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Regulation of Mitochondrial Biogenesis
and Its Intersection with Inflammatory Responses
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Abstract

Significance: Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from in-
flammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality
control programs, including mitochondrial biogenesis. Recent Advances: Early-phase inflammatory mediator
proteins interact with PRRs to activate NF-jB-, MAPK-, and PKB/Akt-dependent pathways, resulting in in-
creased expression or activity of coactivators and transcription factors (e.g., PGC-1a, NRF-1, NRF-2, and Nfe2l2)
that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial
dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1a, participating
in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species
generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous
induction of mitochondrial biogenesis and antioxidant gene expression. Critical Issues: Recent evidence suggests
that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which
regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated
through NF-jB. Further research on parkin in acute inflammation is ongoing. This highlights certain common
features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings
across inflammatory conditions. Future Directions: Inflammatory mitochondrial dysfunction and oxidative stress
initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation,
stimulating mitophagy. A deeper understanding of mitochondrial quality control programs’ impact on intracellular
inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the reso-
lution of acute inflammation. Antioxid. Redox Signal. 22, 965–976.

Introduction and Brief Overview of Mitochondrial
Biogenesis

M itochondria play a vital cellular role not only in
maintaining normal energy homeostasis but also in the

response to pathological conditions that cause stress to the
energy metabolism. Although their most well-known function
is cellular energy conservation, they are integral to heme and
steroid biosynthesis, cell cycle regulation, programed cell
death, calcium signaling, and redox homeostasis and signal-
ing. The operation of such centrally important organelles
must, therefore, be actively regulated in the physiological
state and also protected from stressors by a comprehensive set
of adaptive quality control mechanisms. These quality control
mechanisms optimize the overall mitochondrial number,

distribution, and function through a group of interrelated in-
ducible processes, including mitophagy, mitochondrial fission
and fusion, and mitochondrial biogenesis (76, 137).

As the replacement of any cellular component is meta-
bolically expensive, mitochondrial biogenesis is particularly
costly, because it may involve the synthesis of hundreds or, in
some cases, thousands of new proteins. As a result, mito-
chondrial biogenesis is strictly controlled by intra- or extra-
cellular signals communicating energy imbalance from
increased energy demand, decreased energy production, or
both. Mitochondrial biogenesis can be induced by exercise,
fasting, cold exposure (thermogenesis), oxidative stress, and
inflammatory cell stress. Depending on the stimulus, the
program is executed through a variety of signaling pathways
that converge on a handful of coactivators and nuclear
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transcription factors (including the peroxisome proliferator-
activated receptor gamma-1 coactivator family [PGC-1a,
PGC-1b, and PRC] and nuclear respiratory factors [NRF-1
and NRF-2]) (94). PGC-1a, in particular, has been identified
as an important coordinator of the biogenesis response
and has been found to orchestrate a wide variety of anti-
inflammatory and metabolic nuclear genes; those most di-
rectly related to mitochondrial biogenesis in inflammation
are covered here, including the NRF-1, NRF-2 (also called
GA-binding protein A [GABPA]), and nuclear factor ery-
throid 2-related factor 2 (Nfe2l2 or Nrf2) transcription factors
(16, 120, 129).

These transcription factors and coactivators coordinate the
complex bigenomic programs of biogenesis by participating
in feedback loops for the precise regulation of mitochondrial
quality control (such as reactive oxygen species [ROS], Ca2 + ,
and anti-inflammatory signaling [reviewed in Dominy and
Puigserver (24)]) and by modulating specific gene expressions
at various regulatory levels within the process. For instance,
NRF-1 and NRF-2 upregulate the transcription of many nu-
clear-encoded mitochondrial proteins, which are transported
across the mitochondrial membranes by processes that are
themselves modulated by external stress stimuli and some of
the same central transcription factors (45). These imported
proteins serve as the building blocks for mitochondrial pro-
liferation, while those same central coactivators and tran-
scription factors upregulate expression of mitochondrial DNA
(mtDNA)-binding proteins (mitochondrial transcription fac-
tor A [mtTFA], B1 [mtTFB1], B2 [mtTFB2], and DNA
polymerase [Pol] c). The mtDNA-binding proteins also un-
dergo mitochondrial importation, where they directly activate
mitochondrial transcription and replication (93, 94).

