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As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of
various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules
encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role
in HBV replication and virus-associated diseases. Accumulating evidence so far indicates
that pattern recognition receptors (PRRs) are at the front-line of the host defense
responses to restrict the virus by inducing the expression of interferons and various
inflammatory factors. However, depending on HBX, the virus can control PRR signaling by
modulating the expression and activity of essential molecules involved in the toll-like
receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like
receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote
the development of viral diseases. In this review, we provide an overview of the
mechanisms that are linked to the regulation of PRR signaling mediated by HBX to
inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and
hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we
propose that a comprehensive understanding of the modulation of cellular factors involved
in PRR signaling induced by the viral protein may open new avenues for the treatment of
HBV infection.

Keywords: hepatitis B virus, retinoic acid inducible gene I (RIG-I)-like receptors, HBx, pattern recognition receptors,
toll-like receptors, nod-like receptors
INTRODUCTION

Although the hepatitis B virus (HBV), a small DNA virus, has been known for more than 50 years,
chronic infection caused by this virus remains a global cause of hepatitis, cirrhosis, and liver cancer,
especially hepatocellular carcinoma (HCC) (1–3). It has been widely demonstrated that after
recognition by pattern recognition receptors (PRRs), the virus can be restrained by the innate
immune system (4–7). To date, four types of PRRs, including toll-like receptors (TLRs), cytosolic
DNA sensors, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and NOD-like receptors
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(NLRs), have been discovered (8–10). Generally, once sensitized
by the virus, these PRRs can initiate the activation of multiple
intracellular signaling pathways to produce interferons (IFNs),
which further stimulate the sensitization of the Janus kinase-
signal transducer and activator of transcription (JAK-STAT)
signaling to participate in the inherent antiviral immune
response. Additionally, these PRRs can stimulate the
production of inflammatory cytokines induced by the nuclear
factor kB (NF-kB) pathway to resist the virus (11, 12). However,
accumulating evidence suggests that to maintain persistent
infection, the virus has evolved a variety of strategies to
overcome the host antiviral responses mediated by PRR
components, such as TLRs, cytosolic DNA sensors, RLRs, and
NLRs, as well as their downstream pathways, including the JAK-
STAT and NF-kB pathways, to facilitate viral replication and
liver pathogenesis (13–16). Moreover, the exact mechanisms by
which this virus evades the immune response mediated by PRRs
to facilitate its persistent infection and development of different
diseases remain elusive.

HBV genome contains four overlapping open reading frames
(ORFs), namely S, P, C, and X. S ORF contributes to the
production of large, middle, and small envelope proteins that
are composed of HBsAg, preS1, or preS2 antigens; P and C ORFs
encode the HBV polymerase protein, core protein, and HBeAg.
Additionally, X ORF is responsible for the expression of HBX, a
highly conserved nonstructural protein with 154-amino acids
(17–19). Based on the studies on cell and mouse models, HBX is
considered to be important for initiating and maintaining HBV
replication (20, 21). Mechanistically, the viral protein in the cell
cytoplasm can stimulate signal transduction pathways to
facilitate HBV replication. In the nucleus, HBX can bind to the
HBV covalently closed circular DNA (cccDNA) and activate the
transcription of viral promoters with the help of different
transcription factors and epigenetic regulatory molecules (22–
24). At different stages of HBV infection, the viral protein
performs various biological functions (22), participate in the
growth, migration, autophagy, apoptosis, and epigenetic
regulation of virus-infected hepatocytes, and play prominent
roles in the development of different liver diseases, especially
HCC (25–28). More importantly, there is growing evidence that
HBX can regulate the expression and activity of numerous
molecules in different PRR subfamilies, including TLRs, RLRs,
and NLRs (29–32). In the present review, we summarize the
current research on the modulation of PRR signaling induced by
HBX to regulate the innate immune responses that aid in HBV
replication and various biological functions that facilitate the
development of HCC.
EFFECT OF HBX ON TLR-MEDIATED
SIGNALING PATHWAYS

TLRs are a large group of conserved type I transmembrane
molecules. So far, 10 humans TLRs have been discovered that
identify specific pathogen-associated molecular patterns (PAMPs)
(33, 34). Among the identified TLRs, TLR1-2 and TLR4-6 are
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expressed on the cell surface, whereas TLR3 and TLR7-9 are
situated on the endosomal surface. Upon activation, the TLRs
(except TLR3) can activate the adaptor protein, myeloid
differentiation primary response 88 (MyD88), to enhance the
sensitization of the tumor necrosis factor (TNF) receptor-
associated factor (TRAF) 6, which further promotes
phosphorylation of the transforming growth factor-activated
kinase-1 (TAK1). Next, TAK1 activates NF-kB signaling and then
allows NF-kB to translocate into the nucleus to initiate the gene
expression of inflammatory factors. Additionally, TAK1 activation
also prompts the sensitization ofmitogen-activated protein kinases
(MAPK), which can cause the recruitment of the transcription
factor activator protein 1 (AP-1) to upregulate the induction of
inflammatory cytokines. TLR3 is unique and uses MyD88-
independent signaling pathways to initiate the immune response.
After TLR3 activation is triggered by double-stranded RNA
(dsRNA), it can sensitize toll-interleukin-1 receptor (TIR)-
domain-containing adaptor-inducing IFN-b (TRIF) to activate
the protein complex composed of TRAF3 and TANK-binding
kinase 1 (TBK1). These molecules activate IFN regulatory factor
(IRF)-3/7 and NF-kB. TLR3 also recruits TRAF6 to phosphorylate
TAK1. TAK1 sensitizes AP-1 via the activation of the MAPK
pathway and activate NF-kB via the IKK-IkB complex to
modulate the inflammatory reaction (33–38).

