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Abstract

Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential 
metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic 
nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degrada-
tion, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much 
is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the 
regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This 
review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters 
at the transcript level. Current results describing the effect of transcription factors and protein modifications lead 
to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and 
enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can 
influence each other in a so-far unpredictable fashion.
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Introduction

Importance and role of amino acids in the plant

Amino acids are best known as constituents of proteins, and 
their central role in cellular and plant physiology is often over-
looked. Pioneering experiments (Miller, 1953) and more recent 
research have suggested that amino acids could be among 
the first metabolites created by organisms (see Hernandez-
Montes et  al., 2008), possibly explaining their involvement 
in most metabolic pathways and cellular processes. Amino 
acid metabolism is tightly linked to carbohydrate metabo-
lism, ammonium (absorbed and synthesized from nitrate), 
and demand for protein synthesis and secondary metabolism. 
Amino acid biosynthesis uses compounds from carbohydrate 
metabolism, and amino acid degradation leads to several 
metabolites that are used by the citric acid cycle as an energy 
source. Furthermore, synthesis of the amino acid Gln is the 

only reaction allowing assimilation of inorganic nitrogen into 
organic molecules. All the pathways leading to the synthesis 
of all other nitrogenous compounds connect at some point 
with Gln or its sister metabolite, Glu (Bernard and Habash, 
2009). As in animals and microbes, several amino acids play 
key roles in plants as precursor compounds for the synthe-
sis of various classes of secondary metabolites (e.g. phenyl-
propanoids, some alkaloids, and glucosinolates). Secondary 
metabolites are extremely diverse (D’Auria and Gershenzon, 
2005), and fulfil critical functions in the plant such as signal-
ling (e.g. hormones), structure (e.g. lignin), defence (e.g. glu-
cosinolates, nicotine), interaction with other organisms, and 
protection (e.g. pigments). Finally, amino acids are used as 
carriers of assimilated nitrogen between the various organs 
through both the phloem and the xylem. For instance, due to 
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the limited photosynthetic activity of the seed, amino acids 
used for synthesis of storage proteins are not synthesized de 
novo in the embryo. Amino acids are instead provided by the 
leaves and transported to the developing embryo through the 
xylem and phloem (Peoples et al., 1985). At the whole-plant 
level, amino acids cycle between roots and shoots, transported 
alternatingly by the phloem and the xylem (Jeschke and Pate, 
1991; Jeschke and Hartung, 2000). Changing concentrations 
of ascending or descending amino acids are thought to trans-
duce nitrogen availability and demand from the shoots to the 
roots (Imsande and Touraine, 1994). Amino acids also play a 
crucial role during pathogen infection, being an indispensable 
source of nitrogen for many biotrophic pathogens (Douglas, 
1993; Solomon et al., 2003; Rico and Preston, 2008) and as 
providers of defence compounds. Not surprisingly, pathogen 
infection has been shown to lead to changes in expression of 
many genes involved in amino acid metabolism and trans-
port. Regulation of amino acid content, fluxes, and transport 
through the plant is thus critical for plant adaptation to car-
bon and nitrogen status, development, and defence, and will 
be discussed in this review.

Amino acid metabolic pathways are branched

Substrates for the synthesis of amino acids are mainly inter-
mediates from glycolysis, the citric acid cycle, and the pentose 
phosphate pathway (Supplementary Fig. S1 at JXB online). 
Phosphoribosylpyrophosphate and erythrose-4-phosphate 
from the pentose phosphate pathway are the respective 
substrates for His and aromatic amino acid (Phe, Tyr, and 
Trp) synthesis. Phosphoenolpyruvate from glycolysis is the 
other substrate for the aromatic amino acids; pyruvate is the 
substrate for the branched-chain amino acid (Val and Leu) 
pathway and Ala synthesis; Gly, Cys, and Ser are made from 
3-phosphoglycerate (also from glycolysis). Finally, the Asp-
derived amino acids (Asn, Lys, Thr, Met, and Ile) are made 
from oxaloacetate (from the citric acid cycle), while 2-oxo-
glutarate is the initial metabolite for the synthesis of Glu, 
Gln, Pro, and Arg. The two most-studied pathways are the 
aromatic amino acid and Asp-derived amino acid pathways, 
which lead to the synthesis of amino acids that cannot be 
synthesized de novo by monogastric animals (i.e. Leu, Val, Ile, 
Lys, Thr, Met, Trp, and Phe). Tyr is not considered an essen-
tial amino acid, since these animals can synthesize it by Phe 
hydrolysis, provided that Phe levels are sufficient (see Reeds, 
2000, for a discussion about the complex notion of ‘essential 
amino acids’ in humans). The Asp and the aromatic amino 
acid pathways are the most branched pathways, and are sub-
ject to complex regulations.

Amino acid metabolic pathways are 
compartmentalized

Interestingly, amino acids essential for monogastric ani-
mals are synthesized in the plant chloroplast. The evolution 
of these pathways is complex and seems to have expanded 
by horizontal gene transfer from various cyanobacterial, 
eukaryotic, and prokaryotic sources (Reyes-Prieto and 

Moustafa, 2012). The aromatic amino acids Trp, Phe, and 
Tyr are synthesized in the chloroplast (reviewed by Maeda 
and Dudareva, 2012), with a cytosolic reaction leading to 
Phe synthesis by a tyrosine:phenylpyruvate aminotransferase 
(Yoo et al., 2013). The enzymes for the synthesis of His, Asp-
derived amino acids, and branched-chain amino acids (Leu, 
Ile, Val, Thr, Met, and Lys) are all addressed to the plastid 
(Binder, 2010; Jander and Joshi, 2010; Ingle, 2011). Most of 
the Arg synthesis pathway is apparently localized in the chlo-
roplast, with some enzymes addressed to the cytosol (Slocum, 
2005). The other amino acids seem to be synthesized in vari-
ous compartments with different isoenzymes addressed to 
different organelles (Bourguignon et al., 1999; Ho and Saito, 
2001; Hawkesford and De Kok, 2006). Less is known about 
the localization of amino acid degradation. The degradation 
of Pro and branched-chain amino acids most likely occurs in 
the mitochondrion (Verslues and Sharma, 2010; Angelovici 
et al., 2013), while the other amino acids are degraded in mul-
tiple compartments, with products heading towards the citric 
acid cycle in the mitochondrion. In addition to being syn-
thesized by different pathways, amino acids are thus metabo-
lized in different subcellular compartments. Knowledge of 
the compartmentation and the parallel pathways in different 
organelles is critical for accurate modelling of amino acid 
metabolism (especially for predictive purposes; Mintz-Oron 
et al., 2012), and needs to be expanded.

