
Flowering newsletter review

Regulation of flowering time by the miR156-mediated age 
pathway

Jia-Wei Wang*

National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes 
for Biological Sciences (SIBS), Shanghai 200032, P. R. China

* To whom correspondence should be addressed. E-mail: jwwang@sibs.ac.cn

Received 25 February 2014; Revised 24 April 2014; Accepted 6 May 2014

Abstract

Precise flowering time is critical to reproductive success. In response to diverse exogenous and endogenous cues 
including age, hormones, photoperiod, and temperature, the floral transition is controlled by a complex regulatory 
network, which involves extensive crosstalks, feedback, or feedforward loops between the components within flow-
ering time pathways. The newly identified age pathway, which is controlled by microRNA156 (miR156) and its target 
SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, ensures plants flower under non-inductive condi-
tions. In this review, I summarize the recent advance in understanding of the age pathway, focusing on the regulatory 
basis of the developmental decline in miR156 level by age and the molecular mechanism by which the age pathway is 
integrated into other flowering time pathways.
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Introduction

The aerial lateral organs of a plant are derived from the 
shoot apical meristem (SAM), a population of pluripotent 
stem cells at the shoot apex that are formed during embryonic 
development. After seed germination, organ primordia are 
continuously formed on the flanks of the SAM. Based on the 
identity of the lateral organs, the post-embryonic develop-
ment of a plant can be divided into vegetative and reproduc-
tive phases. The SAM produces leaves during the vegetative 
phase, whereas it gives rise to flowers in the reproductive phase 
(Poethig, 2003). Vegetative phase can be further divided into 
juvenile and adult phases. Adult phase differs from juvenile 
phase in terms of reproductive competence and morphologi-
cal differences such as leaf epidermal cell differentiation and 
leaf complexity (Huijser and Schmid, 2011; Poethig, 2013).

The floral transition, namely the switch from vegetative 
to reproductive phase, is coordinately controlled by multi-
ple genetic pathways in response to various developmental 
and environmental cues (reviewed in Andres and Coupland, 
2012; Bäurle and Dean, 2006; Srikanth and Schmid, 2011). 
The past two decades have seen fundamental advances in our 

understanding of the molecular mechanism underlying flo-
ral transition. Studies of the annual model Arabidopsis thal-
iana identified five flowering time pathways, known as age, 
autonomous, gibberellin (GA), photoperiod, and vernaliza-
tion (Amasino and Michaels, 2010). A central aspect of our 
knowledge of flowering time regulation is that multiple floral 
inductive cues are integrated into a set of flowering time inte-
grator genes, including MADS-box genes such as APETALA 
1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF 
CO1 (SOC1), FLOWERING LOCUS T (FT), and a plant-
specific transcription factor LEAFY (LFY) (Amasino and 
Michaels, 2010; Lee and Lee, 2010; Srikanth and Schmid, 
2011). In this Review, I begin with a brief  description of the 
five flowering time pathways in A. thaliana. Then I turn to a 
discussion of the molecular basis of the age pathway and how 
age cues are integrated into other flowering inductive cues.

Flowering behaviour in A.  thaliana can be divided into 
two types, winter annual and rapid cycling, based on their 
requirement for a prolonged exposure to low temperature, 
a treatment called vernalization (reviewed in Heo and Sung, 
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2011; Song et  al., 2012; Song et  al., 2013). Winter annual 
types are late flowering and such a late-flowering phenotype 
can be eliminated by vernalization. Genetic studies have 
revealed that FLOWERING LOCUS C (FLC), a MADS-box 
gene, acts as the master regulator in vernalization pathway. 
Before vernalization, FRIGIDA (FRI), a gene of  unknown 
biochemical function, activates FLC (Choi et  al., 2011). 
FLC delays flowering through repressing FT in the leaves 
and SOC1 at shoot apex (Searle et al., 2006).Transcription 
of  FLC rapidly decreases in response to vernalization. It 
has been demonstrated that the repression of  FLC by cold 
is regulated by complex mechanisms involving long-non-
coding RNAs (lncRNAs), histone modification and higher 
order chromatin assembly (Crevillen et al., 2013; Rosa et al., 
2013; Song et al., 2012; Sun et al., 2013; Zografos and Sung, 
2012). In contrast to winter annual, rapid-cycling accessions 
are early flowering in the absence of  vernalization, which is 
often due to naturally occurring mutations in FRI (Johanson 
et al., 2000).

