
DOI: 10.1093/jxb/erf026

Regulation of carotenoid formation during tomato fruit
ripening and development
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Abstract

Carotenoid biosynthesis and its regulation during

tomato fruit development and ripening is a complex

process that occurs alongside the differentiation of

chloroplasts into chromoplasts and changes to the

organoleptic properties of the fruit. Unusually for

plants, the ripe tomato fruit accumulates large

amounts of lycopene, as the pattern of gene expres-

sion found in green fruit changes during fruit

ripening. Although the control of gene expression is

thought to be the main regulatory mechanism for

these alterations in carotenoids, post-transcriptional

regulation has also been reported, including feed-

back inhibition. The use of genetic manipulation

of carotenogenesis in tomato has been used primar-

ily for biotechnological reasons, but it has also

facilitated investigations into these regulatory

mechanisms, as well as into the effects of such

perturbations on other isoprenoids such as gibberel-

lins, tocopherols and sterols.
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Biological and nutritional importance of
carotenoids

Carotenoids are isoprenoid molecules that are common to
all photosynthetic tissues. They are divided into the
hydrocarbon carotenes, such as lycopene and b-carotene
(Fig. 1) or xanthophylls, typi®ed by lutein (Fig. 1).
Coloured carotenoids are also found in fruits, ¯owers
and roots, where they probably act as attractants to
pollinators and for seed dispersal. In the chloroplast they

participate in light harvesting in photosynthetic mem-
branes and also protect the photosynthetic apparatus from
excessive light energy by quenching triplet chlorophylls,
superoxide anion radicals and singlet oxygen (Niyogi,
1999). Furthermore, they are essential components of some
pigment±protein complexes (Moskalenko and Karapetyan,
1996) and are precursors of abscisic acid (Parry et al.,
1990).

Dietary carotenoids ful®l essential requirements for
human and animal nutrition. b-Carotene is the most potent
dietary precursor of vitamin A, the de®ciency of which
leads to xerophthalmia, blindness and premature death
(Mayne, 1996). Vitamin A de®ciency has been reported as
the most common dietary problem affecting children
worldwide, with some 1.2 million deaths annually among
children aged 1±4 years (Humphrey et al., 1992). In this
context, efforts to manipulate rice genetically in order to
produce b-carotene (Ye et al., 2000) have received
considerable attention (Potrykus, 2001). Other carotenoids
have been shown to alleviate age-related diseases when
taken in suf®cient quantities in the diet, probably because
of their powerful properties as lipophilic antioxidants
(Mordi, 1993). For example, zeaxanthin and lutein offer
protection against macular degeneration (Seddon et al.,
1994), whilst there is a considerable body of evidence to
link a high intake of tomatoes (and presumably lycopene)
to a reduced incidence of prostate cancer (Giovannucci,
1999). More recently, evidence has been presented to show
that tomato sauce reduces the amount of DNA damage in
white blood cells and prostate tissues of prostate cancer
victims (Chen et al., 2001). Since the tomato fruit is
virtually the sole dietary source of lycopene, its formation
in the tomato has been the subject of considerable
attention, as has attempts to increase the levels by genetic
manipulation or conventional plant breeding.
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Carotenoid biosynthesis in higher plants

Early studies on the biosynthesis of carotenoids in plants
used biochemical approaches and the analysis of
intermediates in naturally occurring mutants, especially
the tomato (Porter and Lincoln, 1950). These pioneering
studies have been reviewed comprehensively (Jones and
Porter, 1986). All carotenoids are derived from isopentenyl
diphosphate (IPP, Fig. 2) and are produced in plastids.
Genetic and molecular studies have established that
nuclear genes encode all the enzymes of the pathway.
This multidisciplinary approach has led to the cloning of
most of the genes from higher plants. The experimental
approaches to cloning the carotenoid genes have been
reviewed by Hirschberg (2001).

