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During development and in several diseases, endothelial cells (EC) can undergo
complete endothelial-to-mesenchymal transition (EndoMT or EndMT) to generate
endothelial-derived mesenchymal cells. Emerging evidence suggests that ECs can
also undergo a partial EndoMT to generate cells with intermediate endothelial-
and mesenchymal-character. This partial EndoMT event is transient, reversible, and
supports both developmental and pathological angiogenesis. Here, we discuss possible
regulatory mechanisms that may control the EndoMT program to dictate whether cells
undergo complete or partial mesenchymal transition, and we further consider how these
pathways might be targeted therapeutically in cancer.
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INTRODUCTION

Endothelial cells (EC) that line the various blood vessels of the body share numerous structural
characteristics and gene expression programs, yet are also remarkably heterogeneous (Aird, 2012;
Kalucka et al., 2020; Paik et al., 2020) and plastic (Paruchuri et al., 2006; van Meeteren and ten
Dijke, 2012; Dejana et al., 2017; Andueza et al., 2020). Blood vessel development is a multi-step
process involving dynamic changes in EC morphology and gene expression to drive coalescence
of primitive ECs into a primordial network (vasculogenesis), followed by EC proliferation and
network expansion (angiogenesis). Lastly, blood vessels reorganize and mature into a hierarchal
network architecture (remodeling and specification). During these processes as well as in the
context of certain diseases, ECs undergo diversification, and some even take on a new non-EC
identity (Welch-Reardon et al., 2015; Gritz and Hirschi, 2016; Piera-Velazquez and Jimenez, 2019;
Qiu and Hirschi, 2019; Kenswil et al., 2021). In complete endothelial-to-mesenchymal transition
(EndoMT), for example, activation of a central EndoMT program – similar to the program that
drives epithelial-to-mesenchymal transition (EMT) in epithelial cells – induces a subpopulation
of ECs to fully abandon their EC identity and transition to a mesenchymal cell phenotype
(Welch-Reardon et al., 2015; Piera-Velazquez and Jimenez, 2019). This process generates several
mesenchymal cell types (Tran et al., 2012; Yao et al., 2013) including endothelial-derived fibroblasts
(Zeisberg et al., 2007b; Li et al., 2009; Hashimoto et al., 2010; Aisagbonhi et al., 2011; Moore-Morris
et al., 2014; Chen et al., 2016) critical for embryonic tissue development (Timmerman et al., 2004)
and disease progression in atherosclerosis (Souilhol et al., 2018), vascular fibrosis (Chen et al., 2012),
and cancer (Zeisberg et al., 2007a).
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In addition to supporting complete mesenchymal transition,
the EndoMT program can also proceed only partially resulting
in the temporary and reversible appearance of intermediate cells
that exhibit both endothelial and mesenchymal characteristics
(Tombor et al., 2021). Tombor et al. (2021), for example,
recently used single-cell transcriptomic analysis to show that a
subpopulation of ECs transiently adopt a mesenchymal signature
within 7 days following myocardial infarction, but that they
return to baseline EC identity by 14 days post-infarction rather
than fully committing to a mesenchymal fate. While there are
several possible explanations for the transient EndoMT signature
in this study, one possibility is that partial EndoMT activation
following myocardial infarction supports the robust injury-
induced activation of acute new vessel growth (i.e., angiogenesis)
typically observed in such models (Manavski et al., 2018; Li
et al., 2019; Zou et al., 2019). Indeed, we and others have
proposed, based on a growing body of evidence, that angiogenic
EC undergo partial EndoMT during healthy and pathological
angiogenesis to support new vessel formation (Welch-Reardon
et al., 2014, 2015; Hultgren et al., 2020). Consistent with this
hypothesis, both Manavski et al. (2018) and Li et al. (2019)
recently observed in separate lineage-tracing studies that clonal
expansion of ECs is enhanced in myocardial infarction-induced
neovascularization. Using transcriptomic analysis, Manavski et al.
(2018) further found enrichment of EndoMT genes in regions
of clonally expanded vessels. By contrast, although Li et al.
(2019) also observed enhancement of some mesenchymal genes
in single-cell RNA-Seq study of post-infarction EC, they failed
to note significant differences in overall EndoMT signature
at their assessed timepoint, potentially due to the generally
shallower sequencing depth of scRNAseq which may miss key
transcription factors.

Activation of the EndoMT program in EC during angiogenesis
must be partial and reversible to support the formation of
perfused and functional blood vessels. This implies the existence
of essential regulatory mechanisms that act on the EndoMT
program to determine whether it will proceed completely in some
tissues, but only partially in other contexts such as angiogenesis.
Here, we revisit the argument for sprouting angiogenesis
as a partial EndoMT event and explore possible regulatory
mechanisms that might limit complete progression through
the EndoMT program during angiogenesis, thereby preventing
excessive mesenchymal transition and ensuring organized and
controlled new vessel growth.

SPROUTING ANGIOGENESIS AS A
PARTIAL EndoMT EVENT

Sprouting angiogenesis is a complex developmental program
wherein specialized endothelial “tip” cells migrate away from
the parent vessel wall toward pro-angiogenic stimuli, while
bringing with them endothelial “stalk” cells, thereby establishing
a new blood vessel sprout (Gerhardt et al., 2003). Endothelial
tip and stalk cells are dynamic and transient states (Jakobsson
et al., 2010) determined by each cell’s relative Dll4-activated
Notch signaling (Hellstrom et al., 2007; Suchting et al., 2007)

and downstream VEGFR1/2 expression levels (Williams et al.,
2006). Cells that successfully outcompete adjacent cells for the
tip cell position do so through classical Notch-mediated lateral
inhibition. Specifically, tip cells strongly express Dll4 to activate
high levels of Notch signaling in their neighbors, which are
thereby activated to take on the phenotype of stalk cells (Blanco
and Gerhardt, 2013) allowing for sprout elongation.

Given the heterogeneous outcomes associated with EMT
program activation, identification of an EMT event can be
difficult and requires the combined observation of several cellular
and molecular hallmarks, including the upregulated expression
of at least one of several EMT-associated transcription factors,
induced expression of mesenchymal markers, and alterations
in functional properties such as cytoskeletal rearrangement,
reduced cell-cell adhesions, and increased cell motility (Yang
et al., 2020). Furthermore, cells with epithelial-mesenchymal
plasticity – that is, with mixed epithelial and mesenchymal
character indicating partial EMT – must in addition to the above
hallmarks also retain cellular and molecular aspects of epithelial
identity such as persistent expression of some epithelial markers
and/or residual cell-cell junctions (Yang et al., 2020).