A.  thaliana is a long day plant, in which the onset of 
flowering is accelerated when the length of  daylight is pro-
longed compared with darkness. Molecular and genetic 
analyses demonstrate that the seasonal changes in day 
length are measured by CONSTANS (CO), which encodes 
a zinc finger and CCT-domain-containing transcription 
factor (Putterill et  al., 1995). co mutants show delayed 
flowering in long days but not in short days (Putterill et al., 
1995). Classical physiological experiments reveal that the 
floral transition in response to day length involves a sys-
temic signal formed in the leaves that induces floral transi-
tion at the SAM. Consistent with this notion, CO is mainly 
expressed in leaf  vascular tissues (An et  al., 2004). CO 
expression is regulated by light at both the transcriptional 
and post-transcriptional level. In short days, the expression 
of  CO peaks after dusk, so that CO protein is subjected to 
COP1-mediated degradation (Jang et al., 2008; Liu et al., 
2008; Valverde et  al., 2004; Yanovsky and Kay, 2002). In 
contrast, CO expression coincides with light in long days, 
which leads to stabilization of  CO. The accumulation of 
CO leads to the activation of  FT, which encodes a puta-
tive phosphatidylethanolamine-binding protein. With the 
help of  an endoplasmic reticulum (ER) membrane protein, 
FT-INTERACTING PROTEIN1 (FTIP1), FT proteins 
move from the leaves to the shoot apex (Corbesier et  al., 
2007; Jaeger and Wigge, 2007; Lin et al., 2007; Liu et al., 
2012; Mathieu et  al., 2007). In the SAM, FT, by binding 
with the transcription factor FD, activates the expression 
of  LFY and MADS-box genes, such as AP1 and SOC1, and 
thereby induces flowering (Abe et al., 2005; Kobayashi and 
Weigel, 2007; Wigge et al., 2005).

In addition to photoperoid and vernalization, GAs also 
play a critical role in flowering time. The GA biosynthetic 
mutant, ga1, never flowers under non-inductive short day 
conditions (Wilson et  al., 1992). GA signalling transduc-
tion is mediated by ubiquitin–proteasome degradation 
(reviewed in Harberd, 2003; Schwechheimer and Willige, 
2009). By binding to GA, GIBBERELLIN INSENSITIVE 
DWARF1 (GID1), a nuclear-localized GA receptor, 

promotes the degradation of  the transcriptional repres-
sors called DELLAs. The Arabidopsis genome encodes five 
DELLA genes, namely REPRESSOR OF GA1-3 (RGA), 
GA INSENSITIVE (GAI), RGA-LIKE 1 (RGL1), RGL2, 
and RGL3 (Murase et al., 2008). The DELLA motif, which 
is 17 amino acid residues long and located in the amino-
terminal of  DELLAs, is essential for the degradation of 
DELLA proteins by the proteasome (Dill et  al., 2001). 
The negative role of  GA on flowering time is mediated 
by DELLAs such as GAI and RGA. The gai or rga-Δ17 
mutant, which carries the deletion of  the DELLA motif, is 
insensitive to GA-induced proteolysis and delays flowering 
(Dill et al., 2001; Peng et al., 1997). It has been shown that 
GAI represses flowering through SOC1 because the expres-
sion of  SOC1 is induced by GA treatment but reduced in 
the gai mutant (Moon et al., 2003). Recent studies identi-
fied two GATA-type transcription factors, GNC (GATA, 
NITRATE-INDUCIBLE, CARBON-METABOLISM 
INVOLVED) and GNL (GNC-LIKE) as new compo-
nents in the GA pathway (Richter et al., 2010). Expression 
analyses indicate that GNC and GNL act downstream of 
DELLAs and promote flowering through activating SOC1 
(Richter et al., 2013).