The induction of host inflammatory processes has a direct
impact on mitochondrial function and quality control; mito-
chondrial biogenesis, in particular, is upregulated in response
to both mitochondrial damage and the concomitant increases
in energetic demand associated with severe inflammation.
However, inflammatory processes have a multitude of dif-
ferent effects on various immune and somatic cell types that

depend on the nature, severity, and timing of the inflamma-
tory stimulus. The host responses to these stimuli (i.e., the
production of pro-inflammatory cytokines, chemokines, and/
or anti-inflammatory factors) also impact mitochondrial
function and energy balance and so, in turn, have been found
to participate both directly and indirectly in the regulation of
mitochondrial biogenesis programming over the inflamma-
tory cycle. Finally, the consequences of inflammation on
mitochondria themselves signal for adaptive modulation of
the inflammatory response. In this study, we briefly review
the intersection of innate inflammation and mitochon-
drial biogenesis by examining proinflammatory effects on
mitochondrial function and biogenesis and, conversely, mi-
tochondrial feedback on counter-inflammation, with an em-
phasis on redox signals that influence cellular and tissue
homeostasis during the course of the inflammatory cycle.

Impacts of Inflammation on Mitochondrial Function

Oxidative phosphorylation and impairment
of mitochondrial respiration

The impact of inflammation on mitochondrial function has
often been modeled by exposure to bacterial endotoxin; as
early as the late 1960s, it was known that gram-negative
lipopolysaccharide (LPS) exposure decreased respiration in
both the isolated mitochondria (46, 97) and in various tissues
in vivo (68, 69, 115). Animal models of bacterial sepsis have
confirmed that mitochondrial function and/or metabolic
profiles are also significantly impacted by septic inflamma-
tion, with the most profound changes typically seen early in
the host response (4, 9, 52, 62, 63). Finally, in the most
relevant model of all, in human patients with sepsis from
various pathogens and sources, there is also clear evidence of
proinflammatory mitochondrial dysfunction (Fig. 1). Im-
portantly, the degree of mitochondrial dysfunction appears to
be roughly associated with clinical outcomes, with non-
survivors of severe sepsis demonstrating an early decrease in
the ATP/ADP ratio in skeletal muscle (8), impaired fatty acid
utilization (58), and later a failed induction of upregulation of

FIG. 1. Inflammation-induced
reactive oxygen and nitrogen spe-
cies modulate mitochondrial qual-
ity control programs through
redox signaling. However, higher
levels of oxidative stress may also
contribute to inflammatory mito-
chondrial dysfunction, resulting in
energetic failure and cell death. ETC,
electron transport chain; mtDNA,
mitochondrial DNA; ROS, reactive
oxygen species; RNS, reactive ni-
trogen species. To see this illustra-
tion in color, the reader is referred to
the web version of this article at
www.liebertpub.com/ars

966 CHERRY AND PIANTADOSI



mitochondrial biogenesis markers when compared with sur-
vivors (13).

There are clear advantages and limitations associated with
various experimental models of acute inflammation (22);
actual pathogenic inflammation within an intact organism
involves far more complex stimuli and responses than a time-
limited exposure to one or a mixture of inflammatory medi-
ators. Although LPS administration models are simple and
reliably produce profound biological effects that lend them-
selves to mechanistic investigations of the nature of proin-
flammatory mitochondrial dysfunction and recovery during
the resolution phase, the doses of LPS required for mito-
chondrial damage are supraphysiological and confounded by
serious hypotension and tissue ischemia. Animal and human
models of bacterial infection have fewer controlled variables,
but allow examination of the effects of systemic-level in-
flammation on mitochondrial function, as well as on survival
and other outcomes. Nonetheless, these various models show
that the reduction of mitochondrial oxygen consumption in
early inflammation is accompanied by decreased ATP or
ATP/ADP levels (4, 11, 27) corresponding to nitric oxide
synthase 2 (NOS2) induction (6, 115), which may result in,
for example, complex I inhibition (9). There is also evidence
of mitochondrial dysfunction through mtDNA depletion
(109) due to cytochrome c oxidase (COX) inhibition (6, 31,
62, 63) and resulting in decreased State 3 respiration in
several tissues (11, 111). Also, while decreased electron
transport chain (ETC) protein activities certainly contribute
to impaired respiration, it has also been suggested that ETC
protein levels are also decreased early after endotoxin/tumor
necrosis factor-a (TNF-a) exposure (11, 111). These rela-
tively rapid changes in the mitochondrial protein content may
reflect protein disposal mechanisms and/or the activation of
selective mitochondrial autophagy (mitophagy) along with
perhaps altered antibody peptide recognition due to ROS- or
NO-induced post-translational protein modifications (62).

