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Regulation of cholesterol homeostasis in health and diseases:
from mechanisms to targeted therapeutics
Yajun Duan1,2, Ke Gong2, Suowen Xu1, Feng Zhang2, Xianshe Meng2 and Jihong Han2,3✉

Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases
(CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl
esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually.
More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects
cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by
cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely
controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been
developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion.
Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key
roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as
new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those
interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes,
nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
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INTRODUCTION
Cholesterol is a waxy and fat-like substance with pivotal
pathophysiological relevance in humans. More than two centuries
ago, Michel Eugène Chevreul, a French chemist, found that
cholesterol is one of the components in human gallstones.1

Following this event, many scientists input a lot efforts to
elucidate cholesterol structure. In 1927, Heinrich Otto Wieland
from Germany won the Nobel Prize in Chemistry for his work on
clarifying the structure of cholesterol and bile acids. A year later,
Adolf Windaus also from Germany was awarded the Nobel Prize in
Chemistry for his work on sterols and the related vitamins, such as
vitamin D which is derived from cholesterol.2 However, it was until
1932, the correct cholesterol structure was finally formulated.1

Cholesterol can be synthesized in our body and the biosynth-
esis of this complex molecule starts from acetyl coenzyme A
(acetyl-CoA) with involvement of nearly 30 enzymatic reactions.
Among these reactions, the step for reduction of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) to mevalonate catalyzed
by HMG-CoA reductase (HMGCR) is rate-limiting, indicating
regulation of HMGCR expression/activity is critical for cholesterol
biosynthesis. In 1964, Konrad Emil Bloch and Feodor Lynen won
the Nobel Prize in the Medicine and Physiology for discovering
the major intermediate reactions in the pathway for cholesterol
biosynthesis.3

The cholesterol biosynthesis is an intensely regulated process
biologically.4 The first demonstration of feedback inhibitory loop

by the end product in biosynthetic pathways is that cholesterol
inhibits its own synthesis intracellularly. In 1933, Rudolph
Schoenheimer demonstrated that animals can also synthesize
cholesterol, more importantly, he observed that the cholesterol
synthesis in animal body was inhibited by cholesterol supplied in
the diet. This finding laid the groundwork for discovering sterol
regulatory element binding protein (SREBP) pathway.5 SREBP
binds to the sterol regulatory element (SRE) in the proximal region
of the promoter of HMGCR. The binding of SREBP triggers
transcription of HMGCR to speed up cholesterol biosynthesis.6

SREBP is also able to bind to the SRE in the promoter of low-
density lipoprotein receptor (LDLR), the molecule responsible for
the LDL cholesterol (LDL-C) clearance in the liver.6 As a
transcription factor, SREBP needs to be chaperoned by SREBP
cleavage activating protein (SCAP) from endoplasmic reticulum
(ER) to Golgi, where SREBP is cleaved into mature and functional
form by sphingosine-1-phosphate (S1P) and S2P proteases.
Cholesterol can interact with unmatured SREBP on the ER.6,7

Thus, when the cellular cholesterol level is reduced, the mature
SREBP is increased and consequently to activate HMGCR expres-
sion. Reciprocally, increased cellular cholesterol level inhibits
HMGCR expression.8

Mounting evidence has established the intricate link between
cholesterol levels and atherosclerotic cardiovascular disease
(ASCVD). In fact, atherosclerosis is a disease with a long research
history. The role of cholesterol in atherosclerosis was initially
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reported in 1910.9 Adolf Windaus found that cholesterol content
in atherosclerotic plaques of human diseased aorta was 25 times
higher than that of normal aortas.8 Three years later, the first
experimental recapitulation of atherosclerosis was completed by
Nikolaj Anitschkow. He fed rabbits pure cholesterol contained in
diet, and observed severe atherosclerosis in aortas of the
animals.10 In history, Robert Wissler and coworkers set up the
first mouse model for atherosclerosis in 1960s.11 Now, the mice
with genetic manipulation, such as ApoE or LDLR deficient mice, is
the most frequently-used animal model for investigation on
atherosclerosis based on the time and cost issues.
Accumulation of cholesterol in atherosclerotic plaques may lead

to formation of cholesterol crystals, a hallmark of advanced
atherosclerotic plaques.12–14 Cholesterol crystals can stimulate the
generation of NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3) inflammasome to promote inflammation and accelerate
atherogenesis.15,16 It also induces arterial inflammation and
involves in destabilizing atherosclerotic plaques.17 Currently, the
critical role of inflammation in mediating all stages of athero-
sclerosis has been well defined, and targeting inflammatory
pathways may provide a new notion for atherosclerosis preven-
tion and/or treatment.18,19

Cholesterol is a hydrophobic molecule which travels through
the bloodstream on proteins called “lipoproteins”. Ultracentrifuge
was used to separate lipoproteins in plasma by John Gofman. He
also demonstrated that heart attacks were associated with
increased blood cholesterol levels, especially LDL-C. In contrast,
when blood high-density lipoprotein (HDL) levels rise, the heart
attack frequency was reduced.20–22 Moreover, the beneficial
effects of HDL cholesterol (HDL-C) and the negative effects of
LDL-C on heart diseases were further confirmed by the Framing-
ham Heart Study, one of the most important epidemiological
studies in cardiovascular arena.23

It was first time that Carl Müller discovered the genetic link
between cholesterol and heart attacks. He demonstrated that
families with high plasma cholesterol levels and early-onset heart
disease are autosomal dominant traits.24 This kind of disease is
called familial hypercholesterolemia (FH). Avedis Khachadurian
described two different clinical forms of FH in inbred families.
Homozygous patients showed severe hypercholesterolemia at
birth (the plasma cholesterol level in this kind of patients is about
800mg/dl), and they can have heart attack as early as 5 years old,
while the heterozygous patients showed cholesterol levels of
300–400mg/dl and early-onset heart attack usually between 35-
60 years old.25 In 1970s, Joseph Goldstein and Michael Brown
discovered the essence of LDLR functional defect in FH, which led
them to be awarded the Nobel Prize in 1985.26 The cellular uptake
of LDL requires LDLR and most LDL-C is cleared from circulation
by LDLR expressed in the liver. In the absence of LDLR, LDL-C
reaches high level in the circulation, eventually deposits in the
artery to drive the formation of atherosclerotic plaques.27 The
seminal work by Goldstein and Brown strongly supports the
importance of lipid hypothesis in onset of cardiovascular diseases
(CVD). In addition to HMGCR, SREBP also regulates LDLR
expression in response to cellular cholesterol levels to fine-tune
the cholesterol level in cell membranes constant.6–8

Based on the evidence from epidemiological studies and
randomized clinical trials, a cholesterol hypothesis was sug-
gested which indicates the high circulating cholesterol level as a
major risk factor for ASCVD while cholesterol-lowering strategies
can reduce ASCVD risk.28 In 1976, Akira Endo discovered the first
HMGCR inhibitor, thus inaugurating a category of cholesterol-
lowering drugs called statins, which is a therapeutic milestone
for CVD treatment.29 Statins deprive hepatocytes of endogenous
synthesis as a source of cholesterol, which can alleviate the
feedback inhibition of LDLR, and thus the increased LDLR
expression will further reduce plasma LDL-C levels.30 In 1987,
lovastatin (Mevacor) developed by Merck was approved as the

first statin for human use to lower plasma LDL-C. Currently,
statins are used as the first-line therapy to reduce LDL-C and
prevent ASCVD.31

However, the doubled dose of a statin only leads to about 6%
increase in LDL-C lowering efficacy, which may cause statin
resistance/intolerance.32 Thus, there is a need to develop novel
lipid-lowering approaches beyond statins. In 2002, ezetimibe was
introduced as an intestinal cholesterol absorption inhibitor to
decrease total cholesterol (TC) and LDL-C levels. In 2003, Nabil
Seidah and co-workers discovered proprotein convertase sub-
tilisin/kexin type 9 (PCSK9).33 PCSK9 is synthesized in the liver and
then secreted into plasma. The circulating PCSK9 can bind
hepatic LDLR and disrupt the recycle in which LDLR returns to the
cell surface after internalization and release of the bound
LDL-C.34,35 The decrease of cell surface LDLR results in impaired
LDL-C clearance and elevated LDL-C level. In 2015, alirocumab
and evolocumab, the fully human anti-PCSK9 antibodies, were
approved by US FDA to treat patients with hypercholesterole-
mia.36 Likewise, a long-acting synthetic siRNA targeting PCSK9
mRNA called inclisiran was developed by Novartis and used to
treat hypercholesterolemia. In 2020, inclisiran was approved by
EU.37 ATP citrate lyase (ACLY) is a cytoplasmic enzyme catalyzing
acetyl-CoA generation, with which cholesterol biosynthesis
begins.38 Thus, inhibition of ACLY can also reduce cholesterol
synthesis. Indeed, among ACLY inhibitors, bempedoic acid was
approved by US FDA in 2020 for hypercholesterolemia treat-
ment.39 Notably, bempedoic acid only acts locally in the liver,
thereby avoiding the muscle-related toxicities associated with
statin use.40

Taken together, when reviewing the milestones of cholesterol
research, we realize that the findings in regulation of cholesterol
homeostasis determined the progress on the development of
therapeutic strategies, and the feedback from clinical observations
may further advance the investigation on cholesterol homeostasis,
thereby promoting clinical progress. “HMGCR-statin-LDLR-rule of
6%-PCSK9” should be a typical example. To lower cholesterol
synthesis in the liver, statins were initially developed to inhibit
HMGCR. Later on, Brown and Goldstein proved that statins
increased LDLR on hepatocyte surfaces to soak up excess blood
LDL-C, thereby reducing heart attack. Associated with wide use of
statins in clinics, the “rule of 6%” was observed, which was
mysterious until the discovery of PCSK9. SREBP-2 activates LDLR
and PCSK9 expression simultaneously and activated PCSK9 binds
to LDLR toward lysosomal degradation, which clearly antagonizes
the efficacy of statin-induced LDL-C clearance. Therefore, PCSK9
has become a valuable therapeutic target for cholesterol-lowering
therapy and PCSK9 inhibitors have been developed rapidly.
Nowadays, the cholesterol homeostasis is involved in develop-

ment of various diseases and determined by processes of
biosynthesis, uptake, efflux, transport, storage, utilization, and/or
excretion. Therefore, in this article, we will summarize the key
regulations in cholesterol homeostasis and cholesterol-lowering
interventions. Furthermore, we will discuss the benefits of the
pharmaceutical interventions targeting cholesterol homeostasis
on the multiple related diseases, such as ASCVD, obesity, diabetes
and more.

METHODS
The references used in this review were acquired using the
PubMed search engine with a time range from January 1930 to
April 2022 by four researchers (Y. D., K. G., F. Z. and X. M.)
independently. A list of relevant literature that met the inclusion
criteria was manually searched. The following search strategy was
applied by using the keywords of “cholesterol history”, “choles-
terol development”, “cholesterol metabolism”, “cholesterol home-
ostasis”, “cholesterol synthesis”, “cholesterol transport”, “ASCVD
cholesterol”, “ASCVD cholesterol ester”, “ASCVD foam cells”,
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“ASCVD statins”, “ASCVD ezetimibe”, “ASCVD PCSK9 inhibitor”,
“ASCVD bempedoic acid”, “ASCVD bile acid sequestrants”, “ASCVD
lomitapide”, “ASCVD evinacumab”, “ASCVD fibrates”, “ASCVD
lipoprotein apheresis”, “ASCVD APOC3”, “ASCVD lipoprotein (a)”,
“ASCVD LXRs”, “ASCVD LOX-1”, “ASCVD SR-BI”, “ASCVD LCAT”,
“ASCVD MiR-33”, “ASCVD MiR-122”, “ASCVD prekallikrein”, “cho-
lesterol homeostasis NAFLD”, “cholesterol homeostasis obesity”,
“cholesterol homeostasis diabetes”, “cholesterol homeostasis
Alzheimer’s disease”, “cholesterol homeostasis Parkinson’s dis-
ease”, “cholesterol homeostasis Huntington’s disease”, “cholesterol
homeostasis cancer”, “cholesterol homeostasis osteoporosis”, or
“cholesterol virus infection”. No additional restrictions were placed
on the type of research model (in vivo/in vitro), article type
(e.g., research article, review, editorial, letter, etc.), or publication
language. References cited in articles associated with the literature
search were also analyzed for additional information. The studies
were excluded from the content retrieved if they are irrelevant or
of limited relevance to the main topic.

REGULATORY MECHANISMS OF CHOLESTEROL HOMEOSTASIS
Disturbed cholesterol homeostasis is not only the pathological
basis of cardiovascular and cerebrovascular diseases, but also
participates in the progression of other kinds of diseases including
neurodegenerative diseases and cancers. Maintaining cholesterol
homeostasis plays a crucial role physiologically. Normally, the
cholesterol homeostasis can be well maintained by a dynamic
balance among the intake, biosynthesis, transport, cellular uptake
and efflux, and/or esterification. Thus, we will review the state-of-
the-art research on the molecular mechanisms that regulate
cholesterol homeostasis, and provide future research directions.

