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Abstract: Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive 

oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It  

is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and  

extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been 

identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the 

regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in 

normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes 

mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). 

This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/ 

expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF. 
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I. INTRODUCTION 

 Nitric oxide (NO), one of the smallest known bioactive 
products of mammalian cells, can be produced by almost all 
cells [1]. In mammals, 3 distinct isoforms of nitric oxide 
synthase (NOS) neuronal (nNOS), inducible (iNOS) and 
endothelial (eNOS) have been identified [1]. These enzymes 
are products of different genes, with different localization, 
regulation, catalytic properties and inhibitor sensitivity, and 
with 51-57% homology between the human isoforms [2]. 
NOS can produce NO, superoxide anion (O2 ) or peroxyni-
trite [3]. The enzyme transforms L-arginine (L-Arg) to  
L-citrulline and NO, which mediates relaxation of the blood 
vessels through the activation of cyclic guanosine mono-
phosphate (cGMP)-dependent pathways in vascular smooth 
muscle cells (VSMC) [4-7]. A second major pathway of  
L-Arg metabolism is via arginase, a hydrolytic enzyme  
responsible for converting L-Arg to urea and L-ornithine, the 
synthesis precursor of polyamines [8]. Vascular arginase 
activity is suspected to modulate intracellular levels of  
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L-Arg, which is a limiting factor in NO production by NOS 
[4, 8]. iNOS is a high output Ca

2+
-independent NOS whose 

expression can be induced in a wide range of cells and tis-
sues by cytokines and other agents. After induction, iNOS 
continuously produces NO until the enzyme is degraded [1, 9]. 
Chronic inflammation has been postulated to play an impor-
tant role in the pathogenesis of insulin resistance (IR) [10].  

 It has been shown that iNOS has been implicated in 
many human diseases associated with inflammation [10, 11]. 
iNOS deficiency was shown to prevent high-fat diet-induced 
IR in skeletal muscle of mice but not in the liver [10]. A role 
for iNOS in fasting hyperglycemia and hepatic IR, however, 
remains to be investigated in obesity-related diabetes [10]. 
IR associated with type 2 diabetes mellitus (T2DM) contrib-
utes to impaired vasorelaxation in diabetic rats [12]. Im-
paired cardiovascular function in T2DM is partially attrib-
uted to pathological overexpression of iNOS in cardiovascu-
lar tissues of diabetic rats [13]. Increasing evidence now im-
plicates the abnormal activation of protein kinase C beta 2 
(PKC 2), secondary to increased formation of diacylglycerol 
(DAG) by hyperglycemia, in a number of cardiovascular 
T2DM complications [13-15]. Several studies have found 
preferential increases in expression and/or activation of the 
PKC 2 isoform in cardiac and vascular tissues of diabetic 
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rats [13, 15-17]. Excessive NO formation is thought to con-
tribute to contractile dysfunction; in macrophages, increased 
iNOS expression is associated with increased arginase ex-
pression, which competes with iNOS for arginine in rabbits 
[18]. With substrate limitation, iNOS may become uncou-
pled and produce reactive oxygen species (ROS) [18]. Con-
comitant increases in iNOS and arginase expression result in 
unchanged NO species and protein S-nitrosylation; with sub-
strate limitation, uncoupled iNOS produces superoxide ani-
ons and contributes to contractile dysfunction heart failure 
(HF) [18]. The role of iNOS on cardiac function during the 
development of left ventricular hypertrophy in mice has been 
investigated [19]. Recent data demonstrate that NO produc-
tion via iNOS plays an important role in modulating cardiac 
function after moderate aortic banding (AoB) that mimics 
long-term hypertension in humans [19]. This review focuses 

on recent advances from animal studies in the understanding 
of regulation of iNOS activity/expression and role of iNOS 
agonists as potential therapeutic agents in treatment of com-
plex diseases such are IR, T2DM and HF (Table 1).  