Accumulating data shows that initiating the host TLR
response is a new therapeutic strategy for HBV infection (36,
37). Several studies have demonstrated that the stimulation of
TLR2-5, TLR7, and TLR9 with their specific ligands can inhibit
HBV replication in the cell and animal models (38).
Furthermore, the potential of TLR agonists, including GS-9620,
RO7020531, JNJ-64794964 (TLR7 agonists), GS-9688 (TLR8
agonist), and AIC649 (TLR9 agonist), has been investigated in
clinical trials at different stages (38, 39). HBV is considered as a
“stealth virus,” and the suppression of TLR signaling molecules
has been reported in different kinds of cells in patients with HBV
infection (40, 41). For example, decreased expression levels of
TLR2 and TLR9 have been reported in the peripheral monocytes
of patients with chronic hepatitis B (CHB) (42, 43). Suppressed
TLR signaling molecules, such as TLR3 (44), TLR7, TLR9 (45),
TRAF3, IRAK4, and IRF7 (46), were observed in the peripheral
blood mononuclear cells (PBMCs) of patients with chronic HBV
infection. Additionally, downregulation of TLR7 and TLR9 was
also observed in the plasmacytoid dendritic cells (pDCs) in
HBV-infected patients (47–49).

Furthermore, several studies have shown that multiple virus-
encoded proteins, including HBsAg, HBeAg, and HBV
polymerase, contribute to HBV persistence by inhibiting TLR-
mediated antiviral responses (38). For instance, HBsAg can inhibit
TLR3-mediated immune response in murine Kupffer cells and
sinusoidal endothelial cells (50). HBeAg has been shown to restrict
TLR2 expression and interact with the TIR proteins, TRAM and
Mal, to suppress TLR-mediated immune responses in hepatocytes
(51, 52). Meanwhile, HBV polymerase suppresses TLR3-mediated
induction of IFN-b in hepatocytes by interfering with IRF3
activation (53) and inhibits MyD88 expression by blocking the
nuclear translocation of STAT1 (54). Additionally, HBsAg and
February 2022 | Volume 13 | Article 829923
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HBeAg can control the major vault protein (MVP)-induced IFN
production by suppressing the interaction between MVP and
MyD88 in liver cells (55).

In addition to viral replication, molecules involved in TLR
signaling also contribute to the pathological changes in the liver
caused by the virus. For example, the virus can activate B cells via
the TLR2 signaling pathway, which may be associated with the
activation of antiviral responses mediated by B cells in patients
with CHB (56). Among the proteins encoded by the virus,
HBeAg sensitizes macrophages via the TLR2 signaling pathway
to exacerbate hepatic fibrosis (57). Depending on the TLR2
signaling pathway, the HBV core protein promotes the
production of the inflammatory cytokines, IL-6 and TNF-a,
from M2 macrophages (58). After HBeAg stimulation,
upregulation of TLR4 was also observed in the monocytes of
patients with CHB. Moreover, overexpression of TLR4 on
monocytes mediated by HBeAg may regulate the activity of
regulatory T cells, which is related to the immunotolerance of the
virus infection (59). Additionally, HBsAg can enhance the
invasion of HBV-associated HCC cells by upregulating TLR2
(60). HBsAg also inhibits the production of IFN-a by pDCs by
decreasing TLR9 expression in pDCs, and this effect may be
related to the reduced capacity antiviral immune response of
pDCs in patients with CHB (61).

HBX has a critical role in suppressing host innate immune
response by disrupting TLR signaling to regulate viral
replication. Moreover, the molecules regulated by HBX in TLR
signaling contribute to virus-mediated inflammation and
hepatocarcinogenesis. Among the identified TLRs, HBX was
found to upregulate TLR4 in immortalized proximal tubule
epithelial cells (Figure 1), which may be associated with the
dysregulated expression of cytokines, including IL-6, TNF-a,
IFN-g, and IL-4, mediated by the viral protein (62). TLR4 is
upregulated in HBV-related hepatoma cells, and promotes their
growth, while inhibiting the apoptosis of these cells, by activating
the extracellular signal-regulated kinase (ERK)-1/2 signaling
pathway (29). HBX can interact with TLR4 in HBV-related
hepatoma cells, and the physical interaction of HBX with
TLR4 may contribute to the activation of ERK1/2 in hepatoma
cells. To date, the effect of HBX-mediated TLR4 on HBV
replication has not been well investigated. However, in
response to TLR4 stimulation, HBX facilitates the migration of
liver cancer cells by enhancing the interaction of vacuolar protein
sorting 34 (VPS34) with the TRAF6-Beclin 1 (BECN1) complex
(63), thereby increasing BECN1 ubiquitination and autophagy, a
physiological process that contributes to HBV replication (64).

