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The p53 protein is essential for the implementation of the cellular response to challenging
environmental conditions. Reacting to stochastic nutrient stress, p53 integrates the activity of
key metabolite-sensing pathways to coordinate an appropriate cell response. During starva-
tion, p53 activity augments cell survival pathways, inhibits unnecessary growth, and pro-
motes efficient nutrient generation, utilization, and conservation. Similarly, during oxygen
stress, p53 facilitates redirection of cellular metabolism toward energy generation through
nonoxidative means, the suppression of reactive oxygen species (ROS) generation, and ROS
detoxification—promoting cell survival. However, if adverse conditions are too acute or
persistent, p53 can switch roles to implement canonical cell killing. The ability of p53 to
regulate metabolism is a powerful feature of p53 biology that can both promote cell survival
and act as a check on the inappropriate proliferation of cancer cells.

The importance of p53 is often defined by its
tumor-suppressive initiation of apoptosis in

cells that have accumulated DNA damage and/
or its engagement of senescence in cells harbor-
ing oncogenic mutations (Vogelstein et al. 2000;
Vousden and Prives 2009). However, given the
long evolutionary history of p53 and its related
family members, p63 and p73, back to organ-
isms without obvious requirements for cancer
surveillance (Allocati et al. 2012), it is impor-
tant to conceptualize the utility of p53 beyond
tumorigenesis as a general stress monitor.

Periods of nutrient scarcity (starvation) or
oxygen deprivation (hypoxia) place a significant
burden on cells. Similarly, prolonged periods of
nutrient or reactive oxygen overload can also
negatively impact an organism (Liu et al. 2008;
Circu and Aw 2010; Wellen and Thompson

2010). If left unchecked, these forces can lead
to the exhaustion of finite energy reserves dur-
ing starvation, cessation of normal aerobic cel-
lular processes in hypoxia, or to failed nutrient
management and metabolic syndrome in ex-
cess.

As with DNA damage, perturbations in ox-
ygen tension, nutrient availability, or redox state
can all induce p53 (Horn and Vousden 2007;
Vousden and Ryan 2009). Although research
into the relationship between p53 and nutrient
excess is still in the early stages, the extant evi-
dence suggests a function for p53-mediated
metabolic control in this context, too. Follow-
ing a metabolic shock, p53 acts to support the
survival of competent cells by promoting the
maintenance of cellular energy levels, the re-
modeling of metabolic pathways to suit prevail-
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ing conditions, and the cessation of cell growth
and proliferation (Jones et al. 2005; Feng and
Levine 2010; Scherz-Shouval et al. 2010; Mad-
docks et al. 2013). Although the general para-
digms of p53 activation, including stabilization
of p53 protein levels, p53 posttranslational
modification, and downstream transcriptional
activation of target genes, hold in response to
metabolic stress, the exact molecular mecha-
nisms are complex and can be cell-type and tis-
sue dependent. Regardless, following activation
by metabolic signals, the p53 protein acts as both
a nuclear transcription factor to drive expression
of relevant stress–response genes and a cyto-
plasmic and mitochondrial interaction partner
with metabolic and autophagic machinery to
promote adaptation and cell survival (Jones
et al. 2005; Vousden and Ryan 2009; Feng and
Levine 2010; Scherz-Shouval et al. 2010; Mad-
docks et al. 2013). Even so, if deleterious condi-
tions are too severe or persistent, p53 switches
roles to activate canonical cell death pathways
(Polyak et al. 1997).

The ability of p53 to direct metabolism rep-
resents an underappreciated aspect of p53 func-
tion that can help to support stressed cells under
adverse environmental conditions. These ac-
tivities double as a further check on tumorigen-
esis by opposing oncogene-induced metabolic
change and may play a role in the pathology of
other metabolic syndromes in humans. A closer
examination of the components of metabolic
regulation by p53 during starvation and glut,
and of how p53 shapes the cellular response
to hypoxia and reactive oxygen are important
to appreciate the broad power and utility of the
p53 protein in normal and premalignant cell
biology.

FEAST AND FAMINE: METABOLIC
SENSING AND p53

Nutrient acquisition and resource management
are critical tasks for living cells. As such, several
extensive regulatory networks monitor nutrient
and energy levels and act to appropriately link
supplies with the demands of maintenance and
proliferative programs (Fig. 1). Unsurprisingly,
the ability of activated p53 to dynamically alter

the metabolic state of a cell involves interactions
between the p53 protein and various contribu-
tors to each of these metabolic pathways.

Target of rapamycin (TOR) kinase (mTOR
in mammals) is a critical hub for biogenesis.
The pathway senses nutrient supply—and espe-
cially amino acid levels—and acts to promote
cell growth, proliferation, protein synthesis,
and transcription when conditions are favorable
(Fig. 1) (Hay and Sonenberg 2004; Zoncu et al.
2011a; Laplante and Sabatini 2012). mTOR is
also the master regulator of autophagy, the pro-
gram of catabolic self-eating and quality control
(Levine and Kroemer 2008). In mammalian
cells, mTOR forms two distinct multimeric pro-
tein complexes, mTORC1 and mTORC2. Of
these, the mTORC1 complex is the most rele-
vant for metabolic regulation through its links
with control of protein synthesis and transla-
tion, lipid synthesis, mitochondrial biogenesis,
and autophagy through its downstream effec-
tors (Hay and Sonenberg 2004; Laplante and
Sabatini 2012).

Given its crucial role in modulating cell
growth, mTORC1 activity is tightly coregulated
by numerous upstream signaling pathways to
ensure that mTOR is engaged only when there
are sufficient nutrients, energy, and demand for
biogenesis. When any of these conditions fail,
mTORC1 is inhibited. In periods of low energy
availability, for example, ATP depletion increas-
es the cytoplasmic ratio of AMP/ATP, activating
the energy sensor 50-AMP-activated protein ki-
nase (AMPK) and promoting AMPK-mediated
inhibition of mTORC1 (Hardie et al. 2012).
Similarly, in the absence of amino acids,
mTORC1 fails to be recruited to endosomes
and lysosomes and is, thus, spatially separated
from the modulators of growth-factor signaling
that allow for full mTORC1 activation (Zoncu
et al. 2011b).