When compared to this standard, the cellular and molecular
changes that occur in sprouting angiogenesis are highly
suggestive of partial EndoMT (Potenta et al., 2008; Welch-
Reardon et al., 2014, 2015; Piera-Velazquez and Jimenez, 2019;
Hultgren et al., 2020). During angiogenesis, tip cells retain
EC marker expression even while they undergo a dramatic
loss of typical EC morphology and function. These changes
include altered cell shape and polarity, extension of numerous
filopodia that guide cell migration (Gerhardt et al., 2003),
destabilization of cell-cell junctions (del Toro et al., 2010; Bentley
et al., 2014; Hultgren et al., 2020) as well as increased cell
motility (Jakobsson et al., 2010; Welch-Reardon et al., 2014) and
upregulated expression of mesenchymal markers [e.g., Smooth
Muscle α-actin, or αSMA (Li et al., 2009; Mendoza et al., 2016)]
and extracellular matrix degradation proteases (del Toro et al.,
2010; Welch-Reardon et al., 2014). Furthermore, tip cells and
trailing stalk cells migrate as a train toward external VEGF, a
process reminiscent of the collective migration that occurs when
epithelial cells undergo EMT during organogenesis as well as in
invasive tumors. In a sense, one end of a tip cell – specifically, the
leading edge – acquires a mesenchymal-like phenotype, while the
trailing edge retains some endothelial characteristics including
maintenance of junctional contacts to trailing stalk EC.

In further support of angiogenesis as a partial EndoMT event,
we have found that the master transcription factors Snail and
Slug are induced in ECs during sprouting angiogenesis, both
developmentally (Hultgren et al., 2020) and in the malformed
vasculature of growing tumors (Parker et al., 2004; Lu et al.,
2007). More recently, our group reported that Slug, although only
transiently required for developmental angiogenesis, is critical
for pathological angiogenesis, such that absence of Slug leads
to a striking lack of tumor vasculature which profoundly limits
tumor expansion (Hultgren et al., 2020). We further showed
that EC Slug overexpression downregulates adhesion and cell-
cell junction proteins, and upregulates pathways associated with
cell cycle, cell shape changes, and motility (Hultgren et al., 2020).
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Other master transcription factors are likely also involved
in partial EndoMT during angiogenesis. For example, Ma
W. et al. (2020) recently identified PAK4-induced Zeb1 as
a driver of mesenchymal gene expression in glioblastoma
EC. Taken together, these recent data strongly support the
hypothesis that during sprouting angiogenesis, an EndoMT
program is partially and reversibly activated in angiogenic ECs to
support acquisition of the subset of mesenchymal characteristics
necessary to form new vessel sprouts. This model further
implies that tight regulatory mechanisms must govern partial
EndoMT events in normal angiogenesis to control the degree
of mesenchymal transition, thereby maintaining an organized
program of new vessel growth.

REGULATORY MECHANISMS THAT
GOVERN THE EndoMT PROGRAM

Signaling Pathways Regulating EndoMT
Similar to its role in EMT, TGF-β superfamily signaling is a
potent activator of the EndoMT program, both in developmental
and pathological settings (Arciniegas et al., 1992; van Meeteren
and ten Dijke, 2012; Xiao et al., 2015; Pardali et al., 2017). This
process is mediated by both canonical and non-canonical Smad-
dependent downstream pathways (Medici et al., 2011; Piera-
Velazquez and Jimenez, 2019) and necessary for organogenesis
in many developmental contexts (Niessen et al., 2008; Piera-
Velazquez and Jimenez, 2019). Other ligands, including Wnt
(Liebner et al., 2004; Aisagbonhi et al., 2011), FGF (Correia et al.,
2016; Paik et al., 2020), NFKB (Mahler et al., 2013; Cho et al.,
2018), and ET-1 (Widyantoro et al., 2010) also regulate EndoMT,
with many of these signals appearing to act in parallel with or
converging upon TGF-β and BMP signaling (Arciniegas et al.,
1992; Hopper et al., 2016) to drive full mesenchymal transition.

Pro-angiogenic signaling pathways modulate the EndoMT
program in many ways. VEGF/VEGFR2 signaling is a potent pro-
angiogenic signal critical for healthy vascular development, and
is abnormally upregulated in tumor vasculature of many cancer
types in association with aggressive blood vessel growth (Shibuya,
2013). VEGF/VEGFR2 signaling regulates numerous cellular
functions in EC such as cell survival, proliferation, migration,
and junctional integrity via a constellation of downstream
signaling modules including PI3K/Akt, PLC-γ/PKC, p38MAPK,
ERK, RAC, FAK, JNK, and RhoA pathways (Abhinand et al.,
2016). TGF-β signaling can influence VEGF/VEGFR2 signaling
directly via canonical activation of intracellular Smads that target
several downstream genes, including VEGFR2 (Mandriota et al.,
1996) and (in the presence of hypoxia) VEGF (Sanchez-Elsner
et al., 2001). TGF-β can also indirectly affect VEGF/VEGFR2
signaling via non-canonical effects on many of the same modules
activated by VEGF/VEGFR2, including PI3K/Akt, p38MAPK,
ERK, and JNK (Ma J. et al., 2020). VEGF also exerts positive
feedback on TGF-β1 expression via PI3K/Akt activation (Li
et al., 2005). Taken together, these findings underscore the
potential for complex crosstalk between VEGF and TGF-β
signaling. We have previously described the interrelationship
between the VEGF, Notch, and TGF-β pathways and how this

lays the foundation for the sprouting phenotype (Holderfield
and Hughes, 2008) and thereby the ensuing EndoMT program.
In general, VEGF and TGF-β act synergistically (Holderfield
and Hughes, 2008) and VEGF is required for TGF-β-induced
angiogenesis in vivo (Ferrari et al., 2009). However, TGF-β
can also antagonize VEGF/VEGFR2 signaling either directly
by inhibiting VEGFR2 expression (Mandriota et al., 1996) or
indirectly by antagonizing its cellular effects (Holderfield and
Hughes, 2008). For example, VEGF is typically a pro-survival
signal, but in the context of co-stimulation with TGF-β it
becomes pro-apoptotic (Ferrari et al., 2006, 2009). This suggests
that while VEGF plays a crucial role (including downstream of
TGF-β) in initiating and driving angiogenesis, VEGF and TGF-
β may also antagonize one another to determine the extent of
EndoMT progression within the context of angiogenic EC. In
support of this idea, exogenous VEGF treatment prevents TGF-β-
induced EndoMT during cardiac fibrosis (Illigens et al., 2017) and
VEGFR2 expression is reduced in glioblastoma vessels alongside
EndoMT program activation and acquired mesenchymal marker
expression (Liu et al., 2018).