Sources of cholesterol: intake or biosynthesis
Dietary cholesterol. Two main sources of cholesterol are present
in our body, one is through dietary intake, known as exogenous
cholesterol or dietary cholesterol; and another one is through the
de novo biosynthesis, known as endogenous cholesterol.41 A
variety of daily foods, such as eggs, animal offal and seafood,
contain cholesterol, of which eggs are the main source of dietary
cholesterol.42 The solubility of cholesterol in an aqueous environ-
ment is extremely low, so before absorption, it must be dissolved
into bile salt micelles, which can be transported to the brush edge
of intestinal cells. Then the net cholesterol is absorbed, the
process is regulated by Niemann-Pick C1 (NPC1) like 1 (NPC1L1)
protein. Inhibition of NPC1L1 by ezetimibe can reduce cholesterol
absorption, thereby improving coronary artery disease.43 After a
series of processes, the absorbed cholesterol is esterified and then
secreted into circulation as chylomicrons and eventually being
taken up by the liver.44,45 In addition, phytosterols/phytostanols
can be added into the foods to replace cholesterol in micelles,
leading to less cholesterol is absorbed by enterocytes and enters
the liver.46

To maintain hepatic cholesterol pool, the liver enhances LDL-C
uptake from plasma by increasing LDLR expression and decreases
cholesterol efflux, thereby reducing plasma TC and LDL-C levels.47

NPC1L1 promoter also contains a SRE, the sterol-sensing structural
domain, therefore, NPC1L1 expression is repressed by a high-
cholesterol contained diet and increased by cholesterol-depleted
food.48 In addition, endogenous cholesterol synthesis is negatively
regulated by the exogenous cholesterol. Hepatic cholesterol
biosynthesis accounts for approximately three-quarters of the
total endogenous cholesterol production at the low cholesterol
intake situation. However, hepatic cholesterol biosynthesis is
completely inhibited when 800–1000mg exogenous cholesterol is
ingested in experiments with baboons and humans.49,50

Biosynthesis of cholesterol. Cholesterol can be synthesized by all
nucleated cells, with most by hepatocytes, indicating the liver is

the main site for cholesterol biosynthesis in vivo.51 Acetyl-CoA is
used as the starting material for cholesterol biosynthesis via the
mevalonate pathway including nearly 30 enzymatic steps
(Fig. 1). The biosynthesis of cholesterol can be divided into four
stages: (I) Synthesis of mevalonate (MVA); (II) Production of
isopentenyl pyrophosphate (IPP) and dimethylallyl pyropho-
sphate (DMAPP); (III) Synthesis of squalene; (IV) Squalene cyclizes
to form lanosterol and subsequently to synthesize cholesterol.
The process is regulated by a negative feedback mechanism
with the downstream products.52,53 The SREBP pathway and the
HMGCR degradation pathway serve as two major negative
feedback regulatory mechanisms to regulate cholesterol de
novo synthesis.54

SREBPs, the transcription factors anchored to the ER, include
three isoforms, SREBP1a, SREBP1c and SREBP2. The N-terminal
sequences of SREBPs belong to the basic-helix-loop-helix-leucine
zipper (bHLH-Zip) protein superfamily.6,55 When cellular choles-
terol is depleted, the N-terminus of SREBPs can be cleaved into the
form of mature and functional SREBP, which can translocate with
chaperone by SCAP to the nucleus where the mature SREBP
identifies and binds to the SRE in the target gene promoter,
followed by activation of these genes transcription.
Further studies revealed that SREBPs interact with SCAP to form

a complex in a stoichiometric ratio of 4:4.56 When ER membrane
cholesterol is depleted, SCAP binds to COPII vesicles that allows
the SCAP-SREBP complex to move from ER to Golgi for cleavage.
When ER membrane cholesterol exceeds 5% of total ER lipids at
molar basis, cholesterol and oxysterols, such as 25-hydroxycho-
lesterol, trigger the interaction between SCAP sterol-sensing
domain (SSD) and insulin-induced gene (INSIG), thereby blocking
the binding of SCAP to COPII vesicles and keeping the SCAP-
SREBP complex in the ER57,58 (Fig. 2). At present, the structure of
SCAP in cholesterol-free and cholesterol-bound states, as well as
the structure of SCAP-INSIG or SCAP-COPII complex need to be
verified by further ultrastructural study. In the recent studies, the
conformation of SCAP-INSIG has been resolved by the cryo-
electron microscopy technology.59,60 These findings may benefit
to the screening of the small molecules affecting the conforma-
tion change of SCAP to inhibit cholesterol synthesis.f
In the process of cholesterol biosynthesis, HMGCR is subjected

to strict feedback regulation54 (Fig. 2). As a target gene of SREBP2,
HMGCR is regulated by SREBP2 at the transcriptional level. In
addition to this long-term transcriptional regulation, HMGCR is
also subject to short-term epigenetic modulation. Ubiquitination
and phosphorylation of HMGCR are two common post-
translational modifications.61

HMGCR is located in the ER and divided into an N-terminal
transmembrane region and a C-terminal cytoplasmic region based
on its function and structure. The amino acid sequence of the
transmembrane region is highly conserved and the membrane
structural domain can respond to increases of sterols and mediate
its own degradation.62 In 2005, Song et al. found that gp78, also
known as autocrine motility factor receptor (AMFR), functions as a
ubiquitin ligase to mediate HMGCR degradation. In cells with high
cholesterol levels, INSIG binds to both HMGCR and gp78, which
allows gp78 to catalyze the ubiquitination of the lysine residues at
position 89 and 248 of HMGCR.63 The ubiquitin fusion degradation
1 (Ufd1) protein contains ubiquitin binding sites, which serves as
an accelerator of degradation by binding to gp78 to accelerate
HMGCR degradation.64 Meanwhile, gp78 is also involved in the
ubiquitination and proteasomal degradation of INSIGs, and
promotes SREBP maturation and lipid synthesis. Surprisingly, in
hepatic gp78-deficient mice, both cholesterol and fatty acid
synthesis were reduced despite enhanced HMGCR enzymatic
activity, which resulted from reduced SREBP maturation to
suppress downstream gene expression.65,66 The recent studies
have found that increased postprandial insulin and glucose
concentrations enhance the effect of mechanistic target of
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rapamycin complex 1 (mTORC1) on phosphorylation of ubiquitin
specific peptidase 20 (USP20). Once phosphorylated, USP20 can
be recruited to HMGCR complex to antagonize HMGCR degrada-
tion. Thus, deleting or inhibiting USP20 significantly reduces diet-
induced weight gain, serum and liver lipid levels, improves insulin
sensitivity and increases energy expenditure.67 Taken together,
these studies suggest that ubiquitin ligase gp78 and USP20 could
be the new targets for treatment of diseases with cholesterol
metabolic disorders.
In addition to ubiquitination, HMGCR is also regulated by

phosphorylation. Clarke and Hardie found that Ser-872 within the
catalytic fragment of rat HMGCR can be phosphorylated by AMP-
activated protein kinase (AMPK), which inactivates HMGCR and
reduces the flux of the formaldehyde valerate pathway.68 Mean-
while, Sato et al. found that AMPK-activated phosphorylation of
Ser-872 did not affect sterol-mediated feedback regulation of
HMGCR, but functioned when cellular ATP levels were depleted,
thereby reducing the rate of cholesterol synthesis and preserving
cellular energy stores.69 In contrast, dephosphorylation of HMGCR
activates itself and increases cholesterol synthesis. Studies have
shown that miR-34a, a microRNA increased in nonalcoholic fatty
liver disease (NAFLD), dephosphorylates HMGCR via inactivating
AMPK, leading to dysregulation of cholesterol metabolism and
increased risk of cardiovascular disease.70 Subclinical hypothyroid-
ism leads to elevated serum thyroid stimulating hormone (TSH)
and elevated serum cholesterol levels. Zhang et al. found that TSH
can reduce HMGCR phosphorylation to increase its activity in the
liver via AMPK also, revealing a mechanism for hypercholester-
olemia in subclinical hypothyroidism.71

Uptake and transport of cholesterol
Dietary cholesterol absorbed by enterocytes or hepatic de novo
synthesized cholesterol can form the protein-lipid complexes
with lipoproteins and then release into circulation, followed by
transportation to cells for utilization. In humans, about a quarter
of excess cholesterol is excreted directly through enterocytes
into feces, and the rest enters the liver via reverse cholesterol
transport (RCT) and to be excreted with bile. Only a small
percentage is re-circulated back into the free cholesterol (FC)
pool72–74 (Fig. 3). A variety of proteins are involved in cholesterol
uptake and transport. Thus, targeting these key proteins to
regulate cholesterol levels is also a potential strategy for
treatment of hypercholesterolemia and CVD.75

Cholesterol uptake and efflux in enterocytes. Dietary cholesterol is
one of the main sources of cholesterol access in humans, and its
uptake is mediated by NPC1L1 protein in enterocytes.45 NPC1L1
contains 13 transmembrane helices, five of which form the SSD
that mediates NPC1L1 movement between the plasma mem-
brane and the endocytic recycling compartment in response to
intracellular cholesterol concentrations.76,77 In addition, the
N-terminal structural domain of NCP1L1 has a sterol-binding
pocket which interacts with cholesterol to change NPC1L1
conformation and allows cholesterol to enter cells.78 In earlier
years, Song et al. found that the VNXXF (X for any amino acid)
sequence at the C-terminus of NPC1L1 is involved in clathrin/
adaptin 2-dependent endocytosis to mediate cholesterol
uptake.79,80 However, NPC1L1-mediated cholesterol uptake is
not mainly dependent on endocytosis.81

Fig. 1 The pathway for cholesterol biosynthesis. In cholesterol biosynthesis, all the carbon atoms are derived from acetyl-CoA. The
biosynthesis of cholesterol can be divided into four stages. (I) Synthesis of mevalonate (MVA). Two molecules of acetyl-CoA are reversely
catalyzed by thiolase to form acetoacetyl-CoA. Acetoacetyl-CoA and acetyl-CoA are catalyzed to form 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) by HMG-CoA synthase (HMGCS). Finally, the HMG-CoA is catalyzed by HMG-CoA reductase (HMGCR) to convert to MVA, a step
that requires two molecules of NADPH and H+ and determines the rate of cholesterol biosynthesis. (II) Production of isopentenyl
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). MVA is sequentially phosphorylated twice by mevalonate kinase and
phosphomevalonate kinase to produce 5-pyrophosphate mevalonate, which is further decarboxylated by 5-pyrophosphatemevalonate
decarboxylase to produce isopentenyl pyrophosphate (IPP). IPP is converted to dimethylallyl pyrophosphate (DMAPP) catalyzed by
isopentanoyl pyrophosphate isomerase, and DMAPP is used together with IPP as the starting materials for the third step of cholesterol
synthesis. (III) Synthesis of squalene. IPP and DMAPP are condensed by farnesyl transferase to form geranyl pyrophosphate (GPP), followed by
a second condensation reaction between GPP and IPP to form farnesyl pyrophosphate (FPP), and finally two molecules of FPP are condensed
by squalene synthase to form squalene. (IV) Squalene cyclizes to form lanosterol and subsequently to synthesize cholesterol. Squalene forms a
closed loop catalyzed by squalene monooxygenase and 2,3-oxidosqualene lanosterol cyclase to form lanosterol. Lanosterol is converted into
cholesterol in more than twenty steps totally
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In 2020, the NPC1L1 structure was fully elucidated by the cryo-
electron microscopy, making it easier to understand the
mechanism of NPC1L1-mediated cholesterol uptake.82 After
binding to the sterol-binding pocket, cholesterol triggers
NPC1L1 conformation changes to form a delivery tunnel for
cholesterol uptake by cells.82 Recently, Hu et al. found that SSD
in NPC1L1 can respond to cholesterol concentrations by binding
different amounts of cholesterol.83 In addition, the effective
cholesterol uptake by NPC1L1 depends on its dimerization.84

Based on the crucial role of NPC1L1 in cholesterol uptake,
ezetimibe has been developed and used clinically as an inhibitor
of hypercholesterolemia, and other NPC1L1 inhibitors are being
developed.85,86 Cellular cholesterol uptake by NPC1L1 is then
esterified by acyl-CoA: cholesterol acyltransferase (ACAT) 2 in the
ER and loaded with triglycerides (TG) into ApoB-48 to form
chylomicrons. The mature chylomicrons are eventually trans-
ported into circulation, where TG is hydrolyzed for use in
peripheral tissues and the majority of cholesterol is absorbed by
the liver. In contrast, FC can be pumped back into intestinal
lumen via ATP-binding cassette (ABC) transport protein G5 and
G8 (ABCG5/8), or processed by synthesis of HDL-C and release
into circulation directly via ABCA1.87

Cholesterol uptake, esterification and efflux in macrophages.
Macrophage cholesterol homeostasis plays an essential role in
the development of atherosclerosis.88 Excessive uptake of
cholesterol, excessive intracellular cholesterol esterification and
impaired cholesterol efflux can drive differentiation of macro-
phages into foam cells and formation of atherosclerotic plaques in
the vessel wall.89 Macrophage cholesterol uptake is mainly
mediated through multiple scavenger receptors, the molecules
lack of SRE, rather than LDLR.90 Thus, without feedback control
mechanisms, macrophage scavenger receptors may uptake
cholesterol unlimitedly in patients with hypercholesterolemia.
Macrophages scavenger receptors include scavenger receptor A1
(SR-A1), SR-BI, lectin-like oxidized LDL receptor 1 (LOX-1), CD36

and so on. Among them, SR-A1 and CD36 mediate most of the
endocytosed LDL (75–90%).91–93 Meanwhile, compared with LDL,
these scavenger receptors have higher affinity for modified LDL,
particularly the oxidatively modified LDL (oxLDL).94 In athero-
sclerosis, expression of SR-A1, LOX-1, and CD36 in macrophages
are increased. The activated scavenger receptors can elevate the
levels of pro-inflammatory cytokines, oxLDL, lysophosphatidylcho-
line, advanced glycosyl end products (AGEs), and vasopressors in
macrophages, further promoting cholesterol accumulation and
foam cell formation.89

After endocytosis, lipoproteins will be hydrolyzed in lysosomes
by action of lysosomal acid lipase (LAL, also named as cholesterol
ester hydrolase or lipase A) to generate FC. The excess FC is then
esterified in the ER by ACAT1, which can attenuate FC cytotoxicity.
The cholesteryl ester (CE) can be stored as lipid droplets (LD) in
the cytoplasm.95 However, if ACAT1 esterifies too much FC to CE,
the excessive lipid accumulation can also result in conversion of
macrophages into foam cells. Therefore, ACAT1 is also considered
as a possible effective target in reduction of foam cells.
Consistently, deletion or inhibition of ACAT1 in macrophages
has an inhibitory effect on atherosclerosis in mouse models.96–99

However, the ACAT1 inhibitors failed to produce desired athero-
protective effects in clinic, which may be due to excessive
accumulation of FC in cells and generation of lipotoxicity, resulting
in profound cell death.100–102 Macrophages are not able to
degrade sterols, thus, CE needs to be hydrolyzed into FC for efflux.
Neutral cholesteryl ester hydrolase (NEH) hydrolyzes CE to release
FC.103 There are three main NEHs, of which carboxylesterase 1
(CES1) and neutral cholesteryl ester hydrolase 1 (NCEH1) are
mainly expressed in human macrophages for CE hydrolysis.104,105

When cholesterol is abnormally accumulated in macrophages,
the cells acquire a defense mechanism to combat the deleterious
effects caused by excessive cholesterol uptake by promoting
cholesterol efflux via the mechanisms involving simple diffusion,
SR-BI-facilitated diffusion, and ABCA1 and/or ABCG1-mediated
efflux.95,106 Among them, the simple diffusion is a passive

Fig. 2 SREBP2 pathway in regulation of cholesterol biosynthesis. The process of cholesterol biosynthesis is strictly regulated by negative
feedback, of which the sterol regulatory element binding protein (SREBP) pathway and the HMG-CoA reductase (HMGCR) degradation
pathway are the two main mechanisms of negative feedback regulation. a SREBP2 forms a complex with SREBP cleavage activating protein
(SCAP) at the ER. When sterol depletion occurs to cells, SCAP binds to COPII vesicles, allowing the SCAP-SREBP complex to translocate from
the ER to the Golgi for cleavage. SREBP2 is sequentially cleaved by S1P and S2P in the Golgi, and the N-terminal of SREBP2 is subsequently
transported to the nucleus, where the N-terminal of SREBP2 recognizes and binds to the SRE sequence on the target gene promoter to
activate the target gene transcription. In addition, HMGCR is also prevented from binding to INSIGs and gp78 (ubiquitin ligase) during
cholesterol depletion, thereby stabilizing HMGCR to activate cholesterol biosynthesis. b When the cell sterol is replete, it triggers the
interaction of SCAP with INSIGs, resulting in blocking the binding of SCAP to COPII and keeping the SCAP-SREBP2 complex in the ER. At the
same time, HMGCR also binds to INSIGs and gp78, which catalyzes the ubiquitination of HMGCR. The ubiquitinated HMGCR is eventually
degraded in the proteasome via ER-related degradation (ERAD). Ub ubiquitin
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process regulated by cellular cholesterol concentrations and
dominates the cholesterol efflux in normal cells, whereas in
cholesterol-overloaded cells, ABCA1 and ABCG1 are critical for
cholesterol efflux.107 The cholesterol efflux mediated by ABCA1 is
the most efficient way for macrophages to remove intracellular
cholesterol. ABCA1 can bind to ApoA-I and drive cholesterol flow
to ApoA-I to form nascent pre-β-HDL particles. Expression of
ABCA1 strongly influences the level of plasma HDL-C.108,109 In
2017, the elucidation of the crystal structure of ABCA1
established that ABCA1 forms hydrophobic tunnels to transport
lipids, but the mechanism for cholesterol delivery from ABCA1 to
ApoA-I still remains incompletely clarified.110 In contrast to
ABCA1, ABCG1 is not directly bound to the empty ApoA-I,
instead, it mediates the cholesterol flow to pre-βHDL particles
formed by ABCA1-mediated cholesterol efflux.111,112 Meanwhile,
expression of ABCA1 and ABCG1 are strictly controlled by liver X
receptors (LXRs). The increased cellular cholesterol levels
promote production of hydroxysteroids, the endogenous LXR

agonizts, thereby increasing ABCA1 and ABCG1 expression.113

Compared to ABCA1 and ABCG1, SR-BI was initially recognized as
the receptor for HDL-mediated CE uptake and only a minor
contributor in cholesterol efflux.114