Reduced nutrient or energy levels result in
activation of AMPK and inhibition of mTOR
signaling. Because of p53–AMPK and p53–
mTOR pathway interactions, both situations
also tend to activate p53 (Fig. 1). Activated
AMPK has been shown to increase p53 tran-
scription during glucose starvation (Okoshi
et al. 2008) and to stabilize the p53 protein, at

T.J. Humpton and K.H. Vousden

2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a026146

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


least in part via AMPK-mediated phosphoryla-
tion of serine-15 on p53 (Imamura et al. 2001;
Jones et al. 2005). At the same time, the relative
increase in the ADP/ATP ratio that occurs in
depleted cells directly increases the DNA-bind-
ing affinity of p53 and promotes p53-mediated
transcription by itself (Okorokov and Milner
1999). A similar response to nutrient stress is
mediated through AKTsignaling. AKT is a pos-

itive regulator of the ubiquitin ligase MDM2,
which is responsible for the rapid proteosomal
degradation of p53. Decreased AKT signaling
(in response to nutrient starvation) leads to
the suppression of MDM2 activity and, thus,
promotes stabilization of p53 (Mayo and Don-
ner 2001; Ogawara et al. 2002; Feng et al. 2004).
Once activated by nutrient stress in this manner,
p53 further inhibits mTOR signaling through
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Figure 1. p53 integrates metabolic stress signals to direct cell metabolism. The p53 protein is activated in
response to changing metabolic conditions (blue arrows) and growth factor signaling (black arrows) through
positive and negative interactions with metabolic signaling networks including 50-AMP-activated protein kinase
(AMPK), eIF2a, the mitochondria, and mammalian target of rapamycin (mTORC1). In response to transient
nutrient withdrawal, active p53 promotes cell survival through positive regulation of mitochondrial activity and
autophagy and inhibition of mTORC1, proliferation, and cellular anabolism (orange arrows). FAs, Fatty acids;
RHEB, RAS homolog enriched in brain; OXPHOS, oxidative phosphorylation; mitoROS, mitochondrial reac-
tive oxygen species; lightning bolt, phosphorylation event; yellow cross, pathway inhibition.
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increased transcription of many negative regu-
lators of mTORC1 including AMPKb, TSC2,
and PTEN (Feng et al. 2007). These effectors,
in turn, help establish a p53-dependent G1-S
cell-cycle checkpoint arrest that prevents undue
proliferation and biogenesis when metabolic
conditions are inadequate.

Dynamic maintenance of cellular homeo-
stasis requires that signaling interactions be-
tween mTORC1, AMPK, and p53 remain flex-
ible. As such, mTORC1 activity can rapidly
repress p53 when the metabolic situation im-
proves. Increased signaling through AKT up-
stream of mTORC1 increases MDM2 activ-
ity and p53 degradation. Downstream from
mTORC1, p53 inhibition is mediated through
the action of the translation initiation fac-
tor eIF4E (Mungamuri et al. 2006). However,
chronic activation of the PI3K–AKT–mTORC1
axis, as often occurs during tumorigenesis, can
activate p53 and ARF (an inhibitor of MDM2
that also drives activation of p53 in response
to oncogene activation) and promotes cellular
senescence in an mTOR-dependent manner
(Lee et al. 2007; Miceli et al. 2012). Within the
regime of mild p53 activation following meta-
bolic stress, however, the thresholds for apopto-
tic or prosenescent p53 activity are not reached.
Instead, the balance of mTOR and AMPK sig-
naling create transient and self-limited periods
of p53 activation and subsequent inhibition of
biogenesis that favor survival (Vousden and
Ryan 2009; Feng and Levine 2010).

In addition to nutrient- and energy-sensing
feedback loops, the metabolic activity of a cell is
also regulated by the state of its mitochondrial
network. During periods of starvation, mito-
chondrial function for ATP generation and fatty
acid oxidation (FAO) are essential for survival
(Dieuaide et al. 1992; Gomes et al. 2011; Hardie
2011; White 2012). As with AMPK and mTOR,
the activation of p53 can alter mitochondrial
capacity and function to meet changing energy
demands (Fig. 1). Through the activity of p53-
controlled ribonucleotide reductase (p53R2),
for example, p53 can regulate mitochondrial
DNA copy number and increase mitochondrial
mass (Bourdon et al. 2007). At the transcrip-
tional level, active p53 augments mitochondrial

function by inducing expression of SCO2, a
copper transporter that is critical for proper
assembly of cytochrome c oxidase (COX) in
the mitochondria (complex IV in the mito-
chondrial oxidative phosphorylation electron
transport chain), as well as elements of subunit
1 of the COX complex (Okamura et al. 1999;
Vahsen et al. 2004; Matoba et al. 2006; Stambol-
sky et al. 2006; Sinthupibulyakit et al. 2010).
Increased levels of SCO2 support enhanced
oxidative phosphorylation (Matoba et al. 2006).
Similarly, p53 promotes increased mitochon-
drial function and integrity through regula-
tion of mitochondrial quality and turnover
(mitophagy). This occurs directly, through the
increased expression of mitochondria-eating
protein (MIEAP), and indirectly through p53-
mediated augmented autophagy (Kitamura
et al. 2011). In addition, p53 itself can interact
with PGC-1a to preferentially activate the ex-
pression of many metabolic, antioxidant, and
pro-cell-cycle arrest genes that facilitate growth
inhibition, suppression of damaging reactive
oxygen, and greater control over mitochondrial
activity (Sen et al. 2011).

FEAST AND FAMINE: THE ROLE OF p53
IN CARBOHYDRATE, LIPID, AND AMINO
ACID METABOLISM

As long as metabolic stress is short-lived, the
interactions between the mTOR and AMPK nu-
trient-sensing pathways, p53, and the mito-
chondria promote cessation of cell growth and
enhanced cell survival. Even so, a cell experienc-
ing these conditions must also alter normal
metabolic programs to promote nutrient con-
servation. Here again, the activation of p53 sup-
ports resilience by altering the metabolism of
carbohydrates, lipids, and amino acids.

