann 2006).
An interesting contradiction exists in this respect
regarding the direction of the generally positive
effect of exercise on AN. Exercise is generally
associated with beneficial changes, also in its
effects on mood (Ernst et al. 2006; Brené et al.
2007; Kannangara et al. 2011; Vivar et al. 2013)
and known to potently increase neurogenesis.
Paradoxically, GCs are also increased during
running. Moreover, although initial effects of
exercise on proliferation are stimulatory, pro-
longed running may activate the HPA axis and
the opioid system, and down-regulate progeni-
tor proliferation rate (Droste et al. 2003; Naylor
et al. 2005; Lou et al. 2008). Hence, particularly
when exercise is prolonged, it can develop into a
stressor that reduces, or even overrules, its pos-
itive effects on AN (Droste et al. 2003). This
appears to depend on duration of voluntary run-
ning as examples exist of extended exercise for
over 6 months in young or middle-aged rodents
that continued to stimulate neurogenesis (Kro-
nenberg et al. 2006; Marlatt et al. 2012). Hence,
positive stimuli for AN can be most effective
when at least HPA axis activation is minimal.

One other explanation for differences
among seemingly comparable studies is that,
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in addition to stress hormones like GCs, other
mediators of the stress system are changed that
interact with the regulation of neurogenesis.
Models using repeated injections with exoge-
nous GCs to imitate the hypercortisolism found
in depression exert negative feedback at the level
of the pituitary and inhibit the endogenous pro-
duction of GCs by the adrenal. As a result, ACTH
and CRH levels are very low in GC-treated ro-
dents, a condition that is in contrast to the en-
dogenous HPA axis activation seen in chronical-
ly stressed animals and patients in which CRH,
ACTH, and GCs are elevated. A large number
of other factors may also contribute to the
stress-induced inhibition of AN, like the stress-
induced increase in glutamate release via NMDA
receptor activation (Gould et al. 1997; Nacher
and McEwen 2006; Schoenfeld and Gould 2013).

Stress further affects various neurotrans-
mitters implicated in the regulation of neuro-
genesis: g-aminobutyric acid (GABA) (Ge et
al.2007), serotonin(Djavadian2004),noradren-
alin (Joca et al. 2007), acetylcholine (Bruel-
Jungerman et al. 2011), and dopamine (e.g.,
Domı́nguez-Escribà et al. 2006; Takamura et al.
2014). Other neurotransmitter systems, such as
the cannabinoids, opioids, nitric oxide, various
neuropeptides, and gonadal steroids, may also
contribute (e.g., see Galea 2008; Balu and Lucki
2009). Importantly, stress is well known to re-
duce the expression of several growth and neuro-
trophic factors, like BDNF, insulin-like growth
factor 1 (IGF-1), nerve growth factor (NGF),
epidermal growth factor (EGF), and vascular
endothelial growth factor (VEGF), which can
influence neurogenesis (e.g., see Schmidt and
Duman 2007; Wilson et al. 2014).

Stress-induced reductions in proliferation
could be the result of various causes. They may
result from apoptosis of progenitor cells, but
also from a slowing down of the cell cycle and
induction of cell-cycle arrest. Consistent with
this, reductions in proliferation after acute stress
are paralleled by increases in apoptotic cells,
although it is not yet known whether these
cells represent newborn or mature neurons. Fol-
lowing chronic stress, both proliferation and
apoptosis were reduced, and expression of the
cell-cycle inhibitor p27Kip1 was increased. This

indicated that more cells had entered cell-cycle
arrest and, thus, that granule cell turnover had
slowed down (Heine et al. 2004a).

Chronic stress can also affect proliferation of
glial cells. This was shown in the medial prefron-
tal cortex of rats after social defeat, after chronic
unpredictable stress, or after chronic corticoste-
rone administration. Similarly, prolonged and
elevated GC treatment inhibited NG2-positive
cell proliferation, reflecting changes in oligo-
dendrocyte precursors. Chronic stress also pro-
motes structural remodeling of microglia and
can enhance the release of proinflammatory cy-
tokines from microglia. Finally, astrocytes are
key components of the “neurogenic niche” that
provides the necessary local microenvironment
for the generation of neurons in specific brain
areas. They support maturation and integration
of newborn neurons, both physically and by
releasing a cocktail of growth factors and cyto-
kines. Because astrocytes also contain GRs and
can be regulated by stress, this together implies
that stress can also modulate neural progenitors
through interactions with astrocytes (Wang
et al. 2013; Vallières et al. 2002).