In any event, inflammation-induced mitochondrial dys-
function is a common, but sometimes subtle feature of
inflammatory tissue damage in a variety of cell types and
inflammatory models. Although profound and permanent
respiratory impairment is incompatible with cellular survival,
conservation of this response across models and organisms
suggests that some type of temporary energetic conservation
mechanism in early inflammation may be activated for its
adaptive advantages (103). On the tissue level, decreased
ATP availability in areas of localized inflammation may
prevent pathogenic hijacking of host cell energetic infra-
structure and help contain infection, preventing systemic
spread (62). More globally, the example of a hibernating
myocardium in response to ischemic threat may be analogous
to the temporary downregulation of mitochondrial respiration
in the systemic inflammation of sepsis, but just as the hi-
bernating myocardium is not sustainable indefinitely, de-
creased mitochondrial respiration in sepsis eventually results
in irreversible energetic deficits that lead to cell death (104).

Reactive oxygen and nitrogen species

In the setting of such metabolic stasis, the temporary de-
crease in oxidative phosphorylation not only potentially
conserves limited mitochondrial substrate for respiration but
it may also mitigate pathologic mitochondrial ROS produc-

tion. This aspect may be of particular importance in the set-
ting of inflammation, where systemic oxygen (or carbon
substrate) supply is not thought to be a limiting factor (32)
(notwithstanding limitations in local areas of hypoperfusion
[reviewed in Trzeciak and Rivers (119)]). Small amounts of
ROS are generated in the course of normal oxidative phos-
phorylation (primarily by complexes I and III of the ETC)
(82); however, the production of both ROS and reactive
nitrogen species (RNS) is increased in the setting of mito-
chondrial damage, such as that encountered in severe
inflammation. Inflammatory ROS/RNS production may
eventually overwhelm the cellular antioxidant capacity and
lead to damage to proteins, lipids, and DNA by oxidation or
nitration. Oxidative damage to cellular and mitochondrial
components, particularly to the ETC complexes (10, 18, 71),
leads to further dysfunction and ROS/RNS production.

Inflammation-induced changes in mitochondrial function
and ROS/RNS production vary depending on the intensity
and duration of the inflammatory stimulus. Low-level ROS
production is important in redox signaling and in prosurvival
cellular adaptations (95), particularly evident is H2O2 leak-
age from mitochondria as a retrograde signal to nuclear-
targeted cytosolic pathways that warn the cell of internal
oxidative stress. On the other hand, more profound energetic
deficits and ROS production not only lead to damage of
cellular components but also to loss of ROS signal localiza-
tion (1). If repair mechanisms become overwhelmed, the
intrinsic apoptotic cascade may be triggered in the setting of
only moderate inflammation (132). In severe inflammation,
mitochondrial dysfunction and ROS/RNS-induced damage
may lead to extensive cellular necrosis and release of cellular
contents, including mitochondria and mitochondrial frag-
ments, which act as further inflammatory stimuli (91, 122).

Inflammatory Regulation of Mitochondrial Biogenesis

Since the level of mitochondrial dysfunction, ROS/RNS
production, and mitochondrial damage induced by the host
response depends on the magnitude and timing of that stim-
ulus, it follows that successful restoration of a fully functional
mitochondrial population is dependent on the timely upre-
gulation of mitochondrial quality control programs (Fig. 2).
Following acute inflammation and an initial decrease of mi-
tochondrial function, there may be a restoration of respiratory
capacity (42, 111). Data from animal studies and septic pa-
tients show that evidence of mitochondrial recovery is pre-
dictive of (9, 33) and/or significantly associated with clinical
recovery (8, 13, 55). In this study, we have focused on the
induction of mitochondrial biogenesis pathways in inflam-
mation, but all of the quality control elements are important
for sepsis resolution (104).

For nonimmune cells (immune cells are discussed later),
mitochondrial dysfunction in the early phase of septic in-
flammation is stimulated, in part, by circulating proin-
flammatory cytokines like TNF-a (96) and a subset of the
interleukins. A plethora of pathways participate in regulating
the mitochondrial response (Fig. 3), and many of the inter-
mediate cellular transcription factors and coactivators can
also participate in regulating adaptive responses and/or am-
plifying the inflammatory signal. The inhibition of respira-
tion and initiation of mitochondrial damage also initiate
retrograde signaling to the nucleus for the genetic activation
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of mitochondrial quality control programs, pro- and anti-
inflammatory elements, and antioxidant enzymes. Each is
discussed briefly below.