Plants synthesize carotenoids via the recently identi®ed
1-deoxy-D-xylulose-5-phosphate (DOXP) pathway rather
than the mevalonic acid pathway as was assumed for many
years. Whilst both pathways produce IPP, the latter is
responsible for the formation of sterols, sesquiterpenoids
and triterpenoids in the cytosol, whilst the DOXP pathway
leads to the formation of plastidic isoprenoids, such as
carotenoids, phytol, plastoquinone-9, and diterpenes
(Schwender et al., 1996; Lichtenthaler, 1999). Not all the
biosynthetic steps have been elucidated, but an outline of
current understanding of the pathway is shown in Fig. 3.

IPP is isomerized to its allylic isomer dimethylallyl
diphosphate (DMAPP), the activated substrate for the
formation of the C20 geranylgeranyl diphosphate (GGPP),
the precursor of the ®rst C40 carotenoid, phytoene (Fig. 2).
IPP isomerase is found in both the cytosol and plastid and
there are two IpI genes in plants (Cunningham and Gantt,
1998). A single enzyme, GGPP synthase (Ggps), catalyses
the formation of GGPP from IPP and DMAPP. At least ®ve
Ggps genes are expressed in different tissues of
Arabidopsis, but it is not known how many are linked to
carotenoid biosynthesis (Okada et al., 2000). It is tempting
to consider that different GGPP synthases are responsible
for the branches from GGPP to each isoprenoid class
(Fig. 2). The condensation of two molecules of GGPP to

form 15-cis phytoene is catalysed by phytoene synthase,
PSY (Fig. 4). The enzyme is very well conserved among
archea, bacteria and eukaryotic organisms. The tomato
contains two genes, Psy-1 and Psy-2. The former encodes
the fruit-ripening-speci®c isoform, whilst Psy-2 predom-
inates in green tissues, including mature green fruit and has
no role in carotenogenesis in ripening fruit (Fraser et al.,

Fig. 2. The isoprenoid biosynthetic pathway.

Fig. 3. The 1-deoxy-D-xylulose 5-phosphate (DOXP) biosynthetic
pathway. This is also called the non-mevalonate or the 2C-methyl-D-
erythritol-4-phosphate (MEP) pathway. Abbreviations: GA-3-P,
glyceraldehyde 3-phosphate; MEP, 2C-methyl-D-erythritol-4-phos-
phate; CDP-MEP, 4-diphosphocytidyl-2C-methylerythritol; CDP-ME-
2-P, 4-diphosphocytidyl-2C-methylerythritol 2-phosphate; MECDP,
2C-methyl-D-erythritol 2,4-cyclodiphosphate; DMAPP, dimethylallyl
diphosphate; IPP, isopentenyl diphosphate.

Fig. 1. Structures of typical carotenoids.
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1999). A mutation in Psy-1 causes a yellow ¯esh
phenotype (the r,r mutant) and an absence of carotenoids
in ripe fruit, an effect that can be mimicked with an
antisense Psy-1 transformation (Bird et al., 1991; Bramley
et al., 1992).

Two structurally and functionally similar membrane-
bound enzymes, phytoene desaturase (PDS) and z-
carotene desaturase (ZDS), convert phytoene into lyco-
pene, via z-carotene (Fig. 4). These two FAD-containing
enzymes require at least plastoquinone (Mayer et al., 1992;
Norris et al., 1995) and a plastid terminal oxidase (Carol
and Kuntz, 2001) as electron acceptors. By contrast, the
bacterial crtI gene encodes a single desaturase that
converts phytoene into all-trans lycopene (Fraser et al.,
1992). The phylogenetic relationships between the various
carotene desaturases have been reviewed (Sandmann,
1994). The isolation of a carotene isomerase gene from
Synechocystis (Breitenbach et al., 2001) and tomato
(Isaacson et al., 2002) has ®nally established the mechan-
ism by which cis-trans isomerizations occur during the
desaturation of phytoene into lycopene.

