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In the recent years, the peroxisome proliferator-activated receptor-γ (PPAR-γ), a well known target for type II diabetes treatment,
has received an increasing attention for its therapeutic potential in inflammatory and degenerative brain disorders. PPAR-γ
agonists, which include naturally occurring compounds (such as long chain fatty acids and the cyclopentenone prostaglandin
15-deoxy ∆

12,14 prostaglandin J2), and synthetic agonists (among which the thiazolidinediones and few nonsteroidal anti-
inflammatory drugs) have shown anti-inflammatory and protective effects in several experimental models of Alzheimer’s and
Parkinson’s diseases, amyotrophic lateral sclerosis, multiple sclerosis and stroke, as well as in few clinical studies. The pleiotropic
effects of PPAR-γ agonists are likely to be mediated by several mechanisms involving anti-inflammatory activities on peripheral
immune cells (macrophages and lymphocytes), as well as direct effects on neural cells including cerebral vascular endothelial
cells, neurons, and glia. In the present article, we will review the recent findings supporting a major role for PPAR-γ agonists
in controlling neuroinflammation and neurodegeneration through their activities on glial cells, with a particular emphasis on
microglial cells as major macrophage population of the brain parenchyma and main actors in brain inflammation.

Copyright © 2008 A. Bernardo and L. Minghetti. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The peroxisome proliferator-activated receptor-γ (PPAR-γ)
belongs to the hormone nuclear receptor super family. It is
a ligand-dependent transcription factor activated by both
naturally occurring compounds, such as long chain fatty
acids and the cyclopentenone prostaglandin 15-deoxy ∆12,14

prostaglandin J2 (15d-PGJ2), and synthetic agonists, includ-
ing the thiazolidinediones (TZDs), and few nonsteroidal
anti-inflammatory drugs (NSAIDs). Because of their role in
the regulation of genes involved in lipid and carbohydrate
metabolism, PPAR-γ and the other two isoforms PPAR-α and
δ, deeply affect lipid homeostasis and insulin sensitivity [1–
3]. The TZDs rosiglitazone (Avandia�), and pioglitazone
(Actos�), introduced on the market in the early 1990s, are
currently in clinical use to control blood glucose levels in
subjects affected by type II diabetes.

In the last decade, accumulating evidence suggests
that, besides diabetes and metabolic syndrome [4], PPAR-
γ agonists have significant therapeutic potential in brain

disorders. A large number of experimental studies and few
clinical observations have suggested that PPAR-γ ligands may
be successfully exploited to treat a wide range of neurological
diseases, ranging from neurodegenerative diseases, to trau-
matic injuries, stroke, and demyelinating diseases, as recently
reviewed by Heneka et al. [5]. In Alzheimer’s disease (AD)
transgenic mouse models, the TZD rosiglitazone attenuated
learning and memory deficits [6], in line with its ability to
promote cognitive preservation in patients with early AD
[7, 8]. In amyotrophic lateral sclerosis (ALS) and Parkinson’s
disease animal models, the TZD pioglitazone ameliorated
the disease symptoms [9, 10]. In rodent focal ischemia
models, both pioglitazone and rosiglitazone decreased the
infarct volume [11–13]. Furthermore, the natural agonist
15d-PGJ2 was shown to decrease the neurological deficits
after experimental intracerebral hemorrhage [14] and its
plasma levels in stroke patients were found directly correlated
to the neurological outcome [15]. Rosiglitazone and piogli-
tazone decreased secondary neuronal damage, astrogliosis,
microglial activation, myelin loss, and neuropathic pain

mailto:luisa.minghetti@iss.it


2 PPAR Research

PPAR-γ agonists

Brain cellular targets

Astrocytes Microglia

Oligodendrocytes Neurons

Functional outcomes

Modulation of
glial activation
neuroinflammation

Prevention of
neurodegeneration
demyelination

Figure 1: Cellular targets of PPAR-γ agonists in neurodegenerative
diseases. PPAR-γ agonists can control neuroinflammation, neu-
rodegeneration, and demyelination by effecting several cellular tar-
gets and by several direct and indirect mechanisms. PPAR-γ agonists
can control glial activation, preventing a number of proinflam-
matory activities that can contribute to myelin/OL damage and
neurotoxicity PPAR-γ agonists may also affect OLs and neurons,
by preventing release inflammatory mediators and/or promote the
synthesis of soluble factors or membrane-bound molecules that
control glial activation.