Glucose is an important carbon source for
mammalian cells. Under normal conditions,
glucose uptake is followed by its stepwise pro-
cessing to pyruvate by glycolytic enzymes in the
cytosol. Although these reactions generate a
small amount of net ATP energy for the cell, it
is the subsequent oxidation of pyruvate within
the mitochondrial tricarboxylic acid (TCA) cy-
cle that creates the bulk of glucose-derived ATP
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via highly efficient oxidative phosphorylation
(OXPHOS) (Fig. 2) (Voet and Voet 2011). Rap-
idly proliferating cells, including cancer cells,
metabolize glucose differently from quiescent
cells (Warburg 1956). Whereas quiescent cells
preferentially funnel glucose-derived pyruvate
into the mitochondria to efficiently generate
ATP through OXPHOS, rapidly proliferating
and cancer cells depend more on increased rates
of aerobic glycolysis for ATP production, con-
verting pyruvate to lactate rather than feeding
the TCA cycle (Warburg 1956; Vander Heiden
et al. 2009).

Aerobic glycolysis is less efficient than mi-
tochondrial respiration at generating ATP from
glucose (Voet and Voet 2011). Even so, a switch
to glycolysis may have several advantages for
rapidly proliferating cells. Glycolytic inter-
mediates can be channeled through alternative
pathways to provide precursors for the de
novo synthesis of amino acids, nucleotides,
and lipids to meet the demands of proliferation.
The pentose phosphate pathway (PPP), for
example, provides ribose-5-phosphate for nu-
cleotide synthesis and also produces nico-
tinamide adenine dinucleotide phosphate
(NADPH), a crucial reducing agent that helps
to maintain the redox status of a cell by facili-
tating the regeneration of reduced glutathione
(GSH) (Dröge 2002; Martin and Teismann
2009). NADPH is also required for lipid biosyn-
thesis (Fig. 2). Similarly, diverted glucose is con-
sumed in the hexosamine pathway to provide
the amino sugars required for increased glyco-
sylation during biogenesis (Schleicher and Wei-
gert, 2000; Moremen et al. 2012). High rates of
glycolysis can also provide sufficient ATP for a
rapidly proliferating cell without the require-
ment for OXPHOS, thus allowing survival un-
der hypoxia and limiting the generation of
potentially damaging mitochondrial ROS even
when oxygen is not limiting. Furthermore,
modeling studies suggest that molecular crowd-
ing can limit the efficiency of mitochondrial
ATP production—an effect that could be detri-
mental in rapidly dividing cells and would ne-
cessitate increased ATP generation via nonoxi-
dative pathways like glycolysis (Vazquez and
Oltvai 2011; Vazquez et al. 2011).

Even though proliferating cells eschew the
economy of OXPHOS for ATP generation, they
do not eliminate mitochondrial function alto-
gether. TCA-cycle intermediates are required for
some anabolic reactions and can be exported
from the mitochondria to support biogenesis
(Vander Heiden et al. 2009; Le et al. 2012; Son
et al. 2013). Consequently, at least in vitro, pro-
liferating cells can use alternative carbon sourc-
es such as glutamine (which also provides ni-
trogen) in place of glucose to maintain TCA
metabolite pools via anaplerotic pathways. Glu-
tamine anaplerosis to fuel mitochondrial TCA is
important for the growth of some cancer cells in
vitro and may also occur in normal cells during
periods of high energy demand (Bowtell and
Bruce 2002; Wang et al. 2010; Le et al. 2012;
Son et al. 2013; Saqcena et al. 2014). Given these
observations, it is perhaps unsurprising that
glutamine starvation is toxic for rapidly prolif-
erating cells in culture. It has been reported
that p53 is activated by protein phosphatase
2A (PP2A) during glutamine withdrawal and
that resultant p53 activity promotes cell survival
(Reid et al. 2013). These observations are exactly
in line with reported roles for p53 during glu-
cose starvation. In both cases, when nutrient
conditions deteriorate, reckless carbohydrate
consumption must be swiftly constrained and
regulated. The p53 protein plays an important
role in this process.

As with its opposition of mTORC1 signal-
ing, p53 induction counteracts glucose pro-
fligacy by attenuating aerobic glycolysis, pro-
moting OXPHOS, and altering PPP flux when
glucose is limiting (Fig. 2). The protein Tp53-
induced glycolysis and apoptosis regulator
(TIGAR) is a p53 target gene in humans that
plays a role in this regulation. Phosphofructoki-
nase 1 (PFK1) catalyzes the third step of glycoly-
sis by promoting the conversion of fructose-
6-phosphate into fructose-1,6-bisphosphate.
PFK1 is inhibited by the accumulation of me-
tabolites that imply sufficient energy, such as
ATP, but is activated by harbingers of energy
depletion including AMP and fructose-2,6-bis-
phosphate. During glucose starvation, TIGAR
(as a fructose-2,6-bisphosphatase) and the bis-
phosphatase arm of the bifunctional enzyme
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Figure 2. p53 regulates carbohydrate metabolism during glucose starvation. During glucose starvation, p53 acts
to promote mitochondrial respiration (blue arrows) through numerous mechanisms including enhanced py-
ruvate flux into the tricarboxylic acid (TCA) cycle, increased fatty acid oxidation (FAO), decreased TCA
metabolite export, greater mitochondrial quality control, more robust electron transport chain activity, and
utilization of glutamate as an alternative carbon source for respiration. p53 also limits glycolysis and suppresses
undue nucleotide, amino acid, and fatty acid synthesis through many pathways. TIGAR, Tp53-induced glycol-
ysis and apoptosis regulator; HKII, hexokinase II; G6PDH, glucose-6-phosphate dehydrogenase; PPP, pentose
phosphate pathway; NADPH; nicotinamide adenine dinucleotide phosphate; PKA, protein kinase A; PGAM,
phosphoglycerate mutase; FA, fatty acid; AA, amino acid; MIEAP, mitochondria-eating protein; FAO, fatty acid
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phosphofructokinase2/fructose-2,6-bisphospha-
tase (PFK2/FBPase2) both limit fructose-2,6-bis-
phosphate levels by promoting its conversion
back into fructose-6-phosphate (Fig. 2). These
actions, in turn, decrease the activity of PFK1,
restrict glycolytic flux, and promote glucose flux
into the PPP (Claus et al. 1984; Bois-Joyeux et al.
1987; Kurland and Pilkis 1995; Bensaad et al.
2006; Li and Jogl 2009; Mor et al. 2011).

