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We show evidence of the association of RNA Polymerase II (RNAP) with chromatin in a core-shell
organization, reminiscent of microphase separation where the cores comprise dense chromatin and
the shell, RNAP and chromatin with low density. These observations motivate our physical model
for the regulation of core-shell chromatin organization. Here, we model chromatin as a multiblock
copolymer, comprising active and inactive regions (blocks) that are both in poor solvent and tend to
be condensed in the absence of binding proteins. However, we show that the solvent quality for the
active regions of chromatin can be regulated by the binding of protein complexes (e.g. RNAP). Using
the theory of polymer brushes, we find that such binding leads to swelling of the active chromatin
regions which in turn, modifies the spatial organization of the inactive regions. In addition, we use
simulations to study spherical chromatin micelles, whose cores comprise inactive regions and shells
comprise active regions and bound protein complexes. In spherical micelles the swelling increases the
number of inactive cores and controls their size. Thus, genetic modifications affecting the binding
strength of chromatin-binding protein complexes may modulate the solvent quality experienced by
chromatin and regulate the physical organization of the genome.

I. INTRODUCTION

The spatiotemporal organization of the genome is of utmost importance for the normal functioning of cells. The
genome of eukaryotic cells is packaged in the chromatin fiber, which is the biomolecular complex made of DNA wound
around histone proteins [1–3]. The chromatin fiber is a long chain of nucleosomes connected by sections of linker
DNA with a typical size of 20-60 base pairs. At low salt concentrations, in vitro experiments characterize chromatin
by a beads-on-a-spring architecture with a width of 10 nm [4–6]. In solutions with a higher salt content, a 30 nm more
compact fiber of chromatin is measured [5]. However, 30 nm fibers have not been found in living cells [7–10]. Instead,
chromatin organizes in domains of different sizes that seem to be formed by many interdigitated fibers of chromatin of
different sizes [11–13]. This suggests several different mechanisms of chromatin compaction, which has been examined
in more detail in in vitro reconstitution of short arrays of chromatin [14]. There it was established that these short
strands of chromatin self-associate to form globular structures. Although the liquid-like behavior of chromatin was
described for chromatin in vivo [15], the material properties of such chromatin globular structures which behave like
liquid-drops was not established at that time.

More recently, however, in vitro experiments have shown that the globular chromatin structures arising from self-
association are related to an intrinsic tendency of chromatin to form liquid-like phases [16]. This phase separation
can be disrupted by acetylation of histone tails, but phase separation is recovered with the addition of a protein with
multiple bromodomains. These liquid-like drops composed of acetylated chromatin and bromodomains coexist and
associate with the phase-separated, non-modified chromatin droplets, suggesting that liquid-liquid phase separation
may play a role on the regulation of genome organization. Further evidence of the intrinsic ability of chromatin to
phase separate in vitro has been given [17], although these authors reached different conclusions regarding the material
properties of such condensed phases. In addition, there is a growing body of in-vivo evidence, of phase separation of
chromatin from the nucleoplasm [17–20]. In particular, it has been shown in several different cell types, that chromatin
organizes preferentially at the nuclear periphery and is depleted in the central region of the nucleus [18–22]. In [19], it
was further shown that in intact, live Drosophila cells, both acetylated chromatin (commonly associated with active
genes in euchromatin) and inactive chromatin (commonly associated with heterochromatin) are preferentially found in
the periphery of the nucleus and depleted in the central region. Furthermore, at the nuclear periphery they observed
a spatial pattern in which regions of chromatin with H3K9ac modifications and regions of high chromatin density
were further demixed. Thus both types of chromatin tend to demix from the aqueous phase and then from each other.
The experiments also show chromatin regions in which there are no H3K9ac modifications positioned near the lamina
in an organization similar to a wetting droplet. In this paper, we address how the organization of active and inactive
regions of chromatin can be regulated by the reversible binding of protein complexes.

The observed patterns described above are reminiscent of microphase separation of block copolymers, in which two
phases, each enriched in one or the other type of blocks separate from each other. In contrast to a system undergoing
macrophase separation, the microphases do not fully coarsen due to the chain connectivity and the length scales defin-
ing the spatial patterns are determined by the size of the blocks and their intrinsic properties, such as self-attraction
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and bending rigidity [23–26]. Chromatin microphase separation seems to be a natural consequence of the distribution
of active and inactive regions within a chromosome that are similar to a long, multiblock copolymer. Such regions
may correlate with epigenetic modifications (e.g. H3K9ac, as mentioned above) [27] and different guanine-cytosine
(GC) content [28, 29]. The fact that there are chromatin regions (or blocks) with different biochemical properties,
naturally raises the possibility of microphase separation, which might be responsible for the compartmentalization of
chromatin into so-called, A and B compartments [30]. Indeed, this idea has been put forth by a number of authors
where microphase separation has been invoked to explain the formation of such compartments [27, 31–35]. The dif-
ferences in chromatin density in the compartments might dictate whether the transcription machinery can interact
with and activate genes. Such physical mechanism was considered in describing how small transcription complexes
binding to active genes can be used to keep these genes at the surface of more condensed chromatin domains [36].
Interestingly, recent high resolution microscopy has revealed that the transport of nano-particles of different sizes
strongly depends on the chromatin density (degree of condensation), and demonstrate that active chromatin regions
are more accessible as compared to inactive regions [37].

Several papers called attention to the fact that chromatin might organize in a microphase separated state with
strings of spherical micelles [35, 38, 39]. One model proposed that micelle cores comprise chromatin regions with high
GC content (associated with genes that are more active) that can be cross linked by multi-protein complexes while the
micelle shells contain AT-rich chromatin regions (associated with inactive genes) [38, 39]. Although the aforementioned
model is questionable in light of experimental observations that show that inactive regions of chromatin, such as
heterochromatin, form spherical, phase-separated domains [40], it correctly points to the fact that chromatin will
very likely form micellar structures due to its block copolymer nature. Moreover, despite the relevance of microphase
separation to compartmentalization of chromatin, there is not yet an intuitive and minimal analytical model of the
regulation of such microphase separation. A previous theoretical paper focused on the effect of RNA Pol II, in
chromatin organization by considering chromatin polymer brushes in which transcription can lead to lateral phase
separation of nucleosome-rich and nucleosome-poor regions [41]. Another recent article showed that transcription
seems to organize euchromatin as a microphase separated state, with RNA Pol II acting like an amphiphile that
connects a DNA-rich phase with an RNA-rich phase [42]. The authors performed Monte Carlo simulations to explain
the experimentally observed microphase separation. In subsequent studies [43, 44], it was shown that RNA Pol II
exhibit different types of organization depending on its phosphorylation state and interactions with active genes. Our
findings complement these previous studies by showing experimental evidence of a robust core-shell organization of
chromatin and RNA Pol II. These observations are made in intact, live organisms (Drosophila larvae muscle fibers),
which exhibit peripheral chromatin organization and additionally exhibit microphase separation since the chromatin
domains do not fully coarsen [19].