Stress-induced suppression of AN has been
associated with impaired performance on vari-
ous cognitive tasks that require the hippocam-
pus, such as spatial navigation learning and ob-
ject memory. It should be noted that stress has
been shown to facilitate certain types of learn-
ing, but these effects are typically observed
within a shorter time frame than what would
be expected for the involvement of new neurons
per se. In addition, there are always additional
younger immature and excitable neurons, as
well as the older, existing population of DG cells
that may be sensitive too, and could contribute.
Furthermore, stressful experiences have been
shown to increase anxiety-like behaviors, in-
cluding those measured with the elevated plus
maze, open field, and novelty suppressed feed-
ing tasks (see Oomen et al. 2014).

Neurogenesis and Depression

Antidepressants are well known to affect hippo-
campal neurogenesis, possibly also in the hu-
man brain. Given the technical limitations to
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visualize neurogenesis in vivo, only a few studies
have addressed this issue in postmortem tissue.
Reif et al. (2006) failed to find differences in the
level of neural stem-cell proliferation in post-
mortem brain samples among patients suffer-
ing from MDD, bipolar disorder, schizophre-
nia, or control subjects. Antidepressants did
not increase neural stem-cell proliferation but,
unexpectedly, significantly reduced the number
of newly formed cells found in schizophrenic
patients. More recent studies (Boldrini et al.
2009, 2012; Lucassen et al. 2010b, 2014) com-
pared progenitor and dividing cells and found
that, in untreated depressed subjects, numbers
of nestin-positive progenitors were significantly
decreased. Both serotonin reuptake inhibitor
(SSRI) and tricyclic antidepressant (TCA) treat-
ment increased the number of nestin-positive
progenitors, and TCAs had a robust stimulatory
effect on the number of Ki-67-reactive dividing
cells. These changes were reported in middle-
aged, but not older, depressed patients, possibly
because of age-related differences in plasticity in
these patients. In a recent postmortem study on
MDD patients, the volume of the histologically
defined DG was in fact 68% larger in SSRI-treat-
ed depressed subjects, although SSRI treatment
substantially increased neural progenitor cells
(NPCs) in the DG. A more recent study by
Huang et al. (2013) found smaller DG volumes
at magnetic resonance imaging (MRI) in un-
medicated depressed patients, although a post-
mortem analysis reported the same, which is
consistent with the neurogenic hypothesis of
depression. Interestingly, both subfield and pos-
terior hippocampal volume reductions were
only seen in unmedicated depression but were
absent in patients treated with antidepressants.
Although it is so far not simple to detect ongo-
ing neurogenesis in vivo (Manganas et al. 2007),
these data are consistent with preclinical studies
demonstrating subregional specific and oppo-
site effects of stress or depression and antide-
pressant treatment.

Although AN may, thus, not be essential for
the development of depression, it may be re-
quired for clinically effective antidepressant
treatment (Jacobs et al. 2000; Sahay and Hen
2007; Kempermann et al. 2008; Surget et al.

2008; Lucassen et al. 2010a,b). Hence, stimula-
tion of neurogenesis has been regarded as a
promising strategy for identifying new antide-
pressant targets. Accordingly, when tested in
chronic stress paradigms, several candidate an-
tidepressant compounds, like corticotrophin-
releasing factor (CRF-1), vasopressin (V1b) or
GR antagonist (Alonso et al. 2003; Oomen et al.
2007; Surget et al. 2008), tianeptine (Czéh et al.
2001), or selective neurokinin 1 (NK-1) recep-
tor antagonists (Czéh et al. 2005), could indeed
normalize inhibitory effects of stress on prolif-
eration or neurogenesis.