Alongside TIGAR, p53 dampens glycoly-
tic flux during glucose starvation by altering
transcription of several glycolytic enzymes
downstream from PFK1. Targets including
phosphoglycerate mutase (PGAM), the enzyme
responsible for the conversion of 3-phos-
phoglycerate into 2-phosphoglycerate, and py-
ruvate dehydrogenase kinase 2 (PDK2), an
inhibitor of the pyruvate dehydrogenase com-
plex (PDC) and, therefore, of glucose flux
into the mitochondria, are both suppressed
(Fig. 2) (Kondoh et al. 2005; Contractor and
Harris, 2012). Some care must be taken when
considering the activities of p53 to limit gly-
colysis during starvation, however, because al-
though the observation that p53 inhibits PGAM
is true for fibroblasts undergoing starvation,
for example, it has also been shown that PGAM
can be induced by p53 in cardiac muscle tis-
sue during development (Ruiz-Lozano et al.
1999). As with many aspects of p53 biology, it
seems that tissue and nutrient context play im-
portant roles in determining how p53 activity
alters glycolysis.

In step with limiting glycolytic flow during
periods of glucose scarcity, p53 actively pro-
motes increased mitochondrial OXPHOS for
the glucose that remains. As discussed earlier,
during starvation p53 acts both directly and in-
directly to maintain mitochondrial function by
inducing mitochondrial biogenesis, augment-
ing mitochondrial quality-control monitoring,
and increasing the expression of mitochondrial
electron transport chain components (Oka-
mura et al. 1999; Vahsen et al. 2004; Matoba
et al. 2006; Stambolsky et al. 2006; Sinthupi-
bulyakit et al. 2010). Beyond these structural
enhancements, p53 promotes increased TCA-
cycle turnover through induction of glutamin-
ase 2 (GLS2), a mitochondrial catalyst for the

conversion of glutamine to glutamate. Greater
GLS2 activity can fuel the TCA cycle by increas-
ing the concentration of glutamate for con-
version into a-ketoglutarate, a TCA feedstock
(Hu et al. 2010; Suzuki et al. 2010). In addition,
active p53 can repress expression of malic
enzyme (ME1 and ME2) (Jiang et al. 2013).
Doing so decreases the conversion of TCA-cycle
malate into pyruvate and may block the escape
of mitochondrial malate back into the cyto-
plasm (Fig. 2). In proliferating cells, malic en-
zyme activity is useful for siphoning malate
back into the cytoplasm where it can be used
for lipogenesis, glutamine metabolism, and
NADPH production. In cancer cells, the effect
of ME suppression is increased AMPK acti-
vity, diminished NADPH production, and de-
creased MDM2 activity—further enhancing
p53 induction in a feedforward loop and pro-
moting cancer cell senescence (Jiang et al.
2013). However, how the repression of ME con-
tributes to the response of untransformed cells
during nutrient starvation requires further in-
vestigation.

In addition to modulating glucose flux
during glucose starvation, p53 can also regulate
glucose production and attenuate the expres-
sion of metabolite transporters to limit glucose
uptake. It has been shown in cancer cells, for
example, that p53 directly represses the glucose
transporters GLUT1 and GLUT4 and helps to
facilitate the indirect suppression of GLUT3
expression through p53 inhibitory interactions
toward NF-kB (Schwartzenberg-bar-yoseph et
al. 2004; Kawauchi et al. 2008). Similarly, it has
been shown in liver cells that p53 can promote
the expression of gluconeogenesis-related genes
and enhance de novo liver glucose production
(Goldstein et al. 2013). In the system examined,
induction of glucose production and its sub-
sequent export from the liver served a meta-
bolic tumor suppressive function by limiting
the availability of glucose-derived carbon for
glycolysis and biogenesis in precancerous cells
(Goldstein et al. 2013). If p53 enhances gluco-
neogenesis during glucose starvation, this
pathway could help to prop up failing glucose
reserves by facilitating the catabolism of non-
carbohydrate carbon sources to maintain glu-
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cose availability. This possibility will need to be
examined further.

As with GLUT inhibition, the activity of p53
to limit expression of monocarboxylate trans-
porter 1 (MCT1), the primary route of lactate
influx/efflux in a cell, is also an important met-
abolic p53 tumor suppressive activity (Boidot
et al. 2012). MCT1 inhibition helps to restrict
the glycolytic rate in premalignant cells by
abrogating lactate transport. Although most re-
search into the role of p53-mediated modula-
tion of glucose and lactate transport has been
conducted in cancer cells, it is plausible that
such responses would limit a normal cell’s pur-
suit of nonexistent exogenous glucose or on in-
efficient aerobic glycolysis during starvation.

Lipid stores must also be managed in the
same careful fashion as carbohydrates to main-
tain cell viability when nutrients become scarce.
Lipids are required to maintain cell membrane
integrity, for energy storage, and for signaling.
In cells, lipids mainly exist as fatty acids (FAs).
FA synthesis is an energy-intensive process that
consumes ATP, NADPH, and two-carbon units
to build and elongate the FA carbon chain
(Voet and Voet 2011; Santos and Schulze 2012).
Fatty acid oxidation (FAO), in contrast, releases
stored energy by breaking down FAs into con-
stitutive two-carbon units, acetyl-CoA, and re-
ducing equivalents of NADH and FADH2. The
products of FAO are then passed directly into
the mitochondrial TCA cycle to produce ATP.
Given the opposing natures of FA synthesis and
FAO, these activities are strictly segregated to
different cellular compartments and tightly reg-
ulated so that futile cycling does not occur.

Just as with carbohydrate metabolism, p53
plays an important role in the regulation of lipid
metabolism during periods of nutrient stress
(Fig. 3). When cells are energy-depleted, p53
promotes increased FAO and suppresses FA syn-
thesis. It has been reported, for example, that
the activation of p53 in the liver and its subse-
quent transactivation of malonyl-CoA decar-
boxylase (MCD) is important for the appropri-
ate activation of FAO in fasted mice (Liu et al.
2014). In addition, p53 directs the transcription
of carnitine palmitoyltransferase 1C (CPT1C)
and other carnitine acetyltransferases that im-

port FAs into the mitochondria for FAO (Zaugg
et al. 2011; Goldstein and Rotter 2012). Further
along, p53 also activates Acad11, an acyl-CoA
dehydrogenase that catalyzes the initial step
of the FAO cycle in the mitochondria (Jiang
et al. 2015). At the same time, p53 suppress-
es sterol regulatory element-binding protein 1
(SREBP1), a master transcriptional regulator
of FA synthesis both through direct repression
and indirectly by increasing the expression
of LIPIN1, an SREBP inhibitor (Yahagi et al.
2003; Assaily et al. 2011; Peterson et al. 2011).
In this manner, starvation-activated p53 pre-
vents energy-intensive FA synthesis and repur-
poses FA stores for energy production through
oxidation in the mitochondria. These actions
promote cell survival and oppose cancer metab-
olism.