Regulation of amino acid metabolism

Feedback regulation of enzymes as the main control of 
metabolite fluxes

Regulation of the activity of the metabolic enzymes was first 
elucidated by biochemical purification of the enzymes from 
plant tissues and subsequent characterization in vitro (e.g. 
Dotson et al., 1989). Molecular cloning later enabled isola-
tion of the corresponding cDNAs and their expression in 
Escherichia coli for precise characterization of the purified 
enzymes (e.g. Curien et al., 2005). These approaches revealed 
that several enzymes are feedback regulated by the end prod-
ucts of various branches of the pathways, namely amino 
acids and S-adenosylmethionine (Supplementary Fig. S1). 
The inevitable consequence of the feedback inhibition is the 
toxicity of many amino acids for cells (Bonner et al., 1992, 
1996; Bonner and Jensen, 1997) and plant development (Voll 
et al., 2004; Lee et al., 2007; Pratelli and Pilot, 2007; Pratelli 
et al., 2010). For instance, supplementing plants with Lys and 
Thr inhibits activity of the aspartate kinase (AK) of the Asp 
pathway (see Supplementary Fig. S1), starving the plant of 
Met and thereby inhibiting growth. This inhibition has been 
used for genetic screenings, which identified plants tolerant to 
toxic combinations of amino acids or amino acid analogues, 
and led to the identification of mutations causing enzymes to 
be insensitive to feedback inhibition (e.g. Bright et al., 1982; 
Rognes et al., 1983; Heremans and Jacobs, 1995; Mourad and 
King, 1995; Sarrobert et al., 2000). Study of plants express-
ing the mutated genes or E.  coli enzymes that show poor 
feedback sensitivity unequivocally proved the importance 
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of enzyme feedback inhibition for the regulation of activity 
of the pathways. For instance, plants expressing feedback-
insensitive dihydrodipicolinate synthase (DHDPS; Shaul 
and Galili, 1992a), AK (Shaul and Galili, 1992b), chorismate 
mutase (CM; Tzin et al., 2009), 3-deoxy-d-arabino-heptulo-
sonate 7-phosphate synthase (DAHPS; Tzin et al., 2012; Tzin 
et  al., 2013), and cystathionine-γ-synthase (CGS; Hacham 
et al., 2006) showed an expected increase in the content of the 
downstream amino acids Lys, Thr, Trp, and Met, respectively. 
Interestingly, the content in many amino acids synthesized 
from other pathways was also altered in these plants, hint-
ing at a broader regulation of the amino acid pathways, inde-
pendent of the previously identified feedback regulations.

Numerous reviews have addressed the functional proper-
ties and regulation of each of the enzymes and pathways. The 
present review will not recapitulate these excellent reviews 
and will rather focus on the transcriptional regulation of 
the corresponding genes. The reader will find more informa-
tion on each enzyme in the following reviews: the aromatic 
amino acid pathway (Herrmann and Entus, 2001; Tzin and 
Galili, 2010a, b; Maeda and Dudareva, 2012), Asp-derived 
amino acids (Azevedo, 2002; Azevedo et  al., 2006; Jander 
and Joshi, 2009, 2010; Joshi et al., 2010; Kirma et al., 2012), 
branched-chain amino acid pathway (Binder et  al., 2007; 
Binder, 2010), Lys (Azevedo and Lea, 2001; Galili et al., 2001; 
Galili, 2002), Met (Amir, 2010), Ser and Gly (Bourguignon 
et  al., 1999; Ho and Saito, 2001), Arg (Verma and Zhang, 
1999; Slocum, 2005), Pro (Hare et  al., 1999; Verma and 
Zhang, 1999; Lehmann et al., 2010; Szabados and Savoure, 
2010; Verslues and Sharma, 2010), and His (Stepansky and 
Leustek, 2006; Muralla et al., 2007; Ingle, 2011). The regula-
tion of asparagine and glutamine synthetases has been the 
subject of dedicated reviews (Cren and Hirel, 1999; Oliveira 
et al., 2001; Gaufichon et al., 2010). A summary of the identi-
fied inhibitions is presented in Supplementary Table S1 and 
Supplementary Fig. S1.

Regulation of the pathways at the transcript level

After decades of  work on the regulation of  the activity 
of  the enzymes of  the Asp pathway, one could ask how 
far we stand from wholly understanding the regulation of 
this pathway. Computational modelling suggests that our 
present knowledge is accurate: using feedback-regulation 
data and the chloroplastic concentrations of  amino acids 
(obtained by measuring the free amino acid concentration 
in purified chloroplasts), the model by Curien et al. (2009) 
correctly predicted steady-state fluxes of  the Asp-derived 
amino acid pathway and in vivo measurements of  the amino 
acid content in characterized mutants. Despite this encour-
aging result, our knowledge of  the regulation of  the other 
pathways (often split between compartments) is still scarce, 
and much needs to be done if  one seeks to model the entire 
amino acid metabolism. Even if  such a model is ever created, 
it will remain to be determined under which conditions it is 
valid, since modification of  the abundance of  the enzymes 
by changes in mRNA accumulation is expected to modify 
metabolite fluxes.

Indeed, mRNA accumulation of the transcripts encoding 
enzymes of the amino acid pathways has been shown to vary 
in response to numerous conditions. Since the first cloning of 
the genes encoding metabolic enzymes, numerous studies have 
addressed the question of the change in accumulation of the 
transcripts, and less often of the corresponding proteins, in 
response to perturbations. With the development of microar-
rays, systematic and more thorough analyses were performed 
using data mining tools, like Genevestigator (https://www.
genevestigator.com/), or in-house analysis of publicly avail-
able microarray/RNAseq databases (e.g. Gene Expression 
Omnibus, http://www.ncbi.nlm.nih.gov/geo/). Table  1 sum-
marizes most of these studies. Abiotic and biotic stresses 
and stress hormones induce many of the genes involved in 
the synthesis and degradation of the aromatic amino acids, 
and the genes involved in the Met and S-adenosylmethionine 
pathways (Table  1). For instance, the anthranilate syn-
thase (AS) gene, involved in Trp synthesis, is induced by 
wounding, drought, free radicals, jasmonic acid, elicitors, 
Pseudomonas syringae, and AgNO3 (Zhao and Last, 1996; 
Zhao et al., 1998; Devoto et al., 2002; Catala et al., 2007). 
The S-adenosylmethionine synthase (SAMS) gene was found 
to be induced by elicitors, salt stress, ethylene, and AgNO3 
(Schroder et al., 1997; Lim et al., 2002). Besides typical biotic 
and abiotic stresses, herbicides and amino acid treatments 
modify the expression of a large number of genes of these 
two pathways (Guyer et al., 1995; Zhao et al., 1998; Pasquer 
et al., 2006; Hacham et al., 2007). These data unequivocally 
show that the feedback inhibition of the enzymes is not the 
only regulatory mechanism of amino acid biosynthesis.