II. REGULATION OF iNOS ACTIVITY AND  
EXPRESSION 

II.1. iNOS Activity  

 iNOS was originally identified in macrophages and rec-
ognized as part of the cytostatic and cytotoxic mechanisms 
that operate in these cells [20, 21]. Unlike eNOS, iNOS is 
mostly transcriptionally regulated and is not normally pro-
duced in most cells [22, 23]. Although the rank order of in-
trinsic activity of the isomers of NOS per unit time is 

Table 1. List of Some Provided Animal Studies According to Pathophysiological Condition 

Author Reference Animal Pathophysiological condition 

Fujimoto M et al., 2005 

Bitar MS et al., 2010 

Shimabukuro M et al., 1998 

Ceriello A et al., 2002 

Sugita H et al., 2002 

Zhou YT et al., 2000 

Dobashi K et al., 2000  

Kim JK et al., 2001 

Kido Y et al., 2000 

Valverde AM et al., 2003 

Suzuki R et al., 2004 

 Shimomura I, 2000 

Kerouz NJ et al., 1997  

Anai M et al., 1998  

Kim F et al., 2008 

Rizzo NO et al., 2010  

Charbonneau A et al., 2010 

[10] 

[58] 

[66] 

[67] 

[69] 

[73] 

[77] 

[83] 

[84] 

[86] 

[87] 

[88] 

[89] 

[90] 

[91] 

[92] 

[97] 

mice 

rats 

rats 

rats 

rats 

rats 

rats 

rats 

mice 

mice 

mice 

mice 

mice 

rats 

mice 

mice 

mice 

IR 

IR  

IR  

IR  

IR 

IR  

IR  

IR 

IR 

IR 

IR 

IR 

IR  

IR 

IR 

IR 

IR 

Lee JH et al., 2009 

Nagareddy PR et al., 2009 

Inoguchi T et al., 1992 

Xia Z et al., 2007 

Lin G et al., 2009 

Aliev G et al., 1998 

Kubota N et al., 2000 

Yang P et al., 2010 

Gealekman et al., 2002 

[12] 

[13] 

[15] 

[16] 

[17] 

[51] 

[85] 

[108] 

[145]  

rats 

rats 

rats 

rats 

rats 

rabbits 

mice 

mice 

rats 

T2DM 

T1DM 

T1DM 

T1DM 

T1DM 

T2DM 

T2DM 

T2DM 

T2DM 

Zhang P et al., 2007 

Dias FA et al., 2010 

Funakoshi et al., 2002 

Shiomi et al., 2004 

[3] 

[19] 

[146] 

[172] 

mice 

mice 

mice 

mice 

HF 

HF  

HF 

HF 

Abbreviations: IR-insulin resistance; T2DM = Type 2 diabetes mellitus; T1DM = Type 1 diabetes mellitus; HF = heart failure. 
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nNOS>iNOS>eNOS [24], iNOS generates 100 to 1000-fold 
more NO than eNOS [22, 25] since, once it is expressed in 
response to immunological stimuli, its activity persists for 
many hours [20].The literature data together with our previ-
ously reported data [4, 7, 26, 27] suggested that protein 
kinase B (Akt) and mitogen-activated protein kinase (MAPK) 
p42/44 or extracellular signal-regulated kinase (ERK1/2)  
are involved in regulation of iNOS activity or expression in 
cardiovascular tissues.  

 ERK1/2 signaling pathway is a distinct Ser-Thr kinase 
cascade consisting of 3 enzymes: MAPK kinase kinase, 
MAPK kinase (MAPKK, MEK, MKK), and MAPK [4]. Up-
stream activators of the MAPK pathways include small 
GTP-ases of the Ras family, and downstream effectors in-
clude transcription factors and other kinases [4, 28, 29]. Akt 
is another Ser/Thr protein kinase an important downstream 
target of phosphatidylinositol 3-kinase (PI3K) [29]. Activa-
tion of receptor Tyr kinases leads to phosphorylation and 
binding to PI3K lipid products to the Akt plekstrin homology 
domain resulting in recruitment of Akt to the plasma mem-
brane where it is phosphorylated at the Thr

308
 and Ser

473
 

residues and thus becomes activated [30, 31]. However 
Hausel et al. described regulation of iNOS activity and pro-
tein stability by src-mediated tyrosine phosphorylation  
[1, 32]. As iNOS activity depends on arginine availability, 
regulation of arginine transport [33, 34] or consumption of 
arginine by other biochemical pathways [4] (e.g. arginase) 
[8, 35-37] has been shown to regulate iNOS enzyme activity. 
The active iNOS enzyme is a homodimer. Homodimeriza-
tion of iNOS depends on the availability of its essential co-
factor tetrahydrobiopterin (BH4) [38, 39]. Therefore, mecha-
nisms regulating BH4 synthesis and consumption regulate 
iNOS activity [40, 41]. Additionally some proteins have 
been identified that interact with iNOS and regulate its activ-
ity. By yeast two hybrid screens using murine iNOS as bait 
the protein kalirin was shown to interact with the iNOS  
protein. This protein inhibits iNOS activity by preventing 
enzyme dimerization [42]. In murine macrophages, a  
110-kDa protein (named NAP110) has been identified, that 
directly interacts with the amino terminus of iNOS, thereby 
preventing dimer formation and inhibiting NOS activity [43]. 
In rat (VSMC) iNOS protein has been found to interact  
with the calcium/calmodulin-dependent protein kinase II 
(CaMKII) [23]. Beside regulation of cellular iNOS protein 
localization all treatments that chronically affected CaMKII 
activity or expression significantly inhibited iNOS-specific 
activity following cytokine induction [1, 44]. 