Hippocampal volume loss is well docu-
mented in various psychopathologies and in
patients with Cushing’s disease or in subjects
treated with synthetic GCs (Sousa et al. 1998;
Bourdeau et al. 2002). Although depression was
traditionally considered to have a neurochemi-
cal basis, structural connectivity and plasticity
changes, including neurogenesis, may contrib-
ute to its etiology as well. Later studies have
suggested that neurogenesis is implicated in
antidepressant drug action (Perera et al. 2011;
Surget et al. 2011), but it remains elusive how
exactly newborn neurons contribute to mood
and depression, besides their cognitive deficits,
which are related, but not specific to mood dis-
orders (Revest et al. 2009; Snyder et al. 2011;
Anacker and Pariante 2012; Lehmann et al.
2013; Lucassen et al. 2013a,b).

Although a reduced rate of neurogenesis
may reflect impaired hippocampal plasticity,
reductions in AN per se (i.e., without the pres-
ence of stress), are unlikely to produce depres-
sion. Lasting and stress-related reductions in
DG neurogenesis will, however, alter the average
age and overall composition of the DG cell pop-
ulation, and thereby influence the properties
and vulnerability of the hippocampal circuit,
which may, in the long term, modify volume
(Teicher et al. 2012). Indeed, hippocampal vol-
ume changes often coincide with stressful epi-
sodes in depressed patients, correlating with
cognitive impairments. The hippocampus fur-
ther provides negative feedback control of the
HPA axis, in which neurogenesis is at least partly
implicated. Initial disturbances in hippocampal
neurogenesis or output may, thus, disturb feed-
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back and, hence, amplify HPA-axis dysregula-
tion, which is common in �50% of depressed
patients. Because massive cell loss could not be
demonstrated in the hippocampus, the ob-
served hippocampal volume changes could be
caused by (atrophy of ) the somatodendritic or
synaptic components, glia, or from changes in
fluid balance (Lucassen et al. 2014). Another
structural substrate responsive to stress is AN.

LONG-LASTING EFFECTS OF PERINATAL
STRESS EXPOSURE

AN is sensitive to stress exposure during the EL
period. The set point of HPA axis activity, and
possibly also of neurogenesis regulation, is, on
the one hand, programmed by genotype, but
can be further modified by early development
and epigenetic changes (Lucassen et al. 2013b).
In humans, early life stressors (ELS) are among
the strongest predisposing factors for develop-
ing psychopathology and cognitive decline later
in life (Heim et al. 2008; Loman et al. 2010;
Maselko et al. 2011; Baram et al. 2012; Teicher
et al. 2012). In experimental conditions, ELS
has been shown to affect emotional and cogni-
tive functions as well. Indeed, stress reactivity is
elevated and cognitive functions are impaired in
rats exposed to ELS (Brunson et al. 2005; Aisa
et al. 2007; Ivy et al. 2010; Oomen et al. 2010;
Baram et al. 2012).

Are these alterations associated with changes
in neurogenesis? Rodent studies over the past
decades have shown that neurogenesis appears
to be very sensitive to stress, particularly when
stress occurs during the perinatal period (Korosi
et al. 2012). Also, perinatal stress can induce
reductions in AN in the offspring (Lemaire
et al. 2000; Coe et al. 2003; Lucassen et al.
2009) (although exceptions have been reported
[Tauber et al. 2008]). Such reductions may, in
part, occur through epigenetic modifications,
often in a sex-dependent manner (Lucassen
et al. 2013b). Perinatal stress in male rats was
generally found to suppress neurogenesis (Mi-
rescu et al. 2004; Korosi et al. 2012). The effects
appear to be region specific: prenatal stress im-
paired neurogenesis in the DG but not in the
olfactory bulb (Belnoue et al. 2013). The overall