A broad investigation explored the changes in mRNA con-
tent of the enzymes of the amino acid metabolic pathways 
in response to stress, using publicly available microarray data 
(Less and Galili, 2008, 2009). In the first study, the authors 
found that the genes of the aromatic amino acid pathway 
were the most responsive to the stress conditions. They also 
concluded that, in general, the genes of the enzymes involved 
in degradation were the most responsive, compared with the 
enzymes involved in biosynthesis (Less and Galili, 2008). This 
result is in agreement with previous studies focused on the 
Lys pathway, which found that the transcript of the lysine 
ketoglutarate reductase/saccaropine dehydrogenase (LKR-
SDH) enzyme, responsible for the first step in Lys degrada-
tion, is induced by many conditions including addition of 
Lys itself  (Karchi et  al., 1995; Stepansky and Galili, 2003; 
Stepansky et  al., 2005). This regulation may explain why 
attempts at increasing Lys content in seeds using feedback-
insensitive DHDPS and AK did not meet the expected suc-
cess until the LKR-SDH gene was inactivated (Zhu and 
Galili, 2003). These results suggest that the main avenue for 
plant cells to control amino acid content is by controlling 
their degradation (Less and Galili, 2008). In the second study, 
using a new method to identify genes that show co-regulated 
expression (i.e. gene coordination), Less and Galili (2009) 
identified modules of genes responding in a similar fashion to 
sets of conditions. Three main gene modules were identified, 
namely an aromatic amino acid module (responding to most 
stresses), a Met metabolism module (positively responding to 
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conditions of active growth), and a catalytic module (induced 
by most stresses and repressed by active growth). The exist-
ence of these modules suggests that a common signalling and 
regulation mechanism exists and controls the expression of 
genes involved in the same or different pathways. Common 
transcription factors are expected to be at play, a hypothesis 
tested by co-expression analysis of metabolic enzymes and 
transcription factor genes (Joshi et al., 2010). Co-expression 
was detected between these groups of genes, setting the 
ground for more detailed research.

Characterization of the role of different members of the 
basic leucine zipper (bZIP) transcription factor family showed 
that, in response to stress, the induction of AtASN1 and 
AtProDH (synthesis of Asn and degradation of Pro, respec-
tively) by low-carbon conditions is mediated by transcription 
factors bZIP1, -53, and -11 (Hanson et al., 2008; Kang et al., 
2010; Obertello et  al., 2010; Dietrich et  al., 2011). bZIPs 
(bZIP12/DPBF4, bZIP39/ABI5) can also have inhibitory 
roles, downregulating the expression of AK during darkness 
and low-sugar conditions (Ufaz et  al., 2011). Interestingly, 
the expression of bZIP1 and bZIP39 is regulated by sugars 
(Kang et al., 2010) and abscisic acid (ABA) (Brocard et al., 
2002), respectively, linking amino acid metabolism to sugar 
signalling and the stress hormone ABA. Plant hormones 
have been shown to be involved in the control of metabo-
lism in general, notably with an effect of cytokinins on nitro-
gen metabolism (reviewed by Sakakibara et al., 2006; Rubio 
et  al., 2009). Several transcription factors have also been 
shown to control the expression of DAHPS, 5-enolpyruvy-
lshikimate 3-phosphate synthase (EPSPS), CM, and pheny-
lalanine ammonia lyase (PAL), involved in Phe synthesis and 
degradation. An increase in the content of phenylpropanoid 
metabolites, part of the secondary metabolism downstream 
from Phe, has always been detected with a concomitant 
increase in the activity of the upstream Phe pathway. In good 
agreement with this observation, most of the transcription 
factors that have been shown to regulate the expression of the 
genes of the phenylpropanoid pathway also control, maybe 
indirectly, the expression of genes of the aromatic amino acid 
pathway (reviewed by Maeda and Dudareva, 2012; Tzin and 
Galili, 2010b). These data show that complex networks have 
to be expected for the regulation of amino acid homeosta-
sis, since signals from nitrogen and carbon and demand for 
secondary compounds within the same organ or from other 
organs have to be integrated to deliver an optimal amino acid 
synthesis rate.

Regulation at a post-transcriptional/translational level 
has been described for δ-pyrroline-5-carboxylate reduc-
tase (P5CR) and CGS. P5CR is involved in Pro synthesis in 
response to stress, and CGS in Met synthesis. An intriguing 
discrepancy between P5CR mRNA and protein contents 
prompted the study of the translation efficiency of the P5CR 
mRNA under salt stress (Hare et  al., 1999). The authors 
found that the 5′-untranslated region of P5CR is involved in 
translation inhibition and in concomitant mRNA stabiliza-
tion, and surprisingly in the control of transcription efficiency 
(Hua et  al., 2001). The meaning of these partly oppos-
ing directions of regulation is not completely understood. 

CGS mRNA degradation and translation is controlled by 
S-adenosylmethionine. S-adenosylmethionine binds the nas-
cent CGS protein at the freshly translated so-called MTO 
domain and leads to ribosome stalling, causing decreased 
mRNA accumulation and protein synthesis (Onouchi et al., 
2005). A  secondary CGS transcript has been detected in 
plants that lacks the MTO region and that is not subjected to 
inhibition by S-adenosylmethionine (Hacham et  al., 2006). 
It is supposed that the shorter form of the CGS transcript 
is formed from the full-length transcript by cleavage of the 
mRNA region encoding the MTO domain, which probably 
forms a hairpin (Hacham et al., 2006). Natural production of 
this transcript would allow Met synthesis even in presence of 
high Met and S-adenosylmethionine concentrations.

Different protein modifications are likely to be involved 
in regulation of the pathways

Little is known about the post-translational modifications 
of enzymes of the amino acid biosynthetic pathways or the 
effects of interactions with other proteins. A  proteomics 
approach identified four enzymes of the Met cycle, namely 
adenosylhomocysteinase/S-homocysteine hydrolase (SAHH), 
O-acetylserine (thiol) lyase (OAS), SAMS, and methionine 
synthase (MS) as proteins that could be nitrosylated in plants 
(Lindermayr et al., 2005). Further work showed that nitros-
ylation of a Cys close to the active site of AtSAMS1 reduced 
its activity by about 60%. The physiological relevance of this 
modification is not clear at present, since the two other tested 
SAMS (AtSAMS2 and AtSAMS3) were not nitrosylated 
(Lindermayr et  al., 2006). Phosphoproteomics approaches 
have uncovered the diversity of proteins that can be phospho-
rylated. Results from experiments deposited in the PhosphAt 
database (Heazlewood et al., 2008; Durek et al., 2010) showed 
that about one-third of the Arabidopsis proteins involved in 
amino acid metabolism are phosphorylated. These results are 
in agreement with the early report of the importance of phos-
phorylation for the induction of LKR activity in response to 
Lys treatment in tobacco (Karchi et al., 1995). LKR phos-
phorylation is triggered by resupply of nitrate after starva-
tion (PhosphAt database) and in vitro studies have found that 
the activity of LKR-SDH is decreased by dephosphorylation 
(Miron et al., 1997; Zhu et al., 2002).