In contrast to VEGF/VEGFR2, pro-angiogenic HIF-1α (Xu
et al., 2015b) and TNFα (Sainson et al., 2008; Yoshimatsu et al.,
2020) promote (rather than antagonize) complete EndoMT.
Still other pro-angiogenic signals exert a context-dependent
effect on the EndoMT program. HGF/c-Met signaling, for
example, prevents TGF-β1-induced EndoMT in cardiac fibrosis
(Okayama et al., 2012; Wang et al., 2018) but c-Met signaling
activates EndoMT and abnormal vessel growth in glioblastoma
(Huang et al., 2016) potentially compensating for the loss of
VEGFR2 in these tumor vessels described by Liu et al. (2018).
CXCL12 (SDF-1α)/CXCR4 signaling is upregulated in radiation-
induced EndoMT in tumor vasculature where it is required for
tumor-associated macrophage recruitment (Choi et al., 2018),
and knockdown of either of CXCL12’s receptors, CXCR4 and
CXCR7, disrupts angiogenic sprouting in vitro (Hultgren et al.,
2020). Consistent with this, we found that CXCL12 activation
of CXCR4 – but, interestingly, not CXCR7 – is required
for CXCL12-induced upregulation of master transcription
factor, Slug, which drives partial EndoMT during angiogenesis
(Hultgren et al., 2020). By contrast, others have reported that
CXCL12 activation of CXCR7 induces Wnt signaling to inhibit
EndoMT-associated fibrosis (Shen et al., 2020).

Master Transcription Factors of EndoMT
Perhaps the key determinant for EndoMT is not any specific
receptor pathway activation, but the extent to which the
combined and integrated signaling through these pathways
converge at the level of the EndoMT master transcription
factors. These include members of the Snail family of zinc-
finger transcription factors, Slug and Snail, as well as zinc-finger
transcription factors, Zeb1 and Zeb2, and the basic helix-loop-
helix transcription factor, Twist1 (Piera-Velazquez and Jimenez,
2019). These transcription factors were originally described as
potent drivers of EMT (Lamouille et al., 2014) with more recent
studies finding that their expression in ECs induces EndoMT
(Piera-Velazquez and Jimenez, 2019) suggesting a common
mesenchymal transition program in both cell types.
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In epithelial cells there is significant cross-talk between Slug,
Snail, Zeb1, Zeb2, and Twist1 to regulate EMT progression
(Peinado et al., 2007). In ECs, the interrelationship between these
transcription factors is less well understood, but likely similarly
complex (Weinstein et al., 2020). Some studies propose that
Snail is the primary driver of the EndoMT program, with other
transcription factors playing a largely ancillary role to Snail.
Global (Carver et al., 2001), epiblast- (Lomeli et al., 2009) and
endothelial-specific Snail (Wu et al., 2014) knockout is embryonic
lethal due to profound defects in cardiovascular development
(although this may or may not be due to an EndoMT
defect), whereas animals lacking Slug survive embryogenesis
with comparatively subtle defects in blood vessel development
(Hultgren et al., 2020). In cultured ECs, TGF-β2 induces Snail
expression via Smad-mediated MEK/ERK, PI3K, and p38MAPK
(Medici et al., 2011) but does not significantly upregulate Slug and
Twist1 (Kokudo et al., 2008). Snail is also strongly upregulated
by hypoxia, and is directly targeted by HIF-1α during induction
of EndoMT in corneal ECs (Xu et al., 2015b). Gene silencing
approaches show that Snail is necessary for both TGF-β2-
(Kokudo et al., 2008) and low shear stress-activated (Mahmoud
et al., 2017) EndoMT. Furthermore, in several of these models,
Slug expression is at least partially dependent on Snail (Xu
et al., 2015b; Mahmoud et al., 2017) indicating cross-talk between
Snail- and Slug-mediated EndoMT signaling.

Our studies as well as others, on the other hand, suggest
that Slug and Snail both play important and non-redundant (if
over-lapping) roles in EndoMT (Welch-Reardon et al., 2014;
Hultgren et al., 2020; Weinstein et al., 2020). Slug and Snail
negatively regulate one another’s expression (Chen and Gridley,
2013a,b) and both participate in distinct (as well as shared)
signaling circuits that govern partial and full EndoMT (Weinstein
et al., 2020). Further supporting the hypothesis that Slug and
Snail function independently in EndoMT, endothelial Snail
expression is unaffected by transgenic ablation of Slug in the
retinal microvasculature (Hultgren et al., 2020) although it can
compensate for Slug during heart formation in embryogenesis
(Niessen et al., 2008). Instead, transcriptomic analysis indicates
that Slug regulates a distinct suite of genes during early
angiogenesis consistent with induction of partial EndoMT,
including upregulation of mesenchymal markers (e.g., αSMA)
as well as pro-proliferative and pro-migratory genes, and
destabilization of endothelial junction genes (e.g., Occludin)
without concurrent suppression of endothelial markers such as
PECAM-1 (Hultgren et al., 2020).

Aside from Slug and Snail, endothelial expression of Zeb1
(Singh et al., 2019; Fu et al., 2020), Zeb2 (Chen et al., 2010),
and Twist1 (Mahmoud et al., 2016) also promote EndoMT and
angiogenesis. Endothelial expression of Twist1 induces a partial
EndoMT program in ECs in response to TGF-β2 stimulation,
resulting in increased EC proliferation and migration, a more
mesenchymal-like cell morphology, and downregulation of
endothelial junction proteins (Mammoto et al., 2018). Similarly,
endothelial Twist1 overexpression drives mesenchymal marker
expression in pulmonary ECs, and is necessary for the
development of vascular structures in an implanted fibrin gel
model of blood vessel network formation (Mammoto et al., 2020).