effect of stress on neurogenesis also depends on
the developmental stage during which the or-
ganism experiences stress. Thus, in utero expo-
sure to stress or to a variety of pharmacological
agents almost invariably reduces neurogenesis
in adulthood (Korosi et al. 2012). Postnatal ex-
posure to stress yields more variable results, and
is modified by maternal and paternal factors,
sex, genetic background, and epigenetic chang-
es, although suppression of neurogenesis pre-
vails here as well (Leuner et al. 2010; Lucassen
et al. 2010a,b, 2013b; Koehl et al. 2012; Loi et al.
2014). Neuronal survival was decreased and
apoptosis was increased in offspring of low-
caring mothers versus offspring of high-caring
mothers (Weaver et al. 2002; Bredy et al. 2003).
In addition, repeated maternal separation (MS)
leads to transiently increased (Nair et al. 2007)
and lastingly decreased levels of proliferation
(Mirescu et al. 2004), without affecting neuro-
nal survival (Mirescu et al. 2004; Greisen et al.
2005) in the DG of the offspring. MS alters the
capacity of adult neural precursor cells to differ-
entiate into neurons via methylation of retinoic
acid receptor gene promoter (Lucassen et al.
2013a,b; Boku et al. 2015).

Similarly, maternal deprivation (MD) is
found to transiently increase numbers of im-
mature (doublecortin [DCX]-positive) neurons
in rats at 3 wk of age (Oomen et al. 2009), ulti-
mately leading to reduced proliferation
throughout the full rostrocaudal axis of the
DG, and reduced differentiation in the caudal
part of the DG at 10 wk of age (Oomen et al.
2009). The evidence presented above suggests
that the ELS-induced reduced neurogenic ca-
pacity observed later in life might be caused by
an increase in neurogenesis during the postnatal
phase that might result in depletion of the neu-
rogenic pool. More importantly, the conse-
quences of EL environment depend on the mo-
ment at which neurogenesis is determined.
When tested in adulthood or middle-age, cell
proliferation and neurogenesis were usually
found to be decreased. Yet, at earlier stages, for
example, at P9 (Naninck et al. 2015), PND21
(Suri et al. 2013), neurogenesis in males is actu-
ally enhanced by ELS, as was BDNF expression
and performance in a stressful version of the
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Morris water maze (Oomen et al. 2010, 2011).
Apparently, EL adversity can transiently im-
prove dentate functionality, possibly to allow
the organism to survive in adverse conditions.
However, in the long run, EL adversity seems to
program structural plasticity such that it may
become a disadvantage (Mirescu et al. 2004; Lo-
man et al. 2010; Korosi et al. 2012), most notably
under low to moderately stressful conditions.
Interestingly, when tested under stressful condi-
tions, experiencing MD rather improved learn-
ing memory in these rats. In fact, contextual
learning was enhanced in both contextual and
cued fear-conditioning tasks, and, in the pres-
ence of corticosterone, long-term potentiation
(LTP) was facilitated in male but not female MD
rats (Oomen et al. 2010, 2011).

These data suggest that adverse EL events
might increase the sensitivity of the hippocam-
pus to the future surrounding environment and,
hence, prepare the organism to respond opti-
mally to stressful contexts encountered later in
life (Koehl et al. 2012). Levels of neurogenesis in
MD rats re-exposed to stress in adulthood were
not measured in these studies; however, these
results at the functional level may indicate that
postnatal stress affects the responsiveness of the
DG plasticity to the surrounding environment.
Overall, this gives rise to a significant negative
correlation among the number of proliferating
(Ki-67 or bromodeoxyuridine [BrdU]-positive
cells) or DCX-positive neurons and age in male
rodents. Strikingly, different effects of ELS on
learning and memory and neurogenesis are
seen in female rats. Although neurogenesis is
enhanced at PND21 in male rats exposed to
24 h of MD at PND3, a strong suppression was
reported in females. However, in females, the
consequence of EL adversity for the number of
DCX-positive cells subsides with age, resulting
in an overall positive correlation between the
numberof DCX-positive cells and age. Similarly,
in mice, chronic ELS affects male’s cognitive
function and rates of survival of adult-born
neurons more robustly when compared with
females (Lucassen et al. 2013a,b; Naninck et al.
2015).