II.2. iNOS Expression 

 iNOS is now known to be expressed in almost every cell 
type [ 4, 7, 20, 45, 46]. Atherosclerosis is associated with 
increases in iNOS expression, and this has been shown in 
humans to co-exist with a decrease in eNOS mRNA expres-
sion in the endothelial cells overlying advanced atheroma-
tous plaques [47, 48]. This pattern of increased iNOS ac-
companied by reduced eNOS has been reported in response 
to ischaemia [49], hypercholesterolaemia [50] and ROS in 
endothelial cells of rabbits [20, 51]. The transcription factor 
nuclear factor-kappa beta (NF- B) is persistently activated in 
advanced atherosclerotic lesions and its activation is linked 
to a wide variety of processes, including inflammation, pro-

liferation, differentiation, and apoptosis [52-54]. Cytokines 
such as interleukin-1  (IL-1 ) activate NF- B in many cell 
types, including VSMC, and activation of NF- B is a re-
quirement for iNOS expression [55, 56]. Activation of the 
redox-sensitive PI3K/Akt pathway in rats stimulates NF- B 
by promoting the dissociation of phosphorylated inhibitor of 
NF- B alpha (I B ) [54, 57, 58]. 

 Increasing evidence indicates that the members of the 
MAPK family of protein kinases (ERK1/2, c-Jun kinase, 
p38) are important modulators of proinflammatory cytokine-
dependent expression of iNOS in multiple cell types [11, 54, 
59, 60]. Of particular importance in VSMC is the role and 
mechanisms that couple ERK1/2 to iNOS expression in re-
sponse to proinflammatory cytokines. A few studies reported 
that stimulation with IL-1  results in a coordinate activation 
of ERK1/2 and NF- B leading to increased expression of 
iNOS in rat VSMC [11, 56]. Furthermore, the study reported 
by Jiang et al., showed that IL-1 -dependent activation of 
NF- B is dependent upon ERK1/2 through the ability of 
ERK1/2 to phosphorylate inhibitor of NF- B beta (I B ) 
resulting in its degradation and subsequent translocation of 
the p65 and p50 subunits to the nucleus to initiate gene ex-
pression. Further studies showed that ERK1/2 selectively 
phosphorylates I B  rather than I B , resulting in sustained 
NF- B activity, which is required for iNOS gene expression 
[56, 61, 62]. The intermediate between ERK1/2 and I B  is 
ribosomal S6 kinase (RSK) 1 [54, 62]. Our study indicated 
that both p38 MAPK and ERK1/2 are necessary for IL in-
duction of iNOS and cyclooxygenase-2 (COX-2) and that 
they also seem to target COX-2 activity at post-translational 
level [11]. Thus IL activation of p38 and ERK1/2 results in 
multiple levels of regulation of the synthesis of the inflam-
matory mediators NO and prostaglandin E2 (PGE2) in rat 
cardiac myocytes [11]. In addition, our recent data from rat 
hearts show that iNOS activity/expression is altered by ghre-
lin [4] which is a peptide hormone and it is an endogenous 
ligand for growth hormone (GH) secretagogue receptor 
(GHSR) [63]. There is a suggestion that ghrelin treatment 
might activate insulin-like growth factor-1 (IGF-1) signaling 
pathway, which uses Akt/ERK1/2 signaling pathways and in 
that way participates in the regulation of iNOS activ-
ity/expression in the rat hearts [4, 64]. 