in animal models of spinal cord injury while improving
motor function recovery [16]. In experimental autoimmune
encephalomyelitis (EAE), a well known model for autoim-
mune demyelinating diseases, synthetic, and natural PPAR-γ
ligands—as well as some PPAR-α or δagonists—have been
reported to ameliorate clinical symptoms, to reduce expres-
sion of pro-inflammatory cytokines and chemokines, to
decrease brain inflammation, demyelination and glial activa-
tion, and to delay the onset of disease [17–25]. More recently,
promising results obtained in experimental models of ocular
diseases have evidenced that PPAR-γ could be targeted to
control inflammation and treat invalidating diseases such
as diabetic retinopathy and optic neuritis, a demyelinating
disease of the optic nerve frequently associated to multiple
sclerosis (MS) (see for review [26]). Nonetheless, in spite
of the amount of data on the therapeutic activities of PPAR
agonists in EAE, clinical studies are still lacking and reports
on their clinical use in MS or optic neuritis are still anecdotal
[27]. Clinical trials are, however, in course with pioglitazone
and rosiglitazone [5].

The beneficial effects of PPAR-γ agonists in degenerative,
inflammatory and traumatic brain pathologies are most
likely mediated by several mechanisms, which may be
disease-specific and involve both peripheral and central anti-
inflammatory activities, by affecting crucial functions of
peripheral (macrophages and/or lymphocytes) and central
(microglial cells) immune cells. Besides microglia, PPAR-
γ agonists can act on other neural cell types, including
astrocytes, neurons, and oligodendrocytes (Figure 1).

Several of the beneficial effects of PPAR-γ result from
its ability, once activated by specific ligand, to control the

expression of proinflammatory genes, through the binding
of specific sequences in their promoter regions—the per-
oxisome proliferator response elements (PPREs)—but also
independently from its DNA-binding activity, by a mecha-
nism termed transrepression, which have just begun to be
elucidated [28]. In addition, some PPAR-γ ligands may exert
specific activities independently from PPAR-γ. Among these,
of great interest is the ability of a few TZDs to directly
influence mitochondrial function by binding to target sites
in mitochondria including the Complex I of the respiratory
chain and the newly described protein mitoneet [29].

2. PPAR-γ: STRUCTURE, FUNCTIONS, AND AGONISTS

The PPAR-γ and the two closely related PPAR-α and PPAR-δ
(also known as β, NUC-1, or FAAR) share a high homology,
but differ for tissue distribution and ligand specificity [2].
PPAR-α is mainly expressed in tissues with high catabolic
rates of fatty acids, such as the liver, muscle, and heart,
whereas PPAR-δ shows a much wider distribution. PPAR-γ is
highly expressed in adipose tissue and in cells of the immune
system, including lymphocytes and macrophages. In the
brain, PPAR-γ is expressed in several cell types including
microglia, astrocytes, oligodendrocytes, and neurons.

PPAR-γ protein shows a remarkable conservation across
species. Human and the murine PPAR-γ proteins show
95% identity at the amino acid level. The human PPAR-
γ gene is located on chromosome 3 and generates at least
three mRNA transcripts, PPAR-γ1, PPAR-γ2, and PPAR-
γ3 [30–32]. PPAR-γ1 e PPAR-γ3 mRNAs encode for the
same protein, while PPAR-γ2 mRNA gives rise to a protein
containing 28 additional amino acids at the N-terminus.

At protein level, all three PPARs show a similar organi-
zation in five different functional domains, two of which—
the DNA-binding domain (DBD) and the ligand-binding
domain (LBD)—are the highly conserved [2]. The DBD
contains the two zinc finger-like motifs that recognize the
DNA target, and can be considered the hallmark of the nu-
clear receptor superfamily. The LBD conserves a common
three-dimensional structure, which hosts a particularly large
ligand-binding cavity, of which only 30–40% is occupied
by the ligand. The relatively free nonspecific interaction
between the cavity and the hydrophobic domains of the
ligand explains the low ligand-specificity of PPARs. Nonethe-
less, the LBDs of the three PPAR isotypes have sufficiently
divergent amino acid sequences to allow some ligand speci-
ficity.