Liver cholesterol transport and RCT. The liver is the main site of
cholesterol metabolism. It is also the most essential organ for
effective RCT. In general, cholesterol is transported to the liver from
peripheral cells (especially macrophages) by HDL particles, which is
considered to be the first step in RCT. Thus, HDL particles play a key
role for lipid homeostasis as lipid receptors in lymphatic fluid and
plasma.115 HDL is a smaller lipoprotein with a core of ApoA-I loaded
with CE and TG, and an outer layer of phospholipids (PL) which
allows the solubilization of FC to complete the transport.116

According to the particle size, HDL can be divided into two
subclasses, one is HDL2, which is rich in lipids with larger volume,
and the another one is HDL3, which is rich in proteins with smaller
volume.117,118 Lipid-poor ApoA-I synthesized in hepatocytes or

Fig. 3 Regulation of cholesterol transport. Daily food and the hepatic endogenous synthesis are the two main sources of human cholesterol,
of which dietary free cholesterol (FC) uptake is mediated by Niemann-Pick C1 Like 1 (NPC1L1) protein in enterocytes. The endocytosis of
cholesterol by NPC1L1 responds to the change of cellular cholesterol concentration. FC taken up by NPC1L1 in enterocytes is esterified to
cholesteryl ester (CE) by acyl-CoA:cholesterol acyltransferase 2 (ACAT2), which is loaded into ApoB-48 with triglycerides (TG) mediated by
microsomal triglyceride transfer protein (MTP), to form chylomicron (CM). After TG in CM is hydrolyzed and utilized, most of the remaining
cholesterol will be absorbed through low-density lipoprotein receptor (LDLR) in the liver. In contrast, some unesterified cholesterol is pumped
back to the intestinal lumen by ATP-binding cassette (ABC) transport proteins G5 and G8 (ABCG5/ABCG8) or synthesized into pre-β-HDL by
ABCA1 and released into circulation. Cholesterol synthesized endogenously in the liver is converted into VLDL with TG, ApoB-100, and most of
VLDL is then converted into LDL, which is the main carrier for transporting endogenous cholesterol. LDL is taken up by scavenger receptors in
macrophages, where expression of CD36, scavenger receptor A1 (SR-A1), and LDL receptor 1 (LOX1) is increased in atherosclerosis, further
promoting cholesterol accumulation. LDL is endocytosed into macrophages and hydrolyzed by lipase (LAL) to produce FC. Excess FC is
esterified by ACAT1 and stored as lipid droplets, and the excess accumulation of CE in macrophages can contribute to formation of foam cells.
To mediate cholesterol efflux, macrophages hydrolyze CE into FC by the neutral cholesteryl ester hydrolase (NEH). Macrophage-mediated
cholesterol efflux includes simple diffusion, SR-BI-facilitated diffusion, and ABCA1/ABCG1-mediated efflux. Among them, simple diffusion
dominates cholesterol efflux in normal macrophages, regulated by cholesterol concentrations. In cholesterol overloaded macrophages,
ABCA1 and ABCG1 are critical for cholesterol efflux. ABCA1 is able to bind to ApoA-I to mediate the production of pre-β-HDL, lecithin
cholesterol acyltransferase (LCAT) further matures pre-β-HDL particles into HDL3, while ABCG1 and SR-BI mediate cholesterol flow directly to
HDL3. HDL3 is further esterified by LCAT to produce HDL2, in which CE is eventually taken up by SR-BI in the liver and converted to FC. In
addition, CE in HDL2 particles can be exchanged by cholesteryl ester transfer protein (CETP) to LDL particles, which are subsequently taken up
by LDLR. Excess cholesterol in the liver is excreted into the bile mediated by ABCG5/ABCG8 and eventually enters the intestinal lumen for
excretion in feces. Some other cholesterol in the blood can be excreted directly into the intestinal lumen via transintestinal cholesterol
excretion (TICE) pathway in enterocytes
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enterocytes accepts FC transported by ABCA1 from peripheral cells
to form pre-β HDL particles.119,120 Afterwards, lecithin cholesterol
acyltransferase (LCAT) and phospholipid transfer protein (PLTP)
further mature pre-β-HDL particles to produce HDL3, and HDL3 acts
as an acceptor for FC discharged by ABCG1 and/or SR-BI to produce
HDL2 finally.121–123 Among them, LCAT mediates the cleavage of
fatty acids at the sn-2 position of phospholipids and transesterifica-
tion to the 3-β-hydroxyl group on the A ring to form CE.124,125 PLTP
mediates the transfer of PL from ApoB-containing lipoproteins to
HDL to facilitate FC influx.126 The liver selectively absorbs lipids from
HDL via SR-BI and transfers CE to bile for intestinal excretion to
complete the entire RCT process.114

Based on the key role of HDL in RCT, it is widely believed that
HDL-C is a “good” cholesterol to the extent that it inhibits the
progression of atherosclerosis. The results of several clinical
studies found that interventions to increase plasma HDL-C
concentrations by inhibiting cholesteryl ester transfer protein
(CETP) or using niacin did not reduce the development of
atherosclerosis.127–129 The esterification of cholesterol by LCAT is
critical for the inhibition of atherosclerosis by RCT, whereas the
rate of clearance of FC in HDL is much higher than that of LCAT
esterification, due to the fact that FC can enter the liver directly
through cell membrane without LCAT esterification, which may
also explain the controversial protective effects of interventions
targeting LCAT against atherosclerosis.130,131 Meanwhile, several
large studies also found a U-shaped curve between HDL-C
concentrations and all-cause mortality in ASCVD patients, with
both too low and too high levels of HDL-C leading to an increased
risk of ASCVD.132,133 In addition, the HDL collected from patients
with CVD or chronic kidney disease lose the capacity of RCT by
promoting LOX-1 mediated vascular dysfunction. Patients suffer-
ing from ASCVD with high HDL-C tend to lack PL in HDL, which
leads FC to flow back to macrophages to facilitate foam cell
formation.131 Therefore, maintaining the normal function of HDL
rather than simply increase of HDL-C concentrations is the more
important aspect of RCT therapy.
In addition to uptake of HDL-C via SR-BI, the liver also uptakes

LDL-C via LDLR to directly remove atherosclerotic lipoproteins
from the plasma. In the hepatic ER, ApoB-100 is the main
apolipoprotein to synthesize very low-density lipoprotein (VLDL)
to transport endogenous TG and cholesterol. When TG contained
in VLDL is hydrolyzed by LAL, the remaining particles are
converted to LDL.134 LDL is the primary carrier of endogenous
cholesterol for transport, and two-thirds of TC in plasma binds to
LDL to form LDL-C, which is absorbed and converted through
hepatic LDLR. In humans, CE in mature HDL particles is also
exchanged to LDL or VLDL particles by CETP, then the CE in these
particles is absorbed by LDLR.135 In mammals, LDLR is highly
expressed in the liver to mediate more than 70% of LDL-C
clearance.136 LDLR deficiency is the most common cause of FH, in
which patients present with markedly elevated LDL-C level and
early ASCVD onset.137,138 LDLR transcription is mainly regulated by
SREBP2 and can respond to changes of intracellular cholesterol.90

PCSK9 reduces LDLR expression in the post-translational manner.
It binds to LDLR to induce LDLR entry into cells for lysosomal
degradation and inhibits the ability of LDL uptake in the liver.34

Similarly, the inducible degrader of LDLR (IDOL) can also promote
LDLR degradation through polyubiquitination and lysosomal
degradation pathways.139 A recent cognitively subversive study
found that HDL can bind to PCSK9 to increase PCSK9 activity and
accelerate PCSK9-mediated LDLR degradation. This study further
elucidates the interaction between circulating lipoproteins and
PCSK9, and provides new therapeutic ideas for targeting PCSK9.
Furthermore, coagulation factor prekallikrein (PK) was recently
reported to regulate plasma cholesterol levels via binding to LDLR
to induce its lysosomal degradation. Deficiency of PK stabilizes
LDLR protein expression, promotes hepatic LDL-C clearance and
inhibits atherosclerosis in mice.140 All the evidence above suggest

that LDLR still represents a promising therapeutic target for
ASCVD treatment.

Cholesterol utilization and excretion
Utilization of cholesterol. As an important component in
biological membranes, cholesterol accounts for more than 20%
of lipids in membranes.141,142 Cholesterol is a largely hydrophobic
molecule, and only the 3β-hydroxyl portion is a polar group, thus,
cholesterol is amphiphilic and can be oriented in the phospho-
lipid bilayer perpendicular to the membrane surface.143–145 In
domains or pools of biological and model membranes, choles-
terol is usually non-randomly distributed, in which many
structural domains are thought to be important for maintaining
membrane structure and function.146–148 Besides participating in
the composition of biological membranes, cholesterol is the
essential precursor for synthesis of oxysterols. Formation of
oxysterols is the step converting cholesterol into more polar
compounds, which can facilitate elimination of cholesterol.
Meanwhile, oxysterols have different important physiological
roles. Some oxysterols can activate LXR to regulate cholesterol
efflux from macrophages, and some of them can bind to INSIG to
regulate SREBP2 maturation, therefore, these oxysterols play an
important role to maintain cholesterol homeostasis.149,150 Oxidor-
eductases, hydrolases and transferases are the three main
enzymes involved in the metabolism of oxysterols. Among the
oxidoreductases, the enzymes catalyzing formation of oxysterols,
cytochrome P450 (CYP) has been relatively well studied. The
earlier identified two enzymes, cholesterol 7α-hydroxylase
(CYP7A1) and cholesterol 27-hydroxylase (CYP27A1), participate
in bile acid synthesis by producing 7α-hydroxycholesterol (7α-
OHC) and 27-OHC, respectively. In addition, formation of OHC by
CYP7A1 is the rate-limiting step for bile acid production.151,152

Cholesterol 25-hydroxylase (CH25H), another key oxidoreductase,
does not belong to the CYP450 superfamily.153 CH25H catalyzes
the production of 25-OCH, which is capable of acting as an
agonist of estrogen receptor α.154 In addition to the aforemen-
tioned enzymes, there are many other enzymes that catalyze
synthesis of specific oxysterols, indicating the mechanisms for
oxysterol production/metabolism still need further investigation.
Moreover, cholesterol is the precursor for generation of all steroid
hormones. Various steroid-producing tissues (adrenal glands,
testes, ovaries) and brain cells produce steroid hormones. The
inner mitochondrial membrane contains CYP450, a key enzyme to
convert cholesterol to pregnenolone. Subsequently, pregneno-
lone leaves the mitochondria and is further catalyzed by the
corresponding enzyme in the ER as a substrate for steroid
hormone synthesis.155

Excretion of cholesterol. The elimination of cholesterol from the
liver to remove excess cholesterol is considered as the final step
in RCT. Both ABCG5/8-mediated hepatobiliary secretion and
transintestinal cholesterol excretion (TICE) pathways mediate this
process.156

During the hepatobiliary cholesterol secretion, ABCG5 and
ABCG8 form a heterodimer to mediate cholesterol excretion into
the bile and intestinal lumen.157,158 At the same time, bile salt is
the main acceptor for ABCG5/8-mediated hepatic cholesterol
efflux.159,160 Bile acids secreted from hepatocytes will combine
with glycine or taurine to form bile salts. CYP7A1 is the key
enzyme for bile acid synthesis, converting cholesterol (usually
from LDL particles) to 7α-OCH through a multienzyme pro-
cess.151 Subsequently, CYP450 enzymes including CYP8B1,
CYP27A1 and CYP7B1 located on the ER of hepatocytes are
involved in many of the subsequent reactions.161–163 Lee et al.
determined the structure of ABCG5/8 heterodimer by extracting
the crystals of phospholipid bilayer ABCG5 and ABCG8. The
structure shows that the transmembrane structural domain of
this heterodimer is coupled to the nucleotide binding site
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through different interaction networks between the active and
inactive ATPases, indicating the catalytic asymmetry of ABCG5
and ABCG8 protein.164 Similar to ABCA1 and ABCG1, ABCG5 and
ABCG8 are also transcriptionally regulated by LXR. When hepatic
cholesterol is overloaded, increased oxysterols activate LXR and
enhance expression of ABCG5/8.165,166

Another non-biliary TICE pathway of cholesterol excretion
refers to cholesterol secretion directly to the proximal small
intestine from the blood via enterocytes.167 In both rodents and
humans, TICE mediates about 30% of the total fecal cholesterol
excretion and plays a significant role in cholesterol
efflux.166,168,169 When the synthesis of bile acids/salts is abnormal
in the body, TICE takes on more to maintain normal cholesterol
efflux.170 Stöger et al. found that interleukin 10 (IL-10) receptor 1
(IL-10R1)-deficient LDLR−/− mice showed an increase in TICE-
mediated cholesterol efflux and inhibited atherosclerosis, sug-
gesting that TICE may have potential anti-atherosclerotic
effects.171 Since enhanced hepatobiliary cholesterol secretion
has the side effect of causing gallstones, promoting TICE may be
a new idea to combat atherosclerosis.172 However, the molecular
mechanism of TICE has not been fully clarified, and various
factors of cholesterol metabolism can affect TICE to some extent,
which is a direction worthy of the future attention.173–175

Epigenetic modulation of cholesterol metabolism
In addition to the classical models of cholesterol metabolism
regulation described above, the recent evidence has revealed
multiple epigenetic regulatory mechanisms involved in uptake,
synthesis and efflux of cholesterol, such as histone acetylation,
DNA methylation and ubiquitylation.
Bromodomain and extra-terminal domain (BET) proteins are

epigenetic readers that are recruited to chromatin in the presence
of acetylated histones, thereby regulating gene expression.
Inhibition of BET effectively reduces intracellular cholesterol levels
by significant regulating genes involved in cholesterol biosynth-
esis, uptake and intracellular trafficking, indicating that most of
the genes involved in regulation of cholesterol homeostasis can
be regulated by epigenetic mechanisms.176