The cyclization of lycopene creates a series of carotenes
that have one or two rings of either the b- or e- type.
Lycopene b-cyclase (LCY-B/CRTL-E) catalyses a two-
step reaction that leads to b-carotene (two b-rings, Fig. 1),
whereas lycopene e-cyclase (LCY-E/CRTL-E) creates one
e-ring to produce d-carotene (Fig. 5). It is assumed that a-
carotene (b, e-carotene, the precursor of the major leaf
xanthophyll, lutein) is formed by the action of both
enzymes. These enzymes in tomato show a large amount of
structural resemblance and both contain FAD/NAD(P)-
binding sequences at the amino termini. Unusually, tomato
contains two lycopene b-cyclases, LCY-B, as described
above, and also CYC-B, a chromoplast-speci®c cyclase

(Ronen et al., 2000). They show a 53% identity at the
amino acid level. Intriguingly, CYC-B shows a far greater
identity to CCS of pepper, leading to speculation of a
common ancestral gene (Ronen et al., 2000; Hirschberg,
2001). Another carotenoid gene, neoxanthin synthase
(NSY) from tomato is closely related to LCY-B and
CCS (Bouvier et al., 2000). This enzyme catalyses the
conversion of violaxanthin to neoxanthin. LCY catalyses a
simpli®ed version of the reaction catalysed by NSY and
CCS, suggesting that these enzymes were remodelled from
LCY during higher plant evolution to create novel
oxidized carotenoids. The importance of CYC-B in
regulating lycopene accumulation in ripening tomato
fruit will be described later.

Xanthophylls are formed by the oxygenation of
carotenes, typically by the addition of hydroxyl, epoxy
or keto groups. Hydroxylation at 3C and 3C¢ positions is
carried out by two types of enzymes; one speci®c for b-
rings and one for e-rings (Sun et al., 1996; Pogson et al.,
1996). The b-carotene hydroxylases require ferredoxin and
iron (Bouvier at al., 1998). There are two b-carotene
hydroxylases in tomato (Hirschberg, 1998), one expressed
in green tissue and one in the ¯ower (Ronen et al., quoted
by Hirschberg, 2001). Subsequent reactions to form other
xanthophylls, and their interconversion in the xanthophyll
cycle, are described by Hirschberg (2001). The formation
of ABA from the oxidative cleavage of 9-cis-epoxy
carotenoids is catalysed by dioxygenases (Schwartz et al.,
1997, 2001).

Regulation of carotenoid biosynthesis during
tomato fruit development and ripening

Since carotenoids are just one class of isoprenoids (Fig. 2),
the regulation of their formation must involve the co-
ordinated ¯ux of isoprenoid units into the C40 carotenoids

Fig. 4. Phytoene formation and desaturation reactions to form
lycopene.

Fig. 5. Cyclization reactions from lycopene. Abbreviations: CrtL-e,
lycopene e-cyclase; CrtL-b, lycopene b-cyclase.
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as well as the other branches of the isoprenoid pathway.
The discovery of gene families for several of the steps in
these pathways (e.g. HMG CoA reductase, GGPP
synthase, phytoene synthase) implies unique roles for
each member of the family. This has been well docu-
mented for multiple forms of HMG CoA reductase
(Chappell, 1995), but an understanding of the functions
of isoenzymes in later steps remains fragmentary.
However, the traditional view of subcellular compartmen-
tation of isoprenoid formation (Gray, 1987) is probably an
oversimpli®cation. Although carotenoids are formed in
plastids, it is likely that exchanges of cytoplasmic and
plastidic metabolites occur and that these exchanges vary
depending upon the type and developmental stage of the
tissue (reviewed by McCaskill and Croteau, 1998).

Since carotenoids are an essential part of the pigment±
protein complexes in thylakoids, the regulation of
carotenogenesis in green tissues must be linked to the
formation of chlorophylls, proteins, lipids, and to chlor-
oplast development itself. This highly regulated process is
poorly understood. It is known that light, and its intensity,
are involved in the regulation of carotenoid formation in
the chloroplast. Although expression of carotenoid genes
does occur in etiolated plants, their synthesis is stimulated
on transfer to light. It has been reported that IPP isomerase
activity increases when maize etioplasts are transferred to
the light (Albrecht and Sandmann, 1994), and Psy mRNA
levels increase in the light due to a phytochrome-mediated
regulation. By contrast, the expression of Ggps and Pds
remain constant (von Lintig et al., 1997). The concentra-
tion and composition of xanthophylls, especially those of
the violaxanthin cycle, is affected by light intensity
(Demmig-Adams et al., 1996). Hirschberg (2001) reports
that shifting either Arabidopsis or tomato plants from low
light to strong light caused a 5-fold increase in the ratio of
Lcy-b mRNA and Lcy-e mRNA, suggesting that xantho-
phyll composition can be modulated by the ¯uxes in the
carotene pathway. This supports the results of studies with
mutants of Arabidopsis that lack Lcy-e and have no lutein
in the light-harvesting antenna (Pogson et al., 1996). The
lutein is replaced by other carotenoids, with no apparent
detrimental effects to the plant.