Pathways and mediators of inflammatory
mitochondrial biogenesis

Toll-like receptors, inflammatory mediators, and biogene-
sis gene regulation. The innate immune response is activated
through the recognition of microbial antigens (pathogen-
associated molecular patterns [PAMPs]) or intrinsic factors
released into the circulation (alarmins) (74). Together these
factors, called danger-associated molecular patterns (DAMPs),
are sensed by cellular pattern recognition receptors (PRRs)
such as toll-like receptors (TLRs). In general, PRR activation
upregulates the release of early-phase inflammatory protein
mediators (TNF-a, interleukins [IL-*], interferon gamma
[IFN-c], etc.), growth factors, hormones (cortisol and adrena-
line), and ROS/RNS. These are far from being the only me-
diators of immune signaling [reviewed in Castellheim et al.
(14)], but the pathways by which these modulate inflammatory
responses in nonimmune cells are relatively well studied; these
are encapsulated here. The adrenergic and hormonal responses
to inflammation certainly also lead to adaptations in mito-
chondrial function and quality control (37, 117, 125, 127), but
are not covered here in detail.

The circulating inflammatory proteins released by cellular
components of the innate immune system provide important
information to nonimmune cells through cell-type-specific ar-
rays of inflammatory protein receptors and PRRs (including

TLRs) for the recognition of relevant DAMPs (17). Many of
these receptors (TLRs as well as PRRs for TNF-a, IFN-c, and
interleukins [specifically IL-6]) activate one or several well-
defined inflammatory signaling pathways. The first of these is
via the NF-jB family of transcription factors, which activates
pathways that contribute to inflammatory, apoptotic, prolifera-
tive, and tumorigenic processes. NF-jB is normally present in
the cell in an inhibited state until myeloid differentiation pri-
mary response protein (MyD88)-dependent or -independent
phosphorylation of the NF-jB inhibitor (IjB); NF-jB subunits
are then free to translocate to the nucleus to regulate transcrip-
tion in combination with other transcription factors (39). Many
targets of TLR signaling through NF-jB are proinflammatory
and induce further oxidative stress (114). The p65 subunit may
even suppress the PGC-1a activity and related metabolic ac-
tivity in some tissues such as the heart (3). On the other hand,
LPS-stimulated TLR4 signaling, operating through NF-jB, can
promote (cAMP response element-binding protein [CREB])
upregulation of PGC-1a, NRF-1, NRF-2, and other components
of the mitochondrial biogenesis framework in both CREB-
dependent (110, 112) and CREB-independent pathways (113).
Evidence also suggests that parkin, best known for its role in
mitophagy regulation in the setting of Parkinson’s disease and
other chronic inflammatory states, may also regulate mito-
chondrial biogenesis (35, 92). There is recent evidence that
parkin binds to mtDNA via mtTFA, enhancing transcription
(56, 88). Parkin has also been found to regulate degradation of
PARkin-interacting substrate (PARIS, ZNF746) by ubiquitina-
tion, which then leads to decreased repression of Ppargcla
transcription (102). Intriguingly, in an LPS model, parkin was

FIG. 2. An overview of the impact of inflammation on mitochondrial function and quality control. Acute infectious or
sterile inflammation leads to innate immune activation through interaction with PRRs, resulting in inflammatory mediator
production. These inflammatory mediators affect mitochondrial damage and dysfunction; successful resolution requires acti-
vation of mitochondrial quality control pathways, including mitochondrial biogenesis. Inadequate mitochondrial quality control
results in cell death, organ dysfunction, and propagation of sterile inflammation through the release of DAMPs. DAMPs, danger-
associated molecular patterns; HMGB1, high-mobility group box 1; LAN, lipoteichoic acid; LPS, lipopolysaccharide; NLRP,
NACHT, LRR, and PYD domains-containing protein; NOD, nucleotide-binding oligomerization domain; PGN, peptidoglycan;
PRR, pattern recognition receptor; RIG, retinoic acid-inducible gene; Tfam, mitochondrial transcription factor A; TLR, toll-like
receptor. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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increased by a MyD88/NF-jB-dependent pathway, suggesting
a potential for parkin-modulated mitochondrial biogenesis in
acute inflammation (118).