Fu et al. (2020) also found that endothelial deletion of Zeb1
leads to improved vascular normalization and reduced cancer
progression in various tumor models by reducing tumor vessel
density and permeability, mainly by reducing TGF-β signaling in
ECs and associated tumor stroma. More recently, Ma W. et al.
(2020) found that PAK4 drives mesenchymal gene expression in
the EC of glioblastoma blood vessels, and that in this setting,
Zeb1 (but not Slug) is required for PAK4 suppression of cellular
adhesion proteins leading to increased vascular permeability.

Experimental studies as well as in silico analysis suggest that
Twist1 may operate upstream of Slug and Snail (Sanchez-Elsner
et al., 2001; Okayama et al., 2012; Huang et al., 2016). For
example, Mammoto et al. (2018) found that Twist1 upregulates
Slug expression, which the authors propose is a necessary
intermediate step for EndoMT to proceed in these cells. Yet, our
transcriptomic analysis of Slug overexpressing ECs also indicate
positive feedback by Slug onto Twist1 expression (Hultgren et al.,
2020). By contrast, Zeb1 and Zeb2 appear to function primarily
downstream of these transcription factors (Lee et al., 2018;
Weinstein et al., 2020). In corneal ECs, Zeb1 is required for Snail
upregulation of cell cycle and extracellular matrix proteins during
EndoMT (Lee et al., 2018). Thus, while the sequential as well
as lateral relationships between Snail transcription factors, Zeb
transcription factors, and Twist1 suggest significant cross-talk, it
currently remains unclear exactly how these signals coordinately
regulate EndoMT progression. Further studies are necessary to
fully elucidate the (clearly complex) relationship between their
expression patterns and functions in EndoMT.

Notch
Notch signaling appears to play a central – and still largely
unclear – function during EndoMT. Signaling via Notch requires
cell-cell contact between membrane-bound Notch ligands (e.g.,
Dll4 and Jag1) and cell surface Notch receptor expressed on
adjacent cells. Thus, Notch signaling necessarily requires that at
least some cell-cell junctions be intact, suggesting an initiating
role in EMT and presumably an early role also in EndoMT.
Indeed, Notch drives EndoMT in development (Niessen et al.,
2008; Chang et al., 2011) and during disease (Noseda et al.,
2004; Liu et al., 2014). Yet, we and others have also found
that Notch limits sprouting angiogenesis (Hellstrom et al.,
2007; Suchting et al., 2007) and that small molecule inhibition
of Notch signaling exacerbates EndoMT (Chen et al., 2015;
Hultgren et al., 2020). Specifically, in our hands, Notch signaling
inhibition combined with Slug overexpression leads to complete
fragmentation of sprouts during in vitro angiogenesis, indicative
of cells undergoing more aggressive or complete mesenchymal
transition (Hultgren et al., 2020).

The solution to this conundrum likely lies in the way we
have traditionally approached Notch signaling, which has thus
far been presumed to be an instructive signal. More consistent
with its multiple and differing roles in numerous developmental
programs, however, would be if Notch signaling instead plays
a permissive role to open a “window of opportunity” for
other pathways to be active. Thus, for any process – whether
positively or negatively acting pathways – both could each be
dependent on Notch signaling, such that neither is able to operate
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without a permissive signal from Notch. In EC, Notch may
thus control whether pro- or anti-mesenchymal transition signals
gain the upper hand. Similar processes have been suggested
for Notch during arteriovenous specification (Fang et al., 2017)
hemogenesis (Gama-Norton et al., 2015) and endocrine cell
specification (Dutta et al., 2008).

MicroRNA
MicroRNAs (miRNA) are short single-stranded, non-coding
RNA sequences that regulate post-transcriptional gene
expression at the mRNA level. Several miRNAs are involved in
EMT (Nicoloso et al., 2009), both through regulation by – and
feedback onto – Snail (Gill et al., 2011; Chen D. D. et al., 2019)
Slug (Chen D. D. et al., 2019) and Zeb genes (Burk et al., 2008).
Multiple miRNA species have recently been identified as positive
and negative regulators of TGF-β-induced EndoMT (Kim,
2018; Glover et al., 2019) – including miR-630 which inhibits
EndoMT by directly targeting Slug (Sun et al., 2016) – suggesting
that the dynamic and integrated signal from multiple miRNAs
acting in concert may also determine the extent of EndoMT and
other EC fate changes. Furthermore, FGF signaling has been
shown to promote TGF-β mediated EndoMT via regulation of
let-7 miRNA expression (Chen et al., 2012) but to limit it via
miR-20 (Correia et al., 2016). Consistent with this hypothesis,
endothelial expression of Dicer – the protein responsible for
miRNA pre-processing – is required for angiogenesis (Suárez
et al., 2008) and miRNAs have also recently been reported to
regulate endothelial-to-hematopoietic transition (Kasper et al.,
2020). Thus, the interrelationship between miRNA species
in ECs and their combined effect on EndoMT progression
warrant further study.

Epigenetic Modifications
Both complete and partial EndoMT depend upon the availability
of key inducers to activate core DNA-binding transcription
factors that regulate the expression of downstream mesenchymal
transition genes. Given this, epigenetic changes that alter access to
individual genes (or chromatin, more broadly) play a significant
role at multiple levels of the EndoMT program, such as to regulate
the availability of EndoMT inducers and effectors (Turunen
and Yla-Herttuala, 2011; Lewandowski et al., 2015; Schwanbeck,
2015). For example, during normal heart development, HDAC3-
mediated recruitment of EZH2 leads to transcriptional silencing
of TGF-β1 to prevent aberrant EndoMT (Lewandowski et al.,
2015). Other angiogenic signals that influence the EndoMT
pathway – including VEGF and Notch pathway effectors – are
also sensitive to DNA modifications (Turunen and Yla-Herttuala,
2011; Schwanbeck, 2015). Lastly, DNA methylation status can
also regulate the levels of EMT-associated master transcription
factors in epithelial cells (Lee and Kong, 2016) suggesting that
similar regulation might occur in ECs to influence EndoMT.