Phosphorylation has been shown to affect the binding of 
14-3-3 proteins, involved in the regulation of the activity of 
many proteins, to glutamine synthetase (GS) (Moorhead et al., 
1999; Shin et al., 2011) and nitrate reductase (Bachmann et al., 
1996). Based on these results, Diaz et al. (2011) characterized 
the metabolic changes due to overexpression of 14-3-3 pro-
teins in Arabidopsis. The authors found that overexpression 
of some 14-3-3s led to the modification of the activity of GS, 
SDH, glutamate dehydrogenase (GDH), and Asp transami-
nase, as well as many enzymes of carbohydrate metabolism 
(Diaz et al., 2011). Similarly, a proteomics approach showed 
that 14-3-3 proteins bind to AtBCAT1 (branched-chain 
amino acid pathway), AtDAHPS1, AtDHAPS2 (aromatic 
amino acid pathway), and AtOAS (Cys pathway) (Chang 
et al., 2009), suggesting that 14-3-3 proteins are involved in 
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the central activity of key enzymes of amino acid synthesis. 
Protein activity is also controlled by protein degradation 
rate, especially through the ubiquitin–proteasome system 
(Vierstra, 2009). A yeast two-hybrid screening recently identi-
fied three Kelch motif  F-box proteins as interacting partners 
of Arabidopsis PAL1 and PAL2 (Zhang et al., 2013c). These 
F-box proteins, part of the E3 ubiquitin ligase SCF complex, 
control the activity of the two Arabidopsis PAL proteins by 
mediating their ubiquitination and subsequent degradation, 
therefore controlling the flux towards the synthesis of phenyl-
propanoids (Zhang et al., 2013c).

Coordination of the pathways

Several observations suggest that the activities of the amino 
acid pathways are coordinated at the protein level. The activ-
ity of AK-SDH (first enzyme in the Asp amino acid pathway) 
is controlled by amino acids from other pathways, namely 
Ala, Ser, Leu, Ile, and Val (Curien et al., 2005; Supplementary 
Fig. S1), and the activity of ornithine-δ-aminotransferase 
(δOAT), involved in ornithine degradation, is inhibited by 
Ser, Leu, and Val (Sekhar et  al., 2007; Supplementary Fig. 
S1). While the importance of these regulations has not been 
assessed in vivo, it is likely that these regulations are not 
unique and that others will be identified in the near future.

Several reactions involving products or intermediaries link 
branches of various pathways. For instance, Phe can be syn-
thesized from Tyr to maintain a balance between Phe and Tyr 
in the cytosol (Yoo et al., 2013). Glu is required for transami-
nation reactions for the synthesis of most amino acids [e.g. 
mediated by branched-chain amino acid aminotransferase 
3 (BCAT3) for the branched-chain amino acids; diami-
nopimelate amino transferase for Lys; histidinol-phosphate 
aminotransferase for His; and prephenate amino transferase 
(PAT) for Phe and Tyr], while Gln is used for the synthesis 
of anthranilate from chorismate (mediated by AS). Carbon 
skeleton or chemical groups of some amino acids are used 
for synthesis of other amino acids (e.g. Ser is used for the 
synthesis of Trp, Cys for the synthesis of Met, and Asp for 
the synthesis of Arg). These direct connections between path-
ways imply that the donor metabolites are synthesized co-
ordinately to their use in the other pathways. Interestingly, a 
recently described reaction links the Asp-derived amino acid 
pathway and the aromatic amino acid pathway to the regula-
tion of the synthesis of auxin (from Trp) and ethylene (from 
Met) by the aminotransferase VAS1 (Zheng et al., 2013).

Genetic modification of the activity of the pathways by 
gene knockout or overexpression of feedback-inhibited 
enzymes led to surprising discoveries concerning the accu-
mulation of amino acids in the plant. For instance, plants 
expressing a mutant version of arogenate dehydratase (Phe 
biosynthesis) or two decarboxylases specific for Trp or Tyr 
showed modification of the content in amino acids from most 
of the other pathways (Guillet et al., 2000; Huang et al., 2010). 
Expression of feedback-insensitive AK (Asp pathway), CGS 
(Cys biosynthesis), threonine aldolase (Thr degradation) or 
a combination of feedback-insensitive DHDPS and knock-
down LKR-SDH (Lys metabolism) modified the content in 

most of the amino acids, in addition to the originally targeted 
amino acid(s) (Heremans and Jacobs, 1995; Jander et  al., 
2004; Zhu and Galili, 2004; Hacham et  al., 2008). Finally, 
knockout of the isovaleryl-CoA dehydrogenase gene (IVD; 
branched-chain amino acid degradation) led to an increase 
in most of the amino acid accumulation in seeds (Gu et al., 
2010). This set of observations suggests that disturbance of 
one pathway has repercussions on the activities of the other 
pathways, which cannot easily be explained by feedback inhi-
bitions only (Zhu and Galili, 2003). In contrast, increasing 
His and Trp content was shown to have little or no conse-
quence on the accumulation of amino acids from other path-
ways (Ingle et al., 2005; Wakasa et al., 2006; Tzin et al., 2012). 
Predicting the effect of artificial changes in the expression 
of metabolic genes on the amino acid content of plants thus 
appears almost impossible, greatly limiting our ability for 
metabolic engineering (Galili and Amir, 2012).

Three observations led to the hypothesis of the existence 
of cross-regulation of amino acid metabolic pathways at the 
transcriptional level: the expression of enzymes from various 
pathways was modified in response to an inhibitor of His syn-
thesis (Guyer et al., 1995), an inhibitor of the branched-chain 
amino acid synthesis (Zhao et al., 1998; Pasquer et al., 2006), 
and addition of amino acids in the growth medium (e.g. addi-
tion of Thr and Lys, inhibiting Met synthesis) (Jackson et al., 
1993; Zhao et  al., 1998). Microarray analyses have studied 
the effect of perturbation of amino acid synthesis caused by 
treating Arabidopsis plants with the herbicide compound imi-
dazolinone, a blocker of acetohydroxyacid synthase (AHAS; 
branched-chain amino acids; Manabe et al., 2007; Das et al., 
2010), or by mutation of amino acid metabolic enzymes, 
namely threonine deaminase/dehydratase TD (omr1, Ile syn-
thesis; Yu et al., 2013), desulfhydrase (des1, Cys degradation; 
Alvarez et  al., 2010), OAS (oas-a1, Cys synthesis; Alvarez 
et al., 2010), and glutamate synthase (GOGAT) (glu1-2, Glu 
synthesis; Kissen et al., 2010). These perturbations were all 
reported to affect amino acid content, as well as the expres-
sion of genes responding to abiotic stresses (drought, salt, 
and heat), or to be involved in plant immunity to pathogens 
(Manabe et al., 2007; Alvarez et al., 2010; Das et al., 2010; 
Kissen et al., 2010; Yu et al., 2013). In contrast, treating plants 
with glyphosate, a blocker of the EPSPS enzyme from the shi-
kimate pathway, led to very little change at the metabolic and 
gene expression levels after 24 h. Changes in gene expression 
could nevertheless be detected several days after glyphosate 
treatment (Das et al., 2010; Table 1), in good agreement with 
the fact that modifications of the activity of the aromatic 
amino acid pathway has few consequences on the accumula-
tion of other amino acids (see above). These data suggest that 
alterations in the activity of specific amino acid pathways lead 
to a stress response, which has been shown in turn to modify 
broader metabolic activity (Hey et al., 2010). It is thus pos-
sible that the apparent cross-regulation of the pathways is the 
consequence of a stress response, triggered by amino acid per-
turbation, as postulated previously (Denby and Last, 1999), 
and not the consequence of a dedicated process. Triggering 
of the stress response would then explain some develop-
mental defects, such as reduced growth, observed following 

5544 | Pratelli and Pilot
D

ow
nloaded from

 https://academ
ic.oup.com

/jxb/article/65/19/5535/2877467 by guest on 21 August 2022

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru320/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru320/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru320/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru320/-/DC1


overaccumulation of Lys and Met in plants (Frankard et al., 
1992; Hacham et al., 2006), and would impede our ability to 
engineer plants with altered amino acid metabolism.