Intestinal NPC1L1 is differentially expressed in the gastrointest-
inal tract, with much higher levels in small intestine than colon,
which is associated with high levels of methylation upstream of
NPC1L1 gene start site in the colon, suggesting a possible
reduction in cholesterol uptake and prevention of atherosclerosis
by alteration of DNA methylation.177 Whereas data on the
epigenetic regulation of ABCG5/8 in the intestine are very limited.
A few studies in mouse liver suggest that the common promoters
of ABCG5/8 are acetylated and unmethylated. Histone methyl-
transferase SET domain 2 (SETD2) catalyzes trimethylation on
H3K36 (H3K36me3), and recent studies have revealed that STED2
is involved in regulating hepatic ABCA1 expression and choles-
terol efflux homeostasis.178

Brahma related gene 1 (BRG1, a chromatin remodeling protein)
interacts with SREBP2 and recruits histone 3 lysine 9 (H3K9)
methyltransferase (KDM3A) at the promoter of SREBP2 target
genes to regulate the transcription of genes involved in
cholesterol synthesis.179 Euchromatic histone-lysine N-methyl-
transferase 2 (EHMT2) is a histone methyltransferase that catalyzes
H3K9 of SREBP2 monomethylation and dimethylation (H3K9me1
and H3K9me2, respectively). Inhibition of EHMT2 is able to directly
induce SREBP2 expression by reducing H3K9me1 and H3K9me2 at
the promoter.180 At the same time, the complex of histone
acetylase cAMP response element binding protein 1 (CREB)
binding protein (CBP)/P300 bromodomain acetylates the con-
served lysine residues of SREBP protein, thereby preventing the
ubiquitination and degradation of SREBP, prolonging its residence
time in the nucleus and promoting its transcriptional activity. In
contrast, sirtuin 1 (SIRT1) can antagonize the action of CBP/P300
by deacetylating SREBP.181 Thus, the transcriptional activity of

SREBP is regulated by multiple epigenetic mechanisms, keeping it
in a complex dynamic equilibrium.
Various genes associated with cholesterol elimination, such as

CYP7A1, CYP46A1 and CH25H, have been shown to be
differentially regulated epigenetically. CYP7A1 can be regulated
by indirect negative feedback from small heterodimeric chaper-
one (SHP) proteins. Several studies have identified the presence of
BRG1-mediated chromatin remodeling and SIRT1-mediated his-
tone deacetylation at the SHP promoter, which further regulates
CYP7A1 expression.182,183 CYP46A1 is regulated by the acetylation
status of histones. in vitro, treatment of hepatocytes with
deacetylase inhibitor, trichostatin A, significantly upregulates
CYP46A1 mRNA levels.184 The signal transducers and activators
of transcription 1 (STAT1) pathway regulates CH25H expression,
which also requires the involvement of histone acetylation.185,186

The epigenetic regulation of cholesterol homeostasis is a
promising research area, with multiple genes being differentially
regulated. Research in this area could provide the basis for
transcriptional therapies for related diseases, drug development
and the clinical application of dietary epigenetic modulators.
However, there are still many questions and gaps in this field that
need to be solved.

CHOLESTEROL-RELATED DISEASES AND INTERVENTIONS
Cholesterol and ASCVD
Role of cholesterol in the development of ASCVD. Deregulated
cholesterol metabolism leads to the development of multiple
human diseases, among which atherosclerosis is the major one.
Atherosclerosis is the process of accumulation of lipids and fibrous
substances in arterial intima, and results in ASCVD as the main
cause of death worldwide.187 The main reason of atherosclerotic
plaque formation is the excessive accumulation of cholesterol-rich
lipoproteins in the arterial intima (Fig. 4).187,188

Accumulation and retention of ApoB-containing lipoproteins in
the arterial intima are thought to induce atherosclerosis.189 Recent
evidence has suggested that SR-BI in endothelium is an important
scavenger receptor that promotes LDL transcytosis/accumulation
and atherosclerosis.190 Retained LDL particles activate an initial
immune response in the endothelium, thus, triggering chronic
inflammation by releasing monocyte chemotactic protein-1
(MCP-1) and some other inflammatory factors.191 Endothelial
chemokines and cytokines including MCP-1, intercellular adhesion
molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), E-
selectin, macrophage colony stimulating factor (M-CSF), IL-18 and
tumor necrosis factor α (TNF-α), further promote monocyte
migration to endothelium.192,193 Monocytes can differentiate into
macrophages after migration to the underneath of endothelium,
where macrophages bind and internalize modified LDL or
lipoprotein residues in the intima to form foam cells.194

Foam cell formation is the major hallmark of early lesions in
atherosclerosis.89 Macrophages differentiated from circulating
monocytes are the main source of foam cells.195,196 A small
number of foam cells can be derived from endothelial cells (ECs)
and/or vascular smooth muscle cells (VSMCs). ECs may differ-
entiate into VSMC-like cells while VSMCs will further differentiate
into macrophage-like cells, which become foam cells after lipid
overload.197

LDL must undergo oxidative modification before it can be
rapidly taken up by macrophages and accumulated in lyso-
somes.198 LOX-1 is one of the scavenger receptors and highly
expressed in ECs, which binds oxLDL and transfers it to the intima
infiltrated by macrophages. Next, macrophages bind oxLDL
through scavenger receptors including SR-A1, CD36, and LOX-1.89

The formation of CE is an important part in the transition of
macrophages to foam cells. Disruption of the balance between
esterification and de-esterification results in accumulation of CEs
in macrophages, leading to foam cells formation.17 As an
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important part of lipoprotein metabolism, RCT can prevent foam
cell formation. Imbalanced conversion between CE and FC and
dysregulation of HDL function lead to formation of cholesterol
crystals.199 As cholesterol crystals grow and accumulate in the

extracellular space of the plaque necrosis core, it eventually
reaches and penetrates the arterial intima.200 This will lead to
increased plaque instability, which in turn causes plaque rupture
and further thrombus formation.17

Fig. 4 Inhibition of atherosclerosis by cholesterol-lowering interventions. Bempedoic acid and statins reduce acetyl-CoA and HMG-CoA
production by inhibiting ACLY and HMGCR, respectively, thereby lowering cholesterol synthesis. Ezetimibe inhibits intestinal uptake of
cholesterol by inhibiting NPC1L1. PCSK9 inhibitors reduce LDLR degradation by inhibiting PCSK9 expression/function. Bile acid sequestrants
bind to BA in the small intestine, thus preventing BA from being reabsorbed into the liver. Lomitapide reduces the assembly of ApoB-
containing lipoproteins in intestine and liver. Evinacumab restores LPL activity by inhibiting ANGPTL3. Fibrates reduce TG levels. All of the
above interventions can reduce plasm LDL-C levels, which is the base for the development of atherosclerosis. The arterial wall consists of
three layers: adventitia, media, and intima. The outermost layer, adventitia, is mainly composed of connective tissues. The middle layer, media,
consists of smooth muscle cells. The innermost layer, intima, is bounded by endothelial cells (ECs) on the inner side of the lumen and internal
elastic membrane on the outer side. Atherosclerotic plaques form in the intima. In the early stage of atherosclerosis, LDL particles enter the
intima through EC layer and undergo oxidation and other modifications to form oxLDL, which makes it pro-inflammatory and immunogenic.
ECs secrete adhesion molecules and chemokines after activation, and monocytes circulating in the blood bind to adhesion molecules and
enter the intima under the promotion of chemokines. After entering the intima, the infiltrated monocytes then differentiate into
macrophages and express scavenger receptors to bind and internalize oxLDL to form foam cells. A subset of smooth muscle cells from the
media can also differentiate into a macrophage-like phenotype, which in turn phagocytoses oxLDL to form foam cells. As the lesion
progresses, dead foam cells and SMCs aggregate with free lipoprotein and cholesterol crystals in the intima to form a necrotic core. SMCs
migrate to endothelium and forms fibrous cap during the evolution of atherosclerotic plaque. As cholesterol crystals grow, they eventually
penetrate the intima, causing plaque instability and further rupture of the plaques. Acetyl CoA acetyl coenzyme A, ACLY ATP citrate lyase,
ANGPTL3 angiopoietin-like protein 3, BA bile acid, CE cholesteryl ester, CM chylomicron, EC endothelial cell, FA fatty acid, FC free cholesterol,
HMGCR 3-hydroxy-3-methylglutaryl coenzyme A reductase, HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A, LDL low-density lipoprotein,
LDLR LDL receptor, LPL lipoprotein lipase, MTP microsomal triglyceride transfer protein, NPC1L1 Niemann-Pick C1 like 1, oxLDL oxidatively
modified low-density lipoprotein, PCSK9 proprotein convertase subtilisin/kexin type 9, SMC smooth muscle cell, TG triglyceride, VLDL very
low-density lipoprotein
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Cholesterol-lowering intervention therapy. LDL-C is involved in the
occurrence and development of atherosclerosis, indicating LDL-C
is the main risk factor for ASCVD. More and more studies show
that lower LDL-C levels are better for cardiovascular system.201,202

In the following sections, we will discuss the drugs that possess
cholesterol-lowering capacities (Table 1).

Statins: Statins are competitive HMGCR inhibitors, which can
effectively reduce the level of plasma cholesterol, especially LDL-C
levels. Statins represent the mainstream therapy for CVD.203–206

Historical studies have confirmed that statins are able to reduce
the incidence of CVD by 23% which leads to statins as the first
choice for the treatment of hypercholesterolemia.207 Mevastatin is
the first statin discovered in the world, and it was isolated from
fungal species Penicillium citrinum.208 But till the 1990s, the
landmark Scandinavian Simvastatin Survival study (4S) showed
convincing results that support the use of statins to reduce
cholesterol and CVD.209 By 2020, at least nine different statins
have been developed, among which seven have been approved
in USA and one has been withdrawn from the market.203 Statins
inhibit HMGCR activity by competitively binding to the enzymatic
site of HMGCR, resulting in decreased cholesterol synthesis and
reduced plasma cholesterol levels.210 Low plasma cholesterol
levels in turn increase hepatic LDLR expression via the SREBP2-
dependent pathway. The increased LDLR expression in hepato-
cytes speeds up the uptake and clearance of LDL-C from plasma,
another important mechanism of statins improving cholesterol
metabolism systematically.211 However, some studies have shown
that statin can also induce PCSK9 expression since PCSK9 also
contains SRE in its promoter. The increased PCSK9 expression
substantially attenuates the expected efficacy of statins on
cholesterol lowering.212,213

Without the influence of PCSK9, the extent of LDL-C reduced
by statins should be dose-dependent and may vary among
different statins. According to the effect of lowering LDL-C,
different types and doses of statin therapy are divided into three
intensities: low, moderate and high. Low-intensity is defined as a
daily dose of statin that can reduce LDL-C < 30%; moderate-
intensity is indicated as reducing LDL-C to 30–50%; and high-
intensity is to reduce LDL-C ≥ 50%.214 A meta-analysis showed a
10% reduction in all-cause mortality for per 1 mmol/l (equivalent
39 mg/dl) reduction in LDL-C, mainly due to a reduction in
deaths from CVD.207 Further meta-analysis showed that statins
can reduce all-cause mortality and the risk of cardiovascular
events, regardless of age and sex.215,216 Even in patients with low
cardiovascular risk, statins could reduce all-cause mortality and
cardiovascular events.217

In addition to reduction of LDL-C, statins have been demon-
strated to have many other beneficial effects, known as the
pleiotropic effects of statins.218,219 Statins have been reported to

elevate HDL-C, which also varies with dose among different
statins.220 However, when LDL-C is below a certain level, statin-
elevated HDL-C has little effect on disease regression.221 The anti-
inflammatory and antioxidant effects of statins may also make
contributions to prevention and/or reduction of ASCVD, at least
confirmed by in vitro and animal studies. However, the clinical
significance of these positive effects on ASCVD may need more
exploration.222,223

Although the efficacy of statins in lowering LDL-C and treating
ASCVD is unquestionable, there are still many controversies
regarding the application of statins.224 Myopathy is one of the
most common clinical adverse reactions caused by statins.225 The
most severe form of statin-associated muscle symptoms (SAMS),
rhabdomyolysis, is characterized by severe muscle pain, muscle
necrosis, and myoglobinuria, which can lead to kidney failure or
death.226 However, the nocebo effect may outweigh the side
effects caused by the statins themselves.227 Thus, in all interna-
tional guidelines, the availability of statins for the secondary
prevention of ASCVD is consistent in patients without statins
intolerance or adverse reactions, and the benefits of statins
treatment are supported by a large amount of data.228 When it
comes to primary prevention, the international guidelines for the
treatment of isolated adult patients with elevated LDL-C (defined
as ≥190mg/dL) have not yet reached consensus. At the same
time, the application of statins in patients with chronic kidney
disease, diabetes, the elderly over 75 years old, and patients with
heart failure also demonstrated mixed results.229–232 For those
patients with intolerance to the recommended-intensity statins
due to the adverse effects or those who do not achieve LDL-C
reducing goals, the non-statin lipid-lowering drugs added to the
maximally tolerated statins can be recommended.233,234

Ezetimibe: Ezetimibe is an intestinal cholesterol absorption
inhibitor, which can block intestinal uptake of cholesterol by
interacting with NPC1L1 without effect on absorption of TG and
fat-soluble vitamins.235,236 In addition to lowering plasma
cholesterol levels, similar to statins, ezetimibe also up-
regulates LDLR expression in the liver, thereby enhancing LDL-
C clearance.237 Experiments have also shown that ezetimibe may
reduce inflammation in atherosclerotic plaques by increasing
LDL-C breakdown and promoting fecal excretion of LDL-derived
cholesterol.238,239

Ezetimibe is a good option for patients with contraindications,
statin intolerance and/or insufficient LDL-C reduction.235 Clinical
studies and meta-analyses show that ezetimibe monotherapy
significantly reduces LDL-C and TC levels. It also slightly increases
HDL-C levels in patients with hypercholesterolemia.237,240 LDL-C
lowering treatment with ezetimibe reduces the risk of cardiovas-
cular events in patients aged ≥75 years with elevated LDL-C.241 In
a rabbit model of plaque erosion, ezetimibe lowered serum

Table 1. The application of clinical cholesterol-lowering interventions on ASCVD

Clinical intervention Target Clinical efficacy Adverse effects

Statins HMGCR ↓ LDL-C, ↑ HDL-C Myopathy

Ezetimibe NPC1L1 ↓ LDL-C, ↑ HDL-C, ↓TG None

PCSK9 inhibitors PCSK9 ↓ LDL-C, ↑ HDL-C, ↓Lp(a) Injection site reactions

Bempedoic acid ACLY ↓ LDL-C, ↑ HDL-C Hyperuricaemia

Bile acid sequestrants Bile acids ↓LDL-C, ↑HDL-C Gastrointestinal adverse reactions

Lomitapide MTP ↓ LDL-C, ↓ Lp(a), ↓TG Gastrointestinal adverse reactions

Evinacumab ANGPTL3 ↓ LDL-C, ↓ TG Injection site reactions, flu-like illness, headache, urinary tract infection and
limb pain