The autonomous pathway is constituted by a group of 
genes that promote flowering by suppressing FLC. FCA, 
FPA, and FLOWERING LOCUS K (FLK) contain an 
RNA-binding domain (Lim et  al., 2004; Macknight et  al., 
1997; Mockler et al., 2004; Schomburg et al., 2001), whereas 
FY and FLOWERING LOCUS D (FLD) encode a protein 
homologous to the yeast poly-adenylation factor Pfs2p and 
a dimethylated histone H3 at lysine 4 (H3K4me2) demethy-
lase, respectively (He et  al., 2003; Simpson et  al., 2003). It 
has been shown that FCA, interacting with a component of 
the CPSF complex, targets CstF-dependent 3’ processing 
to the proximal site on FLC antisense transcripts. With the 
help of FPA, FY, and FLD, this targeted processing triggers 
localized histone demethylase activity and results in reduced 
FLC sense transcription (Liu et  al., 2010; Manzano et  al., 
2009). Because the regulatory basis of these genes is largely 
unknown, the biological relevance of autonomous pathway 
remains unclear.

In summary, the identities and actions of the components 
in flowering time pathways reveal that photoperiodic path-
way acts as a positive regulator of flowering, whereas other 
pathways promote flowering through alleviating flowering 
repressors. The fact that flowering eventually occurs in the 
photoperiodic mutants indicates that there is another flower-
promoting pathway that ensures plants flower under non-
inductive conditions.

miR156–SPL defines the age pathway

microRNAs (miRNAs) are 21–24 nt long, small noncod-
ing RNAs widely distributed in animals and plants (Bartel, 
2009). It has been shown that plant miRNAs regulate gene 
expression through transcript cleavage (Llave et  al., 2002; 
Reinhart et al., 2002) and translational inhibition (Brodersen 
et al., 2008; Chen, 2004; Li et al., 2013).
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miR156 is one of the most evolutionally conserved miR-
NAs in plants. The targets of miR156 encode a family of 
transcription factors, called SQUAMOSA PROMOTER 
BINDING LIKEs (SPLs) (Cardon et  al., 1999; Rhoades 
et al., 2002). In the Arabidopsis genome, there are 11 SPLs 
targeted by miR156. Based on the size of encoded proteins, 
these SPL genes can be divided into two major groups, 
represented by SPL3 (SPL3, SPL4, and SPL5) and SPL9 
(SPL2, SPL6, SPL9, SPL10, SPL11, SPL13, SPL13-like, 
and SPL15) (Xing et al., 2010). SPL3, SPL4, and SPL5 are 
much smaller than the other gene products, with the DNA-
binding domain making up most of the protein. In addition, 
the miR156-binding site is located in the 3’UTR of SPL3 
(also SPL4 and SPL5) and miR156 regulates SPL3 expres-
sion through transcript cleavage as well as translational inhi-
bition (Gandikota et al., 2007).

Expression of miR156 is temporally regulated. Mature 
miR156 is highly abundant in seedlings and decreases with 
time (Wang et al., 2009a; Wu et al., 2009; Wu and Poethig, 
2006). This expression pattern is observed not only in 
A. thaliana, but also in other species including Arabis alpina, 
Cardamine flexuosa, maize, poplar, rice, and tomato (Bergonzi 
et al., 2013; Chuck et al., 2007; Wang et al., 2011a; Xie et al., 
2012; Yoshikawa et al., 2013; Zhou et al., 2013). The devel-
opmental decline in miR156 is partially mediated by sugars, 
the products of photosynthesis (Proveniers, 2013; Yang et al., 
2011; Yang et  al., 2013; Yu et  al., 2013). Exogenous sugar 
treatment results in a rapid decease in miR156 expression. 
The repression of miR156 by sugar occurs at both transcrip-
tional and post-transcriptional levels. Consistent with these 
findings, the A.  thaliana chlorina1 (ch1) mutant, which has 
impaired photosynthesis, accumulates higher level of miR156 
than wild type. Similarly, defoliation delays juvenile-to-adult 
phase transition with a concomitant rise in miR156 level 
(Yang et al., 2011).