III. ROLE OF INOS IN PATHOPHYSIOLOGICAL 

CONDITIONS-EVIDENCE FROM ANIMAL STUDIES  

III.1. iNOS in Insulin Resistance State (IR) 

 Although iNOS was originally identified in macrophages, 
it is now known that it is widely expressed in many tissues, 
including insulin-sensitive organs such as skeletal muscle, 
adipose tissue, and liver in normal rodents and humans [10]. 
The expression of iNOS is upregulated by most, if not all, 
inducers of IR, including proinflammatory cytokines, obesity 
[65], free fatty acids (FFA) [66], hyperglycemia [67, 68], 
endotoxins [69, 70] and oxidative stress (OxS) [71]. In fact, 
elevated expression of iNOS was observed in skeletal muscle 
of high-fat diet–fed mice [72], in heart of Zucker diabetic 
fatty rats [73], and in skeletal muscle [74] and platelets of 
patients with T2DM [75]. Furthermore, iNOS induction  
resulted in attenuated insulin-stimulated glucose uptake  
in cultured skeletal muscle cells [76]. Thiazolidinediones 
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(synthetic peroxisome proliferator-activated receptors (PPAR) 
gamma agonists), a class of insulin sensitizer, suppress iNOS 
expression in cultured cells and in vivo in rodents [77, 78]. 
Thus, inhibition of iNOS expression has been recently pro-
posed to be a new mechanism of actions of insulin sensitiz-
ers [79, 80]. Chronic low-grade inflammation has been pro-
posed to be involved in the pathogenesis in obesity-related 
IR and T2DM [10]. The activation of NF- B inhibitor B 
kinase  (IKK ), a crucial signaling cascade for inflamma-
tory response, has been highlighted as a mediator of IR  
[10, 58]. The pharmacological inhibition or gene disruption of 
IKK  reversed obesity-related IR and fasting hyperglycemia 
in rodents and humans [81-83]. It has been shown that iNOS 
deficiency prevents high-fat diet-induced IR in skeletal  
muscle of mice but not in the liver [10]. A role for iNOS  
in fasting hyperglycemia and hepatic IR, however, remains 
to be investigated in obesity-related T2DM [10]. The effects 
of a specific inhibitor for iNOS, dihydrochloride L-N6-(1-
Iminoethyl)lysine (L-NIL), in obese diabetic (ob/ob) mice 
have been examined [10]. Results from those study are that 
iNOS was significantly elevated in the liver as well as skele-
tal muscle and adipose tissue in ob/ob mice compared with 
wild type (wt) mice and that the iNOS inhibitor reversed 
fasting hyperglycemia and ameliorated whole-body IR in 
ob/ob mice [10]. In the liver, insulin receptor substrate  
2 (IRS-2) rather than insulin receptor substrate 1 (IRS-1) plays 
a prominent role in metabolic actions of insulin, including 
the inhibition of hepatic glucose output, whereas IRS-1 has a 
major role in mouse skeletal muscle [84-87]. Previous stud-
ies [88-90] showed a marked reduction in IRS-2 expression 
in the liver of ob/ob mice, whereas IRS-1 expression was 
unaltered or modestly decreased [10]. These findings suggest 
that defective IRS-2–mediated insulin signaling is a major 
component of obesity-related hepatic IR [10]. Inhibitor of 
iNOS improved the protein expression of both IRS-1 and 
IRS-2 in the liver of ob/ob mice [10]. The mentioned study 
highlighted therapeutic potential of iNOS inhibitors to im-
prove glycemic control in obesity-related T2DM [10]. 

 A recent study employed a mouse model of diet-induced 
obesity induced by high-fat feeding to assess the natural his-
tory of inflammation and impaired insulin signaling in 4 dif-
ferent insulin-sensitive tissues: vascular tissue (thoracic 
aorta), liver, adipose tissue and skeletal muscle [91]. Their 
findings are that vascular tissue is adversely impacted much 
earlier in the course of diet-induced obesity than are key in-
sulin-sensitive tissues involved in glucose metabolism im-
plies a heightened susceptibility of vascular elements to the 
deleterious effects of obesity [91]. 

 In conditions of nutrient excess, such as obesity and 
T2DM, elevated FFA levels are implicated in the pathogene-
sis of both inflammation and IR in a variety of tissues, in-
cluding mouse endothelial cells [92-96]. Lipid-induced IR in 
muscle and liver is linked to overactivation of inflammatory 
signaling pathways known to impede insulin signal transduc-
tion [97-100]. A few studies have shown that iNOS is over-
expressed in metabolic tissues of both dietary and genetic 
models of obesity and plays a pivotal role in the pathogene-
sis of IR and glucose intolerance in mice [10, 72, 99, 101]. 
The recent study [97] showed using iNOS /  mice that 
iNOS underlies lipid-induced insulin resistance in both liver 
and skeletal muscle. Disruption of iNOS restored insulin's 

ability to suppress glucose production and prevented lipid-
induced elevations in basal glucose production that account 
for the initial hyperglycemia seen in wt mice [97]. It has 
been reported that iNOS induction in metabolic tissues and 
insulin target cells interferes with the insulin receptor beta 
(IR )/IRS/PI3K/Akt insulin signaling pathway [72, 80, 99, 
102]. Beside that iNOS impairs insulin action on glucose 
production by altering insulin signaling to IR , IRS-1/-2 and 
Akt [97]. They found that iNOS /  mice were protected from 
lipid-induced inhibitory phosphorylation of IRS-1 Ser