Based on our new observations we propose a minimal model of chromatin in which the microphase separation
between active and inactive regions is regulated by the reversible binding of protein complexes to active chromatin
regions. Our model is based on the observed self-association of chromatin (in the absence of chromatin-binding protein
complexes) and shows that the relatively uncondensed nature of active chromatin can be regulated by reversible
binding of protein complexes, resulting in an inner core of condensed (inactive) chromatin connected to a corona of
relatively uncondensed (active) chromatin to which protein complexes are bound. We predict the relative sizes and
organizations of these regions into a structure that contains an assembly of such core-shell micelles. Those are all
connected and thus localized in space since they arise from the block copolymer-like structure of the chromatin with
regions of acetylated and non-acetylated (e.g., unmodified and methylated) chromatin. Interestingly, the binding of
protein complexes can lead to changes in the organization of both, active and inactive chromatin regions, despite
protein complexes interacting only with the active regions.

Our manuscript is organized as follows. We first show observations of a core-shell organization of chromatin and
RNA Pol II. Inspired by these observations, we introduce our minimal model of regulation of microphase separation
by the binding of protein complexes and discuss the equilibrium conditions in the system. We then discuss analytical
and simulation results, which show that the binding of protein complexes to chromatin can regulate the solvent quality
for the active chromatin regions. We conclude by discussing our findings in the context of chromatin organization in
the nucleus and briefly comment on an extension to non-equilibrium binding of protein complexes to chromatin.

II. RESULTS

A. Spatial organization of chromatin and RNA Pol II in intact, live Drosophila cells

Chromatin in intact, live tissue Drosophila cells organizes peripherally, with a chromatin-depleted central region in
the nucleus [19]. Such organization, differs from the conventional picture of chromatin as a polymer network that fills
the entire nucleus [45–47] and motivates further investigation of the smaller scale structure of the peripheral chromatin
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FIG. 1. Spatial organization of RNA Pol II and Chromatin. A single muscle nucleus of live Drosophila 3rd instar larvae
labeled with Histone2B-mRFP (A, red, expressed under endogenous promoter) and with Rpb3-GFP (A’, green, expressed in
muscles under Mef2-GAL4 driver), and their merged images (A”). B-B” panels are corresponding enlargements of the rectangle
area illustrated in A”. Note that the RNA Pol II green signal (Rpb3-GFP), representing transcribed regions, is observed mostly
at the circumference of clusters of non-transcribed DNA depicted by the histone2B-associated red signal.

layer. Experimental evidence, shows that despite the tendency of chromatin to phase separate from the nucleoplasm,
it does not behave like a simple liquid that wets the entire nuclear lamina. Instead, it further assembles into a series of
dense chromatin domains distributed along the periphery [19]. The physical mechanisms leading to such a distribution
of dense chromatin cores parallel to the nuclear envelope remains elusive. Some hints come from evidence showing
that chromatin regions with H3K9ac modification, a marker of active chromatin, are also found along the periphery,
but they are distributed around the dense chromatin domains. This seems to be a microphase-separated state, in
which dense chromatin occupies the core of such domains and chromatin with H3K9ac modifications, is only found
at the shell, such that the chromatin domains exhibit a core-shell organization. If indeed active marks are related
to transcription, where is the transcription machinery located? In particular, what is its role in shaping genome
organization?

Live imaging of intact, live Drosophila 3rd instar larvae in which total chromatin, labeled with His2B-mRFP
expressed by its own promoter, and RNA Pol II complex, visualized by muscle specific expression of Rpb3-GFP
driven by the Mef2-GAL4 driver, was performed by the following procedure: Live larvae with both fluorescent marks
were inserted in a special device [48], and visualized by high resolution imaging using an inverted Leica SP8 STED3A
microscope as described in [19]. A representative single confocal image (see Figure 1) shows that RNA Pol II is found
distributed around dense chromatin domains. This novel observation and previous experiments in Zebrafish embryos
in the late blastula stage [42], motivates our theory of a minimal model of chromatin organization in which we consider
different regions of chromatin that are microphase separated and that can additionally be regulated by the reversible
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FIG. 2. Microphase separation of active and inactive chromatin regions. Left. Chromatin as a multiblock copolymer
with active (green) and inactive blocks (red) comprising NA and NB monomers, respectively. Right. Core-shell organization
of chromatin. The cores (red area) are composed of condensed, inactive blocks of chromatin and the shells (green area) are
composed of active blocks of chromatin that are less condensed that the cores in the absence of chromatin-binding protein
complexes that cause them to be even more swollen.

binding of protein complexes, such as RNA Pol II but more generally, by any of the proteins that interact with active
regions of chromatin.

B. Theoretical Model: Chromatin as a multiblock copolymer

We model chromatin as a multiblock copolymer with two types of blocks, active (A) and inactive (B) blocks, see
Fig. 2A. The A blocks represent active chromatin regions (active genes) and the B blocks inactive chromatin regions
(silent genes), which could roughly correspond to euchromatin and facultative heterochromatin, respectively [30, 49,
50]. For simplicity, we treat a chromosome as a polymer made of N total monomers with a periodic pattern of NA

monomers of type A, followed by NB monomers of type B. The total number of monomers is given by N = n(NA+NB),
where n is the number of blocks of each type in the polymer. For simplicity we consider the case where both types
of monomers have the same molecular size a. Motivated by recent experimental and theoretical studies on chromatin
organization showing that chromatin behaves as a self-attractive polymer (polymer in poor solvent) [19, 22, 51], we
model both blocks (in the absence of chromatin-binding protein complexes) as being in poor solvent conditions; both
blocks phase separate from the aqueous phase, consistent with the experiments. However, due to the difference in
attraction of AA vs. BB, the two types of blocks will undergo a further, microphase separation, reminiscent of the
data in [19], where acetylated chromatin is mostly found surrounding regions of higher density of chromatin. This
is in agreement with the well established fact that chromatin separates into different compartments [30, 49, 52]. In
general, microphase separation can take different forms, where the selectivity of the solvent (poorer solvent for the
inactive blocks) leads to lamellar, spherical or cylindrical organization depending on the length of the different blocks,
the type of solvent and the interactions between the blocks [23, 25, 53]. In Fig. 2B, as an example, we show a string
of micelles where the core is made of strongly attractive inactive blocks and the shell is composed of active blocks. In
what follows we describe a minimal model of the regulation of chromatin microphase separation where the inactive
blocks form a dense core (inactive core) and the active blocks are in a more dilute shell (active shell) which can be
accessed by protein complexes that reversibly bind to the active blocks. Hereafter, we omit the word reversibly and
binding should be understood in the remaining of the text as equilibrium reversible binding unless otherwise stated.