Several unsaturated fatty acids bind to all three PPAR iso-
forms, whereas saturated fatty acids are in general poor PPAR
ligands. However, given the relatively high concentration of
lipids required for PPAR activation (in the micromolar or
submicromolar concentration range), their “in vivo” role as
PPAR ligands remains a controversial issue. Some arachi-
donic acid metabolites are more effective PPAR-γ ligands
than the precursor. In particular, 15d-PGJ2, characterized by
a reactive α,β-unsaturated ketone in the cyclopentenone ring,
was the first PPAR-γ endogenous ligand, described in 1995 by
two independent groups [33, 34].
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The implication of PPAR-γ in several important
metabolic and degenerative disorders, has strongly pushed
the research of specific PPAR-γ agonists and antagonist
(for review see [35]). A major group of synthetic PPAR-
γ agonists is represented by the antidiabetic drugs TZDs,
originally identified for their ability to improve the insulin
sensitivity of diabetic animals. Pioglitazone and rosiglitazone
belong to this group of high-affinity ligand. A different
series of synthetic PPAR-γ ligands are derived by L-tyrosine
GI262570, GW1929, and GW7845, which were developed
on the basis of their activity on human PPAR-γ and are
among the most potent PPAR-γ agonists, being active at low
nanomolar concentrations.

In addition to these groups of ligands, several members
of the heterogeneous NSAID family have been described
as agonists for PPARs [35] and reference therein. In most
cases, the doses required for PPAR-γ agonist activity are
in the high micromolar range, thus largely exceeding those
required for in vivo inhibition of cyclooxygenases (COXs),
the main target of these drugs. Among NSAIDs, aspirin and
acetaminophen (or paracetamol) lack of agonistic activity for
any of the PPAR subtypes, whereas indomethacin, ibuprofen,
and diclofenac are selective for the γsubtype. Recently,
we have shown that the two nitric oxide (NO)-releasing
derivative of flurbiprofen, HCT1026 and NXC 2216, were
both able to activate PPAR-γ and induce its specific binding
to a PPRE sequence [36, 37]. Few antagonists are also
available, but their use is often limited by partial agonistic
activity. The plasticizer biphenol A diglycidyl ether (BADGE)
and the irreversible antagonist GW9662 are among the most
widely used.

3. PPAR-γ AGONISTS AND
OLIGODENDROCYTE BIOLOGY

Oligodendrocytes (OLs) are the myelin-forming cells of the
CNS. Their differentiation from precursor to mature cells
occurs through a series of stages that can be defined by
morphological and antigenic changes occurring in vivo as
well as in culture systems [38]. During development and
repair OLs extend elongated processes, forming multilamel-
lar sheaths around neuronal axons. The formation, growth,
and maintenance of the myelin sheath are prominent parts
of neural development and nervous system function. As for
OL maturation, myelin formation is a multistep process,
involving recruitment to germination sites, proliferation of
undifferentiated OL progenitors and their differentiation
to mature OLs, producing myelin. Damage to OLs as a
result of oxidative stress is considered a key pathogenetic
pathway in several adult and infant human diseases. A
substantial number of in vitro and in vivo studies has shown
a maturation-dependent vulnerability to oxidative stress of
the OL lineage [39–41], suggesting that OL progenitor is a
key target for limit white matter damage and promote myelin
repair [42]. Oligodendrocytes are major lipid producing
cells, as required for myelin formation and maintenance.
Given the role of PPARs in lipid metabolism it is conceivable
that this group of nuclear receptor play a major role in OL
differentiation and function. Although PPAR-β/δ has been
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Figure 2: PPAR-γ expression in culture rat oligodendrocytes and
in white matter (postnatal day 19) in rat model of global perinatal
asphyxia. (a) Immunocytochemistry of rat OL progenitor cultures,
prepared as previously described [40] for PPAR-γ (upper panel)
and the OL marker O4 (lower panel). (b) Western blot analysis of
white matter homogenates from rats at postnatal day 19 subjected
to 20 minutes of perinatal asphyxia (hypoxic) and from controls,
prepared as described in Piscopo et al. [48]. Inset show the
decreased levels of MBP in hypoxic rats at pnd 19.