Fibrates PPARα ↓ LDL-C, ↑ HDL-C, ↓TG Gastrointestinal adverse reactions

Lipoprotein apheresis Plasma lipoprotein ↓LDL-C, ↓ Lp(a), ↓TG None
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oxysterols, thereby reducing atherothrombotic complications
following superficial plaque erosion.242

In order to achieve better therapeutic effects, ezetimibe is often
used in combination with a statin. In 2018, Ezetimibe was the most
prescribed non-statin lipid-lowering therapy. In patients treated
with statins, the addition of ezetimibe reduced LDL-C by an
additional 23.8%, and fixed-dose combination (FDC) therapy
reduced LDL-C by an additional 28.4% compared with statin
therapy alone. However, treatment outcomes vary widely among
individuals that only a small percentage of patients achieved
recommended LDL-C levels (FDC, 31.5%; separate pills, 21.0%).243

In addition, bempedoic acid plus ezetimibe FDC together with
maximally tolerated statin therapy also significantly lowered LDL-C
and had a favorable safety profile.244 It has been reported that co-
administration of ezetimibe with a bile acid sequestrant can
reduce LDL-C by an additional 10–20%.245 The combination of
ezetimibe and PCSK9 inhibitor may have an additional effect in
cholesterol lowering.246

Notably, age, gender, or race do not affect the pharmacoki-
netics of ezetimibe, and no dose adjustment was required in
patients who had mild hepatic impairment or mild to severe renal
impairment.235 Furthermore, ezetimibe also shows favorable drug
interaction characteristics and has little effect on plasma levels of
statins. In addition, the bioavailability of ezetimibe is not
significantly affected by concurrent statin administration.247

PCSK9 inhibitors: The discovery of PCSK9 provides a new idea for
controlling plasma LDL-C levels. PCSK9 inhibitors can increase
LDLR expression by attenuating PCSK9 expression/function,
leading to the lowering plasma LDL-C.248 In addition, it has been
reported that inflammatory state could promote PCSK9 expression
and increased PCSK9 would up-regulate LOX-1 expression, thus
promoting oxLDL uptake and accelerating the progression of
atherosclerosis.249,250 At present, there are three approved PCSK9
inhibitors, among which alirocumab and evolocumab are the full
human monoclonal antibodies, and the third one, inclisiran, is a
double-stranded siRNA.251,252

In meta-analysis, evolocumab and alirocumab could signifi-
cantly reduce cardiovascular events, but had no significant effect
on cardiovascular mortality.253–256 Evolocumab and alirocumab,
either alone or in combination with statins or other lipid-lowering
drugs, can reduce LDL-C levels by an average of 60%.235 When
evolocumab and alirocumab were used in combination with the
high-intensity statins, there was an additional 46–73% reduction
in LDL-C compared to placebo, and an additional 30% reduction
compared to ezetimibe.235 Inclisiran is a novel PCSK9 inhibitor,
which was approved for treatment of ASCVD by US FDA in
2021.252 In the two phase 3 trials of inclisiran in the patients with
elevated LDL-C, subcutaneous injection of inclisiran once every
6 months resulted in a 50% reduction in LDL-C levels.257 Adverse
events at the injection site of inclisiran were more frequent than
placebo, but the reaction was usually mild.257 Recently, a study
showed that inclisiran inhibited foam cell formation by inhibiting
oxLDL uptake by RAW264.7 macrophages, which was associated
with activation of peroxisome proliferator-activated receptor γ
pathway. This observation may provide new insights into the
cholesterol-lowering mechanism of inclisiran.258

Itching at the injection site and flu-like symptoms are the most
common side effects of PCSK9 inhibitors.259 PCSK9 inhibitors are
effective. However, given the high cost and limited data on the
long-term safety, they may be only cost-effective in patients with
high risk of ASCVD, while not be available in some areas with no
enough medical resources.235 Therefore, lower-cost alternative
drugs need to be developed.

Bempedoic acid (ETC-1002): Bempedoic acid, an inhibitor of
ACLY, is the first FDA-approved non-statin oral cholesterol-
lowering drug in nearly 20 years.40,260 In fact, bempedoic acid is

a prodrug and needs to be converted into bempedoic acid-CoA
thioester, the active form of ACLY inhibitor, by very long-chain
acyl-CoA synthetase-1 (ACSVL1).261 Interestingly, expression of
ACSVL1 is tissue-dependent with little in the muscle and high in
the liver. Therefore, inhibition of ACLY activity by bempedoic acid
administration simply occurs to the liver, thereby avoiding the
muscle-related side effects.262 ACLY inhibition can also upregulate
LDLR expression, which can make additional contributions to the
reduction of plasma LDL-C levels.263 Studies have shown that in
high-fat and high-cholesterol diet-fed mice, in addition to
inhibition of cholesterol synthesis and activation of LDLR
expression, bempedoic acid also reduces inflammation by directly
inhibiting ACLY and activating AMPKβ1 activity, thereby potently
preventing atherosclerosis.262,264

The CLEAR trials showed that adding bempedoic acid to current
cholesterol-lowering therapy can further reduce LDL-C levels in
patients with high risk for CVD.244,263,265 When combined with
statins, ezetimibe lowered LDL-C by an additional 25%, while
bempedoic acid add-on therapy lowered LDL-C by an additional
16%.266,267 This finding contrasted with the findings of the
monotherapy arms in phase 3 trial, in which LDL-C was reduced
by ~30% by bempedoic acid and ~21% by ezetimibe alone.268

The application of bempedoic acid may cause an increase in
serum uric acid and increase the risk of tendon rupture, so
patients with gout or a history of tendon disease should avoid
using bempedoic acid.269 In view of some drug interactions found
in clinical trials, the administration of drugs containing bempedoic
acid is not recommended when using simvastatin at a dose
>20mg or pravastatin at a dose >40mg.268

For patients at high risk of ASCVD, bempedoic acid alone or in
combination with ezetimibe can be considered as an additional
treatment of statins.270 Given the high cost of PCSK9 inhibitors,
the use of bempedoic acid would be a higher priority than PCSK9
inhibitors, but lower than ezetimibe based on the limited data on
the overall efficacy. Nonetheless, the combination of bempedoic
acid or ezetimibe with statins is suggested for the patients who
require greater LDL-C lowering than either drug alone. At present,
the lipid-lowering ability of bempedoic acid is clear, but whether it
can reduce the risk of ASCVD remains unknown, which needs
further study.

Bile acid sequestrants: Bile acid sequestrants (BAS) are macro-
molecular polymers which can bind to bile acids in the small
intestine, thus, BAS can prevent bile acids from being reabsorbed
back into the liver.271 Due to bile depletion in the liver, more bile
acids than usually required are synthesized from liver cholesterol,
which increases the demand for cholesterol in the liver, leading to
increased LDLR expression and clearance rate of circulating
LDL-C.272 Three types of BAS have been approved for clinical
use: cholestyramine, colestipol and colesevelam hydrochloride.
The past clinical trials demonstrated that BAS was effective in
lowering LDL-C and reduction of the risk of cardiovascular events
in hypercholesterolemic patients.272–275

Even low-dose BAS could also cause gastrointestinal adverse
reactions, which limits its application. It has been reported that
use of BAS can reduce the absorption of intestinal fat-soluble
vitamins and sometimes increase the level of circulating TG in
some patients.235 In addition, BAS interacts with several com-
monly used drugs, so it must be used with caution in combination
therapy. Among them, colesevelam is well tolerated and has less
interaction with other drugs, thus, it can be used concurrently with
drugs for other kinds of disease treatment.276

Lomitapide: Lomitapide is an oral microsomal TG transfer
protein (MTP) inhibitor, which can reduce the assembly of
lipoproteins containing ApoB in intestine and liver, so the
reduction of LDL-C levels by MTP inhibitors is independent of
LDLR.277 Lomitapide has been proved to reduce LDL-C in
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homozygous FH (HoFH) patients by nearly 50% in combination
with other lipid-lowering drugs.278

In a real-world European study, lomitapide has been proved to
be a very effective adjuvant drug to reduce LDL-C in HoFH
patients for the longest follow-up period so far.279 As lomitapide
blocks MTP, it leads to impaired intestinal fat transport, making
gastrointestinal symptoms as the most common adverse event in
patients.280 In terms of safety, lomitapide-related hepatic steatosis
may not indirectly increase the risk of liver fibrosis, and the data
suggest that lomitapide may reduce cardiovascular events in
HoFH patients.279

Evinacumab: Evinacumab is a human monoclonal IgG4 antibody
neutralizing angiopoietin-like protein 3 (ANGPTL3). ANGPTL3 is a
protein secreted by the liver, which inhibits activity of lipoprotein
lipase and endothelial lipase, the two lipases involved in the
regulation of lipid hydrolysis in serum.281 Inhibition of ANGPTL3
by evinacumab restores activity of the two lipases, thus reducing
serum cholesterol and TG levels.282

In 2021, evinacumab was approved in USA as an adjunctive
cholesterol-lowering treatment for FH in adults and children 12
years of age or older. The previous clinical trials showed that
evinacumab reduced TC and LDL-C by 45–55% in HoFH patients
already receiving maximum tolerated doses of lipid-lowering
drugs.282 An animal study showed that alirocumab, evinacumab,
and atorvastatin triple therapy significantly reduced hyperlipide-
mia and atherosclerosis.283,284 Currently, no randomized clinical
trials demonstrate that evinacumab can reduce cardiovascular
events, so the further research is needed.
Frequent adverse events of evinacumab include mild local

injection reaction, flu-like illness, headache, urinary tract infection
and limb pain.285 In addition, no clinically apparent liver injury or
serious hepatic adverse events attributable to treatment were
reported.

Fibrates: Fibrates are PPARα agonizts, which can increase HDL-C
levels and decrease TG levels in plasma by regulating molecules
related to lipid metabolism.286 The clinical effects of fibrate class
on blood lipids are different, but are estimated to reduce TG levels
by 50% and LDL-C levels by ≤20%, and increase HDL-C levels by
≤20%. These effects are closely related to baseline lipid levels.287

Meta-analysis showed that fibrates-treated patients with high TG
and low HDL-C had a decrease of major cardiovascular events
without reduced CVD or total mortality.288,289 Recently, a novel
fibrate, pemafibrate, was reported to significantly reduce TG-rich
lipoproteins, such as chylomicrons and VLDL.290 In addition,
fibrates are well tolerated with common adverse effects of
myopathy, elevated liver enzymes, and cholelithiasis.291 Overall,
the CVD benefit of fibrates requires further confirmation.

Lipoprotein apheresis: Lipoprotein apheresis (LA) is a non-drug
lipoprotein-lowering therapy commonly used in patients with
HoFH, heterozygous FH and other forms of hypercholesterolemia
or CVD.292 Although highly effective, LA is time-consuming and
expensive, and has long been the last resort for treating
uncontrolled dyslipidemia.293

New targets for cholesterol-lowering therapy. In addition to the
classical targets for drug mentioned above, some new targets for
cholesterol lowering are also being investigated, which we will
elaborate below (Table 2).

APOC3: Apolipoprotein C3 (APOC3) is an apolipoprotein
encoded by the gene APOC3 and mainly found in VLDL and
chylomicron.294,295 APOC3 can stimulate liver to synthesize and
secrete VLDL.296 It also reduces liver clearance of TG-rich
lipoproteins by regulating LDLR/LDLR-related protein 1 (LRP1)
pathway.297 Epidemiological studies show that plasma APOC3

levels can be used to predict CVD risk and mortality.298–301 It has
been reported that carriers of rare heterozygous deletion
mutations in APOC3 have lower TG, enhanced HDL-C, little
change in LDL-C and lower cardiovascular risk.302,303

Volanesorsen is a second-generation of antisense oligonucleotide
(ASO) targeting APOC3 mRNA in hepatocytes to decrease APOC3
expression, thereby significantly reducing plasma TG levels.304 APO-
CIII-LRx is a next-generation of N-acetylgalactosamine-conjugated
ASO targeting APOC3. In a double-blind, placebo-controlled, dose-
escalation phase 1/2a study, multiple injections of 30mg/week APO-
CIII-LRx reduced APOC3, TG, VLDL, TC, LDL-C by ~80%, 70%, 70%,
15%, and 15%, respectively, and increased HDL-C by about 70%.305

Based on these studies, it is suggested that inhibition of APOC3
also has cholesterol lowering potential, although the mechanism
remains unclear.

Lipoprotein (a) [Lp(a)]: Lp(a) is a special form of LDL particle
encoded by LPA, to which part of Apo(a) is covalently bound to
ApoB. Lp(a) contains 35–46% CE and 6–9% cholesterol.306,307 The
concentration of Lp(a) is mainly determined by genes and varies
greatly among individuals.308 In the past, multiple studies have
demonstrated that Lp(a) is another risk factor for ASCVD.309–312

The in vitro and animal studies suggest that Lp(a) is important
in the progression of atherosclerosis by influencing formation of
foam cells, VSMC proliferation, and plaque inflammation and
instability.313,314 But in individuals with high Lp(a) levels, the
content of atherogenic cholesterol carried by LDL is generally
much higher than carried by Lp(a).315 However, vascular dynamics
studies have shown that Lp(a) accumulates preferentially in the
vascular wall, which may indicate that the cholesterol carried by
Lp(a) has more atherogenic potential than LDL-C.316

So far, there is no approved pharmacological approaches to
reduce Lp(a) to the level which can benefit ASCVD.317 However,
niacin, mipomersen and PCSK9 inhibitors show a certain effect on
lowering Lp(a), although these effects may not translate into
substantial clinical benefits.318–320 The recently concluded phase 2
trial of pelacarsen demonstrated significant Lp(a) lowering
capacity. Pelacarsen is a hepatocyte-directed ASO targeting liver
LPA mRNA, and can significantly reduce Lp(a) production.321 In
addition, another siRNA drug, olpasiran, also shows a strong Lp(a)-
lowering effect.322 Taken together, existing evidence suggests that
Lp(a) is a potential target to treat ASCVD, and drugs targeting it
are under intense development.

LXRs: The oxysterol-activated receptors, LXRα and LXRβ, are
members of the nuclear transcription receptor family. LXRs play
important roles in RCT through multiple mechanisms. In different
mouse models, in vivo activation of LXRs increases the rate of RCT
by increasing ABCG1 and ABCA1 expression in macro-
phages.323–325 In addition, activation of LXRs also has a significant
anti-inflammatory effect.326 Therefore, targeting LXRs is a potential
anti-atherosclerotic strategy. T0901317 and GW3965 are synthetic
agonizts of LXRs that could significantly reduce plaque formation
in atherosclerotic mice.327,328 However, activation of LXRs also up-
regulates liver SREBP1c, leading to hepatic steatosis and
hypertriglyceridemia, which limits clinical application of LXR
agonizts.329 For this reason, some specific targeted agonizts have
been developed. GW6340 is a gut-specific LXR agonist which
promotes macrophage RCT but has no effect on TG levels in
plasma.330 Furthermore, IMB-808 significantly activates cholesterol
efflux from RAW264.7 and THP-1-derived macrophages while has
little effect on expression of lipogenic genes in HepG2 cells.331

In order to avoid the side effects of LXRs agonizts, some
methods of drug combination or targeted therapy have also been
developed. We demonstrated that T0901317 in combination with
a MEK1/2 inhibitor, U0126, inhibited atherosclerosis and blocked
T0901317-induced hypertriglyceridemia.332 We also reported that
the combined treatment of metformin and T0901317 not only
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blocked T0901317-induced hypertriglyceridemia, but also
enhanced the atherosclerosis-inhibiting effect of T0901317 by
selectively activating LXRβ but not LXRα.333 In view of the good
targeting of nanomaterials, the side effects of liver can be avoided
by using nano-carriers to deliver LXR agonizts. Last year, we
reported a nanofibrous hydrogel, encapsulated T0901317 by the
small peptide D-Nap-GFFY, selectively targeted macrophages but
not hepatocytes. Thus, the hydrogel-encapsulated T0901317
inhibited the development of atherosclerosis without increasing
TG levels.334 Although LXR agonizts have been shown the
potential to slow atherosclerosis progression in animal models,
they are still a long way from clinical use.