Carotenogenesis in ripening fruit (and ¯owers) is
controlled by regulatory mechanisms that are distinct
from those in photosynthetic tissues (Thelander et al.,
1986). Carotenoid formation during tomato fruit ripening
has been studied extensively and has become the best
model system for other chromoplast-containing tissues.
During ripening the concentration of carotenoids increases
between 10- and 14-fold, due mainly to the accumulation
of lycopene (Fraser et al., 1994). The tomato is unusual in
this respect, as very few other fruit accumulate lycopene.
At the breaker stage of ripening, the red colour of lycopene
begins to appear, the chlorophyll content decreases and the
organoleptic properties of the fruit change. Higher expres-

sion of isoprenoid genes in the central pathway has been
found at this stage of fruit development, notably DOXP
synthase (Lois et al., 2000). This has led to the suggestion
that the DOXP pathway may be crucial in the overall
regulation of lycopene formation in tomato fruit. At this
same stage, mRNA levels of Psy-1 and Pds increase
signi®cantly (Pecker et al., 1992; Giuliano et al., 1993;
Fraser et al., 1994; Corona et al., 1996). At the same time,
the mRNAs of both lycopene cyclases (Lcy-b and -e)
disappear (Pecker et al., 1996; Ronen et al., 1999). These
changes in gene expression show that transcriptional
regulation is involved in the accumulation of lycopene in
tomato fruit. Differential gene expression has also been
implicated in the accumulation of d-carotene in fruits of
the Delta tomato mutant, which results from increased
transcription of Lcy-e (Ronen et al., 1999) and in the
formation of b-carotene rather than lycopene in the high-b
mutant due to the up-regulation of the Cyc-b gene (Ronen
et al., 2000). The high pigment (hp) locus in tomato also
affects the levels of total carotenoids. Analysis of the hp-2
mutant has shown that it is involved in phytochrome
signalling pathways (Mustilli et al., 1999).

Although control of gene expression at the transcrip-
tional level is a key regulatory mechanism controlling
carotenogenesis in chromoplasts, it is not the only one.
Post-transcriptional regulation of carotenogenic enzymes
has been found in chromoplasts of Narcissus. Both PSY
and PDS were detected in inactive forms in the soluble
fraction, but in active forms when membrane-bound (Al-
Babili et al., 1996). In addition, substrate speci®city of the
b- and e- lycopene cyclases may control the proportions of
the cyclic carotenoids in plants (Cunningham et al., 1996).
It has also been established that sequestration of
carotenoids in non-photosynthetic tissues is important in
their accumulation, as opposed to their synthesis (Deruere
et al., 1994; Vishnevetsky et al., 1999).

The pathway may also be regulated by feedback
inhibition by end-products. Inhibition of lycopene cycliza-
tion in tomato leaves causes increased expression of both
Pds and Psy-1 (Giuliano et al., 1993; Corona et al., 1996).
This hypothesis is supported by studies using carotenoid
biosynthesis inhibitors in which treated tissue accumulated
more total carotenoids than controls (Bramley, 1993). The
higher concentration of lycopene in old-gold and old-gold
crimson mutants of tomato, compared to the wild type,
may be a consequence of the lack of b-carotene due to the
mutated second b-cyclase gene and thus an increase in
enzyme activity of earlier enzymes in the pathway. In all of
these examples, the molecular mechanism remains to be
established. ABA has been implicated, although
Arabidopsis mutants, impaired in ABA synthesis, do not
show elevated levels of carotenoids (Rock and Zeevaart,
1991). Finally, it is likely that metabolite channelling and
functional complexes of protein partners are also involved
in the ef®cient ¯ux of metabolites in to the carotenoid
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pathway, as evidenced by the properties of the two
phytoene synthases in tomato (Fraser et al., 1999).