long considered the PPAR type mainly expressed in OLs and
involved in myelination [43, 44], recent findings support an
important role for PPAR-γ activators in OL protection and
differentiation. The first evidence for a role of PPAR-γ in OL
differentiation was reported by Roth et al. [45]. By using the
B12, oligodendrocyte-like cell line and primary cultures of
spinal cord OL precursors, the authors first demonstrated
that these cells expressed all three PPAR isoforms and found
that natural and synthetic PPAR-γ agonists, but not other
isoform activators, enhance process extension and cell matu-
ration. These effects were blocked by the PPAR-γ antagonist
GW9662. The maturation of pre-OLs was accompanied by
enhanced expression of alkyl-dihydroxyacetone phosphate
synthase (ADAPS), a peroxisomal enzyme required for the
synthesis of plasmalogen, an etherphospholipid essential for
myelin formation. These observations suggest that PPAR-γ
mediated mechanisms may be important for OL differentia-
tion and peroxisome functions. An important role for these
organelles in maintaining OL and white matter integrity has
been recently demonstrated in mutant mice characterized
by the selective absence of functional peroxisomes from OLs
[46]. In line with the proposed role of PPAR-γ in controlling
OL differentiation and functions, we have recently confirmed
the expression of PPAR-γ in highly purified rat OL cultures
(Figure 2(a)). The level of expression is increased with the
OL maturation in vitro (Bernardo et al., in preparation). In
addition, we found an increased expression of PPAR-γ in
white matter of young rats (post natal day 19) exposed to
perinatal global asphyxia (Figure 2(b)). This model mimics
some of the features of perinatal asphyxia, a major cause
of immediate and delayed brain damage in the newborn
[47, 48], and is characterized by early oxidative stress, delayed
behavioral deficits, and alteration in myelin formation, as
indicated by the strong reduction of myelin basic protein
(MBP) expression (Figure 2(b)). Whether PPAR-γ over-
expression is part of an adaptive response to the hypoxic
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condition aimed at restoring myelin formation or is part of
an aberrant program leading behavioral impairment remain
to be established.

In apparent contrast with the above findings, Xiang
et al. [49], reported that the PPAR-γ natural ligand 15d-
PGJ2, but not other PGs, induced apoptosis of OL precursor
cell lines (mOP and CG4 cell lines). The toxic effect was
developmental stage-dependent, being the undifferentiated
mOP cells more susceptible than differentiated cells. In line
with observations previously reported in microglia cultures
[50], cell death was independent of the nuclear receptor
PPAR-γ. Since the toxic effect of 15d-PGJ2 was prevented
by preincubation of cell cultures with N-acetyl cysteine, a
reducing agent and a precursor molecule for glutathione
(GSH) synthesis, but not with free radical scavengers, the
authors suggest that the underlying mechanism is related to
oxidative stress due to depletion of GSH.

4. PPAR-γ AGONISTS AND ASTROCYTES

Astrocytes are most abundant glial cells in the CNS and
crucial players in brain homeostasis. Among other functions,
they provide metabolic support for neurons, uptake neu-
rotransmitters such as glutamate, synthesize neurotrophic
factors, and contribute to ion homeostasis (i.e., potassium
uptake) and blood-brain barrier induction and maintenance
[51]. In addition, astrocytes exert important roles also in
brain inflammation and immunity, as they express several—
though fewer than microglia—pattern-recognition receptors
(PRRs) such as for example the Toll-like receptors, and
release cytokines and chemokines that can trigger or amplify
the local inflammatory response [52]. Similar to microglia,
astrocytes rapidly react to a wide array of insults or dam-
aging events. Reactive astrocytes, which are characterized by
increased expression of glial fibrillary acidic protein (GFAP),
a constituent of the intermediate filaments, are typical
of most brain pathologies. Thus astrocytes represent an
important target for anti-inflammatory and neuroprotective
therapeutic strategies.

Astrocytes express PPAR-γ [53, 54], and accumulating
evidence over the last ten years indicates that PPAR-γ
agonists modulate astrocyte functions.

In rat cortical slices and cultured astrocytes, the TZD pio-
glitazone was found to significantly increase glucose con-
sumption in time- and dose-dependent manners, through
a mechanism independent of PPAR-γ and involving cAMP/
PKA signaling [55]. Pioglitazone did not modify the expre-
ssion of the glucose transporter GLUT-1, which is mainly
expressed in glial and endothelial cells, but rather it
increased glucose flux through pre-existing GLUT-1 protein.
In addition, pioglitazone increased lactate production and
release, induced mitochondrial membrane hyperpolariza-
tion, and protected astrocytes against hypoglycemia-induced
cell death. On the basis of their studies, the authors suggest
that TZDs modulate enzyme activities present within the
mitochondrial membrane causing increased cytosolic pyru-
vate, resulting in greater lactate production. The inhibitory
effect on mitochondrial function is compensated by an
increase in anaerobic glycolysis allowing for continued ATP

production. Eventually, the reduced intracellular glucose
levels are replenished by glucose transport through the
GLUT-1. At later times, mitochondrial respiration recovers,
and accumulated ATP utilized to maintain and increase
the membrane potential. Because hyperpolarization of the
mitochondrial membrane is postulated to be protective,
the net result of TZD treatment, at least in astrocytes, is
protective and allows cells to withstand subsequent noxious
stimuli [55]. Altogether, these results suggest that TZD-
induced alteration of astrocyte metabolism and mitochon-
drial function could be beneficial in neurological conditions,
in which glucose availability is reduced.