Rounding out the primary metabolite clas-
ses, amino acids are also required for cell growth
as important precursors for the biosynthesis
of proteins, nucleotides, and other biological
compounds. Essential amino acids cannot be
synthesized by humans and must be obtained
through the diet. Nonessential amino acids can
either be obtained from dietary sources or syn-
thesized directly within the cell (Voet and Voet
2011). Amino acid depletion can have deleteri-
ous consequences for a cell and, as with carbo-
hydrates and lipids, an insufficient supply can
activate the p53-mediated stress response to
promote cell survival and the efficient use of
remaining amino acid stores (Fig. 3).

A decrease in amino acid concentrations
suppresses mTOR pathway activity by deacti-
vating mTORC1 and activating other amino
acid sensors such as eIF2a (Clemens 2001;
Wek et al. 2006). As with mTOR suppression,
active eIF2a inhibits protein translation and in-
creases transcription of amino acid transporters
and glutathione synthesis enzymes to promote a
robust stress response. At the same time, and
likely as a consequence of the actions of eIF2a
and AMPK and the suppression of mTOR, p53
is engaged. Once activated, p53 can induce var-
ious responses to help cells survive amino acid
starvation. After depletion of exogenous serine,
for example, p53 acts to prevent cell prolifera-
tion by inducing a p21-dependent, G1-S cell-
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Figure 3. p53 directs lipid and amino acid metabolism during stress. In response to a shortage of lipids (orange
arrows) or serine (blue arrows), p53 is activated by nutrient-sensing pathways including 50-AMP-activated
protein kinase (AMPK) and eIF2a. For lipids, p53 acts to suppress fatty acid synthesis and promote increased
fatty acid oxidation (FAO) to maintain mitochondrial respiration. Similarly, serine withdrawal causes p53 to
promote cell-cycle arrest, increased glutathione production, and decreased nucleotide synthesis to conserve
remaining stores. FAs, Fatty acids, mTOR, mammalian target of rapamycin; SREBP, sterol regulatory element-
binding protein; GSH, glutathione; AA, amino acid; FASN, fatty acid synthetase; ACC, acetyl-CoA carboxylase;
ACLY, ATP citrate lyase; FA, TCA, tricarboxylic acid; ROS, reactive oxygen species; lightning bolt, phosphory-
lation event; red cross, pathway inhibition.
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cycle arrest, while the cell mobilizes de novo
serine synthesis. p53 limits the flux of serine
into nucleotide synthesis, diverting the low lev-
els of serine that remain principally toward glu-
tathione production (Maddocks et al. 2013). It
is thought that these maneuvers allow the cell
to maintain its pool of GSH for antioxidant
defense, while also preventing futile and un-
derresourced production of nucleotides. In
agreement with this hypothesis, serine-starved
cancer cells that lack p53 show increased cell
death, depleted glutathione pools, and an in-
ability to halt serine-driven nucleotide synthesis
(Maddocks et al. 2013). As a slight caveat to this
model, it has also been reported that p53 can
inhibit de novo serine synthesis in serine-
starved melanoma cells through repression of
phosphoglycerate dehydrogenase (PHGDH),
thus promoting cell death (Ou et al. 2015). Al-
though this observation is in contrast to the
concept of a generally protective role for p53
during amino acid starvation, it is likely that
the opposed outcomes reflect some degree of
context specificity and underlying differences
in the level of p53 induction in each experiment,
leading to divergent outcomes.

A suite of sentinel proteins including
AMPK, mTOR, and eIF2a constantly coordi-
nate the amounts of available metabolic build-
ing blocks with cell growth and maintenance
activities. When a shortage in any metabolite
class occurs, the front-line sensors transduce
this information to p53 and promote activation
of its metabolic regulatory functions (Figs. 1–
3). In each case, metabolic-induced p53 activa-
tion facilitates broad changes to metabolic flux,
mitochondrial activity, protein turnover, and
redox status that support viability during limit-
ed nutrient availability. If conditions improve,
transient p53 metabolic controls are lifted and
cells can quickly reestablish normal operation.
If they do not, p53 can switch roles to promote
orderly cell death.

FEAST AND FAMINE: AUTOPHAGY AND p53

Autophagy is covered comprehensively in an
article by White (2016), but it is important to
emphasize that this process is a crucial compo-

nent of the cellular response to nutrient stress.
During periods of scarcity, autophagy can pro-
vide cells with a source of energy and biomate-
rials to sustain essential cellular functions (Ra-
binowitz and White 2010).

As with many aspects of p53 biology, the
relationship between p53 and autophagy is
complicated and reflects tissue and context-spe-
cific factors, as well as the cellular localization
of p53 (nuclear vs. cytoplasmic) (Tasdemir et al.
2008; Morselli et al. 2009; Maiuri et al. 2010).
For the purposes of this review, it is sufficient to
mention that in normal cells, the concerted ac-
tivity of p53 is generally sufficient to promote
sustainable levels of autophagy in support of
cell survival. Further information on the fasci-
nating nuances of the relationship between p53
activity and autophagy can be found in White
(2016).

FEAST AND FAMINE: NUTRIENT
EXCESS AND p53

The consequences of a breakdown in the organ-
ismal response to nutrient excess can be clearly
seen by considering the alarming increase of
metabolic syndrome in humans in the 21st
century—a direct response to chronic overcon-
sumption (Huang 2009; Frisardi et al. 2010;
Kaur 2014). Troublingly, metabolic syndrome
increases the incidence of cardiovascular dis-
ease, type II diabetes, liver disease, and cancer
in afflicted individuals—significantly contrib-
uting to the ballooning worldwide healthcare
burden (Huang 2009; Frisardi et al. 2010;
Kaur 2014).