C. Core-shell organization of chromatin in a solution of protein complexes

In order to simplify our discussion, we focus on the layer geometry shown in Fig. 3 and later on apply our results
to spherical domains. The system has three different regions. Two of these regions are the core, which contains the
inactive blocks and some solvent and the shell which contains the active blocks, solvent and protein complexes; these
can either be bound to the active blocks or free in solution in the volume defined by the extension of the active blocks.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.510124doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510124
http://creativecommons.org/licenses/by/4.0/


5

FIG. 3. Microphase separation of chromatin in a layer geometry. The microphase separated state in the layer geometry
is characterized by three regions: The core (red shaded area), which is composed of inactive blocks (red curves) and solvent
(not shown), the shell (green shaded area), comprising active blocks (green curves), free and bound protein complexes (yellow
circles) and solvent (not shown), and finally the bulk solution (blue shaded area) of protein complexes (yellow circles).

Finally, there is the bulk solution, in which there are only protein complexes and solvent, which acts as a reservoir of
protein complexes for the core-shell system. Below, we define the free energy contributions of each of these regions.

1. Inactive core

The core, composed of inactive blocks and some solvent has an interfacial area, S, at each of its interfaces with the
shell and a thickness 2LB. The volume fraction of the inactive blocks within the core is φB and in the limit of
attractive interactions among the inactive blocks that are much larger than those of the active blocks or the binding
energy of the protein to the active blocks, this volume fraction is a constant. We thus define the free energy of the
core as

Fcore = 2 γS , (1)

and the conservation of B monomers by

a3nNB = 2φBLBS . (2)

In the expression for the free energy of the core, Eq. (1), we did not consider the elastic contribution from the inactive
blocks because it is usually negligible compared to the interfacial tension and other contributions [53].

2. Active shell

The spatial extent of the active shell region is determined by the extension of the loops of active blocks, LA, which
emanate from the core. The volume of the active shell region is given by Vshell = 2LAS. The composition variables
in the shell are: the volume fraction of the active monomers, φA, the probability that an active monomer is bound
to a protein complex, Ω, and the volume fraction of free protein complexes within the solvent of the shell, φfc =
a3Nfc/(2LAS). Here, we have introduced the total number of free protein complexes in the shell region, Nfc. We now
define the free energy of the shell, Fshell, as the sum of three contributions,

Fshell = Fmix + Fbin + Fbrush . (3)

The first contribution is the mixing entropy of the solvent molecules and the protein complexes, which is given by

Fmix =
2LAS kBT

a3

(
φfc log φfc + (1− φfc − φA

−φAΩ) log(1− φfc − φA − φAΩ)
)
. (4)

The second contribution is the decrease in free energy due to the binding of protein complexes to the active blocks

Fbind = nNAkBT (Ω log Ω + (1− Ω) log(1− Ω)− εΩ) ,
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here, the first and second terms are entropic contributions associated with the number of available active monomers
to which a protein complex can bind, and the third term is the energy gain, ε, of a protein complex that binds to an
active block. The last contribution to the free energy of the shell region, Fbrush, stems from the active blocks and we
choose it to be identical with that of a polymer brush. This free energy includes the polymer stretching energy and
the interactions between the monomers of the active blocks and is given by

Fbrush = nkBT

(
3L2

A

NAa2
− vNAφA(1− Ω)2

2

)
. (5)

These brushes can be relatively collapsed (but still relatively closely packed so the brush mode – as opposed to non-
interacting mushrooms – is valid) or swollen. The interactions of the monomers in the brush in the poor solvent
regime are attractive, corresponding to v > 0. The conservation of active monomers in the shell is expressed by

a3nNa = 2φALAS . (6)

In writing the free energy of the brush as in Eq. (5), we made the simplifying assumption that the contribution of
each loop of active blocks is the sum of the contributions of the two independent halves of a loop, disregarding the
fact that the loops are closed. Since the closure only affects the conformations of the monomers at the ends of each
brush, this approximation is appropriate when the brushes contain many monomers.

3. Bulk solution

The bulk solution of protein complexes occupies a volume Vbulk whose free energy in the dilute limit is:

Fbulk ≈
kBTVbulk

a3

(
φbulk log φbulk − φbulk

)
, (7)

where φbulk is the volume fraction of protein complexes in the bulk. Moreover, we consider the bulk solution to
be much larger than the core and shell regions, so that it acts effectively as a reservoir of protein complexes whose
exchange chemical potential is:

µbulk =

(
∂Fbulk

∂Nbulk

)∣∣∣∣
Vbulk

= kB log φbulk , (8)

The osmotic pressure of the bulk solution is:

Πbulk = −
(
∂Fbulk

∂Vbulk

)∣∣∣∣
Nbulk

=
kBTφbulk

a3
, (9)

where we used the relation φbulk = a3Nbulk/Vbulk. In equilibrium, the exchange chemical potentials of the protein
complexes must be equal in the coexisting bulk and core-shell regions and the osmotic pressures must be balanced.

D. Equilibrium conditions for the chromatin core-shell system

The total energy of the system, F , is then given by

F = Fcore + Fshell + Fbulk , (10)

where Fcore, Fshell and Fbulk, are the free energy of the core, shell and bulk solution, previously defined in Eqs. (1), (3)
and (7), respectively. The degrees of freedom to be determined are: the thickness of the shell, LA, the interfacial area,
S, and the number of free and bound protein complexes, Nfc and Nbc = nΩNA, respectively. The thermodynamic
conditions for coexistence of the bulk solution with the core-shell structure are given by requiring equality of the
exchange chemical potentials of the protein complexes within the shell (bound and free) and the protein complexes
in the bulk solution as well as the balance of osmotic pressures (see Appendix A for details).

The equalities of the exchange chemical potentials of protein complexes in the system can be expressed as

µfc = µbc , (11)

µfc = µbulk , (12)
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where the exchange chemical potential of the free protein complexes is

µfc =

(
∂Fshell

∂Nfc

)
LA, S,Nbc

, (13)

and the exchange chemical potential of the bound protein complexes is given by

µbc =

(
∂Fshell

∂Nbc

)
LA, S,Nfc

. (14)

The third condition is the equality of the osmotic pressures in the shell region and bulk solution

Πshell = Πbulk , (15)

where the osmotic pressure in the shell, Πshell, due to a change in the brush length LA, is given by

Πshell = − 1

2S

(
∂Fshell

∂LA

)∣∣∣∣
S,Nbc,Nfc

. (16)

The free energy in the core-shell region also varies with changes in the interfacial area S, so the osmotic pressure
equality also implies: (

∂F

∂S

)∣∣∣∣
LA,Nbc,Nfc

+ 2ΠshellLA = 0 . (17)

The equilibrium properties of the system are then found by simultaneously solving Eq. (11), Eq. (12), Eq. (15) and
Eq. (17).