Another group of pathways commonly activated by TLRs or
other inflammatory receptors are those involving the mitogen-
activated protein kinases (MAPKs) and protein kinase B (PKB/
Akt). Core MAPK signaling pathways include extracellular
signal-related kinases (ERK), p38, and c-Jun NH2-terminal
kinases ( JNK). The ERKs, p38s, and JNKs phosphorylate a
vast array of other kinases and transcription factors (57); ac-
tivities specifically relevant to the mitochondrial function in-
clude activation of activating protein-1 (AP-1) by all three core
pathways (100) and p38 activation of myocyte enhancer factor-
2 (MEF2) (43). AP-1 participates in apoptosis regulation, cell
differentiation, and proliferation, and MEF2 participates in a
positive feedback loop (which is enhanced by Ca2 + signaling),
increasing PGC-1a expression (44). Akt/PKB is a prosurvival
kinase that also has a role in controlling many inflammatory
response processes, including protein synthesis, chemotaxis
regulation, apoptosis, and cell metabolism (14). In the context
of mitochondrial biogenesis, Akt phosphorylates and activates
the NRF-1 transcription factor, resulting in induction of mtTFA
(80), and it stimulates the expression of several biogenesis

genes via the CREB/CBP nuclear transduction pathway (26).
However, Akt can also be proinflammatory through the regu-
lation of NF-jB expression (21) and, when chronically over-
expressed, has been shown to lead to decreased PGC-1a levels
in the heart (19).

Nitric oxide. One of the most important NF-jB-dependent
responses in sepsis is the upregulation of NOS2 (iNOS) in
both immune and nonimmune cells. TNF-a, IL-1b, IFN-c, and
platelet-activating factor (PAF) can also activate NOS2 ex-
pression individually or in concert in many cell types (53,
116), acting through a variety of other transcription fac-
tors, including interferon regulatory factor-1 (IRF-1), signal
transducer and activator of transcription-1a (STAT-1a),
CREB, and AP-1 (77). Because NOS2 is regulated mainly at
the transcriptional level and not by calcium, it can in some
cells produce very high levels of NO, which is important to
antimicrobial defense, but also cytotoxic to the host cell (34).
In the setting of oxidative stress, NO will react with super-
oxide to produce peroxynitrite (ONOO - ), a highly RNS that
can lead to damage of mitochondrial ETC components by
chemical nitration and hydroxylation (10). At high levels, NO
also inhibits complex I, cytochrome c, and COX (6, 10, 59).

FIG. 3. An overview of the pathways regulating mitochondrial biogenesis in response to inflammatory stimuli in
nonimmune cells. Early-phase inflammatory protein mediators interact with PRRs to activate the NF-jB, PKB/Akt, or
MAPK pathways. A shared component of these pathways is increased expression or activity of the core coactivators and/or
transcription factors controlling mitochondrial biogenesis (PGC-1a, NRF-1, NRF-2, and Nfe2l2) by both CREB-dependent
and CREB-independent mechanisms. Inflammatory upregulation of NOS2-induced NO not only contributes to oxidative
stress but also upregulates mitochondrial biogenesis via PGC-1a. Similarly, oxidative stress activates the HO-1/CO system,
which stimulates both mitochondrial biogenesis and antioxidant enzyme genes. More generic energy-sensing and redox-
sensitive pathways (such as AMPK, SIRT1, CREB, and HO-1/CO) also modulate mitochondrial biogenesis in the setting of
inflammatory stress. Akt, protein kinase B; ARE, antioxidant response element; CO, carbon monoxide; CREB, cAMP
response element-binding protein; ERK, extracellular signal-related kinases; HO-1 or Hmox1, heme oxygenase-1; JNK, c-
Jun NH2-terminal kinases; IL, interleukin; IFN-c, interferon gamma; MAPK, mitogen-activated protein kinase; MEF2,
myocyte enhancer factor-2; MyD88, myeloid differentiation primary response protein; Nfe2l2, nuclear factor erythroid 2-
related factor 2; PKA, protein kinase A; NOS2 or iNOS, nitric oxide synthase 2; NRF or Nrf, nuclear respiratory factors;
PGC-1 or Ppargc1, peroxisome proliferator-activated receptor gamma-1 coactivator; TNF-a, tumor necrosis factor-a.
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Apart from those relatively direct effects on mitochondrial
function, NO also functions as an intracellular signal. The
effect most relevant here is that NO stimulates mitochondrial
biogenesis via the induction of the PGC-1a coactivator (41,
73, 84). There is also evidence that S-nitros(yl)ation of
certain heat shock chaperone proteins by endogenous NO
production is associated with induction of mitochondrial
biogenesis in murine sepsis (108). In addition, Nfe2l2-
mediated antioxidant gene expression is dependent on NO
production in cardiomyoblasts (54), neuroblastoma cells
(23), endothelial cells (7), and others. NO also modulates
inflammatory signals—NO leads to suppression of NF-jB
[via the inhibitory protein IjB (78)] and upregulates en-
dothelin-1 (ET-1), a proinflammatory mediator, for instance,
in the liver in sepsis (30).