MyD88 can accelerate the degradation of HBV pre-genomic
RNA to restrain its replication (65, 66). HBX can promote the
expression of MyD88 at the transcriptional level in both liver and
hepatoma cells. To date, the effect of MyD88 on HBX-mediated
HBV replication has not been assessed. However, the role and
associated molecular mechanisms of viral proteins in the
regulation of MyD88 and its related proteins in TLR signaling
to facilitate HCC development have been investigated. In
particular, HBX activates the downstream signaling molecules
of MyD88, including IRAK1, ERK/p38, and NF-kB, to induce
Frontiers in Immunology | www.frontiersin.org 3
the production of IL-6, a major inflammatory cytokine that
facilitates the development of HCC (67). However, Wu et al.
suggested that HBX was able to inhibit MyD88 promoter activity
in hepatocytes during IFN-a stimulation (54). The reasons for
the inconsistent results regarding the effect of HBX on the
expression of MyD88 with or without exogenous stimulation
should be further assessed in future studies.

MVP interacts with MyD88 to stimulate IFN production (3,
55). Liu et al. observed high levels of MVP in the liver tissues of
HBV-infected patients. Researchers have also elucidated that
HBX can stimulate MVP promoter activity to enhance its
expression in hepatocytes. Functionally, Yu et al. found that
MVP is involved in the proliferation, migration, and invasion of
cells mediated by HBX, by sequestering IRF2 and enhancing the
HDM2-dependent loss of P53 (68). In addition to MVP, DExH-
box RNA helicase 9 (DHX9) directly binds to MyD88 to facilitate
IFN production (69). A recent study showed that HBX can
enhance the expression of DHX9 by inhibiting its degradation,
which is regulated by MDM2. Moreover, the interaction between
DHX9 and Nup98 contributes to HBX-mediated HBV
replication (70). In addition, HBX is able to interact with
DHX9 to downregulate the circular RNA circSFMBT2 and
then release miR-665 to suppress TIMP3 expression and
enhance HCC metastasis (71). However, the importance of
DHX9 in modulating the HBX-mediated innate immune
response has not been well investigated.

In TLR signaling, stimulation of MyD88 can induce the
activation of TAK1 to initiate the inflammatory reaction and
IFN production (33–35). Zhou et al. showed that HBX is
capable of inducing the activation of TAK1 through TRAF2 to
stimulate NF-kB and cause the upregulation of IP-10, and TRAF2
may participate in the regulation of TAK1 mediated by MyD88.
Furthermore, HBX-mediated increase in IP-10 is associated with
the migration of leukocytes, which may cause pathological
immune injury of the liver during HBV infection (72).
Activation of TAK1 is dependent on its interaction with its
binding partners, TAK1-binding proteins (TAB1, TAB2, and
TAB3). Based on immunoprecipitation and mass spectrometric
analyses, HBX interacts with TAB1 (73). However, based on this
interaction, whether HBX could regulate the function of TAK1
and then modulate the innate immune response has not been
assessed so far.

Activation of TRAF6 requires oligomerization, and HBX
significantly enhances TRAF6 activation by promoting its
oligomerization. Furthermore, TRAF6 oligomerization
facilitates its interaction with histone deacetylase 3 (HDAC3)
and then promotes gene expression and protein stability of c-
Myc to promote hepatocarcinogenesis (74). The evolutionarily
conserved signaling intermediate in Toll pathway (ECSIT) is a
partner of TRAF6 and activates both NF-kB and AP-1. Chen
et al. revealed that HBX could interact with ECSIT to increase
NF-kB activation, leading to the induction of IL-10, an
inflammation-related cytokine (75). In addition, TRIF is a vital
adaptor protein that initiates TLR3-mediated innate immune
signaling. Hong et al. showed that HBX can enhance TRIF
protein degradation to evade the innate immune response and
February 2022 | Volume 13 | Article 829923
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facilitate HBV replication (76). Taken together, these studies
suggest that HBX can regulate the expression of multiple
molecules in TLR signaling to inhibit the immune response
and facilitate viral replication. Moreover, the viral protein is
also capable of utilizing molecules in the TLR signaling pathway
to regulate inflammation and enhance the development of HCC.
ROLE OF HBX IN RLR-MEDIATED
SIGNALING PATHWAYS

The DExD/H box RNA helicases, RIG-I and melanoma
differentiation-associated gene 5 (MDA5), participate in the
activation of RLR signaling (77, 78). These two molecules
Frontiers in Immunology | www.frontiersin.org 4
recognize dsRNAs from various viruses in the cytoplasm. Once
RIG-I and MDA5 are sensitized by dsRNA, they can activate
mitochondrial antiviral signaling (MAVS), which occurs on the
mitochondrial membrane. MAVS further initiates TRAF3
activation. TRAF3 sensitizes TBK1 to activate IRF3/7 and leads
to the production of IFN (8, 79).