E. Protein complexes regulate the extension of the active chromatin blocks

We first focus on the effect that protein complexes have on the stretching of the polymer brush made of active
chromatin blocks; hereafter we refer to such polymer brush as the active chromatin brush. In order to find analytical
solutions, we work in the limit of dilute protein complexes in (i) the bulk φbulk << 1, and (ii) the free protein
complexes within the solvent in the region of the shell φfc ≈ φbulk. We derive in the Appendix that the probability of
an active monomer being bound to a protein complex is given by:

Ω ≈ η

1 + η
, (18)

where we introduced the binding parameter η = e1+εφbulk, (see Appendix C for details).
The equality of the osmotic pressures in the shell region and in the bulk solution Πshell −Πbulk = 0, Eq. (C3), can

thus be approximated by

− 3

2σ2φA
− vη

2
φ2

A +
wη
3
φ3

A ≈ 0 , (19)

where we introduced the interfacial area per block s = S/n, (whose dimensionless form is written σ = s/a2), an
effective second virial coefficient

vη =
v − (1 + 2η)2

(1 + η)
2 , (20)

and an effective third virial coefficient

wη =
(1 + 2η)

3

(1 + η)
3 . (21)

It is important to note that in our model the second and third virial coefficients can be tuned by the binding
of protein complexes. Both virial coefficients increase with η, which can be controlled in two ways, by increasing
the binding energy ε or the concentration of the protein complexes in the bulk solution, φbulk. The solvent regime
experienced by the active chromatin brush is then regulated by the binding of protein complexes and it can range
from poor solvent, vη > 0, to good solvent, vη < 0, passing through the theta solvent regime when vη ≈ 0. We discuss
below the different parameter regimes and find approximate solutions for the volume fraction of the active chromatin
brush φA and its corresponding dimensionless extension, λA = LA/a, in each of these regimes.
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1. Weak binding modifies the length of the collapsed active chromatin blocks

In the weak binding limit, the self-attraction of active chromatin blocks is reduced by the weak binding of protein
complexes to the active monomers, but not enough to change the solvent of the active chromatin brush from a poor
one to a good one. In this weak binding regime, characterized by η < (v/2)1/2 − 1/2, the effective second virial
coefficient is balanced by the effective third virial coefficient (the second and third terms in Eq. (19), respectively),
which leads to a volume fraction of active monomers

φc
A ∼

vη
wη

, (22)

and to an extension of the active chromatin brush

λc
A ∼

NAwη
vη σ

. (23)

These solutions show that the volume fraction of monomers in the shell is reduced by the presence of protein
complexes bound to active chromatin compared to a system without protein complexes. In the poor solvent regime,
the extension of the active brush scales linearly with the number of monomers [54], similarly to a brush in good
solvent [23, 55, 56]. However there is a crucial difference between the two, which is that they scale differently with
the interfacial area per block, σ. This different scaling as a function of the interfacial area per block then results (at
the end of the calculation) in different scaling behaviors of the active chromatin brush height, the thickness of the
core and the interfacial area per block as a function of the number of active monomers per block.

2. Strong binding of protein complexes swells the active chromatin brush

When the protein complexes strongly bind to the active monomers, characterized by η > (v/2)1/2 − 1/2, or vη < 0,
the effective solvent quality for the active blocks changes from poor to good. In that case, the relevant terms in the
osmotic pressure balance are the ones corresponding to the stretching of the active brush and the effective second
virial coefficient from Eq. (19). Balancing those two terms we find

φe
A ∼

1

|vη|1/3σ2/3
, (24)

which predicts an extension of the active brush:

λe
A ∼

NA

|vη|1/3σ1/3
. (25)

This is equivalent to the scaling of the height of a polymer brush in a good solvent in a mean field approximation [55,
56], with the modification coming from the fact that here the second virial coefficient is controlled by the binding of
protein complexes. We have then shown that protein complexes can modify the effective solvent quality experienced
by the active chromatin blocks depending on the extent of binding.

3. Theta solvent conditions for the active chromatin blocks

We have shown that depending on the binding strength or concentration of the protein complexes, the active chromatin
brush can experience poor or good solvent conditions. The transition between the two occurs at the theta point[57],
where the second virial coefficient in the system vanishes (the effective second virial coefficient in our case). In this
regime, we find that the volume fraction of active monomers is

φΘ
A ∼

1

wη1/4σ1/2
, (26)

and that the extension of the brush is

λΘ
A ∼

NAwη
1/4

σ1/2
. (27)
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If we compare the three regimes in which the brush experiences poor, good and theta solvent conditions, we
find that in all of them, the brush height scales linearly with the number of active monomers in a block, but with
different scalings as a function of the surface per block, σ. Unlike tethered brushes where the density at the surface
is fixed, in this system the interfacial density of monomers is adjusted by the osmotic pressure equality (equivalent to
minimization of the free energy of the reservoir and the core-shell system for constant total volume), which leads to
different scaling behaviors as a function of the number of monomers in the active blocks.

4. Core size reduction driven by binding of protein complexes

We now explore the effect of the binding of protein complexes on the size of the inactive core in the different solvent
regimes. We begin by solving the equation for the osmotic pressure balance that determines the interfacial area σ per
block, Eq. (C4), and find its values in the poor (collapsed), good (extended) and theta solvent regimes: σc σe and
σΘ, respectively. The interfacial area per block in the poor solvent regime is given by:

σc ∼
wη

2/3N
1/3
A

v
2/3
η α

1/3
, (28)

where we introduced the dimensionless interfacial tension, α = γa2/kBT . In the good solvent regime we find:

σe ∼
|vη|2/5N3/5

A

α3/5
, (29)

and finally, in the theta solvent regime the surface area per block is:

σΘ ∼
w

1/4
η N

1/2
A

α1/2
. (30)

We find that the surface area per block increases with the protein concentration in bulk solution and the binding
energy (lumped into the binding parameter η) in every regime and that its scaling with the number of monomers in

the active blocks is, as expected, most pronounced in the good solvent regime (σ ∼ N3/5
A ).

We now combine the results for the surface area per block with the conservation of inactive monomers to find the
dimensionless thickness of the core, λB = LB/a and the dimensionless extension of the active chromatin brush, λA.
In what follows we neglect numerical prefactors - the full expressions are given in Appendix D. In the poor solvent
regime, the thickness of the core, λcB and the extension of the active chromatin brush, λcA are given by

λcB ∼
NBv

2/3
η α1/3

N
1/3
A w

2/3
η φB

, λcA ∼
N

2/3
A w

1/3
η α1/3

v
1/3
η

. (31)

The corresponding values in the good solvent regime for the thickness of the core and for the extension of the active
chromatin brush are

λeB ∼
NBα

3/5

NA|vη|2/5φB
, λeA ∼ N

4/5
A |vη|1/5α1/5 , (32)

and in the case of the theta solvent they are

λθB ∼
NBα

1/2

N
1/2
A w

1/4
η φB

, λθA ∼ N
3/4
A w1/8

η α1/4 . (33)