Also, the effects of prenatal stress on neuro-
genesis are often sex dependent. Male rats show

a brief period in adolescence during which neu-
rogenesis, BDNF expression, and spatial learn-
ing are actually improved, possibly allowing the
individual to temporarily compensate for the
effects of EL adversity. Female rats do not
show such a period of improved performance
but rather show a very strong suppression of
neurogenesis during the prepubertal period,
which then subsides with age. Although the
readouts studied were not always specific for
neurogenesis, the consequences of this period
of suppressed neurogenesis in females, though,
may be long lasting. For instance, female rats
exposed to 24 h of MD at PND3 showed a lower
total number of mature granule cells in adult-
hood, potentially limiting the number of syn-
aptic contacts that can be established in this
region. Finally, it is important to mention that
levels of neurogenesis are permanently affected
also by other ELS not necessarily related to the
mother–infant interaction alone. For example,
ELS inflammation (Jakubs et al. 2008; Mus-
aelyan et al. 2014), radiation therapy (Fukuda
et al. 2005; Naylor et al. 2008; Hoffman and
Yock 2009), anesthesia (Zhu et al. 2010), stroke
(Spadafora et al. 2010), infection (Bland et al.
2010), and ethanol exposure (Singh et al. 2009)
induce long-lasting effects on neurogenesis as-
sociated with late-onset cognitive impairment.

Thus, the studies described have shown that
EL experiences during both pre- and postnatal
development can bidirectionally alter hippo-
campal neuronal plasticity and synaptic integ-
rity. This strongly supports the possibility that
these structural changes might be involved in
affected cognition. This has recently been sup-
ported by a novel causal statistical methodology
demonstrating that cognitive impairments in-
duced by ELS are largely neurogenesis-depen-
dent (Naninck et al. 2015).

STRESS-RELATED NEUROINFLAMMATION
AND ITS ROLE IN REGULATING
NEUROGENESIS

As it elicits a peripheral defense of the body to
injury or the entry of exogenous antigens, in-
flammation, in a way, also represents a stressor.
Several studies have now shown that inflamma-
tion per se, as well as some of the cell types
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involved (i.e., the glia cells), can also affect neu-
rogenesis. Particularly microglia are considered
instrumental in this (Sierra et al. 2010; Morrens
et al. 2012; Morris et al. 2013; Kreisel et al. 2014;
Musaelyan et al. 2014), given their homeostatic
role in inflammatory signaling that may become
maladaptive in the chronically stressed brain.
Under physiological conditions, microglia show
a ramified phenotype involved in homeostasis
of brain functioning, and associated with the
production of anti-inflammatory and neuro-
trophic factors. When primed, by ELS or chal-
lenged by pathogens or damaged during adult
life, microglia can switch to an amoeboid phe-
notype thereby gaining macrophage-like prop-
erties, including phagocytosis of tissue debris,
as well as initiation of tissue repair or rather
produce cytokines that are detrimental for neu-
ronal function and viability (Bilbo et al. 2007;
Bilbo and Schwarz 2009; Bland et al. 2010).

Other evidence suggests that microglia can
have a dual role and, depending on their state of
activation, they can either inhibit or stimulate
AN both in the intact and injured brain (Ekdahl
et al. 2009). It is also conceivable that various
functionally divergent subpopulations of mi-
croglia exist, some having pro-, others anti-
neurogenic effects (Ekdahl et al. 2009). Specific
subsets of cytokines can even be proneurogenic
although others decrease neurogenesis through
interleukin (IL)-1b (Kaneko et al. 2006; Zun-
szain et al. 2012). Proinflammatory mediators
can further restrict neurogenesis (Iosif et al.
2006). The effect of stress on hippocampal neu-
rogenesis may in part be mediated by pro-
inflammatory cytokines. The HPA axis is not
only activated by stress, but also during disease
processes, and by proinflammatory cytokines,
such as IL-6 or exogenous interferon (IFN)-a
(Cassidy and O’Keane 2000). During inflam-
mation, cells of the immune system produce
proinflammatory cytokines, such as IL-1 and
IL-6, which elicit various (patho)physiological
reactions, that together coordinate the “nonspe-
cific symptoms of sickness” and activate the
HPA axis (Berkenbosch et al. 1987); elevated
GC levels are generally immunosuppressive
and then prevent the immune system from over-
shooting. Thus, a clear bidirectional communi-

cation exists between the immune and neuro-
endocrine system (Rhen and Cidlowski 2005).