Another important mechanism by which PPAR-γ ago-
nists could exert neuroprotection by influencing astrocyte
functions is the enhancement of glutamate uptake. Romera
et al. [56] reported that the PPAR-γ antagonists T0070907
prevented the ischemic preconditioning-induced (IPC) neu-
roprotection in neuronal-astrocytic cocultures subjected
to oxygen-glucose deprivation (ODG) and reversed the
inhibitory effect of IPC on OGD-induced glutamate release.
In addition, rosiglitazone and the non-TZD agonist L-
796,449 induced a concentration-dependent increase in
glutamate transporter GLT-1 expression and [3H] glutamate
uptake in rat astrocytes. In addition the authors identified
six putative PPREs in the promoter region of GLT1/EAAT2
gene, suggesting GLT1/EAAT2 glutamate transporter is a
novel PPAR-γ target gene [56]. Finally, 15d-PGJ2 remarkably
increase the synthesis and release of neurotrophic factor
nerve growth factor (NGF) in mouse primary astrocytes,
which could further contribute to neuroprotection [57].

As mentioned above, activated astrocytes produce cytok-
ines and other molecules involved in inflammatory response,
which are thought to significantly contribute to brain da-
mage. Such neurotoxic activities have been shown to
be reduced by PPAR-γ agonists in several experimen-
tal paradigms. The two TZD compounds NP00111 and
NP01138 were reported to inhibit the production of nitric
oxide (NO), IL-6, and TNF-α as well as expression of
the inducible enzymes iNOS and COX2 induced in LPS-
stimulated astrocyte and microglial cultures [58]. Con-
sistently with the described anti-inflammatory activities,
the two compounds were neuroprotective in an animal
model in which of brain damage is induced by kainic acid
administration [59]. Both in vitro and in vivo effects were
substantially attenuated by cotreatment with the PPAR-γ
antagonist GW9662, supporting the involvement of PPAR-γ
activation.

In contrast to the above described TZDs, the natu-
ral ligand 15d-PGJ2 prevented the IL-1β-induced COX-
2 mRNA accumulation in human astrocytes, through a
PPARγ-independent mechanism [60]. Similarly, Lennon
and colleagues [61] showed that ciglitazone and 15d-PGJ2

activated the MAP kinase cascades (Erk, Jnk, and p38 MAP
kinase) in astrocytes by a PPAR-γ independent mechanism,
which required the presence of ROS. Again, independently of
PPAR-γ, 15d-PGJ2 and rosiglitazone reduced the phospho-
rylation of signal transducers and activators of transcription
(STAT) 1 and 3 as well as Janus kinase 1 (JAK1) and JAK2 in
activated astrocytes and microglia [62].



A. Bernardo and L. Minghetti 5

Recently, Xu and Drew [63] extended the analysis of
the anti-inflammatory activity of PPAR-ligands to other
inflammatory mediators belonging to the IL-12 family of
cytokines. They found that in primary astrocytes, LPS
induced the production of IL-12p40, IL-23, and IL-27p28
proteins, which was significantly reduced in the presence
of 15d-PGJ2. Since these cytokines play critical roles in the
differentiation of T helper (Th) 1 and Th17 cells and are
likely to contribute to the development of multiple sclerosis,
this observation further support the potential role of PPAR-γ
agonists in MS treatment [5, 64].

In line with the beneficial effect of PPAR-γ agonists in
experimental models of inflammatory diseases, PPAR-γ has
also been involved in anti-inflammatory functions of IL-4,
a Th2 type cytokine, which plays an important role in con-
trolling Th1 cell responses and resolution of inflammation.
Paintlia et al. [65] demonstrated that the inhibition of iNOS
expression and the increase of survival of differentiating OPs
induced by IL-4 in inflammatory cytokine-stimulated mixed
cultures are mediated by PPAR-γ activation. In support of
their conclusions, the authors describe a coordinate increase
in the expression of both PPAR-γand its natural ligand-
producing enzyme 12/15-lipoxygenase (12/15-LOX) in IL-
4-treated glial cells and show that IL-4-induced PPAR-γ
activation antagonizes NF-κB transactivation in inflamma-
tory cytokine-stimulated astrocytes. A similar upregulation
of PPAR-γ by IL-4 was demonstrated in cultured microglial
cells [66]. To link between IL-4 and PPAR-γ is completed
by the observation that the anti-inflammatory activity of the
TZD troglitazone was mediated by its ability to increase IL-4
expression in glial cultures [67].