Current evidence shows that RIG-I can recognize HBV
pregenomic RNA and suppress HBV cccDNA, thereby
activating the innate immune response to inhibit its replication
(80–82). Similar to TLR, drugs activating RLR signaling also
underwent a phase II trial to investigate the therapeutic effects of
PLR agonists on HBV inhibition in clinical settings (13). It was
found that the virus could escape immune reactions by
regulating RLR signaling (13). For example, no significant
FIGURE 1 | Regulation of the hepatitis B virus X protein (HBX) on the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor
(NLR) signaling-associated molecules. During the modulation of TLR signaling mediated by HBX, the viral protein can promote the expression of TLR4 and myeloid
differentiation primary response 88 (MyD88), and enhance the levels of the major vault protein (MVP) and DExH-box RNA helicase 9 (DHX9), which may further interact with
MyD88 to regulate the innate immune response. HBX can activate the tumor necrosis factor (TNF) receptor-associated factor (TRAF)-2/transforming growth factor-activated
kinase-1 (TAK1) signaling pathway. HBX is also able to interact with TAB1, and the interaction may affect the function of TAK1. The viral protein is capable of interacting with
the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT), which is a partner of TRAF6. The viral protein also contributes to the interaction of vacuolar protein
sorting 34 (VPS34) with Beclin 1 (BECN1) and TRAF6. HBX interacts with toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-b (TRIF), a downstream
molecule of TLR3. HBX can bind to RIG-I, melanoma differentiation-associated 5 (MDA5), and mitochondrial antiviral signaling (MAVS) to inhibit RLR signaling. Adenosine
deaminase acting on RNA 1 (ADAR1) and speckled at 110 kDa (Sp110) may participate in the inhibition of RIG-I and MDA5 mediated by HBX. Parkin is involved in the
degradation of MAVS induced by HBX. Besides these, HBX also interacts with TRAF3 and TBK1 to inhibit their activities. HBX can bind to IRF3 and inhibit the ubiquitination
of IRF3 and IRF7 at the lysine 63 sites to suppress their activation. During the modulation of NLR signaling, HBX can activate the NLR family pyrin domain-containing 3
(NLRP-3) inflammasome. RIP1 may be involved in the activation of NLRP3 inflammasome mediated by HBX. Moreover, HBX can interact with the NLR with CARD domain-
containing 4 (NLRC4) and through this interaction, HBX may influence the NLRC4 inflammasome. The viral protein can also inhibit the expression of absent-in-melanoma-2
(AIM2) and may further affect the AIM2 inflammasome.
February 2022 | Volume 13 | Article 829923
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increase in RIG-I and MDA5 levels was found in the liver tissues
of patients with CHB (83). To benefit from persistent HBV
infection, the virus uses N6-methyladenosine modification to
block the recognition of viral RNA mediated by RIG-I signaling
(84). The virus also restricts immune signaling mediated by RIG-
I by inducing miR146a (85). Besides these, based on its
polymerase protein, HBV can inhibit RIG-I-mediated IFN
induction by inhibiting the interaction between TBK1 and
DDX3 (53).

HBX plays a central role in the regulation of viral replication
by dysregulating RLR signaling. For example, to facilitate HBV
replication, HBX can suppress RIG-I, MDA5, and MAVS-
mediated activation of IFN-b promoters (31, 86) (Figure 1).
Furthermore, residues Asn118 and Glu119 of HBX were found to
be critical for the viral protein-mediated suppression of RIG-I-
MAVS signaling (87). Mechanistically, HBX binds to RIG-I and
MDA5 (31, 86). Similarly, HBX also interacts with MAVS and
disrupts the interactions between MAVS and other proteins
within the MAVS-associated complex, including RIG-I,
MDA5, and TBK1, to suppress IFN-b promoter sensitization
(31). Furthermore, the interaction of HBX with MAVS promoted
protein degradation to block IFN-b production (88). In addition,
HBX-induced Parkin is capable of binding to the accumulating
unanchored linear polyubiquitin chains on MAVS via the linear
ubiquitin assembly complex (LUBAC) to disrupt MAVS
signalosome and abate IRF3 sensitization (89).

Studies shown that adenosine deaminases acting on RNA 1
(ADAR1), RNA-editing enzymes that convert adenosine to
inosine in duplex RNA regions, are vital cellular factors
controlling the innate immune response mediated by
endogenous RNAs. Relying on the transcription factor YY1,
HBX was observed to accelerate ADAR1 expression in a dose-
dependent manner to block the transcriptional levels of MDA5
and RIG-I, and inhibit the recognition of HBV RNAmediated by
these two molecules in hepatocytes (90). The transcription
factor, speckled at 110 kDa (Sp110), can control the levels of
RIG-I and MDA5. HBX interacts with Sp110 and may modulate
the production of RIG-I and MDA5 to control the innate
immune response (91). In addition to RIG-I, MDA5, and
MAVS, HBX interacts with TRAF3, TRIF, TBK1, and IRF3 to
inhibit IFN induction (86). Furthermore, HBX acts as a
deubiquitinating enzyme to suppress IRF3 and IRF7
ubiquitination with lysine 63-linked chains and attenuates their
activities (86). The expression levels of TBK1 are increased in the
liver cancer tissue samples. In particular, HBX upregulates the
expression of TBK1 to enhance NF-kB activation (92). However,
the biological role of HBX-mediated TBK1 has not yet
been investigated.
FUNCTION OF HBX IN NLR-MEDIATED
SIGNALING PATHWAYS