307
 and 

IRS-2 Ser
133

, two well-established target sites of Ser/Thr 
kinases known to be activated by lipids through activation of 
inflammatory pathways (e.g. I B kinase, c-Jun NH2-terminal 
kinase (JNK), PKC) [103-105]. Lack of iNOS prevented the 
lipid-induced impairment in Ser/Tyr phosphorylation of Akt 
observed in wt mice, resulting in normalization of hepatic 
Akt kinase activity [97]. These results suggest that iNOS 
causes hepatic IR by impairing insulin signaling through the 
coordinated action of 3 independent mechanisms: by pro-
moting 1) inhibitory serine phosphorylation of IRS proteins, 
2) tyrosine nitration of IR  and IRS-1 and IRS-2, as well as 
by, 3) directly impairing Akt activity through its tyrosine 
nitration [97]. These data provide genetic evidence that 
iNOS in mice is a key factor in the regulation of insulin sen-
sitivity and hepatic glucose metabolism by FFA in vivo [97]. 

III.2. iNOS in Type 2 Diabetes Mellitus (T2DM) 

 IR associated with T2DM contributes to impaired vasore-
laxation in rats [12]. The correlations between IR, defective 
Akt activation, insulin-resistant iNOS expression, and im-
paired insulin-induced vasodilation have been explored [12]. 
For the first time, Lee et al. have demonstrated that the pres-
ence of Akt-independent iNOS expression in the Goto-
Kakizaki (GK) nonobese insulin-resistant diabetic rat model 
and that the defective insulin-induced vasodilation observed 
in the diabetic vasculature can be restored by the overexpres-
sion of active Akt, which advocates a novel therapeutic strat-
egy for treating T2DM [12]. 

 Numerous studies have led to the identification of multi-
ple hyperglycemia-induced alterations in metabolism and 
signaling that have been linked to activation of protein 
kinase C (PKC) and an eventual increase in oxidative/ 
nitrosative stress in T2DM [13, 14, 106, 107]. It remains 
unclear whether the increase in nitrosative stress, which is 
implicated in the etiology of T2DM secondary complications 
[106], is an independent manifestation of hyperglycemic 
injury or is linked to the activation of PKC [13]. In a recent 
study, the hypothesis that high glucose-induced activation of 
PKC 2 increases iNOS-mediated nitrosative stress leading to 
cardiovascular abnormalities has been tested on rats [13]. 
The results of that study demonstrate that PKC 2 is an 
obligatory mediator of nitrosative stress and that LY333531 
(selective PKC  inhibitor) significantly reduced the forma-
tion of iNOS and improved cardiovascular abnormalities in 
streptozotocin (STZ)-diabetic rats [13]. Moreover, hypergly-
cemia-induced activation of PKC 2 is antecedent to in-
creases in superoxide, ERK1/2, NF- B, and iNOS expres-
sion in cardiovascular tissues, whereas inhibition of this 
pathway suppresses key signaling events that lead to in-
creased nitrosative stress [13]. This data suggest that inhibi-
tion of PKC 2 may be a useful approach for correcting ab-
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normal hemodynamics in T2DM by preventing iNOS-
mediated nitrosative stress [13]. 

 Hyperglycemia resulting from diabetes has an adverse 
impact on embryonic development through induction of 
apoptosis in mice embryonic tissues [108]. The mechanisms 
underlying hyperglycemia-induced apoptosis are not com-
pletely understood [108]. Recently, it have been found that 
the proapoptotic JNK1/2 is activated in embryonic tissues 
exposed to maternal diabetes in vivo and hyperglycemic em-
bryo cultures of both Sprague Dawley rats and C57BL/B6J 
mice in vitro [108-111]. JNK1/2 agonist mimics the terato-
genic effect of hyperglycemia to induce embryonic embry-
onic malformations, whereas targeted deletion of the jnk2 
gene significantly ameliorates diabetes-induced malforma-
tions [111]. Thus, JNK1/2 plays a causative role in the in-
duction of diabetic embryopathy. Increased levels of NO are 
associated with the adverse impact of maternal diabetes on 
murine embryonic development [112]. NO has been shown 
to be involved in cell differentiation, proliferation, and apop-
tosis [113-115]. Although NO is of physiological impor-
tance, it can also be cytotoxic. iNOS and eNOS are ex-
pressed during murine early embryonic development [112]. 
Hyperglycemia increases NO production in embryonic  
tissues [112] inducing the production of reactive nitrogen 
species that leads to nitrosative stress. Yang et al., 2010  
hypothesized that hyperglycemia induced JNK1/2 activation 
mediates iNOS induction [108]. To test this hypothesis, they 
investigated the relationship between JNK1/2 activation and 
iNOS gene expression in diabetic embryopathy [108]. By 
using pharmacological inhibitors of JNK1/2 activation 
(SP600125) in vitro and target deletion of jnk2 in mice, they 
have demonstrated that JNK1/2 activation is responsible for 
hyperglycemia-induced iNOS gene expression and conse-
quent nitrosative stress [108]. 