Astrocytes recognize and react to several pathogens
through their repertoire of PPRs [52]. In a recent study,
15d-PGJ2 and ciglitazone suppress the production of IL-1β
and NO in Staphylococcus aureus-stimulated astrocytes [68].
Interestingly, 15d-PGJ2 attenuated TLR2 expression, the PPR
recognizing Staphylococcus aureus. Importantly, 15d-PGJ2

and ciglitazone were still capable of inhibiting the release
of proinflammatory mediators induced by Staphylococcus
aureus in PPAR-γ-deficient astrocytes, supporting PPAR-
γ-independent effects of these compounds. In another
study, 15d-PGJ2 significantly attenuated astrocyte reaction
to mycotoxin ochratoxin A (OTA), a widespread food
contaminant that accumulates in the brain. At noncytotoxic
concentrations, OTA down-regulated GFAP expression while
it upregulated vimentin. Interestingly, OTA increased PPAR-
γ expression, possibly increasing the susceptibility of OTA-
exposed cells to PPAR-γ agonist treatment [69].

5. PPAR-γ AGONISTS AND MICROGLIAL CELLS

Microglia derive from myeloid precursors that enter the
developing CNS to become the major population of
brain resident macrophages. Under physiological conditions,
microglia show a ramified morphology and the absence of
cell-surface and cytoplasmic molecules typically associated
with other tissue macrophages. In this quiescent or “resting”
state microglia are able to “sense” subtle environmental
changes to which they rapidly react [70]. Although our

knowledge on microglial in physiological conditions is still
limited, using transgenic mice showing specific expression
of enhanced green fluorescent protein in microglia and in
vivo two-photon microscopy, it was shown that “resting”
microglia constantly survey the surrounding microenviron-
ment with extremely motile processes and protrusions [71].
Once activated, microglia rapidly undergo morphological
changes, characterized by cell body enlargement, loss of
ramified processes, and upregulation of cell-surface and/or
cytoplasmic antigens. In addition, activated microglia can
synthesize a range of different molecules, including free
radicals, inflammatory cytokines, chemokines, lipid medi-
ators, and neurotrophic factors, whose typical profile will
determine the outcome of microglial activation in term
of repair or injury [70]. Although in the past activated
microglia have been regarded mainly as detrimental for the
surrounding cells and as major players in neurodegenerative
processes, it is now clear that activated microglia play
complex and multifaceted roles, which need to be defined
within each disease. Importantly, the different states of
activation can be switched between one state and another
during the course of disease or in response to further stimuli
or signals from the periphery [72].

A deeper knowledge of microglial biology and of the
molecular mechanisms underlying the acquisition of protec-
tive versus detrimental functions is crucial for finding new
molecular targets and developing effective treatments for a
wide range of neurological disorders.

In this view, PPAR-γ agonists have been extensively
studied in the last decade for their therapeutic potential as
key molecules in preventing the undesired toxic effects of
microglial activation [35, 73].

One of the first finding supporting a role for 15d-
PGJ2 as endogenous regulator of microglial activation—15d-
PGJ2 derives from PGD2, a major PG synthesized within
the brain by most neural cells—was provided by Petrova
et al. [74], who demonstrated that this PPAR-γ natural
ligand attenuates iNOS expression, and the subsequent
NO accumulation, in the murine BV-2 microglial cell line
stimulated by LPS. Since the TZD troglitazone did not affect
the NO pathway, it was suggested that 15d-PGJ2 inhibits
iNOS expression by a PPAR-γ independent mechanism. The
same authors then demonstrated that 15d-PGJ2 decreases the
production of TNF-α, IL-1β and the expression of COX-2 in
the same cell system while increasing the expression of the
antioxidant enzyme hemeoxygenase-1 and the intracellular
levels of glutathione [75].

Bernardo et al. [76] showed for the first time that pri-
mary microglial cells, unlike BV-2 cells, express PPAR-γ
and that such basal expression is increased by its specific
agonists, while it is reduced in the presence of microglial
activators such as LPS and IFN-γ. Microglial PPAR-γ was
subsequently shown to be functionally active, being able to
bind specific PPRE sequences upon activation by natural
and synthetic agonists [50]. Similar to BV-2 cell line,
in primary microglial cultures 15d-PGJ2 prevented LPS-
induced iNOS expression and TNF-α production as well
as IFN-γ-induced expression of major histocompatibility
complex (MHC) class II antigens, by mechanisms involving
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PPAR-γ activation and reduced activation of STAT-1 and NF-
κB, which are known to mediate IFN-γ and LPS signaling
[76]. In human microglial cells, 15d-PGJ2 did not affect NF-
κB binding activity although it decreased STAT-1 expression
and enhanced expression and binding activity of the AP-
1 proteins J-Jun and c-Fos [60]. It was then reported that
15d-PGJ2 inhibits IL-12 synthesis in rat primary microglia
and mouse cell line N9, activated either by LPS alone or
in combination with IFN-γ or TNF-α [63, 77]. 15d-PGJ2

attenuated microglial activation also when elicited by Gram-
positive bacteria Staphylococcus aureus, by inhibiting the
expression of proinflammatory cytokines and the chemokine
monocyte chemoattractant protein-1 (MCP-1) [73, 78].