Amino acid transport in plants

Importance of transporters for metabolism

A reconstruction of yeast metabolism showed that 401 of its 
1312 distinct biochemical reactions correspond to membrane 
transport steps (Herrgard et al., 2008; Heavner et al., 2013). 
Similarly, in a model of Arabidopsis central metabolism, 772 
transport steps were predicted to allow the 1363 biochemical 
reactions of this model to occur (Mintz-Oron et al., 2012). 
Our current knowledge about the identity of the transport-
ers mediating these steps is limited, and only a handful of 
intracellular transporters is known (Linka and Weber, 2010). 
While co-expression analyses recently helped to identify some 
of these transporters [e.g. PLGG1, a plastidic glycolate glycer-
ate transporter (Pick et al., 2013); reviewed by Bordych et al., 
2013], much is left to be done to get the whole set of trans-
porters involved in metabolism. This gap in our knowledge is 
well examplified by amino acid metabolism: amino acid syn-
thesis pathways are compartmented, and transport between 
various intracellular compartments (chloroplast, mitochon-
drion, peroxisome, and vacuole) and the cytosol is essential 
for metabolic activity. In addition, long-distance transport of 
amino acids in the plant, involving phloem or xylem load-
ing and unloading, uptake from the soil, and transfer to the 
embryo, also requires several steps of inward and outward 
transport across membranes. Our current knowledge about 
plant amino acid transporters is summarized below, focus-
ing on the regulation of their activity in response to changing 
growth conditions.

Identity of the plant amino acid transporters

The Arabidopsis genome is anticipated to contain about 100 
genes encoding amino acid transporters. They belong to the 
amino acid–polyamine–choline (APC) transporter superfam-
ily (Jack et al., 2000), and the UMAMIT family (part of the 
DMT superfamily; Jack et al., 2001).

The APC superfamily encompasses five families (Jack 
et al., 2000). Out of these five families, four were shown to 
mediate amino acid transport: the APC family, the AAAP 
(auxin/amino acid permease) family, the alanine or glycine: 
cation symporter (AGCS) family, the cation–chloride co-
transporter (CCC) family, and the hydroxy/aromatic amino 
acid permease (HAAAP) family. Of main interest are the 
plant transporters of the APC and AAAP families, gath-
ering, respectively, the cationic amino acid transporters 
(CATs), amino acid/choline transporters (ACTs), and poly-
amine H+-symporters (PHSs) in the former, and amino acid 
permeases (AAPs), lysine and histidine transporters (LHTs), 
proline transporters (ProTs), γ-aminobutyric acid transport-
ers (GATs), auxin transporters (AUXs), and aromatic and 
neutral amino acid transporters (ANTs) in the latter. Finally, 
a phylogenetic tree of the APC superfamily also includes, on 

a branch of its own (Fischer et al., 1998), the distantly related 
transporter AtBAT1/AtGABP (Dundar and Bush, 2009; 
Michaeli et al., 2011).

Most of the APC superfamily amino acid transporters 
that were thoroughly characterized show importer properties 
(Tegeder and Rentsch, 2010), i.e. they mediate transport of 
amino acids towards the cytosol, and are mainly involved in 
long-distance transport. However, the question remains open 
as to whether all members of this superfamily are importers. 
This is probably not the case, since AtBAT1/AtGABP was 
described as a bidirectional transporter (Dundar and Bush, 
2009), mediating γ-aminobutyric acid (GABA) transport to 
the mitochondrion (Michaeli et  al., 2011). However, since 
the AtBAT1/GABP genomic sequence is very divergent from 
the other APC superfamily members, it may be assumed that 
its unusual functional properties reflect this sequence diver-
gence and may not be widespread within the superfamily. 
Transporters with strict export properties are still missing, 
despite physiological evidence for such an activity (reviewed 
by Okumoto and Pilot, 2011), and a thorough characteriza-
tion of a facilitator was reported only recently. Similar to 
AtBAT1/GABP, AtSiAR (AtUMAMIT18) also displays 
bidirectional transport properties (Ladwig et al., 2012). The 
UMAMIT family belongs to the DMT superfamily, which 
otherwise mainly comprises transporters for triose phosphate 
and nucleotide–sugar compounds (Jack et  al., 2001). Only 
two members of this family have been characterized so far: 
WAT1/AtUMAMIT05 mediating auxin transport (Ranocha 
et  al., 2013), and AtSiAR1/AtUMAMIT18 (Ladwig et  al., 
2012) mediating amino acid transport, which suggests a spec-
trum of substrates as broad as that of the APC superfamily 
transporters.

Regulation of transporters at the transcript level

The expression pattern, mutant phenotype, and functional 
properties, when available, of all characterized amino acid 
transporters have been reviewed in depth elsewhere (Tegeder 
and Rentsch, 2010; Tegeder, 2012, 2014). Orthologues of 
Arabidopsis transporters have been identified and investigated 
in several other plants, including Brassica napus, Solanum 
tuberosum, Lotus japonicus, Lycopersicon esculentum, and 
Hordeum vulgare. A recent genome-wide survey identified 85 
amino acid transporters in rice (Zhao et al., 2012). Since so 
few amino acid transporters are fully characterized, informa-
tion about the mechanisms that regulate their expression is 
even scarcer. To date, there have been only 23 reports pro-
viding data about abiotic or biotic stresses (developmental 
regulation being outside the scope of this review) that may 
affect amino acid transporters expression. These are listed in 
Table 2.