The scaling behaviors shown in Eqs. (31) - (33), show that the presence of protein complexes that can bind to active
chromatin regions, can induce transitions between these different regimes in which the thickness of the core is smallest
in the good solvent regime (proportional to 1/NA as opposed to fractional powers thereof). In every regime the surface
area per block, σ, and the extension of the active brush, λA, are increasing functions of the binding parameter η. This
means that increasing the binding interaction ε or the concentration of the protein complexes in the bulk solution,
φbulk, will always lead to swelling of the active chromatin brush. In contrast, we find that the core thickness is a
decreasing function of η. These results show that although the protein complexes do not interact directly with the
inactive blocks, they have a significant effect on the characteristic length scale of inactive chromatin cores. This has
particular significance for the core-shell structure in spherical geometry (core-shell micelles) as we now discuss.
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F. Organization of chromatin in core-shell spherical domains

Thus far, we have showed that protein complexes can lead to changes in the quality of the solvent experienced by
the active chromatin brush, which in turn lead to different scaling behaviors of the surface area per block and the
relative extensions of both the active and inactive blocks as a function of the binding parameter η and the number of
monomers in the active blocks, NA. We performed the calculations in a layer geometry for simplicity, however, it is
known that block-copolymer, microphase separated states, can also form spherical micelles with a core comprising the
blocks experiencing the poorer solvent conditions and a corona comprising the other type of blocks [26, 53, 58, 59].
Moreover, in the experimental data shown in Fig. 1, the core-shell organization is reminiscent of spherical micelles.
The core contains dense chromatin and the outer shell is composed of chromatin coated with RNA Pol II. Because
of these reasons, it is then relevant to discuss the case of chromatin organization in core-shell spherical domains.
Below we provide some analytical insight based on our calculations in the layer geometry and complement this with
Brownian dynamics simulations showing that indeed, the analytical predictions give us a qualitative understanding
of how protein complexes could regulate the microphase separation of active and inactive chromatin organized in
spherical domains.

1. Analytical predictions for the number of blocks in spherical core-shell chromatin micelles

If instead of considering the layer geometry - which is simple to treat analytically but might not be the global minimum
of the free energy - we consider the case of spherical micelles, we can make a simple extrapolation of the results obtained
in the layer geometry presented in the previous section as follows: the thickness of the core, LB corresponds to the
radius r of the spherical core and the interfacial area per block σ would be, up to numerical coefficients, equivalent to
the area spanned by each active block at the interface of the spherical cores and the outer shells. Doing so, allows us
to use the conservation of B monomers to estimate the number of blocks, m, that are incorporated into each core-shell
spherical domain in each regime and how these quantities scales with the number of monomers of the active blocks.
The monomer conservation of B monomers in each core is expressed by

4πr3φB

3
= a3NBm. (34)

We now use Eq. (34) to calculate the number of blocks in each core-shell spherical domain in the different regimes.
In the poor solvent regime we find:

mc ∼
N2

Bαv
2
η

NAw2
ηφ

2
B

, (35)

in the good solvent regime:

me ∼ N2
Bα

9/5

N
9/5
A |vη|6/5φ2

B

, (36)

and in the θ-solvent regime

mθ ∼ N2
Bα

3/2

N
3/2
A w

3/4
η φ2

B

, (37)

We can now relate the results for the layer geometry with the spherical core-shell organization. Let us consider
a single active block connected to a single inactive block in the layer geometry, as we have shown in the previous
sections, increasing the binding strength of the protein complexes to the active chromatin monomers tends to swell
the active blocks and concomitantly increase the surface area per block (Fig. 4A). The swelling of the active chromatin
blocks then leads to a compression of the inactive block, which in the global organization of the microphase separated
state translates into a decrease in the thickness of the core and an increase in the interfacial area (Fig. 4B). If we now
consider a single active block connected to a single inactive block in the spherical geometry, each block spans a conical
surface. The solid angle of such cones increases with the binding of protein complexes and we intuitively suggest that
just as in the case of the blocks in the layer geometry, the inactive blocks will be more compressed when the binding
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FIG. 4. Comparison of the chromatin microphase separation by the binding of protein complexes in layer and
spherical geometries. A. Single pair of active (green) and inactive blocks (green) in the layer geometry with no (left), few
(middle) and many (right) protein complexes bound to a chromatin active block. The swelling of the active block by the
binding of protein complexes changes the surface area per block and compresses the inactive blocks. B. Global changes in the
microphase separated layer geometry. Left. The active shell (green) and inactive core (red) remain unchanged in the absence
of bound protein complexes (yellow). Right. Binding of protein complexes leads to swelling of the active shell (green region)
and compression of the thickness of the core (red region). C. Single pair of active (green) and inactive blocks (green) in the
spherical geometry with no (left), few (middle) and many (right) protein complexes bound to the active chromatin block. A
preferred radius of curvature is set by the binding of protein complexes, such preferred radius of curvature defines the size of
the core. D. Regulation of core number and size by the binding of protein complexes. Left. Weak binding of protein complexes
(yellow beads) to active chromatin has little or no effect in the size and number of cores (red area). Right. Strong binding
of protein complexes to active chromatin swells the active shells (green area) and increases the number of inactive cores while
decreasing their size.

of the protein complexes to the active block is stronger (Fig. 4C). If we now focus on the global organization of the
microphase separated state, the number of inactive cores as well as their size is regulated by the binding of protein
complexes; the stronger such binding is, more and smaller inactive cores there are (Fig.4D). Thus, our minimal model
suggests that nuclear size regulation [60] may have a strong impact in the spatial organization of chromatin in living
cells via changes in the concentration of chromatin-binding protein complexes.

In the calculations presented above for the spherical geometry, we have considered a homogeneous monomer concen-
tration in both the core and shell domains. Thus, our calculation excludes the regime in which the active blocks are
much larger than the blocks at the core and thus exhibit star polymer behavior [61], where the monomer concentration
in each “blob” decreases with its distance from the core. This is however not the focus of our manuscript; instead, we
want to highlight the strong effects that selective binding of proteins to active regions of chromatin can have on the
global chromatin organization. We show below results of Brownian dynamic simulations for the case NA = NB that
are in qualitative agreement with our analytical results; such simulations can include the case of active blocks that
are much larger than the core which are more difficult to treat analytically.