In cortical mixed neuron-glial cultures 15d-PGJ2, cigli-
tazone and troglitazone prevented LPS-induced neuronal
death, suggesting a PPAR-γ mediated mechanism of neu-
roprotection [79]. Similarly, 15d-PGJ2, ciglitazone, troglita-
zone and two NSAIDs indomethacin and ibuprofen reduced
the neurotoxicity of microglial cells exposed to β-amyloid
fibrils [80]. In this cell system, COX-2-specific inhibitors
failed to promote neuronal survival, suggesting protective
mechanisms independent of COX-2 metabolism.

In addition to indomethacin and ibuprofen, we have
reported that two NO-releasing derivative of flurbiprofen,
HCT1026 and NXC 2216, were able to prevent microglial
activation by activating PPAR-γ [36, 37]. Interestingly, NCX
2216 after an initial activation induced PPAR-γ nitration
and inactivation. These effects were paralleled by a transient
reduction of TNF-α and NO production and a protracted
inhibition of IL-1β and PGE2 synthesis, suggesting a dynamic
regulation of the functional state of activated microglia by
NCX 2216. Long treatment with NCX 2216 could therefore
lead, after an initial activation of PPAR-γ, to a protracted
suppression of its control over microglial activation. Our
results could help explaining why among the few NSAIDs
with Aβ-lowering activity (reviewed by [81]), only in the case
of protracted administration of NCX 2216 in an AD animal
model, the reduction of cerebral amyloid load accompanied
by a sustained microglial activation [82].

The contribution of PPAR-γ-dependent or independent
mechanisms to the inhibition of microglial activation by
15d-PGJ2 seems dependent on the cell type (primary versus
transformed cell lines; fetal versus neonatal), or on concen-
tration of the ligand. In rat primary microglial cultures, we
have shown [50] that 15d-PGJ2 at concentrations several fold
lower than those required for PPAR-γ activation, effectively
reduced the LPS-stimulated production of PGE2 by directly
preventing the enzymatic activity of COX-2 rather than its
expression, as previously described in activated monocytic
cell lines [80, 83] and in BV-2 cells [75]. The reduction of
COX-2 enzymatic activity could be achieved through the
modifications of key cysteine residues [84], as suggested by
the ability of 15d-PGJ2 electrophilic α,β-unsaturated ketones
to modify several cellular proteins [85, 86]. At concentration
10 times higher than those required to activate PPAR-γ, 15d-
PGJ2 induced microglial cell impairment and death by apop-
tosis [50]. The effects were stronger in activated microglia
than in unstimulated cells, suggesting that this agent may
prevent excessive microglial activation by promoting their

elimination by apoptosis thus contributing to the resolution
of inflammation as previously suggested in peripheral tissues
[87, 88].

Although apoptosis by 15d-PGJ2 has been shown in sev-
eral cells, the link between the proapoptotic effect of 15d-
PGJ2 and PPAR-γ activation is still controversial. As before
this may be linked to cell types and their degree of differ-
entiation or transformation. For example, as opposed to the
observations reported in primary microglia, the induction

of apoptosis in T-cells and human and rat glioma cell lines
appears mediated by PPAR-γ-dependent mechanisms [61,

87, 89–91].

6. CONCLUSIONS

In the last decade, there has been an increasing number of
experimental studies supporting the use of PPAR-γ ligands
to treat major disabling brain diseases, with a high social
burden and impact on health case system. The compelling
evidence obtained in experimental studies is complemented
by sparse, but very encouraging clinical studies. The positive
outcomes in animal models of AD, due to the ability of
PPAR-γ agonists to reduced inflammation and the amyloid
burden by various mechanisms, have found some validation
in a pilot clinical trial in which AD patients treated for
6 months with rosiglitazone showed reduced attention
and memory deficits [7]. In a second recent trial, the

improvement in cognition after 6 months of rosiglitazone
treatment was significant only in AD patients who did not
have the ε4 allele of the apolipoprotein E [92], a genotype

associate with a higher risk to develop AD. Similarly, the
better neurological outcome reported after administration of
PPAR-γ ligands in experimental stroke models are consistent
with the result of a small clinical trial reporting that patients
with diabetes receiving pioglitazone or rosiglitazone had
an improved functional recovery after stroke compare to
patients, who have not used any TZD [93]. Furthermore,

a large clinical trial has demonstrated that pioglitazone
reduced the combined risk of heart attack, stroke, and death

in high risk type 2 diabetes patients [94].