At its core, metabolic syndrome represents a
failure of normal energy utilization and storage.
As such, the phenotypes associated with meta-
bolic syndrome are illustrative of the deleterious
effects of chronic, as opposed to transient, ap-
plication of excess nutrient stress. As with star-
vation and energy-depletion, emerging research
suggests a link between p53 and the cellular
response to nutrient excess. It has been shown,
for example, that abnormal expression of p53
can promote insulin resistance, glucose intoler-
ance, increased liver lipid levels, and higher lev-
els of ROS in various mouse models—mirror-
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ing many hallmarks of metabolic syndrome
(Minamino et al. 2009; Armata et al. 2010; Der-
dak et al. 2011; Jiang et al. 2011).

For the moment, the molecular role of p53
in mediating the cellular response to nutrient
excess remains unclear and may be cell-type
specific. For example, while hyperglycemia can
activate p53 to promote p38 MAPK and p53-
dependent cell death in myocytes; hyperglyce-
mia can also suppress p53 apoptotic activity in
cancer cells (Fiordaliso et al. 2001; Garufi and
D’Orazi 2014). In addition, humans that carry
p53 polymorphisms that modulate p53 function
exhibit altered susceptibility to type II diabetes
and other metabolic disorders (Gaulton et al.
2008; Burgdorf et al. 2011). Based on these
initial observations, it seems likely that similar
avenues of influence that characterize p53-me-
diated control of metabolism in response to nu-
trient scarcity are also important for transient
adaptation to conditions of nutrient excess. Fu-
ture work on this frontier of p53 function will be
important for characterizing the role of p53
across a range of physiological conditions be-
yond tumor suppression in cancer.

RAREFIED AIR: REDOX MANAGEMENT
AND p53

As with nutrients, shocks of either too little ox-
ygen, as in hypoxia, or of too much reactive ox-
ygen, as during reperfusion injury or ROS stress,
can engage p53. Based on evidence of the high
ROS burden observed in p532/2 mice (Sablina
et al. 2005), it is intuitive that the activity of
p53 in cells would be to limit ROS levels and
to promote ROS detoxification (Fig. 4). In the
case of mild induction of p53, as during tran-
sient oxygen stress, this appears to be the case
(Budanov 2011). However, when the ROS bur-
den of a cell is too great, the apoptotic arm of
p53 is engaged, increasing ROS levels further
and promoting cell death (Fig. 4) (Hammond
and Giaccia 2005; Liu et al. 2005; Tu et al. 2009).

ROS are defined as oxygen-containing reac-
tive molecules. ROS generation and metabolism
are important aspects of normal cell biology.
ROS are produced, for example, as a by-product
of mitochondrial respiration, through enzymat-

ic reactions by cellular oxidases and as a conse-
quence of detoxification reactions involving cy-
tochrome P450 enzymes (Lau et al. 2008). As
the name suggests, ROS are highly reactive and
will readily oxidize DNA, proteins, and lipids—
potentially altering the function of these mole-
cules. Although ROS are generally conceptual-
ized as a negative for cells, controlled ROS are
required for some aspects of cellular signaling
and can also be important to promote growth
and proliferation (D’Autréaux and Toledano
2007; Sena and Chandel 2012). Thus, ROS levels
must be tightly regulated to ensure proper cel-
lular function.

To neutralize excessive ROS and maintain
the intracellular redox state, cells have devel-
oped comprehensive detoxification systems.
These pathways generally rely on glutathione
as a crucial cofactor to defuse ROS. During
ROS detoxification, GSH is oxidized to form
glutathione disulphide (GSSG) so that the
ROS can be reduced (and thus detoxified).
GSSG can then be re-reduced by glutathione
reductase to recover GSH as long as sufficient
reducing equivalents of NADPH are available
(Dröge 2002; Martin and Teismann 2009).

Oxidative stress can induce protective as-
pects of p53 activity that function to shield
the cell from ROS damage through induction
of a suite of antioxidant programs (Fig. 4). For
example, activation of TIGAR and suppression
of glycolytic flux can combine to increase PPP
activity and the production of NADPH during
ROS stress. Because NADPH is required for the
regeneration of GSH, p53-driven PPP helps to
increase GSH pools. In addition, at least under
conditions of serine deprivation, p53 can also
promote GSH synthesis directly (Maddocks
et al. 2013), further increasing the ability of
stressed cells to detoxify ROS. At the mitochon-
dria, p53 activities that promote increased mi-
tochondrial quality-control mechanisms, better
electron transport chain function, and en-
hanced mitochondrial integrity also act to limit
mitochondrial ROS levels (Okamura et al. 1999;
Vahsen et al. 2004; Matoba et al. 2006; Stambol-
sky et al. 2006; Kitamura et al. 2011). More di-
rectly, it has been shown in hematopoietic stem
cells (HSCs) that increased ROS stress activates
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the ROS sensor thioredoxin-interacting protein
(TXNIP) (Jung et al. 2013). Activated TXNIP
inhibits the MDM2–p53 interaction and con-
sequently increases p53 transcriptional activity
to support p53-directed antioxidant programs
(Jung et al. 2013). Although speculative, the mi-

tochondrial respiration-promoting activities of
p53 may depend on the protective antioxidant
function of p53 to help balance resultant mito-
chondrial ROS production. It also seems plau-
sible that the enhanced glycolysis seen following
p53 loss in cancer cells may be, in part, a mech-

ROS intensity

p53 activity

p53 response

Antioxidant program

TIGAR

TP53INP1

p21

p53R2

ALDH4

Sestrin 1/2

Nrf2 Nrf2NADPH NADPHGSH/GSSG GSH/GSSG

MitoROS MitoROSCatalase Catalase

COX2

NOS2

PIG3

Pro-oxidant program

p53p53

ROSROS

BAX PUMA

NOXA

ROS DNA damage

Apoptosis

ROS detoxification

ROS damage repair

Cell survival

Figure 4. p53 alters metabolism in response to reactive oxygen species (ROS) stress. Depending on the intensity
of ROS stress, p53 can direct alternative antioxidant and pro-oxidant programs to support either cell survival or
death. Low levels of ROS promote p53-mediated induction of several antioxidant effectors that, in turn, facilitate
ROS detoxification and cell survival. High ROS stress, in contrast, causes p53 to engage pro-oxidant pathways to
stimulate greater ROS accumulation, DNA damage, and apoptosis. TIGAR, Tp53-induced glycolysis and apo-
ptosis regulator; ALDH, aldehyde dehydrogenase; mitoROS, mitochondrial reactive oxygen species.
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anism to avoid mitochondrial ROS production
when the antioxidant activities of p53 are lost.
Further research will be required to address this
possibility.