The NLR family contains a variety of cytoplasmic sensors, such
as the NLR family pyrin domain-containing (NLRP)-1, NLR
with CARD domain-containing 4 (NLRC4), and NLRP3 (93).
Frontiers in Immunology | www.frontiersin.org 5
Among all the NLR molecules discovered, the NLRP3-
inflammasome has been extensively studied in recent years. It
can be activated by mitochondrial dysfunction, ionic influx,
reactive oxygen species (ROS) production, and stimuli from
pathogens or damaged cells (94). In general, sensitization of
the NRLP3 inflammasome involves two steps. In the first step,
dependent on NF-kB signaling, the production of NLRP3, pro-
IL1b, and pro-IL18 is induced by other PRRs. In the second step,
NLRP3 recruits the apoptosis-associated speck-like protein
(ASC), which results in the formation of ASC prion-like
oligomer that further binds to pro-caspase-1 and lead to its
activation. Sequentially, activated pro-caspase-1 cleaves pro-IL1b
and pro-IL18 into IL1b and IL18, respectively, to initiate the
innate immune response and inflammatory reaction (8, 94).

NLRP3 plays a vital role in the inflammation caused by the
virus. For example, it has been found that the levels of NLRP3 are
low in normal liver tissues; however, activation of the NLRP3
inflammasome is implicated in hepatic injury. The NLRP3
inflammasome mediates liver failure by sensitizing procaspase-
1 and pro-IL-1 b in HBV-related acute-on-chronic liver failure
(ACLF) (95, 96). To date, the molecular mechanisms associated
with virus-mediated sensitization of the NLRP3 inflammasome
have not been well examined. However, a recent study by Ding
et al. showed that the HBV core protein is capable of enhancing
the lipopolysaccharide-induced activation of the NLRP3
inflammasome and promoting IL-1b production to cause liver
inflammation (97). However, dependent on HBeAg, the virus is
discovered to suppress LPS-induced activation of NLRP3
inflammasome and IL-1b production via inhibiting the
sensitization of NF-kB pathway and the production of reactive
oxygen species. The inhibition of NLRP3 inflammasome
mediated by HBeAg may be responsible for HBV-mediated
restrain of innate immune response (98).

Dependent on the activation of the NLRP3 inflammasome,
HBX is found to promote hepatocyte pyroptosis by triggering the
production of ASC, IL-1b, IL-18, and HMGB1 in hydrogen
peroxide-stimulated hepatocytes (32) (Figure 1). Additionally,
NLRP3 inflammasome sensitization stimulated by the viral
protein may be related to liver inflammation caused by viral
infection. Current evidence indicates that RIP1 contributes to the
regulation of IL-1b maturation by activating the NLRP3
inflammasome. Xie et al. found that the overexpression of
HBX increased the expression of RIP1 in hepatocytes.
Mechanistically, AFB1 participates in the HBX-induced
upregulation of RIP1 (99, 100). Although RIP1 contributes to
the activation of AP-1 and NF-kB to induce inflammation in
HBX-positive cells, its effect on NLRP3 inflammasome
sensitization mediated by HBX has not yet been assessed;
therefore, further investigation is required to assess the effect of
RIP1 on the regulation of inflammasome activation. In addition
to NLRP3, NLRC4 was also found to interact with HBX based on
substrate-trapping proteomics analysis (101). However, whether
HBX affects NLRC4-associated inflammasomes has not yet been
well assessed.

Similar to NLRP3, the absent-in-melanoma-2 (AIM2)
inflammasome can recognize cytoplasmic DNA, resulting in
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the production of IL-1b and IL-18 and the induction of target cell
pyroptosis (102). Although the mRNA expression levels of AIM2
are upregulated in PBMCs of patients with acute and chronic
hepatitis B (103), Chen et al. found that in HBV-related HCC
cells, HBX not only suppressed the expression of AIM2 at the
gene level by promoting the stability of the enhancer of zeste
homolog 2 (EZH2), but also interacted with AIM2, resulting in
AIM2 degradation via the ubiquitin-proteasome pathway.
Functionally, knockdown of AIM2 enhances HBX-mediated
migration and metastasis of hepatoma cells (104). Nevertheless,
based on the current studies, whether HBX can influence the
inflammasomes via AIM2 remains unclear. Moreover, the effect
of HBX on the inhibition of AIM2-associated inflammasomes
needs to be explored further in future studies.
ROLE OF HBX IN THE
JAK-STAT PATHWAY

JAK-STAT signaling is a vital downstream pathway of IFN
receptors that stimulates IFN-stimulated gene (ISG)
production (8, 105). The JAK family comprises of JAK1-3 and
TYK2. The STAT family has seven members, including STAT1-
4, STAT5a, STAT5b, and STAT6 (106). JAK-STAT signaling is
known to play a critical role in IFN-mediated inhibition of HBV
replication (3). To facilitate the persistence of HBV infection, the
virus can promote MMP-9 and CTHRC1 expression to repress
JAK-STAT signaling (107, 108). HBeAg can also inhibit JAK-
STAT signaling to enhance HBV replication (109).