Endothelial-to-mesenchymal transition progression is also
sensitive to epigenetic changes that alter access to mesenchymal
genes acted upon by EndoMT master transcription factors
(Maleszewska et al., 2015). Under both developmental and
pathological settings, TGF-β alters the methylation of EndoMT-
related genes (Maleszewska et al., 2015; Xu et al., 2015a), and

can (either alone or alongside Notch co-stimulation) induce
histone acetylation (Fu et al., 2009). More fundamentally,
the comparative difference in EndoMT transcription factor
importance in physiological versus pathological angiogenesis
(Hultgren et al., 2020; Ma W. et al., 2020) may be due to
differences in chromatin architecture during development versus
under inflammatory and other disease settings, such as in cancer.
Alternatively, inflammation-induced epigenetic changes may also
explain why the EndoMT program proceeds to completion in
some disease contexts such as atherosclerosis or cancer, but not
in angiogenesis. Indeed, the complexity and heterogeneity in cell
type-specific responses to common inflammatory signals such as
NFKB is established by the epigenetic landscape that uniquely
determines enhancer region accessibility across distinct tissues
(Natoli, 2009; Natoli et al., 2011). Epigenetic changes also occur
during carcinogenesis to drive tumor growth and vascularization
(Baylin and Jones, 2016). How chromatin remodeling under
these and other pathological settings influence the accessibility
of mesenchymal transition genes in EC, thereby altering the
outcome of EndoMT program activation, remains unclear.

MODEL OF PARTIAL EndoMT
REGULATION

Early studies of EMT and EndoMT proposed that mesenchymal
transition is a binary, on/off switch between two distinct cell
states. However, more sophisticated studies have now refuted
that idea, and instead support an alternative model wherein most
cell fate changes – including both EMT and EndoMT – involve
progressive transition from one cell identity to another via a fluid
spectrum of intermediate cell states (Lamouille et al., 2014; Sha
et al., 2019). In support of this latter model, initiation of EMT
in pluripotent epithelial stem cells through downregulation of
the adherens junction protein E-cadherin triggers expression of
Slug and related transcription factors, leading to the acquisition
of some mesenchymal characteristics; yet, these cells still retain
expression of epithelial stem cell markers indicating only a partial
EMT (Aban et al., 2021).

Similarly, complete EndoMT also involves fluid transition
through intermediate endothelial and mesenchymal substates
with characteristics of both cell types. Cell subpopulations that
co-express endothelial- and mesenchymal- markers – indicating
cells in an intermediate state of EndoMT – have been reported
in cardiac (Widyantoro et al., 2010), pulmonary (Mendoza et al.,
2016), and dermal (Manetti et al., 2017) fibrosis, as well as in
fetal valve endothelial progenitor cells (Paruchuri et al., 2006).
Furthermore, pseudotime analysis of single cell transcriptomic
and epigenomic data shows a spectrum of intermediate EndoMT
cells, as well as ECs undergoing apparent transition to other non-
mesenchymal cell types (Andueza et al., 2020; Kenswil et al.,
2021). Given this, partial EndoMT is most likely not its own
distinct process. Instead, we propose that partial EndoMT is
best described as an incomplete activation and/or progression
of the core EndoMT program, wherein regulatory signals
are activated to limit the EndoMT process and prevent EC
from fully transitioning into a mesenchymal endpoint. Clearly,
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in some contexts such as atherosclerosis and tumorigenesis,
EndoMT program activation proceeds fully to completion.
This may be due to chronic activation of the EndoMT
program in this setting which (perhaps further augmented by
the initiation of positive feedback mechanisms) drives cells
rapidly through intermediate endothelial-mesenchymal states
to promote robust transition into fibroblasts (Schwartz et al.,
2018). Yet, in angiogenesis, we propose that the EndoMT
program is only weakly or incompletely activated, or that
regulatory “brakes” may inhibit EndoMT program progression
to suppress complete mesenchymal transition. Together, this may
ensure that cells proceed only partially through the endothelial-
to-mesenchymal identity spectrum, enabling temporary and
reversible adoption of a hybrid endothelial-mesenchymal cell
state (Figure 1). To achieve such context-dependent nuance, the
EndoMT program must be under strict regulatory control. We
propose two layers of regulation on this process: (1) regulation
of endothelial and mesenchymal identity signaling; and (2)
regulation of cell plasticity to determine target cell sensitivity to
those identity cues.

Regulation of Endothelial and
Mesenchymal Identity Signaling
Cell identity – even among committed cells – is dynamically
established and maintained by the moment-to-moment
balance of competing cell fate signals (Lee et al., 2014;
Watanabe et al., 2014; Dejana et al., 2017). Indeed, ECs can
respond rapidly to changes in local cell fate signals (Dejana
et al., 2017) which suggests that EC identity maintenance
remains a largely active process involving continuous input
from local endothelial identity cues that include ligand-
receptor signaling (i.e., VEGF, FGF, BMP, etc.), cell-matrix
signaling, perivascular cell signaling, fluid shear stress, and
microenvironmental oxygen content (Dejana et al., 2017).
EC fate change programs (such as EndoMT) must overcome
these signals to release cells from their EC commitment
and redirect them toward other cell lineages. Thus, in the
context of complete EndoMT, activation of the EndoMT
program in ECs must generate mesenchymal fate cues with
sufficient magnitude to outcompete endothelial identity
signals and drive cells fully through the endothelial-to-
mesenchymal identity spectrum to adopt a mesenchymal
identity. By contrast, partial EndoMT occurs when the “push”
and “pull” of endothelial and mesenchymal cues are momentarily
balanced, thereby resulting in cells situated in an intermediate,
uncommitted equilibrium state mid-way between endothelial
and mesenchymal identities (Figure 1). Thus, we might imagine
endothelial and mesenchymal identity signals functioning as
two competing rheostats to establish target cell identity: fully
“turning up” mesenchymal identity signals will successfully
drive mesenchymal transition toward completion, especially if
endothelial identity signals are simultaneously “turned down.”
However, if mesenchymal identity signaling are only weakly
“turned up” – as would occur if regulatory mechanisms limit or
antagonize activation of the EndoMT program – cells would only
undergo partial EndoMT.