 Cardiovascular mortality is increased in patients with 
Type 1 diabetes mellitus (T1DM) [116, 117], and the inci-
dence of HF, especially, following myocardial infarction, is 
much greater among diabetic than nondiabetic patients [117]. 
In experimental diabetes, the mechanical properties of the 
myocardium and cardiomyocytes in vitro are significantly 
altered, characterized by prolongation of contraction and 
relaxation as well as considerable slowing down of relaxa-
tion velocity in mice [118]. In rats with STZ-induced diabe-
tes, abnormal cardiac function is seen as early as 7 days after 
induction of diabetes [116, 118, 119]. It has been shown that 
cardiomyocytes from diabetic rats [120], manifested reduced 
contractile responses to IGF-1 associated with altered NO 
metabolism [121]. Several studies suggest that NO produc-
tion is reduced in diabetes such as in obese Zucker rats [122, 
123]. Abnormal NOS expression and NO production in car-
diovascular tissues may have various effects [116]. There-
fore, investigation of NOS activity in cardiovascular tissues 
in the diabetic state may be of particular importance in un-
derstanding the etiology of cardiovascular dysfunction asso-
ciated with chronic diabetes mellitus [116]. 

III.3. iNOS in Heart Failure (HF) 

 Mammalian cells synthesize NO through the 5-electron 
oxidation of 1 of the 2-guanidinonitrogens of L-Arg [54, 
124]. All 3 isoforms are expressed in the vasculature. The 

predominant isoform of NOS detectable in VSMC in re-
sponse to inflammatory cytokines is iNOS [26, 125-127] and 
nNOS upregulation is induced in VSMC by shear stress, 
hypoxia, and growth factors [128-130]. In the healthy vessel, 
the endothelium serves as the main source of NO production 
through eNOS activity to maintain vascular tone and regulate 
platelet aggregation and leukocyte adhesion [124, 131-133]. 
Disruption of the endothelial layer and initial loss of eNOS is 
a hallmark of the development of atherosclerosis as well as 
restenosis [54]. Traditionally, the upregulation of iNOS is 
perceived to compensate for the loss of a functional endothe-
lium and eNOS during injury and atherosclerosis [134], al-
though the presence of excess NO and ROS coincidentally 
may lead to additional tissue damage and dysfunction [71, 
126]. More recent studies support a dual role for iNOS in the 
development of the atherosclerotic plaque. In the ApoE /  
mouse model, iNOS is expressed in both macrophages and 
smooth muscle cells of the developing plaque, although 
smooth muscle cells are not present in early lesions [135]. 
Upregulation of iNOS at the mRNA level is observed in the 
rat carotid artery by 24 h postinjury and it is sustained 
throughout 14 days [54, 134]. 

 Whereas iNOS is not detectable in normal cardiomyo-
cytes, iNOS expression is increased in HF in rabbits [18, 
136] and patients [137-139]. Increased iNOS expression re-
sults from increased cardiomyocyte stretch secondary to pro-
tein kinase activation and through positive feedback, from 
increased NO concentration [140]. NO mediates its effects 
either through cGMP and protein kinase G [141, 142] or 
more directly through protein nitrosylation [143]. In the rat 
and mouse heart, NO reduces -adrenergic responses [144-
146], although that is controversial [147], and the L-type 
Ca