Heme oxygenase-1 and carbon monoxide. The induc-
tion of heme catabolism during a variety of cell stresses
ranging from hypoxia to inflammation has been recognized
for many years. This is the function of the two isoforms of the
heme oxygenases (HO) (90). HO-1 upregulation is seen
consistently with LPS exposure in most tissues (12, 27, 36,
85). In addition, NO plays a role in HO-1 expression in the
liver during sepsis (30). Heme metabolism by HO-1 produces
carbon monoxide (CO) as a product, which through its in-
teractions with reduced transition metals, is itself a source of
oxidative stress and ROS signaling. Otherwise, HO-1 and CO
exert anti-inflammatory effects (decreased TNF-a, IL-1b,
and macrophage inflammatory protein-1 b; and increased IL-
10) (75, 81, 126), thus providing negative feedback control
on the inflammatory response and facilitating the proresolu-
tion state. Of mention, in the setting of chronic metabolic
inflammation, the loss of HO-1 in hepatic tissue has been
reported to reduce steatosis and toxicity—the mechanism
underlying these findings is unexplained as yet (51). In ad-
dition to these adaptive processes, HO-1/CO increases mi-
tochondrial biogenesis and antioxidant gene expression via
upregulated Nfe2l2 activation (65, 80, 124). Nfe2l2, itself a
redox-sensitive transcription factor, is capable of promoting
further expression of HO-1 (2).

Energy deficit and oxidative stress

Apart from the mechanisms of induction of mitochondrial
biogenesis that are relatively specific to inflammatory states,
the energetic deficits and oxidative stress induced by in-
flammation activate more general pathways for mitochon-
drial quality control recruited by the cell stress response.
These will be mentioned only briefly as more complete de-
tailed reviews of signaling and mitochondrial biogenesis in
response to cellular energetic sensing can be found elsewhere
(94, 131).

Cellular energy deficits and mitochondrial dysfunction may
become manifest by an increase in the AMP/ATP or the
NAD + /NADH ratios. Increased AMP/ATP induces PGC-1a
phosphorylation via AMPK signaling (50); a rise in NAD +
increases deacetylation of PGC-1a via sirtuin 1 (SIRT1) (86).
As mentioned, PGC-1a is a key regulator of mitochondrial
biogenesis, and it also modulates anti-inflammatory (28) and
antioxidant pathways (16, 64, 106). Phosphorylation of PGC-1a
increases its translocation into the nucleus and coactivation of
the mitochondrial biogenesis transcriptional process (5); SIRT1

deacetylation increases the activity of the PGC-1a protein and
its regulation of nuclear and mitochondrial gene transcription
(38). Finally, CREB1, an intermediate transcription factor that
also has a number of roles in regulating gene transcription (often
in partnership with PGC-1a) in response to metabolic needs
(128), also helps mediate ROS signaling (106).

This overview leads us to a brief discussion of mitochon-
drial biogenesis in response to oxidative stress. Mitochon-
drial mass has been shown to increase in cells under external
sublethal oxidative stress (61). The generation of ROS, pri-
marily in the form of relatively diffusible H2O2 and through
oxidation of various proteins, can provide signal transduction
communicating the mitochondrial oxidative state, as feed-
back for control of nuclear programs for antioxidant defense
or mitochondrial quality control. Even in the absence of a
clear inflammatory stimulus, oxidative stress can upregulate
many of the transcription factors already discussed and in-
duce some of the mitochondrial biogenesis signaling path-
ways mentioned. These include increased CREB promoter
binding (106), AMPK activation of PGC-1a and-1b (49), and
expression of NRF-1 (80) and NRF-2. Additionally, oxida-
tive stress induces the HO-1/CO system via Akt/PKB, acti-
vating Nfe2l2 and ultimately enhancing NRF-1 expression
resulting in mitochondrial biogenesis and an increase in mi-
tochondrial mass in the mouse heart (79).