Several EndoMT signaling pathways likely regulate EndoMT
progression by modulating the relative strength of endothelial vs.
mesenchymal fate signals. Classic EndoMT activators that drive
complete EndoMT to generate endothelial-derived fibroblasts
(such as TGF-β, hypoxia, and inflammatory signals, etc.) likely do
so by strongly inducing pro-mesenchymal cues that overpower
endothelial commitment signals, perhaps through the initiation
of positive feedback loops. Others, however, may only modestly
activate mesenchymal transition, either alone or in combination
with the maintenance of endothelial identity signals, to limit
the EndoMT program and ensure it proceeds only partially.
VEGF, for example, is a classic pro-angiogenic factor that may
promote (controlled and healthy) vessel growth by activating
the EndoMT program to induce sprouting angiogenesis, while
simultaneously preserving endothelial identity cues to prevent
excessive mesenchymal transition in resulting tip and stalk cells.
Underscoring its role in promoting new vessel growth, we found
that VEGF signaling blocking prevents overaggressive sprouting
in the context of Slug overexpression (Hultgren et al., 2020)
suggesting that VEGF synergizes with Slug in driving EndoMT.
Furthermore, VEGF is strongly overexpressed in cancer, where
it is linked to appearance of the disorganized, aggressive
hypersprouting typical of the tumor vasculature. Yet, in support
of a secondary role for VEGF in securing endothelial identity in
angiogenesis, some studies have found VEGF to antagonize TGF-
β signaling in EndoMT (Paruchuri et al., 2006). For example, fetal
valve progenitors are bipotential cells that co-express endothelial
and mesenchymal markers suggesting an intermediate EndoMT
state; this plasticity is lost in adult cells (Paruchuri et al., 2006).
Using these cells, Paruchuri et al. (2006) found that VEGF
promotes (reversible) transition toward greater EC identity, in
part by antagonizing TGF-β-induced mesenchymal transition.
VEGF similarly limits TGF-β-mediated fibrosis in cardiac tissue
(Illigens et al., 2017). Taken together, these data suggest that the
distinction between controlled vs. uncontrolled angiogenesis is
determined by the precise level of local VEGF signaling such that
the EndoMT program is activated only partially, and in a limited
and regulated way.

Another possible regulatory mechanism that might prevent
complete EndoMT may involve the relative levels of master
transcription factors, Slug and Snail. Slug and Snail negatively
regulate one another’s expression (Chen and Gridley, 2013a,b),
and both participate in distinct (as well as shared) signaling
circuits that govern partial and full EndoMT (Weinstein et al.,
2020). Using an in vitro sprouting angiogenesis assay, we
found that Slug upregulation precedes that of Snail by several
days, suggesting that Slug activation is independent of Snail.
Moreover, Slug dominates during the early proliferative phase
of angiogenesis, whereas in later stages of angiogenesis, its
expression decreases as Snail expression increases (Welch-
Reardon et al., 2014). Consistent with this finding, Snail
upregulation is also delayed following TGF-β activation of
complete EndoMT in cultured ECs (Sobierajska et al., 2020).
Thus, the dynamic balance of Slug vs. Snail levels appears
to modulate the EndoMT response to dictate the extent
of (partial vs. complete) mesenchymal transition. Whereas
physiologic levels of Slug support early sprouting angiogenesis
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FIGURE 1 | Model of endothelial-to-mesenchymal transition (EndoMT) regulation. EndoMT describes fluid transition between endothelial and mesenchymal identities
and involving a spectrum of intermediate states wherein cells acquire a mixture of endothelial and mesenchymal character and marker expression. Complete vs.
partial EndoMT is established by both the relative level of pro-endothelial and pro-mesenchymal signals that “push” or “pull” cells toward either endpoint of the
endothelial-mesenchymal spectrum, as well as by the extent of cell plasticity.

via induction of a partial EndoMT gene signature, high and
prolonged overexpression of Slug – particularly in combination
with Notch signaling inhibition – drives full dissociation
of ECs from angiogenic sprouts, suggesting that Slug levels
tightly regulate the extent of EC response to EndoMT signals
(Hultgren et al., 2020). Meanwhile, delayed Snail upregulation
during angiogenesis (Welch-Reardon et al., 2014) and in
response to exogenous TGF-β-mediated EndoMT activation

(Sobierajska et al., 2020) suggests that Snail functions later
than Slug, perhaps to support a more robust EndoMT
activation signal that pushes cells more aggressively down
the EndoMT pathway. Consistent with this possibility, Snail
has a higher affinity for target DNA binding sites than
does Slug, suggesting that when expressed, Snail may exert
a more potent effect to transactivate mesenchymal genes
(Bolos et al., 2003).
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Regulation of Cell Plasticity
The extent of EndoMT progression likely also depends upon
cell plasticity, which acts as a permissive signal to determine
the extent to which cells are sensitive to any sort of fate
change signal (Figure 1). Although EC identity is mostly
actively maintained, EC commitment is also controlled in
progenitor cells by epigenetic modification to more stably alter
accessibility of endothelial lineage genes (Ohtani et al., 2011).
Highly committed EC may thus be relatively insensitive to cell
identity transition cues. By contrast, cell plasticity signals that
“loosen” cell commitment will enhance cell stemness, which
may create a necessary window of opportunity that enables
EndoMT signals to act upon the target cell. In support of this
idea, transcriptomic analysis finds that cells in intermediate
EMT states are more stem-like than cells on either end of the
epithelial or mesenchymal identity spectrum (Jolly et al., 2014).
In other words, cells in partial mesenchymal transition (whether
by EMT or EndoMT) may be situated at a cell fate inflection
point, wherein they are less committed and therefore especially
responsive to external identity cues that might push them either
fully toward distinct mesenchymal programs or reverse the
transition back toward their original cell identity.

This model may further explain why ECs are heterogeneous
in their response to EndoMT program activation, despite being
exposed to the same EndoMT activation signal. For example,
Xiao et al. (2015) found that TGF-β-induced EndoMT yields
subpopulations of both SMA-expressing myofibroblasts as well as
SMA-negative fibroblasts, suggesting that EndoMT intermediate
states differ in their responsiveness to mesenchymal identity cues.
Further, Pinto et al. (2018) recently reported that the extent
of EndoMT induction via TGF-β/Snail overexpression differs
according to the tissue-specific identity of cultured primary ECs.
EC commitment may differ according to EC tissue origin, which
may underlie their distinct responsiveness to EndoMT activation.
In other words, while some ECs exposed to EndoMT cues may
transition fully toward a mesenchymal fate, others in the same
population may be more resistant to EndoMT activation and may
transition only partially through the EndoMT program, pause in
an intermediate EndoMT state, or even reverse course and return
to an EC identity.