2+
 channel current [148], inhibits the mitochondrial respi-

ratory chain [149-152] and increases the mitochondrial per-
meability transition pore opening probability [153], thereby 
increasing cardiomyocyte apoptosis [154]. However, the 
contribution of increased iNOS expression to HF develop-
ment has been questioned in transgenic mice with chronic 
cardiac-specific upregulation of iNOS [155, 156] and only in 
the presence of a simultaneous knockout of myoglobin did 
iNOS overexpression result in HF [157]. In murine macro-
phages, increased iNOS expression is associated with a con-
comitant increase in arginase expression [158]. Recent data 
from wound healing studies in rats suggest that there might 
be a self-limiting negative feedback cycle, in that increased 
iNOS-derived NO increases arginase II activity, which sub-
sequently reduces L-Arg concentration and thereby limits 
NO production [159]. Limitation of substrate availability 
also leads to uncoupling of iNOS with ultimate ROS forma-
tion [143, 160]. Increased ROS formation induces myofibril-
lar oxidation in rat hearts and subsequently contributes to the 
development of contractile dysfunction [161, 162]. An in-
crease in iNOS expression does not necessarily imply in-
creased NO-induced myocardial damage [18]. Nevertheless, 
uncoupled iNOS secondary to substrate limitation might 
contribute to contractile dysfunction through increased oxi-
dative stress (OxS) [18]. Increased arginase expression might 
limit NOS substrate availability and contribute to the persis-
tence of hypertension [163, 164]. Whether increased arginase 
expression in mice also contributes to the development/ 
progression of HF by promoting iNOS uncoupling warrants 
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further investigation [18]. Certainly, blockade of enhanced 
arginase expression/activity might be a promising new 
therapeutic approach since iNOS, as long as it is functionally 
coupled, does not contribute to HF development [18, 155]. 

 The role of NO in the regulation/modulation of cardiac 
performance has been extensively studied since the early 
1990’s [19, 165]. The expression of iNOS in cardiomyocytes 
only increases following induction by events such as hyper-
trophy or HF [19]. In such cases, iNOS appears to contribute 
to myocardial dysfunction and alters the myocardial  
response to -adrenergic stimulation [19, 145, 166, 167]. 
However, since NO can be produced by 3 different isoforms 
of NOS within the myocardium, it has been difficult to sepa-
rate their specific effects in physiological and pathological 
conditions without genetic manipulations [19]. Recently 
however, different mouse models have been generated in 
which one or more isoforms of NOS have been knocked out 
or over-expressed allowing for the specific, independent ef-
fects of the NOS isoforms to be studied on cardiac function 
[168]. Recent data demonstrate for the first time that the ab-
sence of iNOS during the development of hypertrophy in-
duced by moderate aortic constriction, mimicking long-term 
hypertension in humans, delays both the increase in hyper-
trophic gene marker expression and contractile dysfunction 
associated with hypertrophy development [19]. Moreover, 
after long-term aortic banding, iNOS knock-out mice exhib-
ited increased basal cardiac function as well as an improved 
response to -adrenergic stimulation compared to wt mice 
[19]. These findings support a direct role for the expression 
of iNOS in the development of the cardiac dysfunction  
but not the hypertrophy that results from pressure overload 
[19]. 

 Myocardial hypertrophy and HF are associated with  
increased O2  production [3, 169] and accumulation of  
oxidized lipid and protein products such as nitrotyrosine  
(a marker for peroxynitrite) and 4-hydroxy-2-nonenal  
(4-HNE, a marker of lipid peroxidation) [3, 170]. Oxygen 
free radicals are linked to fibrosis and matrix turnover in-
volving the activation of matrix metalloproteinases (MMPs) 
[171]. Overexpressing glutathione peroxidase in mice [172], 
or administering BH4 to decrease myocardial O2  production 
[173] decrease myocardial MMP abundance [3]. A study 
examined the role of iNOS in the ventricular hypertrophy 
and congestive HF that develops in response to sustained 
pressure overload produced by transverse aortic constriction 
(TAC) in mice with or without the iNOS gene [3]. Consis-
tent with these findings, TAC resulted in marked increases of 
myocardial atrial natriuretic peptide (ANP), 4-HNE and ni-
trotyrosine in wt mice but not in iNOS deficient mice [3]. In 
response to TAC, myocardial eNOS and iNOS was ex-
pressed as both monomer and dimer in wt mice, and this was 
associated with increased ROS production, suggesting that 
iNOS monomer was a source for the increased OxS [3]. In 
this study, the decreased myocardial OxS in the iNOS defi-
cient mice was associated with decreased MMP-1 content, 
supporting the notion that OxS affects myocardial matrix 
turnover [3]. The conclusion was that iNOS deletion reduced 
the evidence of TAC-induced myocardial OxS, indicating 
that iNOS contributed to OxS in the wt mice, either directly 
through iNOS uncoupling or by iNOS-dependent eNOS un-
coupling [3]. However, iNOS might also decrease intracellu-

lar BH4 and L-Arg availability to eNOS and thereby induce 
eNOS uncoupling [3]. The mentioned study on mice pro-
vided the first evidence that iNOS deficiency (iNOS / ) 
attenuates TAC-induced ventricular hypertrophy and conges-
tive HF, and that iNOS expressed in response to systolic 
overload serves as a source for myocardial ROS that con-
tribute to left ventricular dilatation and hypertrophy [3]. 