Inflammation and mitochondrial biogenesis
in immune cells

A perhaps more neglected component of the mitochondrial
biogenesis response to inflammatory stimuli is the role of
mitochondrial biogenesis in immune effector cells for the
support of increased cellular energy requirements, as well as
for cell proliferation and differentiation. This is addressed
briefly below and leads naturally to novel concepts of how
inflammatory damage to mitochondria modulates subsequent
pro- or anti-inflammatory processes. Sepsis induces both
proliferation and apoptosis in immune cells (87). Increased
respiration and mitochondrial proliferation have been re-
ported in circulating peripheral immune cells of septic pa-
tients, although different results have been reported (105).
In vitro and animal models support this finding: AMPK
stimulation in macrophages induces autophagy and improved
clearance of mycobacterium, and also increased PGC-1a and
mtDNA as markers for accompanying mitochondrial bio-
genesis (130). During activation of murine T cells, T-cell
receptor activation increases mitochondrial mass and
mtDNA content also via AMPK (20). Moreover, IL-15 in-
fluences mitochondrial biogenesis to provide for spare re-
spiratory capacity for maintenance of the memory phase of
immunity (CD8 + T memory cells) following clonal expan-
sion in response to infection (121).

Mitochondrial dysfunction and damage
as modulators of inflammation

The mitochondrial dysfunction induced by inflammatory
stress is also known to have a signaling role in modulating
further inflammation. Severe stress induces cell death and
the extracellular release of varying amounts and types of in-
tracellular products depending on the specific cell death path-
way (91). These extracellular DAMPs, including mitochondrial
DAMPs [e.g., mtDNA (134), cytochrome c (29), mtTFA (15),
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high-mobility group box 1 (HMGB1) (83, 123)], ATP (40),
and other mitochondria-derived peptides [e.g., humanin,
which has a cDNA sequence virtually identical to mito-
chondrial 16S rRNA (47)], interact with PRRs to trigger pro-
or anti-inflammatory responses as reviewed above (67, 98).
Additionally, the signaling activities of many cytokines and
cell death-associated proteins are redox regulated through
cysteine modifications and are therefore sensitive to in-
flammatory oxidative stress (89).

Inflammatory mitochondrial dysfunction also induces in-
tracellular inflammatory signaling (Fig. 4); mitochondrial
dysfunction increases oxidative stress and also leads to
membrane permeability transition (MPT) and mtDNA
translocation to the cytoplasm (72). The presence of cyto-
plasmic mtDNA upregulates NF-jB through TLR9 sig-
naling (133). Cytosolic mtDNA and increased ROS—via
thioredoxin-interacting protein (135)—initiate NACHT,
LRR, and PYD domains-containing protein 3 (NLRP3) in-
flammasome assembly (25, 101); this allows caspase-1 acti-
vation with subsequent proinflammatory IL-1b and IL-18
release (66). Macroautophagy, specifically mitophagy, is a
negative regulator of inflammasome activation (72, 136).
Impaired autophagy reduces clearance of damaged mito-
chondria, resulting in increased ROS production and mtDNA
accumulation in the cytoplasm, leading to inflammasome
activation and inflammatory mediator release. The translo-
cation of mtDNA into the cytoplasm itself seems to be par-
tially dependent on inflammasome activation (72). More
recent evidence also supports roles for both mitochondrial
antiviral signaling protein [MAVS; previously known to in-
duce NF-jB (99) and IRFs (60)] (107) and mitochondrial
Ca2 + signaling in NLRP3 inflammasome activation (48, 70).