Except for the recent expression investigation in rice (Zhao 
et al., 2012) no large-scale analysis of  the factors that affect 
amino acid transporter expression has been performed in 
Arabidopsis or any other plant. Among the data published 
so far, most of  the changes in transcript levels were found 
to be associated with biotic stress such as nematode wound-
ing (Hammes et al., 2006; Elashry et al., 2013; Marella et al., 
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Table 2. Summary of the effect of different treatments on the expression of amino acid transporters

Family Gene Induction by References Repression by References

AAP AtAAP1 Nematodes Elashry et al., 2013
Nitrogen Ortiz-Lopez et al., 2000; Guo,  

2004; Liu and Bush, 2006
Sugars Ortiz-Lopez et al., 2000; Guo,  

2004
Amino acids Guo, 2004
Light Ortiz-Lopez et al., 2000

AtAAP2 Nematodes Elashry et al., 2013
Amino acids Guo, 2004

AtAAP3 Nematodes Elashry et al., 2013; Marella et al.,  
2013

AtAAP4 Nematodes Elashry et al., 2013 Drought, salt Rentsch et al., 1996
AtAAP5 Nematodes Elashry et al 2013
AtAAP6 Nematodes Elashry et al., 2013; Marella  

et al., 2013
Drought, salt Rentsch et al., 1996

Amino acids Guo, 2004
AtAAP7 Nematodes Elashry et al., 2013
AtAAP8 Nematodes Elashry et al., 2013 In aap1 seeds Sanders et al., 2009

16–18 DAF
In aap1 seeds Sanders et al., 2009 In aap2 Zhang et al., 2010

BnAAP1 Nitrogen Tilsner et al., 2005
BnAAP2 Nitrogen Tilsner et al., 2005
BnAAP6 Nitrogen Tilsner et al., 2005
VfAAP1 Amino acids, sugars Miranda et al., 2001
OsAAP4 Drought, salt, cold Zhao et al., 2012
OsAAP5 Drought, salt Zhao et al., 2012
OsAAP6 Drought, salt Zhao et al., 2012
OsAAP8 Drought, salt, cold Zhao et al., 2012
OsAAP11 Drought, salt Zhao et al., 2012
OsAAP13 Drought, salt Zhao et al., 2012
OsAAP15 Drought, salt, cold Zhao et al., 2012
PsAAP1 Nitrogen, amino acids, light Tegeder et al., 2007 Dark Tegeder et al., 2007
PsAAP2 Nitrogen, amino acids, light Tegeder et al., 2007 Dark Tegeder et al., 2007

ProT AtProT2 Drought Rentsch et al., 1996; Grallath  
et al., 2005

Salt Rentsch et al., 1996
Wounding Grallath et al., 2005
Nitrogen Liu and Bush, 2006

Ab/ProT1 Salt Waditee et al., 2002
Ab/ProT2 Salt Waditee et al., 2002
Ab/ProT 3 Salt Waditee et al., 2002
HvProT1 Salt Ueda et al., 2008
LePRoT3 Drought, salt Schwacke et al., 1999
McAAT1/

ProT Salt Popova et al., 2003
OsProT3 Drought, salt Zhao et al., 2012

CAT AtCAT2 In aap2 Zhang et al., 2010
AtCAT6 Nematodes Hammes et al., 2006

In aap1 seeds Sanders et al., 2009
OsCAT6 Drought Zhao et al., 2012

LHT AtLHT1 Nematodes Elashry et al., 2013
Amino acids Hirner et al., 2006
Nitrogen Hirner et al., 2006; Liu and  

Bush, 2006
Pathogen attack Liu et al., 2010
In aap2 Zhang et al., 2010

LjLHT1 Mycorhyzal fungi Guether et al., 2011
McAAT2/

LHT Salt Popova et al., 2003
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2013), pathogen attack (Liu et al., 2010), or interaction with 
mycorrhizal fungi (Guether et al., 2011), most likely reflect-
ing the interplay of  aggressors trying to highjack nitrogenous 
compounds, possibly by using the plant’s own transporters, 
and plants trying to retain or redistribute these compounds. 
Another interesting aspect is the effect of  nitrogenous or car-
bon metabolites on the expression of  amino acid transport-
ers. AtAAP1, AtProT2, AtLHT1, and AtANT1, belonging 
to different subfamilies, displayed an increased expression 
upon high NO3 treatment (Liu and Bush, 2006). The authors 
also refer to a study showing that AAP family members are 
affected by metabolites (Guo, 2004): AtAAP1 is upregulated 
by glucose, sucrose, NH4, and amino acids, and AtAAP2 is 
upregulated by glutamate, whereas AtAAP6 is downregu-
lated by glutamine. These modifications in AtAAP1 expres-
sion are in agreement with a previous investigation focusing 
on the effects of  light, sugar, and nitrogen starvation and 
resupply (Ortiz-Lopez et  al., 2000). These results suggest 
the presence of  an integrative mechanism that adapts amino 
acid transporter expression to the availability of  organic 
and inorganic nitrogen sources and photosynthetic activ-
ity. It is interesting to note that, in B.  napus, BnAAP1, -2 
and -6 are upregulated in flowers upon high nitrogen sup-
ply (Tilsner et al., 2005), whereas VfAAP1 is downregulated 
by the combined effect of  high glutamine and sucrose or 
1 mM cysteine (Miranda et  al., 2001). The only report on 
how hormones may affect amino acid transporter expression 
was performed in Panax ginseng, where PgLHT1 expression 
was increased in response to ABA, salicylic acid, and methyl 
jasmonate (Zhang et al., 2013b). Among the environmental 
factors that were investigated, drought, cold, light, and salt 
stress were shown to affect the expression of  members of  all 
the amino acid transporter families in several plants, notably 
rice (Rentsch et al., 1996; Schwacke et al., 1999; Ortiz-Lopez 
et al., 2000; Waditee et al., 2002; Popova et al., 2003; Ueda 
et  al., 2008; Zhao et  al., 2012). Finally, amino acid trans-
porter expression may be modified in response to genetic 
alteration: AtCAT6 and AtAAP8 transcript levels were mod-
ified in the seeds of  aap1 knockout mutants compared with 

the wild type (Sanders et al., 2009). AtAAP8, AtCAT2, and 
AtANT1 were also downregulated in aap2 T-DNA insertion 
lines (Zhang et al., 2010), suggesting that a master regula-
tion mechanism adjusts the expression and activity of  amino 
transporters in an integrative fashion.

Can transporters be regulated at the protein level?

The post-translational regulation of  amino acid 
transporters has not yet been documented in plants. 
Ubiquitination is a major control mechanism of  protein 
activity in fungi, plants, and animals, and membrane pro-
teins are no exception to this biological phenomenon. 
Ubiquitination has been shown to alter activity, abun-
dance, localization, and function of  various membrane 
proteins (MacGurn et  al., 2012). In mammals, among 
others, cytokine and interferon receptors, various chan-
nels and transporters and G protein-coupled receptors 
have been shown to be the target of  ubiquitin-mediated 
regulation (for reviews, see Hicke and Dunn, 2003; Staub 
and Rotin, 2006). Receptor tyrosine kinase downregu-
lation serves as the major negative feedback regulatory 
mechanism of  receptor signalling, and this downregu-
lation is mostly mediated by receptor ubiquitination 
(Miranda and Sorkin, 2007). Of  special interested for the 
present review is the report that the sodium-dependent 
neutral amino acid transporter ATA2 is downregulated 
after polyubiquitination by the ligase Nedd4 in mammals 
(Hatanaka et al., 2006). Ubiquitination-mediated amino 
acid transporter regulation was also demonstrated in 
yeast, with the two Trp permeases ScTat1 and ScTat2 reg-
ulated by the ubiquitin ligase ScRsp5, triggering endocy-
tosis and endocytic degradation (Beck et al., 1999; Suzuki 
et  al., 2013). The transporters Lys permease ScLyp1, 
Arg permease ScCan1, Met permease ScMup1, and Glu 
permease ScDip5 are also degraded after arrestin-medi-
ated ubiquitination in response to specific amino acids 
or environmental stresses (for a review, see Leon and 
Haguenauer-Tsapis, 2009; Becuwe et  al., 2012). Finally, 