At the transcriptional level, induction of
p53 following transient ROS stress promotes
the expression of many antioxidant genes, in-
cluding aldehyde dehydrogenase 4 (ALDH4),
the Sestrin family of proteins, p53R2, p21, and
tumor protein p53-inducible nuclear protein
1 (TP53INP1) (Tan et al. 1999; Yoon et al.
2004; Bourdon et al. 2007; Cano et al. 2009;
Budanov 2011). These redox regulators sup-
press modest increases in cellular ROS levels
and promote detoxification. Augmented levels
of p53R2, for example, have been shown to en-
hance catalase antioxidant activity and protect
against ROS (Kang et al. 2012). At the same
time, p53-induced p21 can enhance the activa-
tion of the Nrf2 antioxidant transcriptional net-
work (Chen et al. 2009, 2012; Villeneuve et al.
2009; Jaramillo and Zhang 2013). In addition,
p53 can inhibit the levels of several pro-oxidant
genes, including nitric oxide synthase 2 (NOS2)
and cyclooxygenase 2 (COX2) (Ambs et al.
1998; Subbaramaiah et al. 1999). The net result
of these programs is to reduce the cellular redox
state and detoxify ROS.

The apoptotic arm of p53 activity compli-
cates the relationship between p53 and ROS
control. When stress levels within a cell are
high or persistent, the activity of p53 shifts to
promote increased ROS and cell death (Fig. 4).
It has been shown, for example, that p53 can
directly inhibit the function of glucose-6-phos-
phate dehydrogenase (G6PDH), the first and
rate-limiting step in the PPP, and so limit
NADPH production through this pathway
(Fig. 2) (Jiang et al. 2011). Furthermore, the
inhibition of malic enzyme by p53 described
above can also limit NADPH production—
and so increase ROS (Jiang et al. 2013). p53
can also suppress the Nrf2 antioxidant network
and promote transcription of pro-oxidant
genes to further increase ROS levels (Hammond
and Giaccia 2005; Liu et al. 2005; Faraonio et al.
2006; Tu et al. 2009; Chen et al. 2012; Kang et al.
2012). As a counterpoint to the positive effect of
p53R2 on catalase activity, for example, it has

been shown that the combination of high levels
of p53 protein and greater p53-mediated tran-
scription of the pro-oxidant gene p53-induc-
ible gene 3 (PIG3) inhibit catalase activity, again
increasing ROS levels (Kang et al. 2012). Thus,
the outcome of p53-mediated control over ROS
depends directly on the intensity and duration
of the stress.

RAREFIED AIR: HYPOXIA AND p53

In a manner similar to ROS and nutrient stress,
decreased oxygen availability (hypoxia) can also
engage p53 (Koumenis et al. 2001; Schmid et al.
2004; Hammond and Giaccia 2006; Sermeus
and Michiels 2011). As with the p53 ROS re-
sponse, the nature of p53 activity during hypox-
ia depends on the severity of the oxygen deficit,
the cell type involved, and the duration of the
hypoxic episode. Although transient or mild
hypoxia generally promotes prosurvival func-
tions of the p53 response, severe or extended
hypoxia activates p53-mediated apoptosis (Fig.
5) (Hammond et al. 2002; Fei et al. 2004; Kim
et al. 2004; Li et al. 2004; Feng et al. 2011).

In general, the cellular response to hypoxia
is regulated by the activity of the HIF-1 tran-
scription factor complex. HIF-1 is a hetero-
dimer composed of a HIF-1a subunit and the
HIF-1b (or ARNT) subunit. Although both
subunits are constitutively expressed, the stabil-
ity of the HIF-1a subunit is exquisitely sensitive
to the cytoplasmic oxygen concentration due
to an oxygen-dependent degradation domain
(ODD) found within the protein. Under nor-
mal oxygen tension, the ODD ensures that HIF-
1a is immediately degraded. However, when
the oxygen level falls or the ODD is inhibited
through other means, HIF-1a is stabilized and
forms an active transcription complex with
HIF-1b (Schmid et al. 2004; Weinberg 2007).
The stabilized HIF complex can then promote
the transcription of genes containing a hypoxia
response element within their promoter region
(Weidemann and Johnson 2008).

Under conditions of moderate hypoxia,
HIF-1 activity is high and p53 protein levels
are largely un-induced. Perhaps as a conse-
quence, in this oxygen regime the activity of
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p53 is constrained and tends to support cell sur-
vival (Alarcón et al. 1999; Li et al. 2004; Feng
et al. 2011). Under more severe hypoxia and after
total loss of O2 (anoxia), however, p53 is strongly
induced, HIF-1a levels generally decrease, and
canonical tumor-suppressive proapoptotic ac-
tivities of p53 are engaged (Fig. 5) (Hammond
et al. 2002; Fei et al. 2004; Kim et al. 2004; Wang
et al. 2013). Although the cross talk between
HIF-1 and p53 is important in defining the

cellular response to gradations of hypoxia (An
et al. 1998; Alarcón et al. 1999), given the lack of
strong correlation between HIF-1 induction and
overt p53 increase, it seems plausible that the
induction of p53 for apoptosis in very low oxy-
gen is independent of HIF-1 activity per se. Pos-
sibly, apoptotic p53 responds to DNA damage
and otherconsequences of reduced oxygen levels
rather than to the lowered oxygen tension di-
rectly (Hammond et al. 2002; Pan et al. 2004).