CETP: CETP inhibitors can reduce LDL-C and increase HDL-C
levels by inhibiting the transfer of cholesterol esters from HDL to
LDL particles.188 It has been reported that CETP activity is
significantly elevated in patients with metabolic disorders and a
high cardiovascular risk, indicating CETP can be a potential
indicator of cardiovascular risk.335 In vivo experiments show that
elimination of CETP activity inhibits cholesterol diet-induced
atherosclerosis in rabbits.336 These results provide a basis for the
potential of CETP inhibitors to improve blood lipids and reduce
ASCVD risk.
CETP inhibitors to date include torcetrapib, dalcetrapib,

evacetrapib, anacetrapib and obicetrapib. Since CETP is not
existing in mice, most translational studies of CETP inhibitors are
performed in ApoE3*CETP Leiden mice. Unfortunately, the first
CETP inhibitor, torcetrapib, has been observed to increase the
incidence of cardiovascular events and overall mortality, although
it increased HDL-C while decreased LDL-C.337 When used in
treatment of patients with acute coronary syndrome, dalcetrapib
had no effect on reduction of the recurrent cardiovascular events,
therefore, use of dalcetrapib was discontinued early.338 Similarly,
evacetrapib adversely affected the cardiovascular outcomes in
patients who had high risk of vascular disease.339 On the other
hand, anacetrapib significantly improved lipids and reduced the
incidence of major coronary events in patients with a good
tolerance.340 However, anacetrapib was also discontinued due to

its long half-life. A 12-week monotherapy trial of obicetrapib, the
latest CETP inhibitor, showed a 45.3% reduction in LDL-C
compared to placebo.341 Current studies are evaluating obice-
trapib in patients who are intolerant of statins in a phase 3 study.

LOX-1: LOX-1 is a scavenger receptor for oxLDL and plays an
important role in oxLDL uptake by cells.342 In atherosclerotic
plaques and surrounding tissues, LOX-1 is highly expressed. It
promotes uptake of oxLDL by ECs, VSMCs, monocytes and
macrophages, resulting in foam cell formation.342 At the same
time, some studies have shown that LOX-1 deletion significantly
reduces oxidative stress, nitric oxide degradation and inflamma-
tory responses, reducing the progression of atherosclerosis.343,344

Therefore, it is suggested that LOX-1 promotes the atherosclerosis
progression. Contradictorily, liver overexpression of LOX-1 pro-
moted oxLDL uptake, decreased plasma oxLDL, and inhibited the
progression of atherosclerosis in ApoE-deficient mice.345 Hence,
LOX-1 is also a key regulator in the mechanisms of atherosclerotic
plaque formation, progression and instability which may need
further investigation.
Currently, some natural products, such as Tanshinone II-A,

curcumin and Gingko biloba extract, have been shown to prevent
atherosclerosis through LOX-1 inhibition.346–348 The LOX-1 mole-
cule consists of a hydrophobic channel that is the primary binding
site for the phospholipid moiety of oxLDL.349 Chemically
synthesized small molecules targeting this channel can effectively
reduce oxLDL uptake in vitro.350 In addition to chemically
synthesized inhibitors, many monoclonal antibodies are available
to block LOX-1 activity. However, these antibodies are currently
limited to cell and animal experiments because LOX-1 molecule
contains a highly conserved C-type lectin-like domain in
mammals, making it challenging to develop human LOX-1
antibodies.351 At present, the research of chimeric LOX-1 antibody
is still in progress.

SR-BI: SR-BI is a member of the scavenger receptor family. Liver
SR-BI regulates RCT by taking up HDL-C and transporting
cholesterol to bile. Liver SR-BI regulates HDL composition,

Table 2. New targets and their clinical advances

New targets Function Clinical advances

APOC3 APOC3 is mainly found in VLDL and chylomicron, and can
stimulate liver to synthesize and secrete VLDL

Volanesorsen was approved for use in patients with
Familial chylomicemia syndrome in Europe in May 2019;
Olezarsen is currently in phase 3 clinical trials;
ARO-APOC3 is currently in phase 3 clinical trials

Lipoprotein (a) Lp(a) is a special form of LDL particle containing 35-46% CE and 6-
9% cholesterol

Phase 2 trial of pelacarsen demonstrated significant Lp(a)
lowering capacity;
Olpasiran is currently in phase 3 clinical trials

LXRs Activation of LXRs increases the rate of RCT by increasing ABCG1
and ABCA1 expression in macrophages but also up-regulates liver
SREBP1c, leading to hepatic steatosis and hypertriglyceridemia

None

CETP CETP promotes the transfer of cholesterol esters from HDL to LDL
particles

Most CETP inhibitors have been discontinued for a variety
of reasons. The latest CETP inhibitor, obicetrapib, is
currently in phase 3 clinical trials

LOX-1 LOX-1 is a scavenger receptor for oxLDL and affect the uptake of
oxLDL by cells

None

SR-BI Liver SR-BI regulates RCT by taking up HDL-C and transporting
cholesterol to bile

None

LCAT LCAT is an enzyme in plasma that esterifies cholesterol MEDI6012 was abandoned in phase 2 for safety or efficacy
reasons

MiR-33 and miR-122 miR-33 inhibits expression of the genes involved in cholesterol
efflux and HDL synthesis; miR-122 is the most abundant hepatic
miRNA and its levels are positively correlated to human plasma
cholesterol levels

None

Prekallikrein Prekallikrein is identified as a binding protein of LDLR None
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mediates cholesterol efflux, and reduces inflammation and
oxidation through selective uptake of HDL lipids. In macrophages
and ECs, SR-BI is important in inhibiting atherosclerosis and
reducing foam cell formation by regulating cholesterol trans-
port.352 Therefore, SR-BI is a potential multifunctional target for
inhibiting atherosclerosis.
The current study has identified the protective role of SR-BI in

mice with atherosclerosis. Genomic analysis reveals increased risk
of CVD in loss-of-function carriers of scavenger receptor class B
member 1 (SCARB1) variant, which encodes SR-BI, suggesting the
protective role of SR-BI in atherosclerosis.353 Given the recent
appreciation of endothelial SR-BI in LDL transcytosis, SR-BI
targeted therapies need to be assessed with caution.354 At
present, the mechanism by which SR-BI works in human body is
still unclear, so exploring its detailed mechanism is crucial for the
development of new treatments for atherosclerosis.

LCAT: LCAT is the only enzyme in plasma that esterifies
cholesterol, and its activity is a major determinant of HDL-C
levels.355 LCAT plays a central role in HDL metabolism and RCT, so
it is generally considered to be anti-atherosclerotic. However,
studies in humans and animals obtained different results, so
whether its activity can improve the function of HDL is
controversial.356,357 This may be related to the levels of LDL-C,
the presence or absence of CETP and SR-BI, and the degree of
overexpression of LCAT.356

AlphaCore Pharmaceuticals developed the original recombinant
human LCAT (rhLCAT) for clinical testing. In a phase 1 clinical trial,
this early rhLCAT formulation, ACP501, increased plasma HDL-C by
50% and promoted cholesterol efflux without serious adverse
reactions.358 Since then, a new formulation of rhLCAT, MEDI6012,
has been developed, which can raise plasma HDL-C in patients
with atherosclerosis by injection three times a week.359 However,
it was abandoned in phase 2 for safety or efficacy reasons.
Compound A is the first identified small molecular activator of
LCAT that can covalently bind to residue C31 of LCAT, and has
been shown to increase LCAT activity in vitro with unclear
function on atherosclerosis.360,361

In addition, another class of activators bind LCAT in a non-
covalent and reversible manner. Previous studies have shown that
such activators stabilize the open, active conformation of the
enzyme, thereby facilitating lipid transport to the active site.362

DS-8190a is an orally bioavailable and novel small-molecular LCAT
activator that can directly interact with human LCAT. It inhibited
atherosclerosis in mice expressing human LCAT, which was
associated with enhanced the RCT process. Oral administration
of DS-8190A also stimulated RCT process in primate cynomolgus
monkeys.363 These studies suggest that LCAT activation may help
to reduce residual risk of ASCVD.

MiR-33 and miR-122: MicroRNAs (miRNAs) belong to a family of
endogenous noncoding RNAs that can regulate gene expression
post-transcriptionally. By binding to the 3′-untranslated region (3′
UTR) of target genes, miRNAs promote translational repression or
mRNA degradation.364 Recent studies have shown that miRNAs
are involved in cholesterol uptake, synthesis, and efflux, and are
expected to be potential targets for regulating cholesterol
metabolism.365–367

miRNA-33 (miR-33) is composed of miR-33a and miR-33b,
located in the SREBP2 and SREBP1 gene introns, respectively, and
co-expressed under different stimulation conditions.368,369 miR-33
inhibits expression of the genes involved in cholesterol efflux and
HDL synthesis, such as ABCA1 and ABCG1.370 Studies have shown
that inhibition of miR-33 induces hepatic ABCA1 expression,
thereby increasing plasma HDL-C levels, and the inhibition also
promotes RCT in macrophages and regression of atherosclero-
sis.371,372 In addition, some studies have investigated the role of
miR-33 on VLDL/LDL metabolism. It has been reported that global

knockout of miR-33 in mice increases plasma LDL-C/VLDL-C
levels.373 However, mice may experience these effects due to their
genetic background. The levels of VLDL-C and VLDL-TG were
increased in LDLR deficient mice but not ApoE deficient mice fed
Western diet after miR-33 knockout, which may be due to a high
basal level of VLDL in ApoE deficient mice.374,375 Based on the
existing studies, although inhibition of miR-33 can effectively
improve cholesterol efflux and HDL synthesis, its side effects
remain to be clarified.
miRNA-122 (miR-122) is the most abundant hepatic miRNA. Its

levels are positively correlated to human plasma cholesterol levels,
suggesting that miR-122 can be involved in regulation of
cholesterol metabolism.376 miR-122 inhibitors have been reported
to reduce plasma TC levels in mice and non-human pri-
mates.377–379 However, miR-122 deletion is accompanied by
significant hepatic steatosis, so the safety of miR-122 treatment
remains to be investigated.380 Moreover, to designate miR-122 as
a potential therapeutic target for regulating cholesterol metabo-
lism, the further elucidation on its physiological role is required.

Prekallikrein: Recently, the coagulation factor PK [encoded by
the kallikrein B1 (KLKB1) gene] was identified as a binding protein
of LDLR.140 In this study, it was found that PK binds to LDLR and
causes LDLR lysosomal degradation, while plasma PK concentra-
tions in humans are positively correlated to LDL-C levels. Loss of
KLKB1 increases hepatic LDLR and reduces FC, attenuating
atherosclerosis progression in multiple rodent models. In addition,
the use of anti-competitive neutralizing antibodies can also
reduce plasma lipids by up-regulating liver LDLR. This study
suggests that PK may represent a potential treatment target
for ASCVD.

Benefits of improving cholesterol homeostasis in other diseases
In addition to ASCVD, cholesterol metabolic disorders are also
involved in the pathogenesis of other diseases and cholesterol
lowering can ameliorate them. Interestingly, improving cholesterol
homeostasis may be beneficial to several diseases even the role of
cholesterol in these diseases remains unclear.

NAFLD. NAFLD is a chronic liver disease caused by excessive lipid
deposition in liver cells without significant alcohol intake.381

NAFLD includes nonalcoholic fatty liver (NAFL) and nonalcoholic
steatohepatitis (NASH).382 The accumulation of FC in the liver is
also relevant to the pathogenesis of NAFLD.383,384 Epidemiological
studies have found that intake of excess dietary cholesterol
significantly increases the risk of NAFL and NASH.385,386 A study of
lipidomic analysis of liver biopsies from patients with NAFLD
showed that hepatic FC level was positively correlated to the
severity of liver histopathology.382 Animal studies also showed
that exogenous induction of FC accumulation in the liver can
promote the progression of NAFL to NASH.387,388

In NAFLD, hepatic cholesterol homeostasis is imbalanced,
resulting in elevated levels of hepatic cholesterol.389 This
dysregulation may involve multiple metabolic pathways, including
activation of cholesterol biosynthetic pathway (elevated expres-
sion and activity of SREBP2 and HMGCR), and cholesterol de-
esterification (enhanced hydrolysis of CE to FC by hepatic neutral
CE hydrolase), and reduced cholesterol export and BA synthesis
(reduced expression of ABCG8 and CYP7A1).70,384,390,391 However,
the contributions of these pathways to NAFLD need to be further
explored.
The exact mechanism of excess cholesterol toxicity in NAFLD

remains incompletely described. Excess cholesterol accumulation
in hepatocytes stimulates the formation of cholesterol crystals.392

The presence of cholesterol crystals in hepatocytes activates
NLRP3 inflammation, ultimately leads to hepatocyte death. Küpffer
cells (KCs) aggregate around necrotic hepatocytes and trigger the
formation of “crown-like structures”. Subsequently, KCs process
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these cholesterol crystals released from the dead hepatocytes and
transform into foam cells.383,392 Meanwhile, cholesterol crystals-
induced activation of KCs triggers the activation of hepatic stellate
cells (HSCs) by releasing inflammatory cytokines and transforming
growth factor β, further accelerating the progression of NASH to
fibrosis.393 Furthermore, transcriptional coactivator with PDZ-
binding motif (TAZ) is a transcriptional regulator that promotes
NASH fibrosis and its expression is significantly increased in the
NASH process.394–396 Wang et al. firstly demonstrated that
cholesterol prevents TAZ proteasomal degradation via the soluble
adenylate cyclase-protein kinase A-inositol trisphosphate
receptor-calcium-RhoA pathway.397 This provides a new mechan-
ism for the importance of hepatocyte cholesterol in the
development of NASH. In summary, the cholesterol accumulation
in hepatocytes and hepatic non-parenchymal cells accelerates the
pathological process of NAFLD.
Clinical data show that statin treatment in patients with NAFLD

reduces intrahepatic cholesterol levels.398–400 Interestingly, the
effect of ezetimibe on NAFLD in clinical trials is controversial.
Several clinical studies suggest that ezetimibe may be beneficial
for NAFLD.401,402 However, a randomized, double-blind, placebo-
controlled trial showed that ezetimibe had no significant effect on
liver histology in NASH patients,403 indicating more studies are
needed to address the effect of ezetimibe. In addition to classic
cholesterol-lowering drugs, other interventions to lower choles-
terol may also be beneficial for NAFLD. Lanifibranor is a pan-PPAR
agonist. In a recent phase 2b clinical study, lanifibranor not only
showed good tolerability but also significantly improved liver
fibrosis in NASH patients.404 Lanifibranor improved NASH may be
partially related to lowering cholesterol. Yang et al. found that
knockout of E3 ligase SH3 domain-containing ring finger 2
(SH3RF2) in hepatocytes resulted in accumulation of acetyl-CoA,
which directly promoted cholesterol synthesis and aggravated the
development of NAFLD.405 Furthermore, miRNAs are key factors in
regulating hepatic cholesterol synthesis.406 Targeting SH3RF2 or
miRNAs may be a new approach to alleviate NAFLD by lowering
cholesterol.