2. Brownian dynamics simulations of chromatin microphase separation regulated by the binding of protein complexes

Our computational model simulates chromatin as a block copolymer comprising both active and inactive blocks. It
additionally considers that protein complexes only bind to the active chromatin blocks. Chromatin is considered to
be a self-attractive polymer [15–17, 19, 22] and is modeled as a bead-spring polymer consisting of N beads connected
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by N − 1 springs (harmonic bonds). When any two beads of the polymer approach each other within a distance 2.5a
(where a is the diameter of bead), they are attracted by a truncated Lennard-Jones potential, whose strong repulsive
regime also prevents them from overlapping [22]. The polymer contains two types of beads: active and inactive,
that represent respectively, the active and silent genes in the chromosome. The protein complexes are modelled by
additional, single beads that only bind to the active polymer beads; there are no attractive interactions between
protein-protein and protein-inactive beads. For simplicity, we assume the size of the protein complex beads to be
equal to the size of a chromatin bead, whose diameter is a. When a protein bead approaches an active bead within
a distance of 1.5a, they form a bond with probability 1. For other separations of the protein and the active bead,
the bond energy increases beyond its minimal value and is modeled by a harmonic potential with bonding strength
K. Once an active bead and a protein complex bead form a bond, their valencies are saturated and they are not
available for bonding. Our model also allows existing bonds to break. When the distance between protein complexes
and active chromatin beads exceeds 2.5a, the bond is broken (there is no longer an attractive force between the beads)
and the protein complex is free to diffuse in solution. The chromatin polymer and the protein complexes are confined
within a spherical boundary. The simulations were performed using the Brownian dynamics simulation package
LAMMPS [62, 63], which solves Newton’s equations using viscous forces and a Langevin thermostat ensuring an NVT
ensemble (see Appendix F for details). Our initial condition has n = 500 blocks of the chromatin chain, with each
block having 100 beads of active genes (NA) and 100 beads of inactive genes (NB), for a total of n(NA+NB) = 100, 000
beads.

A summary of our numerical results is presented in Fig. 5, which shows that the increased binding of protein
complexes to the active regions swell the active chromatin regions and reduce the inactive core sizes, in agreement
with the analytical scaling results presented above. In Fig. 5A, we show snapshots of simulations for different binding
strengths. It is clear from such snapshots that the increase in binding strength leads to more extended configurations
of the active chromatin regions, an increase of the number of inactive cores, and a reduction in their size (as required
by the conservation of inactive monomers). We also show in Fig. 5B that the number of cores at steady-state, increases
as a function of binding strength but then saturates to a value of around 100. The saturation is a simple consequence
of the fact that in this saturation limit, all active monomers have a protein complex bound to them. The shell extends
no further even if the binding energy or protein concentration is increased and the core size is also saturated at its
minimal value. We show the probability distribution of core sizes measured in bead units in Fig. 5C. We find that
the distributions are slightly broader at low bonding strength and that they transition to narrower distributions for
values of K & 3. We observe three different regimes: (i) fully collapsed, with K . 1, (ii) a transition region from fully
collapsed to fully stretched going from 1 . K . 3, and (iii) the fully stretched regime which is given by 3 . K. Finally,
the fraction of active monomers that have a protein complex bound is shown in Fig. 5D, where we see a sigmoidal
behavior for Ω as a function of the binding strength, which is characterized by the strength of the harmonic potential
between the protein complexes and the active chromatin, K. This is what gives rise to the saturation mentioned
above. In this saturation limit, for K & 4, the fraction of active monomers that are bound to a protein complex is
approximately 1. The simulation results agree with the predictions of the analytical theory, and confirm that the
binding of protein complexes can serve as regulator of the microphase separation of active and inactive chromatin
regions.

III. DISCUSSION

We have shown theoretically and by computer simulations that protein complexes binding to active regions of
chromatin can have a significant effect in the nuclear scale organization of chromatin. This is accomplished via
stretching of the active chromatin blocks when they are bound to protein complexes, which leads to compaction of the
region in which the inactive blocks are located. This then results, in the case of the spherical core-shell organization,
in an increase in the number of cores comprising inactive chromatin regions and a reduction of their size. We used
a minimal, generic model of chromatin as a multiblock copolymer to which protein complexes can bind, this in turn
modulates the effective solvent quality vis a vis the chromatin. The effect is strongly dependent on the concentration
of the protein complexes and their binding energy. Depending on these two parameters, there are two different
regimes, weak and strong binding. In each regime we predict different scaling relations for the extension of the active
chromatin brushes and core thickness, as well as the global organization of the core-shell assemblies, as a function of
the number of monomers in each of these blocks. We predict that the number of micelles and the relative core-shell
sizes in living cells, such as the ones showed in Fig. 1, are not fixed but will change as the RNA Pol II, and other
chromatin-binding protein concentration are varied. We show a sketch in Fig. 6 exemplifying such change. Moreover,
if we contrast our results with experimental observations in which chromatin exhibits several different nuclear types of
organization, depending on whether the cell is fixed [64], live cultured cells [65], or in intact live cells [19], we suggest
that changes in the hydration of the nucleus can lead to different local concentrations of chromatin-binding proteins
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FIG. 5. Regulation of chromatin microphase separation by binding of protein complexes. A. Simulation snapshots
show a core-shell organization of chromatin. The cores (red area) are composed of inactive blocks (red lines) of chromatin, and
the shells (green area) are composed of active blocks (green lines) of chromatin. The snapshots from top to bottom correspond
to binding of protein complexes (yellow points) to chromatin where deviations of the bond distance from its minimal value are
modeled by a harmonic potential with a spring constant K. K = 0 (no binding, top), K = 2 (weak binding, middle), and
K = 10 (strong binding, bottom). B. Number of cores as a function of the simulation time frame by varying the harmonic
potential characterized by K of protein complexes. The number of cores increases with increasing bonding strength until it
saturates. C. Core size distributions for different bonding strengths, K. D. Fraction of active monomers bound to a protein
complex, Ω, as a function of bonding strengths follows a sigmoidal curve.
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which in turn can regulate the nature of the microphase separation of active and inactive chromatin.

In this work, we have provided a generic description at the mesoscale, that is independent of the microscopic
details that determine chromatin microphase separation. Instead, we suggest a minimal mechanism that can play a
role in regulating the microphase separation between active and inactive chromatin regions. Although this has been
previously observed experimentally [42], a model such as ours has not been proposed. With our generic model we
provide a complementary interpretation of previously published experiments on the effect of transcription in chromatin
microphase separation. In [42], the authors show that transcription organizes chromatin in microphase separated
states, with RNA Pol II connecting an RNA-rich phase with a chromatin-rich phase. In that study, treatments that
lead to unbinding of RNA Pol II from chromatin also lead to an increase in the sizes of dense chromatin domains,
which notably did not fully coarsen. Another treatment used, stopped transcription but did not lead to the unbinding
of RNA Pol II from chromatin, in those cells, they still observed dense chromatin domains, pointing to the fact that
chromatin remains in its microphase separated state despite the fact that there are no active processes regulating it.
The authors of that study relate Pol-II to its “amphiphilic” role in connecting the DNA-rich region which is transcribed
to produce nascent RNA. We suggest a complementary scenario in which binding of RNA Pol II to chromatin is the
important factor that regulates the sizes and number of dense (inactive) chromatin domains as we discuss above. It
has also been shown recently in [66] that long transcription loops span very large regions of the nucleus and are coated
by RNA Pol II. The authors rationalized the extension of the loops as a consequence of the large size of the nascent
RNAs that are produced. This provides an interesting direction in which our work could be extended, in which one
introduces not only the binding of protein complexes but also the transcription products that are carried by such
protein complexes.