Summary and Conclusions

In summary, mitochondria not only play a vital role in
cellular homeostasis but also in the response to environmental
stimuli. Initially, inflammation-induced mitochondrial dys-
function results in decreased oxidative phosphorylation and

increased oxidative stress. Host recovery is dependent, in part,
on the upregulation of mitochondrial quality control pro-
grams. Mitochondrial biogenesis, one component of these
programs, is tightly controlled by specific coactivators and
transcription factors that regulate the expression of compo-
nents of the nuclear and mitochondrial genome. These are
found to be stimulated by various elements of the inflamma-
tory response; in nonimmune cells, early-phase inflammatory
protein mediators interact with PRRs to activate the NF-jB,
MAPK, or PKB/Akt pathways. A shared component of these
pathways is increased expression or activity of the core
coactivators and/or transcription factors controlling mito-
chondrial biogenesis (PGC-1a, NRF-1, NRF-2, and Nfe2l2).
Inflammatory upregulation of NOS2-induced NO, although
directly impacting negatively on mitochondrial function as a
reactive species, also functions as a signaling molecule; NO
upregulates mitochondrial biogenesis via PGC-1a, partici-
pates in Nfe2l2-mediated antioxidant gene expression, and
itself has a role in inflammatory mediation. Similarly, NO and
other components of the host inflammatory response induce
the HO-1/CO system, which stimulates both mitochondrial
biogenesis and antioxidant genes. More generic energy-
sensing and redox-sensitive pathways (such as AMPK,
SIRT1, CREB, and HO-1/CO) also modulate mitochondrial
biogenesis in the setting of inflammatory stress. Finally, in-
flammatory mitochondrial dysfunction and oxidative stress
can initiate further inflammatory responses through DAMP
interaction with PRRs and by inflammasome activation. In
short, the host response depends profoundly on a complex
network of pro- and anti-inflammatory pathways that impact,
and are impacted by, mitochondrial dysfunction. Recovery of
mitochondrial function and cell redox status is vital to cellular
survival and organ function in unregulated acute inflamma-
tory states such as severe sepsis.
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FIG. 4. Inflammatory mitochon-
drial dysfunction and oxidative
stress initiate further inflamma-
tory responses and apoptosis
through inflammasome activation.
Cytosolic mtDNA, mitochondrial
antiviral signaling (MAVS) protein,
and other by-products of mitochon-
drial dysfunction also induce NF-jB
and interferon upregulation. IRF,
interferon regulatory factor; MAVS,
mitochondrial antiviral signaling
protein; mtTFA, mitochondrial tran-
scription factor A; NLRP, NACHT,
LRR, and PYD domains-containing
protein.
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Abbreviations Used

AP-1¼ activating protein-1
ARE¼ antioxidant response element

CO¼ carbon monoxide
COX¼ cytochrome c oxidase

CREB¼ cAMP response element-binding
protein

DAMP¼ danger-associated molecular pattern
ERK¼ extracellular signal-related kinases
ET-1¼ endothelin-1
ETC¼ electron transport chain

GABPA¼GA-binding protein A (also NRF-2)
HMGB1¼ high-mobility group box 1

HO-1 or Hmox1¼ heme oxygenase-1
IFN-c¼ interferon gamma

IL¼ interleukin
IRF-1¼ interferon regulatory factor-1

IjB¼NF-jB inhibitor
JNK¼ c-Jun NH2-terminal kinases
LAN¼ lipoteichoic acid
LPS¼ lipopolysaccharide

MAPK¼mitogen-activated protein kinase
MAVS¼mitochondrial antiviral signaling

protein
MEF2¼myocyte enhancer factor-2

MPT¼membrane permeability transition
mtDNA¼mitochondrial DNA

mtTFA or Tfam¼mitochondrial transcription factor A
MyD88¼myeloid differentiation primary

response protein
Nfe2l2 or Nrf2¼ nuclear factor erythroid 2-related

factor 2
NLRP¼NACHT, LRR, and PYD

domains-containing protein
NOD¼ nucleotide-binding oligomerization

domain
NOS2 or iNOS¼ nitric oxide synthase 2

NRF¼ nuclear respiratory factor
PAF¼ platelet-activating factor

PAMP¼ pathogen-associated molecular pattern
PARIS¼ PARkin-interacting substrate,

ZNF746
PGC-1 or Ppargc1¼ peroxisome proliferator-activated

receptor gamma-1 coactivator
PGN¼ peptidoglycan
PKA¼ protein kinase A

PKB or Akt¼ protein kinase B
Pol c¼DNA polymerase c
PRR¼ pattern recognition receptor
RIG¼ retinoic acid-inducible gene
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

SIRT1¼ sirtuin 1
STAT-1a¼ signal transducer and activator

of transcription-1a
TLR¼ toll-like receptor

TNF-a¼ tumor necrosis factor-a
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