Although the signaling pathways that regulate cell plasticity
in EndoMT remain unidentified, one possibility is that Notch
signaling serves this function to prime, or permit, ECs to respond
to EndoMT cues (and other cell fate signals) by creating a
window of opportunity, as suggested above (Dejana et al., 2017).
Notch is critically involved in a context- and tissue-dependent
manner throughout embryonic development, including for its
well-established role in maintaining stem and progenitor cell
pluripotency to regulate the outcome of cell fate decisions (Koch
et al., 2013). In ECs, Notch signaling is associated with acquisition
and/or maintenance of arteriovenous (Fang et al., 2017; Fang
and Hirschi, 2019), lymphatic (Murtomaki et al., 2014), and
hemogenic (Gama-Norton et al., 2015; Gritz and Hirschi, 2016)
identity, and is also required for EndoMT (Timmerman et al.,
2004). The outcome of Notch signaling in ECs is also ligand-
dependent: Dll4 and Jagged activation of Notch have opposing
roles on angiogenesis, where Dll4-Notch signaling induces EC

quiescence but Jagged-Notch signaling is both pro-angiogenic
and pro-proliferative (Benedito et al., 2009). As mentioned,
high levels of Dll4-Notch signaling by tip cells laterally inhibits
adjacent stalk cells, preventing them from similarly adopting
the mesenchymal-like tip cell phenotype. More recently, in silico
modeling suggests that cancer cells undergoing EMT are
associated with high Jagged-Notch signaling levels that establish
a “window of stemness” wherein hybrid epithelial-mesenchymal
cells transiently adopt a more stem-like state (Bocci et al.,
2018). Thus, in the context of angiogenesis, Dll4-Notch may
normally preserve EC identity, and suppression of this signal
through direct repression of Dll4 by Slug (Hultgren et al., 2020)
may loosen EC commitment to permit cells to respond to
mesenchymal transition cues, thereby enabling EndoMT to (at
least partially) proceed. Consistent with this possibility, in silico
modeling finds that perturbations that downregulate Dll4 are
associated with partial EndoMT in modeled ECs (Weinstein
et al., 2020). Subsequent regulation of Notch activation levels
(perhaps via Jagged) may then determine whether cells remain
in an intermediate stage of EndoMT, reverse course back to a
committed EC identity, or transition fully toward a mesenchymal
state, either by exerting further effects on cell plasticity alone
and/or through cross-talk with TGF-β, VEGF or other EndoMT
regulatory pathways (Holderfield and Hughes, 2008). Further
studies are necessary to test these possibilities.

DYSREGULATED EndoMT IN
PATHOLOGICAL ANGIOGENESIS

Mature blood vessels are highly stable, and sprouting
angiogenesis is a tightly regulated process that involves the
temporary adoption by angiogenic ECs of pro-proliferative
and migratory states (via stringent regulation of the EndoMT
program). This enables the formation of new vessel sprouts, but
also the return of EC to a quiescent and stable state (Schwartz
et al., 2018). However, in hypervascular diseases such as diabetic
retinopathy and cancer, ECs are persistently destabilized and
developmental angiogenic pathways (including the EndoMT
program) are reactivated in an aberrant and dysregulated
fashion, leading to unrestrained and pathological growth of
abnormal and disorganized blood vessels (Schwartz et al., 2018).
This suggests that pathological and hyperaggressive angiogenesis
may represent a loss of regulatory control over the EndoMT
program. In cancer, for example, uncontrolled EndoMT may
result in angiogenic ECs that acquire excessive mesenchymal
character, leading to aggressive, uncontrolled, and disorganized
sprouting to produce the highly aberrant and leaky vasculature
characteristic of tumors.

Consistent with this hypothesis, we recently reported that
beyond its developmental role in angiogenesis, Slug is critically
required to support the pathological hypersprouting of blood
vessels into tumor explants. In the absence of endothelial
Slug expression, tumor angiogenesis was almost completely
abolished (Hultgren et al., 2020) underscoring the importance
of Slug-mediated partial EndoMT signaling to enable sprouting
angiogenesis in cancer. Indeed, both our group and others
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have found that individual EndoMT transcription factors may
be largely dispensable during development, but still play a
central and indispensable role in the context of pathological
angiogenesis, suggesting that regulatory mechanisms that
ordinarily compensate for their loss are no longer intact
(Hultgren et al., 2020; Ma W. et al., 2020). For example key
developmental genes often have multiple (shadow) promoters
driven by different transcription factors. Epigenetic shut-down
of one of these promoters may then render expression of the gene
susceptible to loss of a previously redundant transcription factor.
Thus, therapies designed to limit pathological angiogenesis in a
variety of diseases may be more effective if they also target Slug,
Snail, or other master EndoMT transcription factors or their
downstream signaling pathways.

THERAPEUTIC POTENTIAL OF
TARGETING EndoMT REGULATORY
MECHANISMS FOR PATHOLOGICAL
ANGIOGENESIS

Endothelial-to-mesenchymal transition is associated with several
disease settings, including atherosclerosis, where activation of
the EndoMT program drives robust EC transformation into
EC-derived fibroblasts that are critical for plaque formation
and progression (Souilhol et al., 2018). Studies of mouse
atherosclerotic models have shown that EC in atheroprone
regions are induced to express EndoMT transcription factors
(Mahmoud et al., 2016, 2017) suggesting that EndoMT is
a significant contributor to the fibroblast population in this
setting. Consistent with this, Chen et al. (2012) found,
somewhat surprisingly, that the TGF-β pathway is required
for EC inflammation and atherosclerotic plaque development.
Furthermore, they found that genetic knockout or silencing-
RNA knockdown of this pathway reduced inflammation, and
both prevented and rescued atherosclerotic plaque formation,
making the EndoMT pathway, and specifically the TGF-β
component, an attractive target for therapeutic treatment of
this disease (Chen et al., 2012). Similarly, several drugs with
anti-EndoMT properties are already approved for treatment
of other diseases such as pulmonary fibrosis (Tsutsumi et al.,
2019) and diabetes (Yao et al., 2018) and are further being
considered as candidates for the treatment of cancer (Choi et al.,
2020). Thus, anti-EndoMT approaches may also be effective in
controlling pathological angiogenesis, including in cancer where
angiogenic invasion into tumor masses drives further cancer
growth and metastasis. However, since several clinically approved
anti-EndoMT therapies are aimed at (and have been studied
in the context of) preventing complete EndoMT – that is, the
appearance of EC-derived fibroblasts to prevent fibrosis – it
is unclear how effective existing treatment strategies will be
in the context of pathological angiogenesis in which even a
partial EndoMT program is sufficient to drive pathology. It is
possible that additional, new strategies may be required to halt
or reverse this process, potentially by acting early in the cascade
of transcriptional events.