In addition to the observations provided in this article for chromatin being in a microphase separated state, previous
work [18, 64] has focused on the different chromatin compartments in terms of their density, classifying them into
active and inactive nuclear compartments, and showing clear boundaries between them. More recently [37], those
authors showed evidence of dense chromatin cores surrounded by extended chromatin regions, which seems to be in
agreement with our proposed model of chromatin microphase separation.

Our equilibrium approach can be extended by considering non-equilibrium effects such as acetylation and methy-
lation of the histone tails of nucleosomes, which would lead to different sizes of active and inactive chromatin blocks.
The simplest non-equilibrium scenario, would be one where the fraction of protein complexes bound to chromatin, Ω,
is fixed by kinetic binding and unbinding rates, instead of detailed balance (and the Boltzmann factor) as in equilib-
rium. In this scenario, the results obtained for the equilibrium system will hold as long as the reaction kinetics are
much faster than the equilibration of the core-shell system. The core-shell organization would then be controlled by
the steady state bound fraction Ω set by the binding and unbinding rates instead of by Eq. (18). Another extension to
the model would be to investigate the possible interplay arising from protein complexes that actively extend the active
chromatin blocks and by doing so create a positive feedback for histone tail acetylation by enzymes, which in turn,
would create more binding sites for the protein complexes. Finally, it would be relevant to asses the role of nuclear
confinement in chromatin microphase separation by including the possibility of the association of chromatin with the
nuclear envelope via its Lamina-Associated-Domains (LAD) [67], as shown in Fig. 6. This would further regulate the
organization of chromatin and might give rise to different microphase separated states. The binding of chromatin to
the nuclear lamina might further regulate the size and shape of the inactive domains and have an additional effect on
the spatiotemporal organization of chromatin and DNA transcription.
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FIG. 6. Sketch of chromatin microphase separation in confinement. Left. Weak binding of protein complexes (yellow)
to active chromatin (green) result in larger inactive chromatin domains (red) that wet the nuclear envelope (black) as spherical
caps. Right. Strong binding of protein complexes to the active chromatin leads to smaller inactive chromatin domains and
might also result in changes of their shape going from spherical to cylindrical-like domains. It must be noted that the volume
of the inactive domains are conserved in the three-dimensional organization.

Appendix A: Derivation of the equilibrium conditions the core-shell chromatin system in a solution of
protein complexes

The equilibrium conditions shown in the main text can be derived starting from the following unconstrained, grand
potential – equivalent to minimizing the free energy with various conservation constraints:

L = Fcore + Fshell + Fbulk + µ (NT −Nfc −Nd −Nbulk)

−Π (VT − Vcore − 2LAS − Vbulk) , (A1)

where µ is a Lagrange multiplier used to enforce the conservation of protein complexes in the system, NT is the total
number of protein complexes, Π is a Lagrange multiplier that enforces volume conservation, VT is the total volume.
Vcore is the volume occupied by the core, which we approximate to be constant; this is appropriate in the limit where
the interactions that determine the core concentration are much larger than the energies of the brush, so that the core
monomer concentration is constant . We now minimize the unconstrained free energy, L, with respect to the following
six variables: the number of free protein complexes in the shell, Nfc, the number of protein complexes bound to the
active chromatin brush, Nb, the number of protein complexes in the bulk solution Nbulk, the thickness of the shell
region, LA, with respect to the surface area of the interface between core and shell, S, and the volume of the bulk
protein solution, Vbulk. The minimization leads to the following conditions

∂Fshell

∂Nfc
− µ = 0 , (A2)

∂Fshell

∂Nd
− µ = 0 , (A3)

∂Fbulk

∂Nbulk
− µ = 0 , (A4)

∂Fshell

∂LA
− 2SΠ = 0 , (A5)

∂Fcore

∂S
+
∂Fshell

∂S
+ 2LAΠ = 0 , (A6)

∂Fbulk

∂Vbulk
+ Π = 0 . (A7)

Combining Eqs. (A2)-(A7), we obtain Eqs. (12), (15) and (17), which are the equations that we solve for the equilibrium
state of the system. There are six conditions coming from the minimization of the unconstrained grand potential
which determine the six (unknown) degrees of freedom listed above. These conditions fix the equalities of the exchange
chemical potentials of the protein complexes(in the bulk, bound to the A blocks, and in the solution within the shell)
as well as the equality of the osmotic pressure of the bulk solution and the brush (shell region) Eq. (8) and Eq. (9).
There are two ways to change the volume: (i) by changing the interfacial of the core-shell or (ii) by changing the
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extent of the shell due to stretching of the A blocks. These give two osmotic pressure conditions. Since we work in
the limit in which the bulk solution is much larger than the core and the active chromatin brush regions, we consider
that the exchange chemical potential and osmotic pressures in the bulk solution can be varied independently.

Appendix B: Equality of exchange chemical potentials and osmotic pressures in the core-shell system

We now use the composition variables introduced in the main text, namely, the volume fraction of free protein
complexes, φfc, the fraction of active monomers with a protein complex bound to them, Ω, the volume fraction of
active monomers in the active brush, φA, and the surface area per block s = S/n, to express the exchange chemical
potentials and osmotic pressures in the system. These are given by

µfc = kBT (log φfc − log(1− φfc − φA(1 + Ω)), (B1)

µd = kBT (log Ω− log(1− φfc − φA(1− Ω))

− log(1− Ω)− 1− ε+ vφA(1− Ω)) , (B2)

Πshell =
kBT

a3

(
−3a4

2s2φA
− φA(1 + Ω + vφA(1− Ω)2)

−2 log(1− φfc − φA(1 + Ω)
)
. (B3)

The other two expressions that are needed to find solutions to the equilibrium conditions are the exchange chemical
potential of protein complexes in the bulk, µbulk, and osmotic pressure in the bulk, Πbulk, which are given in the main
text in Eq. (8) and Eq. (9), respectively.