ILs are also produced within the brain dur-
ing ischemia, dementia, multiple sclerosis, and
epilepsy (Skaper 2007; Ravizza et al. 2008). In
most of these conditions, microglial cells pro-
duce ILs that are generally considered detri-
mental for neuronal viability, although ILs
have also been implicated in processes, such as
brain plasticity (Johansson et al. 2008; Spulber
et al. 2008). Hence, neuroinflammation, de-
fined by microglial activation and the presence
of proinflammatory mediators, represents a
stressor that may affect AN.

Inflammation and cytokine expression
largely inhibit AN directly (Vallières et al.
2002; Monje et al. 2003; Zunszain et al. 2012;
Musaelyan et al. 2014), although immune mod-
ulators like transforming growth factor (TGF)-b
(Wachs et al. 2006) have a concentration-depen-
dent proneurogenic potential in the adult brain
(Battista et al. 2006). Other proinflammatory
cytokines, such as TNF-a (Iosif et al. 2006) or
IFN-g decrease AN through modulation of IL-1
(Kaneko et al. 2006). In addition, impairment of
IL-1b action prevents the attenuated rate of AN
in response to stress, supporting the idea that
proinflammatory mediators and local cues in
the brain play a role in restricting AN (Koo
and Duman 2008; Zunszain et al. 2012).

Conversely, factors capable of affecting cell
genesis can also influence microglial activation.
As part of the neuroinflammatory response, ac-
tivated microglia modulates the neurogenic
niche, and, depending on whether they are
activated by IL-4 or by IFN-g, microglia cells
can differentially induce oligodendrogenesis
and neurogenesis, respectively (Butovsky et al.
2006). Reducing neuroinflammation by specific
drugs was further shown to restore or increase
AN in different pathological models (Monje
et al. 2003), although T cells even seem to influ-
ence hippocampal plasticity through effects on
progenitor cells (Ziv et al. 2006).

Moreover, EL infection while immediately
increasing proinflammatory cytokines in the
hippocampus, induces only subtle reduction
in hippocampal neurogenesis and limited ef-
fects on hippocampal functionality under basal
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conditions. However, after exposure to a “sec-
ond hit” in adulthood, the history of early-life
infection has been shown to have averse effects
on cognitive functions and levels of neurogen-
esis (Bilbo et al. 2006, 2007; Bilbo and Schwarz
2009). Finally, it should be noted that psycho-
logical stress stimulates proinflammatory cyto-
kine production in patients experiencing stress
and anxiety. In depressed patients, increases in
macrophage activity and the production of
proinflammatory cytokines have been consis-
tently reported (Dantzer et al. 2008).

CONCLUDING REMARKS

Stress, GCs, and inflammation all interfere with
one or more of the phases of the neurogenic
process. Their inhibitory effects can normalize
after a recovery period, voluntary exercise, or
antidepressant treatment. Although AN has
been implicated in cognitive functions, in the
regulation of mood and anxiety, and in the ther-
apeutic effects of antidepressant drugs, its exact
role in relation to the etiology of brain disorders
like depression remains elusive. A reduced rate
of neurogenesis may be indicative of impaired
hippocampal plasticity but, by itself, reductions
in AN per se are unlikely to produce depression.
Lasting reductions in turnover rate of DG gran-
ule cells (e.g., programmed by EL events), how-
ever, will alter the overall composition of the DG
cell population and can modify stress responsiv-
ity and thereby influence functioning of the
adult hippocampal circuit as well as the vulner-
ability to develop brain disorders.
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Czéh B, Lucassen PJ. 2007. What causes the hippocampal
volume decrease in depression? Are neurogenesis, glial
changes and apoptosis implicated? Eur Arch Psychiatry
Clin Neurosci 257: 250–260.
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G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, et
al. 2011. Stress revisited: A critical evaluation of the stress
concept. Neurosci Biobehav Rev 35: 1291–1301.

Korosi A, Naninck EFG, Oomen CA, Schouten M, Krugers
H, Fitzsimons C, Lucassen PJ. 2012. Early-life stress me-
diated modulation of adult neurogenesis and behavior.
Behav Brain Res 227: 400–409.

Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-
Zidon O, Baratta MV, Maier SF, Yirmiya R. 2014. Dynam-
ic microglial alterations underlie stress-induced depres-
sive-like behavior and suppressed neurogenesis. Mol Psy-
chiatry 19: 699–709.
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