CONCLUSIONS 

 It has been shown that iNOS has been implicated in 
many human diseases associated with inflammation [10, 11]. 
To identify individuals with NO deficiency and increased 
cardiovascular risk, new diagnostic tools, apart from vaso-
motor testing to assess NO bioactivity, based on the recent 
advances in the understanding of NO metabolism have been 
developed. In parallel, new modes of NO delivery to patients 
have been studied, and new NO donating compounds have 
been developed to not only substitute for NO deficiency but 
also to release exogenously supplied NO at specific cellular 
targets and to overcome disadvantages of conventional NO 
donors such as organic nitrate and nitrite esters [174]. Nitrite 
delivery to humans via infusion or inhalation may counter-
balance pathophysiologic processes occurring in disease 
states with a relative or absolute lack of NO, such as hyper-
tension, atherosclerosis, diabetes, acute respiratory distress 
syndrome of the newborn, neonatal pulmonary hypertension, 
delayed-onset vasospasm due to subarachnoidal hemorrhage 
and sickle cell disease [175]. Complete understandings of the 
mechanism of dysregulation of iNOS are needed in order to 
develop appropriate therapies for these conditions. The re-
cent studies suggest that upregulation of iNOS may be a pro-
tective mechanism against excessive contraction, abnormal 
signaling resulting from OxS and due to enhanced inflamma-
tion in the diabetic vasculature [12]. There are strong reasons 
for further studies on new therapies involving the inhibition 
of iNOS activity to improve glycemic control in obesity-
related T2DM and cardiac performance in HF and hyper- 
trophy [19]. Knowledge gained from recent provided inves-
tigations mentioned in this review suggested that inhibitors 
of iNOS will have potentially important therapeutic implica-
tions. 
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ABBREVIATIONS 

iNOS = inducible nitric oxide synthase 

NO = nitric oxide 

nNOS = neuronal nitric oxide synthase 

eNOS = endothelial nitric oxide synthase 

O2  = superoxide anion  

L-Arg = L-arginine 

cGMP = cyclic guanosine monophosphate 

VSMC = vascular smooth muscle cells 

Ca
2+

 = calcium ions 
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IR = insulin resistance 

T2DM = type 2 diabetes mellitus 

PKC = protein kinase C  

PKC 2 = protein kinase C beta 2  

DAG = diacylglycerol 

ROS = reactive oxygen species  

HF = heart failure 

AoB = aortic banding 

Akt = protein kinase B  

MAPK = mitogen-activated protein kinase  

ERK1/2 = MAPK p42/44 or extracellular signal-
regulated kinase  

PI3K = phosphatidylinositol 3 kinase  

BH4 = tetrahydrobiopterin 

NAP110 = iNOS inhibitor 

CaMKII = calcium/calmodulin-dependent protein 
kinase II  

NF- B = nuclear factor-kappa beta  

IL-1  = interleukin-1beta  

I B  = inhibitor of NF- B alpha  

I B  = inhibitor of NF- B beta  

RSK = ribosomal S6 kinase  

COX-2 = cyclooxigenase-2  

PGE2 = prostaglandin E2 

GH = growth hormone  

GHSR = GH secretagogue receptor  

IGF-1 = insulin-like growth factor-1  

FFA = free fatty acids 

OxS = oxidative stress  

PPAR = peroxisome proliferator-activated receptor 

IKK  = NF- B inhibitor B kinase   

L-NIL = iNOS inhibitor 

wt = wild type  

IRS-2 = insulin receptor substrate 2  

IRS-1 = insulin receptor substrate 1 

IR  = insulin receptor beta  

JNK = c-Jun NH2-terminal kinase  

LY333531 = selective PKC  inhibitor  

STZ = streptozotocin 

SP600125 = inhibitor of JNK1/2 activation 

T1DM = type 1 diabetes mellitus  

4-HNE = 4-hydroxy-2-nonenal, a marker of lipid 
peroxidation 

MMPs = matrix metalloproteinases 

TAC = transverse aortic constriction  

ANP = atrial natriuretic peptide  
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