The JAK-STAT pathway is a highly conserved signaling
pathway that can affect various biological processes including
immune response, apoptosis, inflammation, tissue repair, and
adipogenesis (110). Currently, the link between HBX and
sensitization of JAK-STAT signaling has been well established
(Table 1). Current evidence shows that the regulation of JAK-
STAT signaling activation mediated by HBX plays a vital role in
Frontiers in Immunology | www.frontiersin.org 6
not only regulating cellular proliferation, apoptosis, epithelial-
mesenchymal transition (EMT), and migration, but also in
modulating the innate immune response and viral replication.
HBX regulates JAK1, JAK2, and TYK2. For example, HBX
interacts with JAK1 to facilitate its activation (111).
Furthermore, HBX-mediated JAK1 activation is associated with
sensitization of the Ras-Raf1 signaling axis (112). In addition to
JAK1, HBX also contributes to the activation of JAK2 to induce
apoptosis of renal tubular epithelial cells (113). However, Cho
et al. showed that HBX can inhibit the activation of TYK2 to
decrease the expression of IFN-a receptor 1 (IFNAR1) to inhibit
extracellular IFN-mediated signal transduction (114).

HBX also plays a vital role in STAT activation. Especially,
among the STAT molecules, the effect of HBX on the
sensitization of STAT3 has been wildly investigated. For
example, viral proteins inhibit reoviral oncolysis of hepatoma
cells by activating STAT1 (115). In human renal proximal
tubular epithelial cells, HBX modulates apoptosis by activating
the STAT3 signaling pathway (113). Additionally, HBX
decreases nephrin expression and induces podocyte apoptosis
by activating STAT3 (116). However, a recent study revealed that
depending on STAT3, HBX protects hepatoma cells and
hepatocytes from complement-dependent cytotoxicity by
increasing the membrane-bound complement regulatory
protein CD46 (117). In particular, HBX-mediated STAT3
activation may be associated with oxidative stress in HBV-
associated hepatoma cells (118). In addition, HBX can increase
the transcription of LncRNA LINC01152 to enhance IL-23
expression and then initiate the activation of STAT3 to
promote the proliferation and survival of hepatoma cells (124).
In HCC cells, HBX was also found to trigger SH2D5 expression,
and based on the HBX-mediated interaction of SH2 domain-
containing 5 (SH2D5) with transketolase (TKT), STAT3 can be
activated to promote HCC cell proliferation (125). IL-6 plays a
vital role in the activation of STAT3. Current research indicates
that HBX can promote IL-6 expression in hepatoma cells (126).
TABLE 1 | The detailed information on the regulation of JAK-STAT signaling mediated by HBX.

Target
molecules

The role of HBX on
target molecules

The regulated molecules
in JAK-STAT signaling

The role of HBX on
JAK-STAT signaling

Biological processes References

JAK1 interaction JAK1 activation The activation of Ras-Raf1 signaling axis (111, 112)
JAK2 activation JAK2 activation Cell apoptosis (113)
TYK2 inhibition TYK2 inhibition IFN-mediated signal transduction (114)
STAT1 activation STAT1 activation Reoviral oncolysis of HCC cells (115)
STAT3 activation STAT3 activation Apoptosis, complement-dependent cytotoxicity,

mitochondrial association, EMT, Insulin signaling,
tumorigenicity, self-renewal, drug resistance

(113, 116–123)

LINC0115
/IL23

upregulation STAT3 activation Cellular proliferation and survival (124)

SH2D5 upregulation STAT3 activation Cellular proliferation (125)
IL-6 upregulation STAT3 activation Liver regeneration, Tumorigenesis (126, 127)
Lethal-7 inhibition STAT3 activation Cellular proliferation (119)
LASP1 upregulation STAT3 activation EMT (128)
STAT5b activation STAT5b activation EMT (129)
IL-34 upregulation STAT3 activation Cellular proliferation and migration (130)
HULC upregulation STAT3 activation HBV replication, cellular proliferation (131)
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In response to IL-6, HBX recovers the dephosphorylation
of STAT3 mediated by PP2Ca, a protein that interacts with
HBX to facilitate hepatocarcinogenesis (127). Additionally,
downregulation of miRNA Lethal-7 mediated by HBX also
activates STAT3 to regulate cellular proliferation (119).

EMT has been implicated in HCC development. It has been
demonstrated that HBX contributes to the activation of STAT3
to control the EMT of hepatoma cells (120). Depending on
STAT3, HBX promotes the expression of HMGB1 to enhance
EMT in liver cancer cells (121). Additionally, our results have
shown that HBX can activate STAT3 through LASP1 to facilitate
vimentin expression and enhance EMT (128). Similar to STAT3,
STAT5b participates in the induction of EMT mediated by
HBX (129).