Obesity. Obesity is the manifestation of metabolic syndrome
in the adipose tissue, which is associated with various chronic
diseases, particularly CVD, diabetes, and certain types of
cancers.407–409 Changes in diet composition are one of the
main reasons for the increasing trend of obesity. Chung et al.
demonstrated that high dietary consumption of cholesterol
was sufficient to induce an increase in visceral adipose
cholesterol content and promote inflammation with adipose
tissue in monkeys.410 In addition, the genome-wide association
studies have found the significant association between NPC1
and obesity.411 This may provide a new explanation for familial
obesity.
Adipose tissue plays a central role in energy metabolism and

adaptation to the nutritional environment, and about 25% of
the person’s cholesterol is stored in adipose tissues.412 In
obesity, cholesterol imbalance triggers inflammation in adipo-
cytes and fat-resident immune cells, thus disrupting metabolic
homeostasis.413 In the initial stages of obesity, white adipose
tissue exhibits physiological expansion and releases acute pro-
inflammatory factors in order to store more energy.414 There-
fore, this initial pro-inflammatory response may be only
physiologically adaptive. However, when cholesterol crystals
accumulate in adipocytes and immune cells, it activates NLRP3
inflammasome, leading to increased inflammation.415 Mean-
while, local inflammation in adipose tissue may directly affect
brown adipocyte thermogenesis and beige adipocyte recruit-
ment, which also hinders thermogenesis.414 Taken together,
excessive accumulation of cholesterol in adipose tissues
causes inflammation and adipocyte dysfunction. Therefore,
cholesterol-lowering therapies may be beneficial for obesity.

Triiodothyronine (T3) is the biologically active form of
thyroid hormone. Grover et al. demonstrated that T3 regulates
cholesterol metabolism via acting thyroid hormone receptor β
signaling.416 Both clinical and animal studies have shown that
T3 treatment increased the rate of cholesterol metabo-
lism.416,417 However, the pharmacological benefits of T3 are
limited by its side effects, particularly on heart rate. A novel
strategy preferentially delivers T3 to the liver, thus mitigating
its side effects.418 Some new cholesterol-lowering targets may
also be beneficial for obesity. Berbe´e et al. demonstrated that
β3-adrenergic receptor-stimulated activation of brown adipose
tissue reduces obesity by decreasing plasma cholesterol
levels.419 The selective thyroid hormone receptor modulator
GC-1 has been shown to have better cholesterol-lowering
efficacy than atorvastatin in animal studies.420 These observa-
tions deserve further studies and hopefully offer new
perspective for the treatment of lipid disorders and obesity.
Interestingly, diet and lifestyle changes can also lower
cholesterol. In a clinical trial with 82 healthy overweight and
obese subjects, an isocaloric Mediterranean diet intervention
was found to lower plasma cholesterol and alter the micro-
biome and metabolome.421 Moreover, dietary and exercise
interventions produced better outcomes for obese children.422

Solving the obesity problem is a daunting challenge that
seems to inevitably require multiple interventions. The devel-
opment of drugs to treat obesity has been underway for more
than a century and is continuing.423 Consequently, for obese
patients, lowering cholesterol may need to be used in
combination with other interventions.

Diabetes. The relationship between TG and diabetes has been
proposed at a fairly early stage.424–426 However, the role of
cholesterol has been underrecognized. The specific cholesterol
homeostasis in pancreatic β cells plays a key role in insulin
secretion. In 2007, two studies demonstrated that excess
cholesterol inhibits insulin secretion from β cells. Brunham et al.
reported that mice with specific knockout of ABCA1 in β cells had
increased cholesterol levels and impaired glucose-stimulated
insulin secretion.427 Likewise, Hao et al. proved that accumulation
of cholesterol in β cells influenced the translocation and activation
of glucokinase, further inhibiting insulin secretion.428 Subse-
quently, Vergeer et al. confirmed that carriers of loss-of-function
mutant ABCA1 have pancreatic β-cell dysfunction.429 The final
step in insulin secretion is the fusion of insulin granules with
plasma membrane and then secreted outside the cell through
exocytosis. Xu et al. found that excess cholesterol can reduce
insulin exocytosis through a dynamic-dependent process acti-
vated by phosphatidylinositol 4,5-bisphosphate.430 Meanwhile,
cholesterol accumulation also induces apoptosis of pancreatic β
cells by enhancing mitochondrial bioenergetic damage, inflam-
mation, oxidative stress and ER stress.431–433 In addition,
imbalanced cholesterol homeostasis in β cells increases obesity,
reduces skeletal muscle mass and causes systemic inflamma-
tion.434 This may provide a new explanation for the link between
diabetes and obesity.
Given the harmful effects of cholesterol on β-cell function,

cholesterol-lowering therapies may be therapeutically beneficial.
In a randomized, double-blinded study, subjects taking a CETP
inhibitor significantly increased postprandial insulin secretion.435

This may be due to increased cholesterol efflux from pancreatic β
cells.435 Surprisingly, there is growing evidence showing that
statin therapy could increase the risk of diabetes in a dose-
dependent manner.436–438 A recent animal study explains that
atorvastatin impairs β-cell function by modulating small G protein,
which subsequently dysregulating islet mTOR signaling and
reducing functional β-cell mass.439 Therefore, statins may need
to be combined with other drugs for a better use in diabetic
patients with hypercholesterolemia. Interestingly, ezetimibe
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promotes insulin secretion and protects β-cell function in diabetic
mice.440 Exploring the specific mechanism of ezetimibe to
promote insulin secretion will be an interesting future investiga-
tion. Moreover, miR-33a and miR-145 can downregulate ABCA1,
leading to cholesterol accumulation and reduction of insulin
secretion.441,442 Thus, targeting microRNAs or other epigenetic
mechanisms may offer a promising therapeutic strategy for
diabetes and its complications.

Neurodegenerative diseases. The brain is the cholesterol-rich
organ in the body, accounting for approximately 20% of the
body’s cholesterol.443 Cholesterol homeostasis in the brain must
be accurately controlled to ensure the brain to work properly.444

Imbalance of cholesterol homeostasis in the brain is involved in
the development of neurodegenerative diseases including Alzhei-
mer’s disease (AD), Parkinson’s disease (PD), and Huntington’s
disease (HD).
Several reviews have linked cholesterol to the pathophysiology

of AD, revealing the importance of cholesterol homeostasis in
AD.445–447 In an early clinical study, FH was shown to be an early
risk factor for AD.448 Plasma cholesterol can be oxidized to 27-
hydroxycholesterol, which is able to cross the blood-brain barrier
(BBB) and reach the central nervous system (CNS).449 This
establishes a critical link between FH and increased brain
cholesterol. Xiong et al. stained brain sections from AD patients
and found that cholesterol levels increased with disease progres-
sion.450 A recent animal study has shown that a high-cholesterol
diet disrupts BBB and impairs cognitive function.448 Cutler et al.
found that oxidative stress induced disturbances in cholesterol
metabolism, leading to enrichment of cholesterol in neurons,
which exacerbates the process of AD.451 It is necessary to note
that lipoproteins can’t cross the intact BBB.444 The accumulation of
cholesterol in the brain may be due to a disruption of BBB or a
disturbance in the brain’s own cholesterol metabolism. However,
the exact mechanism needs to be further explored.
Amyloid protein is cleaved to β-amyloid (Aβ) by β and γ-

secretase. Aβ aggregation is the predominant pathological marker
of AD.445 Sparks et al. identified the effect of cholesterol on Aβ
accumulation in 1994.452 They found that feeding a cholesterol-
rich diet to rabbits for eight weeks led to accumulation of
intracellular Aβ in neurons in the hippocampal region. Many
subsequent experiments have also demonstrated that cholesterol
promotes Aβ accumulation. A key reason for the sensitivity of Aβ
to cholesterol is that the activity of β and γ secretase is positively
correlated to cholesterol levels.446,453 Furthermore, cholesterol not
only promotes Aβ secretion, but also impairs autophagy-mediated
clearance of Aβ. Pathological accumulation of phosphorylated Tau
(pTau) is another major biochemical marker of AD. Meanwhile,
hyperphosphorylation of tau is accompanied with formation of
neurofibrillary tangles (NFTs).454,455 Imbalance in cholesterol
homeostasis also increases pTau. A case-control study found a
significant tau deposition in the brains of Niemann-Pick type C
patients.456 CE are the major storage form of excess cholesterol,
and Kant et al. found that CE inhibited pTau degradation by
inhibiting proteasome activity.457 Conversely, Fan et al. demon-
strated that cholesterol deficiency also leads to tau hyperpho-
sphorylation,458 indicating the exact mechanism of cholesterol
effects on p-Tau remains to be further explored.
PD is the second most common progressive neurodegenera-

tive disease after AD, and its pathological features include the
loss of dopaminergic neurons and the formation of Lewy bodies
from the accumulation of α-synuclein.459 Increasing evidence
suggests that cholesterol metabolism may also play a role in the
pathogenesis of PD. However, the role of TC in PD is
controversial. Some clinical studies found no difference in TC
levels between PD patients and healthy controls.460,461 In
contrast, other prospective studies even found that high levels
of TC were associated with a lower risk of PD.462,463 This may be

due to the fact that cholesterol levels decrease with age, and PD
usually occurs more often in older age. As reported by Hu et al.,
the high TC levels increases the risk of PD in individuals aged 25-
54 years, but this association is not significant after 55 years.464

Thus, high TC levels in young and middle-aged individuals may
promote PD development, which has been demonstrated in
animal models with high-fat diets.465,466

In spite of the unclear role of cholesterol in PD pathogenesis,
several possible hypotheses have been proposed. Bar-On et al.
treated B103 cells with cholesterol and found more α-synuclein
aggregates while statin can reduce the aggregation.467 The
subsequent studies found that α-synuclein has a similar structure
to apolipoproteins.468,469 Thus, there is an interaction between
cholesterol and α-synuclein. Fantini et al. found that cholesterol
promotes α-synuclein insertion into lipid rafts through a virus-
like fusion mechanism.469 Hsiao et al. found that α-synuclein
promotes cholesterol efflux in SH-SY5Y cells.470 However, the
relationship between cholesterol and α-synuclein remains to be
further explored.
HD is an autosomal dominant neurodegenerative disorder

caused by an abnormal expansion of the CAG trinucleotide repeat
of the Huntington (HTT) gene.471 Cholesterol homeostasis is
altered in HD, which may be an effective disease-modifying
strategy in the future.472 An early investigation showed no
significant changes in plasma cholesterol concentrations in HD
patients.473 However, another study found reduced mRNA levels
of HMGCR, and 7-dehydrocholesterol reductase in postmortem
tissues of HD patients.474 Subsequently, Leoni et al. reported
reduced blood cholesterol levels in HD patients.475 Similarly,
reduced brain cholesterol levels were also found in a variety of HD
animal models.476–478

Interestingly, reduced cholesterol level is more likely a
phenomenon in the process of HD pathogenesis. There is
evidence showing that mutant Huntington (mHTT) interferes with
SREBP2 activation, leading to reduced expression of HMGCR and
cholesterol synthesis.479 Brain-derived neurotrophic factor (BDNF)
can also stimulate cholesterol synthesis.480 Normal HTT promotes
vesicular transport of BDNF vesicles along microtubules.481

However, this process is inhibited by mHTT, resulting in decreased
BDNF levels in the striatum, which may be another pathway
leading to reduced cholesterol synthesis.478 In contrast, choles-
terol accumulates in mHTTexpressing neurons despite the down-
regulation of cholesterol synthesis.482 Daniel et al. found that
mHTTexpressing neurons show elevated levels of the lipid raft
marker ganglioside GM1, suggesting that cholesterol accumula-
tion is associated with an increase in lipid rafts.483 The present
evidence suggests that reduced cholesterol synthesis and
cholesterol accumulation in neurons are the main manifestations
of imbalanced cholesterol homeostasis in HD. Determining which
aspect of cholesterol dysregulation primarily affects the patholo-
gical process of HD will be a major challenge in the future.
Based on the reports above, modulation of cholesterol home-

ostasis could be a potential therapeutic target for neurodegen-
erative diseases. Lipophilic statins can cross the BBB and have the
potential to modulate cholesterol homeostasis in the brain.484

Several preclinical trials have shown multiple potential benefits of
statins in neurodegenerative diseases.484–487 Although the pro-
tective effects of statins in preclinical trials are consistent, the
results of clinical trials remain controversial. Epidemiological
studies have shown a 70% reduction in incidence of AD in
subjects taking statins.488 Treatment of subjects with statin at
doses used in the clinical management of hypercholesterolemia
resulted in a nearly 40% reduction in Aβ production in human
plasma.489 Li et al. reported that NFT burden was significantly
reduced in subjects who had taken statins by brain autopsy.490 By
contrast, a cohort study that included 2798 individuals found that
statin treatment was not associated with the risk of AD.491

Similarly, most observational studies have shown that the use of

Regulation of cholesterol homeostasis in health and diseases: from. . .
Duan et al.

16

Signal Transduction and Targeted Therapy           (2022) 7:265 



statins reduces the risk of PD,492–494 whereas some clinical trials
have found that statins have no effect on PD or even increase the
odds of PD.495,496 However, no clinical trials have been conducted
to evaluate the role of statins in HD to date. Due to the specificity
of cholesterol homeostasis in HD, the benefit of statins in HD may
be through anti-inflammation, anti-oxidative stress, and neuro-
protection, rather than the ability to regulate cholesterol
metabolism. Therefore, well-designed preclinical trials are needed
to prove the effects of statins on HD. Other cholesterol-lowering
drugs have also shown protection against neurodegenerative
diseases in preclinical animal models. Efavirenz reduces p-Tau in a
dose-dependent manner by decreasing CE production.457

BM15.766, a specific inhibitor of cholesterol synthesis, showed
inhibition of Aβ in transgenic AD mice model.497 In addition, LXRs
are major regulators of cholesterol homeostasis and inflammation
in the CNS.498 LXRs agonizts were shown to have alleviating effect
in neurodegenerative diseases in preclinical trials.499–501

β-Cyclodextrin and its derivatives also have a beneficial effect
on the neurodegenerative diseases as drugs or drug carriers.502,503

The pathogenesis of neurodegenerative diseases is mediated by a
variety of factors, and cholesterol disorders may intricately
aggravate the disease process. Considering the importance of
cholesterol for the brain cell membrane integrity, cholesterol-
lowering drugs should be used precisely with tailored needs. In
other words, they are recommended for patients of neurodegen-
erative diseases with a relatively high cholesterol background.