p53 levels HIF-1α levels

HIF-1α

HIF-1α

Degraded

Degraded

Basal
Normoxia

Hypoxia

ProdeathProsurvival

Glycolysis (HKII, PGAM) BNIP3, BNIP3L

p21, BAX, PUMA,
NOXA, PIG13

p53–HIF-1α cross talk

DNA damage

ATM/ATR activity

Mitochondrial TIGAR

Mitochondrial content

Apoptotic machinery Apoptotic machinery

Mitophagy (BNIP3, BNIP3L)
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MitoOXPHOS
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Figure 5. The duration and severity of hypoxia contribute to differential p53-mediated outcomes for cell survival
during hypoxic stress. Mild and/or transient hypoxia tends to engage prosurvival activities of the p53 protein to
support increased glycolysis and decreased mitochondrial activity in concert with HIF-1a-mediated prosurvival
pathways. Extended or severe hypoxia uncouples HIF-1a and p53 functions and promotes the p53-mediated
induction of apoptosis. HKII, Hexokinase II; PGAM, phosphoglycerate mutase; TIGAR, Tp53-induced glycol-
ysis and apoptosis regulator; OXPHOS, oxidative phosphorylation.
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Under the less extreme case of mild and/or
transient hypoxia, p53 acts via many of the same
levers used during metabolic stress to promote
cell survival (Fig. 5). However, it is important
to note that the way in which p53 alters me-
tabolism in response to hypoxia tends to be
opposite to p53 control during nutrient starva-
tion. In hypoxia, p53 promotes expression of
proglycolytic enzymes including hexokinase II
(HKII) and PGAM to enhance carbohydrate
flux through glycolysis (Mathupala et al. 1997,
2006; Ruiz-Lozano et al. 1999). Although these
activities are at odds with the antiglycolytic pro-
grams implemented by p53 during nutrient
starvation, the disparities can be reconciled by
considering the situation-specific requirements
for the p53 response in each case. Under hyp-
oxia, oxygen-requiring and oxygen-producing
activities, including mitochondrial respiration
and FAO, must be minimized. Alternative path-
ways to maintain energy stores are required to
make up the difference. As such, p53-mediated
engagement of HKII and PGAM, as well as
other activities to promote glycolysis, represent
an important cornerstone of the p53-mediated
hypoxic response. Under hypoxia, p53 increases
HKII expression directly. At the same time,
TIGAR localizes to the mitochondria, interacts
with HKII, and promotes greater HKII activi-
ty—diminishing mitochondrial ROS produc-
tion (Cheung et al. 2012).

Also acting on the mitochondria, the p53
and HIF-1a-mediated transcriptional induc-
tion of BNIP3 and NIX, two mitochondrial
proteins that direct mitochondrial clearance
(mitophagy), promotes active suppression of
mitochondrial content and diminished mito-
chondrial activity in hypoxic cells (Guo et al.
2001; Sowter et al. 2001; Bellot et al. 2009;
Zhang and Ney 2009). At the same time, p53
can limit mitochondrial biogenesis by inhibit-
ing PGC-1a andb (Sahin et al. 2011). Although
not a p53-specific outcome, the lack of oxygen
encountered in hypoxia also inhibits mitochon-
drial FAO because of the inability of NADH and
FADH2 to be oxidized as required in the first
step of the process. Both directly and indirectly,
these programs shunt metabolites away from
oxygen-requiring processes and toward glycol-

ysis to enable cells to generate sufficient ATP
and metabolic intermediates to survive hypox-
ia. However, because both NIX and BNIP3 can
function as apoptotic mediators, under severe
hypoxia, the function of these mitophagy pro-
teins can shift to implement p53-directed cell
death (Fei et al. 2004; Wang et al. 2013).

Finally, the transition from hypoxia back to
normal oxygen tension (normoxia) can also be
fraught if it occurs too rapidly. The rapid ox-
ygen binge that occurs during reperfusion of
the heart after an ischemic event, for example,
can induce high levels of ROS, activate p53,
and cause apoptosis (Fliss and Gattinger
1996; Yellon and Hausenloy 2007). In mice, it
has been shown that such ischemia-reperfu-
sion episodes cause apoptosis in cardiomyo-
cytes via both p53 and TIGAR-dependent
mechanisms and that cell death can be avoided
through inhibition of p53 (Shizukuda et al.
2005; Matsusaka et al. 2006; Kimata et al.
2010; Hoshino et al. 2012). Thus, as with nu-
trient excess conditions, it seems likely that the
induction of p53 during reperfusion plays an
important role in determining cell fate when
oxygen is restored to a previously hypoxic tis-
sue environment.

CONCLUDING REMARKS

Although the p53 protein has largely been de-
fined over its history as a tumor suppressor,
an underappreciated yet equally important
role for p53 exists within the management of
cellular metabolism during nutrient and oxy-
gen stress. Perturbations in metabolite avail-
ability, for example, are rapidly relayed to p53
through its tight interaction with key nutrient-
sensing pathways of the cell including AMPK,
the mTOR-signaling network, eIF2a, and mi-
tochondria. During starvation, these front-line
sensors transiently engage moderate (sublethal)
levels of p53 activity that augment cell-survi-
val pathways, inhibit unnecessary growth, and
promote efficient nutrient utilization and con-
servation. Similarly, during transient hypoxia,
direct interactions and signaling cross talk be-
tween p53 and HIF-1 facilitate redirection of
cellular metabolism toward energy generation
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through nonoxidative means and the suppres-
sion of ROS generation—promoting cell sur-
vival. In each case, however, if deleterious con-
ditions become too severe or persistent, p53
function can pivot to orchestrate the death of
damaged cells.

At first glance, the role of p53 in directing
metabolism in response to stress can appear
removed from its canonical activities limiting
tumorigenesis. However, when the utility of
p53 is considered across its evolutionary histo-
ry, these seemingly disparate roles can be rec-
onciled as related features of the same underly-
ing protective role for p53. The p53 protein
(and its closely related family members, p63
and p73) evolved in simple organisms that did
not require tumor surveillance (Allocati et al.
2012). Therefore, it is likely that the original
function of the p53 family was as general stress
sensors whose remit was to protect the viability
of a cell as well as the integrity of its genome
within the germline. As such, the p53 family
would be required to sense, respond to, and
ultimately manage stochastic environmental
stressors for as long as possible without killing
the cell. At the same time, once genome integ-
rity was breached, p53 could function to recog-
nize the event and orchestrate containment of
the compromised cell and its defective DNA—
through its death—to preserve the genomic in-
tegrity of the larger organism. From this per-
spective, p53-directed tumor suppression can
be rationalized as an extension of primitive
p53 stress–response activities to the unique
emergent problem of tumorigenesis in higher
organisms. In this model, premalignant cells
initially engage p53 and induce its cell repair
and survival functions. The prevention and re-
pair of damage through these pathways would
help to limit oncogenic progression. However,
sustained oncogenic stress would overwhelm
these processes and tilt p53 activity into its tu-
mor-suppressive cell-elimination role. In this
view, then, the actions of p53 to control metab-
olism in response to nutrient or oxygen stress as
described here and those necessary to suppress
tumors are interrelated facets of the same prim-
itive stress tolerance and guardian functions of
the p53 family.
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