The clinical use of PPAR-γ agonists in MS and ASL re-
mains poorly investigated. Nonetheless, in a case report,
pioglitazone treatment of an MS patient resulted in increased
body weight and improved motor strength and coordination
[27]. A first clinical trial for the use of pioglitazone in ALS
started in Germany in late 2007.

Although PPAR-γ synthetic ligands such as TZDs and
NSAIDs appear to be very promising drugs to treat severe
human diseases, from cancer to metabolic diseases to brain
diseases, several open issues still need to be examined.
Among these, the toxic effect associated with some PPAR-γ
agonists and their blood-brain-barrier permeability, which
are at present still matter of controversies. A deep knowledge
of the molecular mechanisms evoked by PPAR-γ ligands
either dependent or independent of the receptor activation
and of the dependence of such effects on the specific cell
type is mandatory for the development of PPAR-γ drugs with
increasing efficacy and safety.
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ABBREVIATIONS

15d-PJ2: 15-deoxy-∆12,14-prostaglandin J2

AD: Alzheimer disease
ALS: Amyotrophic lateral sclerosis
AP-1: Activator protein-1
CNS: Central nervous system
COX: Cyclooxygenase
DBD: DNA-binding domain
EAE: Experimental autoimmune

encephalomyelitis
HODE: Hydroxy octadecadienoic acids
IFN: Interferon
IL: Interleukin
iNOS: Inducible nitric oxide synthase
JAK: Janus activated kinases
LBD: Ligand-binding domain
LPS: Lipopolysaccharide
MAPK: Mitogen-activated protein kinase
MCP-1: Monocyte chemoattractrant protein-1
MHC: Major histocompatibility complex
MS: Multiple sclerosis
NFκB: Nuclear factor κB
NO: Nitric oxide
NSAIDs: Nonsteroidal anti-inflammatory drugs
oxLDL: Oxidized low-density lipoprotein
PD: Parkinson disease
PPAR: Peroxisome proliferator-activated receptor
PPRE: Peroxisome proliferator response Elements
RXR: Retinoid X-receptor
SOCS: Suppressor of cytokine signalling
STAT: Signal transducer and activators of

transcription
Th: T helper cell
TNF: Tumour necrosis factor
TZDs: Thiazolidinediones
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[10] B. Schütz, J. Reimann, L. Dumitrescu-Ozimek, et al., “The oral
antidiabetic pioglitazone protects from neurodegeneration
and amyotrophic lateral sclerosis-like symptoms in superoxide
dismutase-G93A transgenic mice,” Journal of Neuroscience,
vol. 25, no. 34, pp. 7805–7812, 2005.

[11] T. Shimazu, I. Inoue, N. Araki, et al., “A peroxisome
proliferator-activated receptor-γ agonist reduces infarct size in
transient but not in permanent ischemia,” Stroke, vol. 36, no. 2,
pp. 353–359, 2005.

[12] S. Sundararajan, J. L. Gamboa, N. A. Victor, E. W. Wanderi,
W. D. Lust, and G. E. Landreth, “Peroxisome proliferator-
activated receptor-γ ligands reduce inflammation and infarc-
tion size in transient focal ischemia,” Neuroscience, vol. 130,
no. 3, pp. 685–696, 2005.

[13] K. Tureyen, R. Kapadia, K. K. Bowen, et al., “Peroxisome
proliferator-activated receptor-γ agonists induce neuropro-
tection following transient focal ischemia in normotensive,
normoglycemic as well as hypertensive and type-2 diabetic
rodents,” Journal of Neurochemistry, vol. 101, no. 1, pp. 41–56,
2007.

[14] X. Zhao, Y. Zhang, R. Strong, J. C. Grotta, and J. Aronowski,
“15d-prostaglandin J2 activates peroxisome proliferator-
activated receptor-γ, promotes expression of catalase, and
reduces inflammation, behavioural dysfunction, and neuronal
loss after intracerebral haemorrhage in rats,” Journal of
Cerebral Blood Flow & Metabolism, vol. 26, no. 6, pp. 811–820,
2006.

[15] M. Blanco, M. A. Moro, A. Dávalos, et al., “Increased plasma
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