The importance of  miR156 in flowering is inferred from 
the observation that overexpression of  miR156 delays 
flowering (Jung et al., 2011b; Schwab et al., 2005; Schwarz 
et  al., 2008; Wu and Poethig, 2006; Yamaguchi and Abe, 
2012; Zhou and Wang, 2013). Notably, the effect of  miR156 
overexpression on flowering is much pronounced under 
non-inductive short day conditions, together with the fact 
that miR156 expression is regulated by age, indicating that 
miR156 acts as an endogenous flowering cue. In agreement 
with this finding, overexpression of  SPL3 results in an early 
flowering phenotype irrespective of  photoperiodic length 
(Wang et  al., 2009a; Wu and Poethig, 2006; Yamaguchi 
et  al., 2009). In contrast, the effect of  SPL9 on flowering 
time is ambiguous (Wang et al., 2009a). Despite the fact that 
SPL9 overexpression lines flower nearly at the same time as 
wild type, the floral transition of  SPL9 overexpression lines 
is clearly accelerated when the flowering time is measured 
by the number of  leaves produced when the plants start to 
flower. These contradictory results can be explained by the 
negative role of  SPL9 on leaf  initiation rate (Wang et al., 
2008). Indeed, overexpression of  miR156 under a shoot 
apex specific promoter delays flowering without affecting 
leaf  initiation rate (Wang et  al., 2009a). Therefore, these 

results suggest an antagonistic effect between growth rate 
and flowering time, which prevents plants from precocious 
flowering.

The role of miR156 in flowering seems widely conserved 
among angiosperms. Overexpression of miR156 caused late 
flowering phenotype in many species including A.  alpina, 
C.  flexuosa, maize, potato, and rice (Bergonzi et  al., 2013; 
Bhogale et al., 2014; Chuck et al., 2011; Eviatar-Ribak et al., 
2013; Xie et al., 2006; Zhou et al., 2013).

Integration of age and photoperiodic 
pathways

Genetic studies have placed the age pathway in parallel with 
photoperiodic pathway. Overexpression of miR156 in an ft 
background results in a severely delay in flowering (Wang 
et  al., 2009a). In the extreme case, flowering never occurs 
under short day conditions. These results indicate that the 
miR156-mediated age pathway ensures plants flower in the 
absence of exogenous inductive cues.

Recent efforts have provided insight into how the miR156–
SPL module regulates flowering in A.  thaliana. In the juve-
nile phase, the levels of miR156-targeted SPL genes are 
low because of high amount of miR156. As plants age, the 
amount of miR156 is decreased, resulting in an increase in 
miR156-targeted SPL level. SPL3 and SPL9 promote flower-
ing in leaves and shoot apex through two distinct mechanisms 
(Figure 1). In the shoot apex, SPL3 and SPL9 induce flow-
ering through activating MADS-box genes, including AP1, 
LFY, FUL, and SOC1 (Wang et al., 2009a; Yamaguchi et al., 
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Fig. 1. miR156-mediated age pathway. miR156 level is high in juvenile 
phase but significantly reduced in adult phase. As a result, the level of 
miR156-targeted SPLs rises, which leads to activation of miR172 and 
thereby reduction in the levels of miR172-targeted AP2-like genes (AP2, 
TOE1, TOE2, SMZ, and SNZ). In the juvenile phase, miR172-targeted 
AP2-like proteins, with the help of TPL, repress flowering through FT in 
leaves, and flower-promoting genes (AP1, FUL, LFY, and SOC1) in the 
shoot apex. In the adult phase, CO activates FT expression in leaves and 
miR156-targeted SPLs induce flowering through activating the expression 
of flower-promoting genes in the shoot apex.
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2009). Forced expression of SPL3 or SPL9 under the shoot 
apex specific promoter leads to early flowering phenotype 
under both long day and short day conditions (Wang et al., 
2009a).

In leaves, SPL9 activates another miRNA, miR172, by 
direct binding to and transcriptional activation of  MIR172b 
(Wu et  al., 2009). miR172 targets a family of  AP2-like 
transcription factors, including AP2, SCHLAFMUTZE 
(SMZ), SCHNARCHZAPFEN (SNZ), TARGET OF 
EAT1 (TOE1), TOE2, and TOE3 (Aukerman and Sakai, 
2003; Wu et  al., 2009). All these miR172-targeted AP2-
like transcription factors act as flowering repressors. 
Overexpression of  miR172 causes an extremely early flow-
ering phenotype under both short days and long days (Jung 
et al., 2007; Yant et al., 2010), whereas the increased level 
of  TOE1 results in late flowering (Mathieu et  al., 2009). 
Chromatin immunoprecipitation sequencing (ChIP-SEQ) 
analyses reveal that TOE1 and AP2 not only inhibit FT 
expression in leaves, but also repress many other flower-
ing time regulators acting downstream of  FT in the shoot 
apex (Mathieu et al., 2009). The repression of  these genes 
by TOE1 is mediated by TOPLESS (TPL), a transcrip-
tional co-repressor (Causier et al., 2012; Long et al., 2006). 
Intriguingly, AP2 also negatively regulates miR172 and 
positively regulates miR156, suggesting a miR156–miR172 
feedback loop in fine-tuning the flowering response (Yant 
et al., 2010).