Family Gene Induction by References Repression by References

ANT PgLHT Hormones, salt, Zhang et al., 2013b

amino acids
AtANT1 Nitrogen Liu and Bush, 2006 In aap2 Zhang et al., 2010
OsANT3 Drought, cold, salt Zhao et al., 2012
OsANT4 Salt Zhao et al., 2012

GAT AtGAT1 Wounding Meyer et al., 2006
OsGAT2 Drought Zhao et al., 2012

ACT OsBAT4 Drought, cold, salt Zhao et al., 2012
OsBAT7 Salt Zhao et al., 2012

VAAT /
ATL OsATL6 Drought, cold, salt Zhao et al., 2012

OsATL9 Drought Zhao et al., 2012
OsATL11 Salt Zhao et al., 2012
OsATL13 Drought, salt Zhao et al., 2012

Table 2. Continued
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the general amino acid permease ScGap1 undergoes post-
endocytic targeting to the vacuole upon ubiquitination by 
ScRsp5 in presence of  NH4

+ (Springael et al., 1999).
Evidence for nutrient transporter regulation by ubiqui-

tination in plants is much more scarce but is increasing. 
Ubiquitination causes boron transporter 1 (BOR1) to be 
internalized and degraded (Kasai et al., 2011) and modulates 
the activity of iron-regulated transporter 1 (IRT1; Barberon 
et al., 2011). Although ubiquitination-mediated amino acid 
transporter regulation is still not strictly documented in 
plants, it is tempting to consider that the Arabidopsis glu-
tamine dumper 1 (GDU1) protein is likely to be involved in 
such a mechanism. The overexpression of this single trans-
membrane domain protein results in small plants displaying 
an increased amino acid content throughout the plant (Pilot 
et al., 2004) and increased amino acid export activity (Pratelli 
et al., 2010). GDU1 interacts with and is ubiquitinated by the 
E3 ubiquitin ligase LOG2, and this interaction is necessary 
for the Gdu1D phenotype (Pratelli et al., 2012). Although the 
role of GDU1 is still not elucidated, it is hypothesized that 
it is an adaptor that brings together LOG2 and a yet-to-be 
discovered amino acid exporter, allowing the ubiquitin ligase 
to regulate the activity of the transporter.

Phosphorylation is another common post-translational 
modification known to alter protein activity. The only evi-
dence for amino acid transporter phosphorylation in plants 
comes from the PhosphAt database, where phosphorylation 
sites for four transporters are reported (CAT4, CAT8, LHT4, 
and VAAT4). These sites have been found to be phosphoryl-
ated by proteomics approaches, but no specific study has yet 
focused on the role of these phophorylations. However, in the 
germinating barley grain, the peptide transporter HvPTR1 is 
phosphorylated in response to rising amino acid levels result-
ing from reserve breakdown, leading to rapid inhibition of its 
activity (Waterworth et al., 2005). In contrast, the activity of 
the mammalian amino acid transporter EAAT5 is stimulated 
upon phosphorylation by kinases SGK1 and SGK3, which 
increased cell-surface abundance of the carrier (Boehmer et al., 
2005). Similar effects were observed for the excitatory amino 
acid carrier 1 (EAAC1), which is upregulated by various protein 
kinase C subtypes (Gonzalez et al., 2002). In mammalian cells, 
phosphorylation of amino acid and related neurotransmitter 
transporters seems to affect trafficking to and from the plasma 
membrane, and in some cases raft association or dissociation, 
thereby adapting activity to the cell’s needs (summarized by 
Samluk et  al., 2010). The mechanism of membrane removal 
of the human cationic amino acid transporter Hs CAT1 upon 
protein kinase C activation was further dissected and ubiqui-
tination-triggered, clathrin-mediated endocytosis was shown 
to result in transport activity inhibition (Vina-Vilaseca et al., 
2011).

Coordination of metabolism and transport 
activities

While transport and enzymatic activities need to be coordi-
nated to enable supply of all compartments of the cell with 

amino acids, co-regulation of metabolism and transport has 
not been investigated directly so far. Nevertheless, examina-
tion of published studies revealed that amino acid enzymes 
and transporters respond to similar signals, mainly nitrogen 
and stress (Tables 1 and 2). One obvious example of coordi-
nation is the induction of the proline transporters ProTs and 
P5CS, involved in proline transport and synthesis, respec-
tively, in response to drought and salt (Table 2; Hare et al., 
1999). More subtle co-regulations probably exist and a wealth 
of data is available for mining in the microarray/sequencing 
databases to help identifying them.

Does amino acid transport affect metabolism?

Supporting the fact that metabolism and transport are coor-
dinated, a few experiments have shown that modifications of 
amino acid transport led to changes in amino acid content. 
Arabidopsis knockout mutants for the GABA transporter 
AtBAT1/GABP (Michaeli et  al., 2011), or the amino acid 
importers AtLHT1 (Hirner et al., 2006), AtAAP1 (Sanders 
et  al., 2009), and AtCAT2 (Yang et  al., 2014a) accumulate 
amino acids at different levels compared with the wild type. 
Overexpression of the GDU genes, thought to control amino 
acid export, led to increased content of almost all amino 
acids in Arabidopsis (Pilot et al., 2004; Pratelli et al., 2010) 
and Nicotiana tabaccum (Pratelli and Pilot, 2006). Whether 
modification of amino acid transport has a direct effect on 
amino acid metabolism and amino acid content remains to 
be determined.

Plants respond strongly to changes in amino acid trans-
port: knockout of the amino acid importer AtLHT1 (Liu 
et  al., 2010), overexpression of the amino acid importer 
CAT1 (Yang et  al., 2014b), and enhancement of amino 
acid export by overexpression of AtGDU1 and AtGDU3 
(Chen et al., 2010; Liu et al., 2010) led to constitutive stress 
responses involving a salicylic acid response. This kind of 
response appears similar to the one observed after altera-
tion of the activity of the amino acid biosynthetic pathways 
(see above), supporting the hypothesis of coordination of 
metabolism and transport activities. This effect of alteration 
of amino acid transport or metabolism on stress/pathogen 
response is intriguing and hints at a broader process in which 
plants could interpret alterations in amino acid homeostasis 
as the presence of pathogens. On the other hand, the patho-
gen response involves modifications of nitrogen metabolism, 
at least for synthesis of signalling and defence compounds 
(Zeier, 2013; Yang and Ludewig, 2014), making the relation-
ship between amino acid metabolism and transport and the 
pathogen response more complicated. It is thus not surpris-
ing that the nitrogen status of the plant impacts on pathogen 
virulence, although the underlying mechanism is not under-
stood (reviewed by Fagard et al., 2014, this issue).