Suppressor of cytokine signaling (SOCS) mediates insulin
resistance in the liver. Kim et al. found that HBX could induce
SOCS3 expression via STAT3 to impair hepatic insulin signaling
(122). Up to now, more and more evidence has demonstrated
that C-terminally truncated HBX contributes to the development
of HCC (2). In particular, Ching et al. found that relying on
STAT3, C-terminal truncated HBX can regulate tumorigenicity,
self-renewal, and drug resistance (123). Additionally, our
previous study showed that HBX was capable of promoting the
levels of IL-34 to activate STAT3 and further facilitate the growth
and migration of liver cancer cells (130).

Interestingly, although JAK-STAT signaling participates in the
inhibition of HBV replication, the current study showed that
STAT3 also contributes to HBX-mediated HBV replication. Long
noncoding RNA (lncRNA) is highly upregulated in liver cancer
(HULC) and has been identified to be significantly upregulated in
HCC. Liu et al. found that HULC could elevate the expression of
HBX, which in turn sensitizes STAT3 to stimulate the miR-539
promoter. miR-539 decreased the expression of APOBEC3B and
then enhanced HBV replication. Furthermore, HULCmediated by
HBXcan also enhance the proliferation of hepatoma cells in in vitro
and in vivomodels (131).
INFLUENCE OF HBX ON THE
NF-ΚB PATHWAY

As mentioned above, NF-kB contributes to the innate immune
responses induced by different PRRs. In the cytoplasm, IkB-a
and IkB-b bind to NF-kB p50/p65 and form an inactivated
protein complex. Depending on the upstream signal
transduction from the IKK complex, which is composed of
IKKa, IKKb, and IKKg, IkB proteins are degraded to free NF-
kB p65/p50. Next, NF-kB p65/p50 is transported into the
nucleus, resulting in the transcription of different inflammatory
cytokines (132, 133).

The published reports have suggested that the activation of
NF-kB facilitates the inhibition of HBV replication (134–136).
To accelerate replication, the virus promotes fibronectin
expression to restrain the activation of NF-kB and sensitize
HBV enhancers (137). Wang et al. showed that HBeAg can
Frontiers in Immunology | www.frontiersin.org 7
interrupt the ubiquitination of NEMO to suppress NF-kB
activity and enhance HBV replication (138). HBeAg also
suppresses NF-kB signaling mediated by IL-18 and IL-1b in
natural killer (NK) cells and hepatocytes, and the inhibition of
NF-kB signaling may contribute to the maintenance of persistent
HBV infection (139, 140). However, current evidence from other
groups has shown that NF-kB signaling also facilitates HBX-
mediated HBV replication. For instance, HBX can promote HBV
replication by inhibiting the miR-192-3p-XIAP axis to activate
the NF-kB pathway (141). Xu et al. found that HBX can activate
NF-kB to promote the expression of IFIT3 and then enhance
viral replication (142). HBX increases gp96 expression viaNF-kB
signaling to facilitate HBV replication (143). HBX upregulates
miR-146a-5p via NF-kB to increase autophagy and enhance
HBV replication (144) (Table 2). To date, the reasons for the
contradictory function of NF-kB signaling in viral replication in
different studies are unknown and need to be explored in
the future.

In addition to viral replication, many studies have suggested
that sensitization of NF-kB induced by HBX plays a vital role in
cellular growth, apoptosis, EMT, and migration of hepatoma cells
(156, 157). Mechanistically, HBX can interact with NF-kB signaling
molecules to initiate the signal transduction activation (Table 2).
For example, HBX can inhibit IkBa to induce sustained activation
of this signaling pathway (145). In addition, HBX can bind to NF-
kB (p65) to facilitate its activation and nuclear localization and
induce the expression of metastasis-associated protein 1 (MTA1),
which is involved in inflammation and tumorigenesis (146).
Furthermore, the activation of NF-kB signaling induced by HBX
is mediated by the interactions between HBX and IKKg (86, 147).
In addition, HBX can enhance the expression of IKKa and
modulate the activity of IKKb to activate NF-kB signaling to
facilitate inflammatory cytokine production and cell proliferation
(148, 149).

In addition, accumulating evidence has also verified that
multiple molecules participate in NF-kB activation initiated by
HBX (Table 2). HBX enhances NF-kB activation by interacting
with ECSIT (75). HBX can directly interact with VHL-binding
protein (VBP1) and synergistically promote NF-kB activation to
facilitate cellular proliferation (150). Viral proteins can enhance
the activation of NF-kB through interactions with the valosin-
containing protein (VCP) (151). In addition, HBX binds to
amplification in breast cancer 1 (AIB1) protein and stabilizes
the protein to enhance the sensitization of NF-kB signaling
(152). Additionally, the reports from Lim et al. showed that
dependent on the chaperoning activity, ribosomal protein S3a
(RPS3a) can stabilize HBX and enhance the activation of NF-kB
signaling (158).