Previous studies have suggested that miR156-targeted SPL 
genes act downstream of photoperiodic pathway because 
up-regulation of SPL3 and SPL9 is readily detectable within 
3 days after transfer of vegetative plants from short days to 
inductive long days, and this induction is much reduced in co 
or ft mutants (Schmid et al., 2003). In agreement with this 
finding, SPL3 has been shown to be directly regulated by 
SOC1 (Jung et  al., 2011a) and SPL4 expression is reduced 
in a soc1 ful double mutant (Torti et  al., 2012) (Figure  2). 
Furthermore, mutations in two BELL1-like homeobox genes, 
PENNYWISE (PNY) and POUND-FOOLISH (PNF), 
impair the photoperiodic induction of SPL3, SPL4, and 
SPL5 (Lal et al., 2011).

Another layer of crosstalk between age and photoperiodic 
pathways comes from the regulation of miR172 by photoper-
iodic length in leaves (Figure 2). GIGANTEA (GI) positively 
regulates CO transcription (Fowler et al., 1999; Jung et al., 
2007; Park et al., 1999). miR172 abundance is substantially 
reduced in a gi mutant (Jung et al., 2007). It is suggested that 
GI regulates miR172 at the miRNA processing level because 
the level of primary transcript of MIR172 is not accordingly 
reduced but elevated in a gi mutant.

Crosstalk between age and gibberellin 
pathways

Under non-inductive short day conditions, age and GA 
pathways play the predominant roles in flowering. DELLA 
represses flowering in both leaves and the shoot apex. 
Forced expression of  GA-insensitive RGA or GA catabolic 

genes under leaf  or shoot apex specific promoters results in 
a late flowering phenotype (Galvao et al., 2012; Porri et al., 
2012; Yu et al., 2012). Interestingly, GA treatment does not 
markedly accelerate flowering in an miR156 overexpres-
sion line, indicating that GA promotes flowering partially 
through the miR156–SPL module. In light of  this finding, 
Yu et  al. (2012) revealed that GA and age pathways are 
integrated through a physical interaction between DELLAs 
(RGA, GAI, RGL1, RGA2 and RGL3) and miR156-tar-
geted SPL9-like proteins (SPL2, SPL9, SPL10 and SPL11). 
The binding of  RGA to SPL9 interferes with SPL9 tran-
scriptional activities on MIR172b, SOC1, and FUL. As a 
result, DELLA delays flowering by reducing FT expression 
through repressing miR172 in leaves, whereas it inhibits flo-
ral transition by repressing SOC1 and FUL in the shoot 
apex (Figure 3).

Integration of age and vernalization 
pathways

In A.  thaliana, plants become competent to vernalization 
after germination. However, recent studies indicate that age 
regulates the timing of  sensitivity in response to vernaliza-
tion in A. alpina and C. flexuosa, two polycarpic perennials 
closely related to A. thaliana. Independently, Wang et al. and 
Zhou et al. revealed that young A. alpina and C. flexuosa are 
insensitive to cold treatment (Wang et al., 2011b; Zhou et al., 
2013). This flowering behaviour is mediated by the levels of 
miR156 and miR172 (Bergonzi et al., 2013; Zhou et al., 2013). 
Overexpression of  miR156 prevents flowering in response to 
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Fig. 2. Integration of age and photoperiodic pathways. The integration 
of age and photoperiodic pathways take place at two levels (purple 
arrow lines). First, miR172 abundance is regulated by photoperiod via 
GI-mediated miRNA processing. Second, miR156-targeted SPLs acts not 
only in parallel with, but also downstream of photoperiodic pathway. The 
level of miR156-targeted SPLs is rapidly induced when A. thaliana plants 
are shifted from short days to long days. This action seems to be mediated 
by two MADS-box genes, SOC1 and FUL.
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vernalization, whereas the reduced activity of  miR156 or 
PERPETUAL FLOWERING2 (PEP2, an miR172-targeted 
AP2-like gene) results in an accelerated acquisition of  flo-
ral competence in response to vernalization. In addition, 
A. alpina TERMINAL FLOWER1 (AaTFL1) was found to 
block flowering of  young A.  alpina plants exposed to ver-
nalization (Wang et al., 2011b). The integration of  age and 
vernalization pathways thus offers an advantage for the per-
ennial growth habit by ensuring that plants do not flower 
until they develop axillary vegetative shoots and sufficient 
biomass.