Possible mechanisms for regulation of amino acid 
homeostasis

It is reasonable to speculate that some mechanisms exist that 
are involved in sensing the amino acid or nitrogen status of a 
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cell or of the plant, and that modulate metabolism, transport, 
and other responses accordingly. Low concentrations of Glu 
(50 µM) were found to affect root architecture through a sens-
ing pathway active in the root tip, and possibly implicating 
auxin (Walch-Liu et al., 2006). An elegant chemical genom-
ics screening further identified a mitogen-activated protein 
kinase kinase kinase (MEKK1), which is involved in the Glu 
signal transduction (Forde et al., 2013). More recently, follow-
ing a large-scale correlation analysis of transcript and meta-
bolic responses to stimuli, Hannah et  al. (2010) postulated 
that Leu could play a signalling function and be involved 
in the expression of specific genes. The authors tested their 
predictions and found that many stress-response genes were 
induced after 90 min of exposure to 50  µM Leu (Hannah 
et al., 2010). These results suggest that plants are able to sense 
external amino acids and react accordingly.

No amino acid sensor has been identified so far, but plant 
glutamate-like receptors (GLRs) are likely candidates for this 
process. GLRs have been shown to induce cation-triggered 
membrane depolarization upon addition of exogenous amino 
acids, and some knockout mutants show impaired nitrogen 
or carbon responses (reviewed by Forde, 2014). However it is 
very likely that more than one family of proteins may serve as 
amino acid sensors. Similar to what is suspected in mammals 
(Taylor, 2009), recent findings that plant transporters may be 
endowed with sensors properties as well (NRT1.1 for nitrate, 
Ho et al., 2009; SULTR1;2 for sulfate, Zhang et al., 2013a) 
bring a new light on nutrient sensing in plants.

The integration of nutrient sensing and the subsequent 
adaptation response has been described in microbes and 
mammals, where four main regulators, namely PII (GlnB), 
SnRK (SNF-1 related kinase), GCN2 (general control non-
derepressible-2), and TOR (target of rapamycin), have been 
discovered and investigated (see below). Plants possess these 
metabolic regulators as well, but so far these proteins do not 
appear to play a critical role in the control of amino acid 
pathways.

In microbes, the PII protein plays a critical role in the regu-
lation of anabolic nitrogen metabolism. It binds ATP, ADP, 
and 2-oxoglutarate and regulates the activity of transcription 
factors and metabolic enzymes (Chellamuthu et  al., 2013). 
While still present in plants, the role of PII seems limited to 
the control of the activity of acetyl-CoA carboxylase, the key 
enzyme in fatty acid synthesis, and NAGK involved in Arg 
metabolism in the chloroplast. PII has a local regulatory role, 
since its interaction with NAGK relieves the feedback inhi-
bition from Arg in presence of 2-oxoglutarate (Chellamuthu 
et al., 2013).

The plant SnRK proteins, similar to the AMPK and Snf1 
kinases from mammals and yeast, sense sugar levels and phos-
phorylate numerous downstream targets including metabolic 
enzymes (Baena-Gonzalez et  al., 2007; Halford and Hey, 
2009). SnRK1 appears important for linking the activity of 
carbohydrate and nitrogen metabolism, but no direct role in 
the control of amino acid pathways has been reported so far.

The pathway of GCN2 protein kinase is conserved among 
eukaryotes and is hypothesized to interact with the Snf1/
AMPK pathways (Halford and Hey, 2009). The yeast GNC2p 

is an essential component of the general amino acid control 
mechanism (Hinnebusch, 2005). GCN2p senses high con-
centrations of uncharged tRNAs and prevents the synthesis 
of new proteins, while the yeast transcription factor GCN4 
simultaneously activates more than 30 genes, many of which 
encode amino acid biosynthetic enzymes (Hinnebusch, 2005). 
A  GCN2-like gene is present in Arabidopsis, but no gene 
similar to GCN4 has been found in plants (Li et al., 2013), 
suggesting that this part of the general amino acid control 
mechanism is not conserved or is mediated by unknown tran-
scription factors or other pathways in plants (Zhang et al., 
2008).

Finally, the TOR pathway is a major cellular regulator in 
mammals and yeast, coordinating cell division with nutrient 
availability, stress levels, and energy supply (through AMPK/
Snf1) by acting on autophagy, translation, and metabolism, 
respectively (Wullschleger et  al., 2006). In mammals, glu-
tamine transport across the membrane controls the TOR 
pathway, providing an input for the availability of extracel-
lular amino acids to control autophagy (Nicklin et al., 2009; 
Taylor, 2009). More recently, TOR was also shown to be 
involved in the regulation of yeast and mammalian amino 
acid transporters, controlling their occurrence (Matsui and 
Fukuda, 2013) or abundance (Rosario et  al., 2013) at the 
plasma membrane. Despite its presence in Arabidopsis, 
AtTOR may be involved in processes different from those in 
yeast and mammals (Zhang et al., 2013d; Xiong and Sheen, 
2014). However, links between TOR and amino acid metabo-
lism and transport were established in a recent transcriptom-
ics and metabolomics investigation (Caldana et  al., 2013). 
Notably, a significant increase in the levels of branched-
chain, aromatic, and other amino acids (Lys, β-Ala, His, Pro, 
Thr, and GABA) was observed in inducible amiR-tor lines, 
as opposed to levels of Arg, ornithine, and spermidine, which 
were strongly reduced. Whether the increase in many amino 
acid levels results from de novo synthesis, impaired protein 
synthesis, autophagy (Liu and Bassham, 2010; Perez-Perez 
and Crespo, 2010), or altered transporter activity (possibly 
via ubiquitination) remains to be determined.

Conclusion

Three decades of work aimed at elucidating amino acid 
metabolism in plants has led to the identification of most of 
the biosynthesis and catabolic pathways, and of the genes 
encoding the corresponding enzymes. We have a good under-
standing of the regulation of most of the pathways, although 
several unknowns remain, such as feedback inhibition in the 
aromatic amino acid pathway (Tzin et  al., 2012), or path-
ways that have been the subject of little recent research (e.g. 
Ser, Ala, Gly, Arg). We are just starting to unravel the tran-
scriptional and post-translational regulation of the enzymes, 
and what we know points towards complex, multilayered 
regulations. Another layer of complexity will be added when 
transporters, their regulation mechanisms, corresponding 
compartmentation, and signalling pathways will be added 
to the model. With a much broader understanding of the 
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complexity of amino acid homeostasis in plants, we may be 
able to finally elucidate one galling observation of the 1990s 
(Bonner et al., 1996): why can the growth inhibition by high 
concentrations of amino acids be suppressed by addition of 
Gln, and Gln only?

Supplementary data

Supplementary data are available at JXB online.
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