Cancers. Cholesterol is an essential neutral lipid which is
necessary for membrane integrity and fluidity.504 The increasing
evidence demonstrate that tumor cells need an increased supply
of cholesterol and can accumulate it.505–507 It has been reported
that during cancer progression, cholesterol influx and synthesis is
increased and cholesterol efflux is decreased.508 Aberrant activa-
tion of SREBPs is the main cause of increased tumor cholesterol
synthesis. For example, in hepatocellular carcinoma, the sustained
activation of protein kinase B (PKB) phosphorylates phosphoe-
nolpyruvate carboxykinase 1, which in turn activates SREBPs and
promotes tumor growth.509 The alteration of the extracellular
microenvironment of tumor cells also leads to activation of
SREBPs. In breast cancer models, hypoxia induces PKB phosphor-
ylation, which in turn activates hypoxia-inducible factor 1 and
subsequently upregulates expression of SREBPs.510 In addition,
increased inflammatory factors, lower pH and excess glucose in
the microenvironment can also activate SREBPs.510,511 LXR
promotes expression of cholesterol efflux proteins, ABCA1, ABCG1
and ABCG5, to reduce intracellular cholesterol concentrations.
However, LXR is inhibited in tumors, which contributes to
cholesterol accumulation in cancer cells.512,513 Interestingly, CE
levels were also significantly increased in tumors.513,514 ACAT
involves in synthesis of CE, which has been shown to be
associated with a variety of tumors.513,515 A latest study found
that loss of P53 increased ubiquitin specific peptidase 19, which in
turn stabilized ACAT1 and led to CE accumulation.516 This study
provides an important mechanism indicating the involvement of
CE in hepatocellular carcinogenesis.
Similar to tumor cells, activation of cholesterol synthesis

pathway is necessary to maintain T cell function. However,
excessive cholesterol in the tumor microenvironment leads to
ER stress in CD8+ T cells. Furthermore, the ER stress sensor X-box-
binding protein 1 is activated to regulate transcription of
programmed death 1 and natural killer cell receptor 2B4, which
ultimately leads to T cell exhaustion.517 It can be seen that the
effect of increased extrinsic supply of cholesterol on T cells seems
to be negative in the situation where tumor cells have a greater
capacity to absorb cholesterol. In another study, ovarian cancer
cells promoted tumor-associated macrophage (TAM) cholesterol
efflux by secreting hyaluronic acid, which induced TAM conver-
sion from M1 to M2 type and promoted tumor growth.518

Statins have been shown to have good inhibitory effects on
estrogen receptor-negative breast cancer, multiple myeloma,
prostate cancer and some other specific tumors.519–521 However,
in several phase 3 clinical trail studies, treatment of 40 mg/day
pravastatin or simvastatin to patients with small cell lung cancer,
metastatic colorectal cancer, advanced hepatocellular carcinoma,
or advanced gastric cancer had no additional benefit.522–525

Therefore, a precision medicine approach is necessary if statins are
to be incorporated into the treatment of cancer patients.
Avacizimibe, a potent inhibitor of ACAT1, has been shown to
affect the survival and proliferation of tumor cells in several
preclinical studies.526–528 The clinical application of Avacizimibe in
anti-tumor needs to be further explored. In addition, drugs
targeting the absorption and efflux of cholesterol have been tried
for cancer treatment. LXR agonist, T0901317, suppressed the
development of prostate cancer by upregulating ABCA1 and
ABCG1 expression.529 Ezetimibe significantly inhibited the growth
of prostate and liver cancers.530,531 Yuan et al. found that the
tumor microenvironment could inhibit LDLR expression in CD8+

T cells via activating PCSK9, which suppressed the antitumor
activity of CD8+ T cells.532 Therefore, PCSK9 may be a novel target
for tumor immunotherapy. The anti-tumor effects of PCSK9
inhibitors need to be further explored. In summary, drugs
targeting cholesterol metabolic pathways have been demon-
strated in many cancers. Considering the complexity of cancer
metabolism, there are still many open questions that need to be
addressed. For example, at what stage of tumorigenesis do these
drugs act specifically, such as tumor metastasis? Do statins affect
the function of circulating tumor cells? How do statins affect
tumor cell metabolism in tumor microenvironment?

Osteoporosis. Osteoporosis most commonly occurs to postme-
nopausal women caused by impaired bone formation and/or
excessive bone resorption. Bone mineral density (BMD) is
considered as the key standard for determining osteoporosis.533

Vitamin D, one of the important metabolites of cholesterol,
induces synthesis of calcium-binding proteins to promote Ca2+

absorption and enhances BMD.534 Interestingly, epidemiological
evidence indicates that high serum cholesterol levels represent a
risk factor for osteoporosis.535–538 Also, this phenomenon has
been confirmed in several animal experiments.539–541

Previous studies have given several possible explanations for
why cholesterol increases the risk of osteoporosis. Cutillas-Marco
et al. found that vitamin D levels were negatively associated with
TC and LDL-C levels in a population-based survey.542 This may be
the most important cause of osteoporosis due to high
cholesterol. However, the exact mechanism needs to be further
explored. Bone homeostasis is maintained by osteoclastic bone
resorption and osteoblastic bone formation. Experimental animal
studies have shown that osteoclast functions are significantly
cholesterol-dependent.543,544 A high cholesterol diet leads to
increased osteoclast numbers and bone resorption.544 Conver-
sely, inhibition of proliferation and differentiation of osteoblast
MC3T3-E1 cells by cholesterol was determined in a dose-
dependent manner, while resulted in decreased expression of
the bone formation markers, bone morphogenetic protein-2 and
runt-related transcription factor 2.
The clinical use of statins to prevent and/or treat osteoporosis is

controversial. In 2018, an investigation found a reduced risk of
osteoporosis in stroke patients using statins.545 Ann et al. showed
that statin increased BMD and appeared to be more effective in
men with osteoporosis by meta-analysis.546 However, in 2019, a
cross-sectional retrospective study of healthy subjects reported
that high doses of statins significantly increased the risk of
osteoporosis.547 This may indicate that statins are more appro-
priate for patients with severe hypercholesterolemia and high risk
for osteoporosis. Furthermore, less of the statins reach the bone
after the drug has been metabolized. This explains the fact that
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statins are often used at much higher doses than clinical ones to
relieve osteoporosis.548 Consequently, local delivery of statins
needs further exploration.

Virus infection. A lipid raft is a subdomain of the plasma
membrane enriched in cholesterol and sphingolipids, which also
act as vectors for viruses to enter the host cells.549,550 Studies have
shown an association between cholesterol levels and virus
infections.551–553 Louie et al. found that additional 2% cholesterol
in the diet causes inflammatory imbalance and exacerbates
morbidity in mice infected with influenza A virus.554 Wang et al.
proved that pseudorabies virus (PRV) increases self-infection
capability by suppressing LXR expression to increase total intracel-
lular cholesterol levels.555 COVID-19 is caused by an infection with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Sphingolipid- and cholesterol-rich regions recruit several receptors
and molecules involved in pathogen recognition and cell signal-
ing.556 Angiotensin-converting enzyme 2 (ACE2) can be recruited to
these regions as the primary functional receptor for SARS-CoV-2.556

Therefore, cholesterol may be functionally important as a mediator
of COVID-19 infection. Radenkovic et al. suggested that lipid rafts
rich in ACE2 receptors may be increased in a state of high
cholesterol levels, thus enhancing the endocytosis process of SARS-
CoV-2.557 Sanders et al. proved that SARS-CoV-2 requires cholesterol
for viral entry and pathological syncytia formation.558 Similarly, Li
et al. also found that cholesterol depletion impaired virus entry
in vitro.559,560 In addition, cholesterol plays a role in binding and
altering the SARS-CoV N-terminal fusion peptide oligomeric state,
which is required for virus entry into the host cells.561 Although
many reports suggest that cholesterol plays an important role in
virus entry, this still needs to be confirmed in vivo. In particular, the
effect of SARS-CoV-2 on cholesterol homeostasis remains unclear
and the molecular mechanisms need to be further explored.
PCSK9 is another interesting mediator involved in viral infection.

Several clinical studies have found that hepatitis C virus (HCV)
infection is associated with increased PCSK9 serum levels.562–564

PCSK9 negatively regulates the hepatocyte surface proteins (LDLR,
SR-BI, VLDLR) involved in HCV entry in vitro.565 Meanwhile, HCV
infection upregulates PCSK9 expression.566 This indicated a complex
interaction between PCSK9 and HCV. A recent preclinical study
indicated that dengue virus (DENV) infection also induced PCSK9

expression, which led to downregulation of LDLR expression with a
sequester of cholesterol in the intracellular space, providing a more
favorable environment for virus entry.567 Therefore, PCSK9 appears
to contribute to DENV infection. However, the relationship between
PCSK9 and SARS-CoV-2 infection is unclear.
25-hydroxycholesterol (25HC) is one of the metabolites of

cholesterol catalyzed by CH25H.568 Unlike cholesterol, 25HC and
its synthetic enzyme CH25H have been shown to have potent
broad-spectrum antiviral activity.569 Li et al. reported that 25HC and
CH25H protected hosts from Zika virus infection in a mouse
model.570 Xiang et al. found that 25HC and CH25H inhibited HCV
infection by blocking SREBP maturation to inhibit viral genome
replication.571 Similarly, several studies have also shown that 25HC
and CH25H inhibit SARS-CoV-2 infection by blocking membrane
fusion.572,573 LXR has been shown to induce the activation of
interferon-γ (IFN-γ), which stimulates the expression of CH25H.569,574

Interestingly, our studies reported that 25HC can also induce CH25H
expression in an LXR-dependent manner, and demonstrated that
LXR activation, interaction between CH25H and IFN-γ, and 25HC
metabolism may form an antiviral system in which LXR plays a
central role.575,576

There is an interaction between COVID-19 infection and CVD. Li
et al. reported an increased prevalence of CVD in patients after
COVID-19 infection.577 Similarly, patients infected by COVID-19 who
previously experienced CVD had an increased case fatality rate.578

Thus, lowering cholesterol levels may reduce the risk of COVID-19-
induced complications. Statins have been reported to have anti-viral
activity.579 Therefore, they were quickly used in clinical trials for
patients with COVID-19 infection. An observational study of
hospitalized COVID-19 infected patients indicated that statins might
be effective against COVID-19.580 Similar observations have been
reported in several subsequent studies.581–583 Subir et al. recom-
mended that COVID-19 infected patients at a high CVD risk should
continue statin therapy unless absolutely contraindicated.584 Statins
may lower membrane cholesterol levels, thereby decreasing the
attachment and internalization of SARS-CoV-2.557 Surprisingly, Reiner
et al. identified several statins as potential SARS-CoV-2 major
protease inhibitors by molecular docking, especially pitavastatin with
the strongest binding.585 Therefore, the benefits of statins for
patients with COVID-19 may be exerted through their direct
cholesterol lowering effects and beyond. Future research is needed

Table 3. Cholesterol and diseases

Diseases Cholesterol-induced pathogenesis Cholesterol-lowering therapies

ASCVD Promotes macrophage foaminess refer to Table 1

NAFLD Induces inflammation, Küpffer cell foaminess, formation of
“crown-like structures”

Statins and ezetimibe (controversial) in clinical studies;
Lanifibranor in animal model;
Potential new targets: SH3RF2, miRNAs

Obesity Induces inflammation in adipose tissue, less
thermogenic effect

Triiodothyronine in clinical studies;
Diet and lifestyle changes;
Potential new targets: β3-adrenergic receptor, GC-1

Diabetes Induces islet β-cell dysfunction;
Induces inflammation, oxidative stress and ER stress

CETP inhibitor in clinical studies;
Potential new targets: miR-33a and miR-145

Neurodegenerative diseases Increases Aβ, p-Tau and NFTs:
Reduces Aβ clearance
Increases α-synuclein aggregates
mHTT leads to an unbalanced cholesterol homeostasis

Statins (controversial) in clinical studies;
Ewfavirenz, BM15.766, LXRs agonizts and
β-cyclodextrins in animal model

Cancer Promotes the process of cancer;
Leads to T cell exhaustion

Statins in clinical studies;
Avacizimibe, T0901317 and ezetimibe in animal model

Osteoporosis Increases bone resorption;
Decreases bone formation

Statins in clinical studies (controversial)

Virus infection Increases the density of lipid rafts; Promotes viral endocytosis
25HC and CH25H inhibit virus infection
PCSK9 promotes DENV infection
PCSK9 inhibits HCV infection

Statins in clinical studies
T0901317 in animal model
Evolocumab in clinical study
Alirocumab in animal model
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to depict the precise mechanism of cholesterol-aimed viral entry,
survival and discover the new cholesterol-lowering therapies in
COVID-19 patients. In addition, a preclinical study has shown that LXR
agonist, T0901317, significantly inhibits herpes simplex virus type 1
infection.576 Similarly, T0901317 also showed better prevention of
PRV infection in mice.555 A monoclonal antibody of PCSK9
(alirocumab) was shown to inhibit DENV infection in vitro.567 Boccara
et al. firstly evaluated the efficacy and safety of evolocumab in
reducing LDL-C levels in HIV patients in a multinational, randomized,
double-blind study.586 However, no clinical trials on the effects of
PCSK9 inhibitors in SARS-CoV-2-infected patients to date. Never-
theless, experts believe that use of PCSK9 inhibitors is still beneficial
for COVID-19 patients with familial hypercholesterolemia.587,588

SUMMARY AND OUTLOOK
High circulating cholesterol level is a major risk factor for ASCVD and
promotes the progression of atherosclerosis, making key molecules
involved in cholesterol homeostasis as the attractive therapeutic
targets for ASCVD treatment. By reducing cholesterol biosynthesis
and enhancing cholesterol metabolism, statins are used widely to
reduce the levels of plasma TC and LDL-C to prevent or reduce CVD.
However, due to the side effects and intolerance of statins, non-statin
cholesterol-lowering drugs are being developed and more other
novel targets than cholesterol lowering have been characterized.
Moreover, combination of non-statin cholesterol-lowering drugs (for
example, ezetimibe or PCSK9 inhibitors) with statins may be more
effective in reducing LDL-C levels. A very exciting development is the
concept “the lower the better” of LDL-C reduction, indicating that a
lower LDL-C is tightly correlated to a better attenuation of ASCVD. In
addition, cholesterol lowering has been demonstrated to be
beneficial in many other diseases (Table 3). Therefore, cholesterol-
lowering therapy is a rapidly developing field with various new
targets and drugs.
In the future, the investigations related to cholesterol may face

more challenges. For example, characterizing the relationship
between inflammation and cholesterol metabolic disorders and
developing the specific anti-inflammatory therapeutic interven-
tion in reducing inflammation in ASCVD. Beyond LDL-C, the
intervention on other lipoproteins needs more efforts to
investigate. Nowadays, various cholesterol-lowering drugs are
used in clinics. However, the studies on personalized therapy,
lifestyle and targeting the right patient with the right time still
need more attention. Moreover, exploring the role of cholesterol
in other diseases, especially the complications of metabolic
disorders, may accelerate the translation of research to the clinic.
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