Although the role of  miR156 and miR172 in setting a 
threshold for the sensitivity in response to vernalization is 
conserved between A. alpina and C. flexuosa, the underlying 
molecular mechanism differs in the following two aspects 
(Fig.  4). First, C.  flexuosa FLC expression is not reduced 
when miR172-targeted AP2 group genes are suppressed by 
miR172 overexpression, whereas PEP1, the A. alpina FLC 
orthologue (Wang et  al., 2009b), is decreased in the pep2 
mutant (Fig. 4). Second, the expression of  flowering activa-
tor miR172 is coupled with the flowering repressor miR156 
in A. thaliana, maize, rice, and poplar. In C. flexuosa, miR172 
is similarly linked to miR156, whereas it seems that A. alpina 
is an exception from this rule (Fig. 4). Interestingly, although 
the level of  miR172 is not increased during vegetative phase, 
a rise in miR172 abundance is observed in developing flo-
ral primordia, which leads to alleviate the flowering repres-
sive effect of  miR172-targeted AP2-like proteins (Bergonzi 
et al., 2013).

The above two differences reflect different strategies in 
the two perennial species. In A. alpina, because PEP2 posi-
tively regulates FLC, miR172-targeted AP2-like genes have 
to be uncoupled from miR156 and its SPL targets. Otherwise, 
the age-dependent increase in miR172 will cause a loss of 
FLC activity and thus promote flowering. Conversely, in 
C.  flexuosa, because miR172 has remained under the con-
trol of miR156–SPL module, FLC has to be uncoupled from 
miR172-targeted AP2-like genes (Fig. 4).

Future directions

The past 20  years have witnessed a great increase in our 
knowledge of the basic molecular mechanisms of flower-
ing. Most remarkably, functional genetic studies in A. thali-
ana and rice have identified signalling pathways that act as 
master regulators of floral transition and that are conserved 
in monocots and dicots. Growing evidence suggests that the 
integration of each floral inductive cue varies in different spe-
cies. As described above, although both vernalization and age 
pathways operate in A.  thaliana, this species does not have 
a pronounced age-dependent vernalization response. Thus, a 
major challenge in the future will be to understand how the 
flowering pathways are differentially regulated and integrated 
in different species.

The identification of  sugar as an upstream regulator of 
miR156 suggests that sugar may play an important role 
in flowering. Consistently, trehalose-6-phosphate (T6P), 
a disaccharide molecule, was recently revealed as a new 

Shoot apex

Long-day

miR172SPL

Light

COmiR156

GA

DELLA

Age

FT
Leaf

Short-day

DELLA SPL

Flowering: ON

SPL

Flowering: OFF

miR172, FUL, SOC1

DELLA

GAA

B

miR172SPL

miR156

GA

DELLA

Age

FT

MADS-boxSPL

miR156

GA

DELLA

Age

FT

Flowering

MADS-boxSPL

miR156

GA

DELLA

Age

Flowering

lo
ng

-d
is

ta
nc

e 
m

ov
em

en
t

GNC GNC
/GNL /GNL

miR172, FUL, SOC1

AP2-like AP2-like

Fig. 3. Integration of Age and GA pathways. (A) DELLA acts a repressor of miR156-targeted SPL. The binding of DELLA with SPL inhibits the 
transcriptional activation of SPL targets, such as miR172, FUL, and SOC1. (B) DELLA represses flowering in two distinct mechanisms. The binding of 
DELLA with miR156-targeted SPLs compromises the activation of miR172 in leaves, and the activation of MADS-box genes (SOC1 and FUL) in the 
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regulator of  flowering (van Dijken et al., 2004; Wahl et al., 
2013). Therefore, another challenge in future is to explore the 
means by which carbohydrate or energetic status regulates 
flowering.
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