Existing anti-angiogenic approaches in cancer treatment have
largely focused on inhibiting pro-angiogenic signals. When
pathological angiogenesis is reconceptualized as a problem of
dysregulated EndoMT – and not merely an issue of over-active
pro-angiogenic (e.g., VEGF) signaling – it becomes clearer why
anti-VEGF therapy [which has been a standard of care in
cancer treatment for the last two decades (Welti et al., 2013)]
largely fails to provide long-term control of tumor angiogenesis
and cancer progression (Ferrara, 2010). Simply blocking VEGF
signaling is not enough since the hypoxic and pro-inflammatory
tumor microenvironment as well as the heightened mutation
rate of cancer cells allows for rapid adaptation to anti-VEGF
treatment through the activation of alternative pro-EndoMT
“escape pathways” that rescue pathological angiogenesis in a
VEGF-independent manner. Attempting to target and inhibit
each pro-mesenchymal pathway individually would result in an
inefficient game of “whack-a-mole.”

Most pro-EndoMT pathways appear to converge at the level of
the master EndoMT transcription factors. Indeed, as mentioned
above, several EndoMT transcription factors are abnormally
expressed in tumor-associated ECs where they drive abnormal
tumor vessel formation. Therefore, therapies that target master
EndoMT transcription factors are likely to be more effective than
treatments that inhibit EndoMT program activators, particularly
in the context of cancer, because of the following properties of
these transcription factors: (1) they serve as a common signaling
nexus for most upstream pro-EndoMT activators and could
therefore alleviate the issue of “escape pathway” activation; (2)
they are transcription factors that directly drive expression of
suites of cell identity genes, thus ensuring broad effects on
target cells; and (3) their abnormal activation is often specific
to the tumor environment (Welch-Reardon et al., 2014) which
suggests that healthy vessels would be relatively protected from
off-target effects.

One concern in this approach might be the challenge of
targeting intracellular proteins. However, recent developments
in antibody-mimicry and antibody-fusion peptides, as well as
advances in viral- and nanoparticle-based delivery methods,
have shown great promise for cell-type specific delivery of
antibodies that target intracellular antigens (Slastnikova et al.,
2018) and should allow for drug delivery specifically to
tumor blood vessels that express unique markers relative to
healthy vasculature. Recent advances in delivery of RNA-
based therapeutic molecules also offer new possibilities for
acute, temporary, and efficient knockdown of intracellular
protein expression (Nature Medicine, 2019; Dammes and
Peer, 2020). This latter approach may be especially feasible
when targeting transcription factors like Slug, which have a
short half-life and are only transiently expressed. Nonetheless,
approaches that target Slug, Snail, Zeb1, Zeb2, and Twist1 –
individually or collectively – to limit pathological angiogenesis
must consider the likely complex (and still largely unclear)
interrelationship between these transcription factors during
angiogenesis. More work is therefore needed to better elucidate
the cross-talk between master EndoMT transcription factors to
enable more precise control of their function as an emerging
therapeutic strategy.
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Another possible avenue for therapeutic intervention in the
EndoMT program may involve targeting regulatory mechanisms
that govern EC plasticity. Therapies that selectively promote EC
commitment and limit sensitivity to local pro-EndoMT signals
may prevent overaggressive and pathological angiogenesis in
the tumor mass, particularly when applied in combination with
other chemotherapeutic or anti-angiogenic treatments. Such an
approach might be used to either normalize tumor vessels, or
to block tumor angiogenesis altogether. If, as we propose, Dll4-
Notch signaling promotes EC commitment to limit (partial
or complete) EndoMT, therapies that activate Notch signaling
specifically in tumor vasculature may help suppress pathological
angiogenesis. Yet, application of Notch inhibitors have produced
mixed outcomes on tumor blood vessels (Bridges et al., 2011)
likely due to the fact that Notch’s effect on cell plasticity
appears to be both ligand- and context-dependent (Benedito
et al., 2009). Currently available small molecule Notch inhibitors
are overly broad in their suppression of all Notch activation.
Blocking antibodies to the Dll4 or Jagged1 Notch ligand are
more suitable for specific Notch signaling inhibition, although
outcomes have thus far been surprising. Dll4 blockade, for
example, promotes excessive tumor vessel growth consistent with
a role for Dll4-Notch signaling in promoting EC commitment.
However, vessels that result from Dll4-Notch inhibition are
excessively disorganized and poorly perfused, which (somewhat
unexpectedly) reduces tumor size (Bridges et al., 2011). Thus,
further studies are needed to determine precisely what kind of
Notch inhibition might be most effective to limit pathological
angiogenesis in tumors; or, alternatively, whether targeting other
pathways that regulate EC plasticity might be more suitable.
Finally, to reiterate our earlier discussion on Notch signaling,
activation or inhibition of Notch must always be considered
in the context of what other signaling pathways may be
active in the local environment that Notch signaling is now
permitting or blocking.

DISCUSSION

Complete EndoMT serves as a critical source of endothelial-
derived mesenchymal cells during organogenesis and is a
significant contributor to fibrosis in disease. It is also increasingly
clear that partial EndoMT also plays an essential function during
angiogenesis (and likely other processes), and that dysregulation
of the EndoMT program may contribute to abnormal and
pathological blood vessel growth. Specifically, we propose that
tight regulation of a core EndoMT program dictates the extent
of mesenchymal transition in a context-appropriate manner
by manipulating the strength of identity and transition cues,
as well as the extent of target cell plasticity, and that loss

of this control contributes to blood vessel disorganization in
diseases such as cancer.

However, several questions remain outstanding: What are the
contexts aside from angiogenesis under which partial EndoMT
occurs? What specific regulatory mechanisms determine the
extent of EndoMT progression, and how are they dynamically
regulated during angiogenesis to maintain partial endothelial
identity during sprouting? What are the regulatory mechanisms
that govern cell plasticity during EndoMT, and how do they
modulate progression of the EndoMT program? How stable
and discrete are intermediate stages of partial EndoMT and,
in addition to mesenchymal transition signals, are these cells
sensitive to other cell lineage signals? Why do EndoMT
transcription factors appear to be more essential in pathological
angiogenesis compared to during development, and what
aspects of the tumor microenvironment and other disease
states lead to dysregulation of EndoMT regulatory mechanisms?
And finally, how can EndoMT be targeted therapeutically in
these diseases? An improved understanding of EndoMT, and
specifically the regulatory mechanisms that dictate complete vs.
partial mesenchymal transition in a context-dependent manner,
warrant further study and are likely to reveal important insights
into these and other crucial questions.
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