In recent years, increasing evidence has shown that HBX can
influencevarious signalingpathways to initiatehepatocarcinogenesis.
Interestingly, HBX can activate NF-kB through a variety of distinct
signaling pathways involving PI3-K (153, 154), and ERK (155),
contributing to the regulation of motility and inflammatory
responses in HCC cells. Autophagy is a vital metabolic process that
is dependent on the degradation of damaged proteins and organelles
in lysosomes and can maintain homeostasis of the intracellular
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environment. Luo et al. suggested thatHBX can induce autophagy to
stimulate the activation of NF-kB in hepatocytes (148).
CONCLUSIONS

Although the innate immune system plays a central role in
targeting HBV, the virus triggers only a small innate response
and has evolved a variety of escape strategies to block the
antiviral response in host cells. As a viral nonstructural
protein, HBX is considered a vital therapeutic target for HBV
infection because the viral protein not only contributes to the
replication of the virus and participates in the development of
liver cancer induced by HBV, but also protects HBV-infected
cells from immune-mediated clearance (22, 159). In the present
review, we summarized the recent progress regarding the role
and associated mechanisms of HBX in PPR signaling during
HBV infection. Our reviewed studies indicate that HBX can
regulate the expression and function of various vital molecules in
TLR, RLR, and NLR signaling, as well as their downstream
pathways, including the JAK-STAT and NF-kB pathways.
Interestingly, the effect of molecules in these signaling
pathways mediated by HBX is different during HBV infection.
First, many molecules involved in TLR signaling can be regulated
by HBX to inhibit the immune response, aid in viral replication,
and regulate a variety of biological processes to modulate
inflammation and facilitate the development of HCC. Second,
regulation of RLR signaling mediated by HBX can inhibit the
immune response to benefit viral replication. Third, HBX may
promote the activation of NLR signaling to cause inflammation
during HBV infection. Fourth, the regulation of the JAK-STAT
and NF-kB pathways stimulated by viral proteins controls viral
replication and modulates different biological processes to
accelerate the development of HCC. In particular, current data
Frontiers in Immunology | www.frontiersin.org 8
show that targeting HBX could suppress viral replication by
enhancing the immune response mediated by PRR signaling in
HBV-expressing liver cells (160–162). Additionally, inhibition of
innate immune-related molecules regulated by HBX also blocks
HCC development (29). Therefore, a deeper understanding of
the regulation of PRR signaling by HBX may facilitate the
treatment of HBV infections and related illnesses.

Cyclic GMP-AMP synthase (cGAS) and DNA-dependent
activator of IFN regulatory factors (DAI) participate in DNA-
dependent immune responses (163, 164). In particular, after
cytoplasmic DNA is activated by cGAS or DAI, these molecules
can induce the activation of the stimulator of interferon genes
(STING) to further induce the expression of IFN and
inflammatory cytokines (8, 165). It has been found that the
cGAS-STING pathway facilitates the inhibition of HBV
replication and attenuates hepatocyte injury and fibrosis
induced by the virus (166–168). However, the expression levels
of cGAS and its effector genes have been shown to decline in
hepatocytes infected with HBV (169). Additionally, STING
expression levels in peripheral monocytes were dramatically
decreased in patients with CHB (170). To maintain persistent
infection, the virus can evade the antiviral activity of the cGAS-
STING pathway by various strategies (166, 171). For example,
HBV polymerase protein can decrease the ubiquitination of
STING and inhibit the production of IFN by interacting with
STING (172). HBsAg can inhibit STING expression and
suppress the immune response of NK cells (173). HBX has also
been found to restrain the dsDNA-induced immune response
(30) and suppress STING-mediated activation of IFN-b (31).
However, the cellular factors that contribute to the suppression
of STING-associated signaling mediated by HBX have not yet
been well elucidated. Given the importance of STING-mediated
immune response in the restriction of HBV (171), further studies
are needed to assess the effect of regulation of HBX on the
immune response mediated by STING in the future.
TABLE 2 | The detailed information related to the modulation of NF-kB signaling mediated by HBX.

Target
molecules

The role of HBX on target
molecules

The regulated molecules in NF-kB
signaling

The role of HBX on NF-kB
signaling

Biological Functions References

p65 activation p65 activation HBV replication (142–144)
IkBa inhibition IkBa activation Signal transduction

activation
(145)

p65 interaction p65 activation Inflammation,
tumorigenesis

(146)

IKKg interaction IKKg activation Signal transduction
activation

(86, 147)

IKKa upregulation IKKa activation Inflammatory cytokine
production

(148)

IKKb activation IKKb activation Cellular proliferation (149)
ECSIT interaction IKK a/b, IkBa, p65, p50 activation Signal transduction

activation
(75)

VBP1 interaction Unknown activation Cellular proliferation (150)
VCP interaction Unknown activation Signal transduction

activation
(151)

AIB1 interaction Unknown activation Signal transduction
activation

(152)

PI3-K activation p50, p65, IKKa activation Cellular motility (153, 154)
ERK activation p50, p65 activation Inflammatory responses (155)
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