Appendix C: Solutions to the equilibrium conditions

Here, we explicitly write the four equilibrium conditions used in the main text. The condition of equal exchange
chemical potentials of the protein complexes in the bulk and in the shell, Eq. (11), is given by

log(φfc)− log(φbulk)− log(1− φfc − φA(1 + Ω)) = 0 , (C1)

the equality of exchange chemical potentials of free and bound protein complexes in the shell can be expressed as

1 + ε+ vφA(1− Ω) + log φfc + log

(
1− Ω

Ω

)
= 0 (C2)

the balance of osmotic pressures in the bulk solution and the shell is given by

3a4

2s2φA
+ φbulk + φA

(
1 + Ω + vφA(1− Ω)2

)
log(1− φfc − φA(1 + Ω)) = 0 , (C3)

and finally, the second osmotic pressure condition, equivalent to defining the interfacial tension with the free energy
per block surface, Eq. (17), can be expressed as

γ − 3kBTa
4NA

2s3φA
= 0 . (C4)

1. Shell region

In this section, we focus on approximate analytical expressions for the volume fraction of the protein complexes in
the shell region and for the fraction of active monomers bound to a protein complexes. We obtain these approximate
analytical expressions based on the physical conditions discussed above: Eqs. (C1), (C2). We begin by solving Eq. (C1)
and find

φfc =
φbulk(1− φA(1 + Ω))

1 + φbulk
≈ φbulk , (C5)
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TABLE I. Characteristics of the flat inactive core and active shell for different regimes effective solvent regime. The effective
second and third virial coefficients are, vη = (v− (1 + 2η)2)/(1 + η)2 and wη = (1 + 2η)3/(1 + η)3, respectively. In the table we
use the following dimensionless quantities: the extension of the active brush, λA = LA/a, the extension of the inactive blocks,
λB = LB/a, the surface area per block σ = s/a2, and the interfacial tension, α = γa2/(kBT ).

where we assumed, φbulk << 1, and neglected terms of the form φbulkφA, on the right hand side. Solving Eq. (C2) by
substituting φfc ≈ φbulk, we find that the fraction of active monomers that have a protein complex bound to them is

Ω ≈ e1+εφbulk

1 + e1+εφbulk
, (C6)

In the main text we analyze the first osmotic pressure balance, Eq. (C3), by substituting the values for the volume
fraction of free protein complexes in the shell region, φfc, and for the fraction of active monomers bound to a protein
complex, Ω.

Appendix D: Length scales of the microphase separated state in the layer geometry

Here we write the full expressions for the z-direction extent of the shell and the core in the regimes corresponding
to different effective solvent conditions of the shell. We note that changes in the extent of the shell and the interfacial
area per block also affect the extent of the core.

Appendix E: Brownian Dynamics Simulations

In order to model the chromatin system, we use the following potential energies. The stretching energy of the
chromatin chain is provided by harmonic springs that connect adjacent beads and is given by

Ustretching = kspring

N−1∑
i=1

(|ri − ri+1| − a)2, (E1)

where ri and ri+1 are the position vectors of ith and (i + 1)th beads, respectively. Here, a is the equilibrium
bond length, and kspring represents the spring constant. In our simulations, spring constant is set to a large value,
kspring = 100 kBT/a

2, to ensure that the bonds are stable and do not fluctuate a lot.
Non-bonded interactions between chromatin-chromatin and chromatin-protein beads are modelled using the stan-

dard Lennard-Jones potentials (LJ),

ULJ = 4εαβ
∑
i<j

[(
a

|ri − rj |

)12

−
(

a

|ri − rj |

)6
]
, (E2)

for all |ri − rj | < rc where rc refers to a cutoff distance beyond which LJ interaction is set to zero. Here εαβ is
the strength of the LJ potential. For the attractive interactions between chromatin-chromatin and chromatin-protein
beads, rc = 2.5a is used as the distance cutoff for the LJ potential. In homopolymers, the polymer chain starts
to collapse at εαβ = 0.3 kBT [68]. Chromatin chain beads are divided into active and inactive types based on their
attractive strength. Active chromatin beads are set at minimum attractive strength, and LJ strength between any two
active beads is taken to be εAA = 0.3 kBT . The LJ strength of εBB = 0.5 kBT is set between two inactive beads, and
the strength of εAB = 0.3 kBT between active beads and inactive beads. The attraction of chromatin-protein beads is
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modeled using the same LJ potential and εBp = 0.4 kBT is taken as LJ strength between active chromatin and protein
beads. There are no attractive interactions between protein-protein beads or inactive chromatin and protein beads
(only excluded volume interactions), so the LJ potential is truncated at the distance where repulsive and attractive
forces are equal which gives rc = 21/6a and εpp = εAp = 1 kBT . Beads of polymer chains and protein are confined
within a sphere of radius Rc. The interaction between the beads and the sphere surface is repulsive, given by

Uconfine = 4εconfine

N∑
i=1

[(
a

Rc − |ri|

)12

−
(

a

Rc − |ri|

)6
]
, (E3)

for all (Rc − |ri|) < 21/6a and εconfine = 1 kBT . To estimate Rc, we define the parameter φ as the volume fraction of
chain within the sphere volume

φ =
Volume of chromatin beads

Volume of confinement
=
N × 4

3π(a/2)
3

4
3πR

3
c

, (E4)

where N is the total number of beads in chromatin chain and N = 100, 000 beads are taken in our model. In order to
observe the effect of poly II complex proteins on the swelling of the active blocks of the chromatin, we minimize the
effect of the nucleus by assuming that the chromatin volume fraction within the nucleus is 1% (φ = 0.01). We find
the confinement radius Rc = 108a by plugging the value of φ into Eq. (E4).

A major feature of the chromatin-protein complex interaction in our model is the bonding between active beads
and protein complex beads. This depends on the availability of these proteins and the nature of their binding to
the active chromatin. For the simplicity, we consider a total of Np = 50, 000 protein beads, which is equal to the
total number of active chromatin beads so that the volume fraction of protein beads within the nucleus is 0.005; each
active bead can bind to at most one protein complex bead. The active bead and protein complex bead each have a
valence of 1. The formation of harmonic bonds between active and protein complexes occurs when they are within a
defined interaction cutoff distance (rbond = 1.5a). The spring constant (K) for the changes in the bond distance is
varied from 0 to 10 kBT/a

2. Bonding interactions have an equilibrium distance of r0 = a, which means a bond, once
formed, remains stable at that distance. In addition, dynamics bonds can break (potential goes to zero) when the
distance between the active beads and protein complex beads exceeds the cutoff rbreak. We set the cutoff value rbreak

to equal the LJ cutoff rc at which the LJ interaction also vanishes; therefore rbreak = 2.5a. The potential energy
of bonds creating and breaking (Ubond) is calculated by using the Monte-Carlo method (MC method) in LAMMPS
software [62, 63] and written by

Ubond = −U0(rbond, r0) +K
N∑
i=1

Np∑
j=1

(|ri − rpj | − r0)2, (E5)

for all |ri − rpj | < rbreak where rbreak refers to the cutoff distance beyond which dynamic bond interaction (Ubond) is

set to zero. Here rp is the position of the protein beads, and the energy function U0(rbond, r0) represents the bond
formation energy. The total potential energy of chromatin system is given by

Utot = Ustretching + ULJ + Uconfine + Ubond (E6)

To simulate the chromatin system, we performed Brownian dynamics simulations using the LAMMPS molecular
dynamics package [62, 63]. The simulations were conducted with reduced units (a = 1 and kB = 1) at a constant
temperature T = 1.0 with a damping coefficient of 10.0τ , where τ is the time unit. In all simulations, a time-step
∆t = 0.01τ was used. Simulations were run for 107 time-steps that is much longer than the time it takes for the
system to reach a steady state with constant mean energy and radius of gyration.
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