Genetic modi®cation of carotenogenesis in
tomato

Metabolic engineering of plants to produce novel com-
pounds or to improve the production of existing
compounds has made signi®cant progress since the mid-
1980s (DellaPenna, 2001). The availability of a large
number of carotenoid genes and ef®cient protocols for
transformation (Lessard et al., 2002) has enabled several
plant species to be genetically modi®ed with respect to
carotenogenesis. These include rice (Ye et al., 2000),
Canola (Shewmaker et al., 1999) and the tomato. There is a
growing commercial interest in the production of so-called
`natural' carotenoids, as opposed to their chemical
synthesis, for use in human nutrition, as colourants and
as antioxidants. In the case of tomato, there are several
reports of genetic modi®cations that have changed the
carotenoid levels of fruit. These studies have also facili-
tated an understanding of the regulatory mechanisms that
control carotenogenesis, as they have produced plants with
perturbed ¯uxes within the pathway.

The ®rst target for the genetic modi®cation of tomato
carotenoids was the phytoene synthase step (Fig. 4). Based
upon enzyme activities and gene expression, it was shown
that Psy-1 was signi®cantly up-regulated at the breaker
stage of fruit ripening (Fraser et al., 1994). Transformation
with tomato Psy-1 cDNA, using a constitutive promoter
produced pleiotrophic effects such as premature pigmen-
tation of seed coats and cotyledons (Truesdale, 1994) as
well as depletion in gibberellin levels as a consequence of
the redirection of GGPP into phytoene (Fray et al., 1995).
These plants were dwarf in stature. A more recent attempt
to manipulate this step has been made using the crtB
(phytoene synthase) gene from Erwinia. In this case, fruit-
speci®c expression was achieved with the polygalactur-
onase promoter, and the Psy-1 transit sequence used to
target the CRTB protein to the chromoplast. Total fruit
carotenoids were increased some 2±4-fold, with no effect
on other isoprenoids (Fraser et al., 2002). In vitro assays
showed that the phytoene synthase enzyme activity was
located in the plastid and had increased 5±10-fold, i.e. a far
greater increase than that for total carotenoids. Metabolic
control analyses of the wild type and transgenic lines have
indicated why this is the case. Although phytoene synthase
is the regulatory step in control fruit, in the transformants
the ¯ux coef®cient was signi®cantly reduced, indicating
that the regulatory step had been shifted to another step(s)
in the pathway. When the same gene was used to transform
Canola, the seeds contained some 50-fold more carotenoid
than the wild type (Shewmaker et al., 1999). Metabolic
control analyses were not reported in this study.

b-Carotene in tomato fruit has been increased by various
genetic modi®cations. Constitutive expression of the
Erwinia crtI gene (phytoene desaturase) caused a 3-fold
elevation in b-carotene, but an unexpected reduction in the
total carotenoid levels (RoÈmer et al., 2000). Gene expres-
sion studies showed that the endogenous lycopene cyclases
were up-regulated in the transformants, thus causing the
formation of b-carotene rather than lycopene as had been
predicted. A critique of this conclusion has been published
by Giuliano et al. (2000). The reduction in total
carotenoids is thought to be a consequence of feedback
regulation from b-carotene or one of its metabolites.
Increases in the b-carotene levels of tomato fruit have also
been achieved following transformation with the native
Lcy-b coupled to the tomato Pds promoter (3.8-fold; Rosati
et al., 2000), but an even greater increase were obtained
with the Cyc-b gene (Ronen et al., 2000). In these two
examples, there was no decrease in total carotenoids,
unlike that with crtI. The reason for these differences has
yet to be established.

Conclusions

Since the elucidation of the carotenogenic pathway in
plants, there has been a steady increase in understanding
the complexities of regulation of the pathway, especially in
non-photosynthetic tissues such as tomato fruit. However,
far more information is needed before these control
mechanisms can be fully understood. The biochemical
analysis of transgenic lines containing additional carote-
noid genes should be a major part of these endeavours,
especially measurements of ¯ux coef®cients, metabolite
channelling and the interactions between carotenogenic
enzymes and other protein partners.
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