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Adiponectin is a member of the family of adipose tissue-re-
lated hormones known as adipokines, which exerts antidia-
betic, antiatherogenic, antiinflammatory, and antiangiogenic
properties. Adiponectin actions are primarily mediated
through binding to two receptors expressed in several tissues,
AdipoR1 and AdipoR2. Likewise, adiponectin expression has
been detected in adipocytes as well as in a variety of extra-
adipose tissues, including the chicken pituitary. Interest-
ingly, adiponectin secretion and adiponectin receptor expres-
sion in adipocytes have been shown to be regulated by
pituitary hormones. These observations led us to investigate
whether adiponectin, like the adipokine leptin, regulates pi-
tuitary hormone production. Specifically, we focused our
analysis on somatotrophs and gonadotrophs because of the
relationship between the control of energy metabolism,
growth and reproduction. To this end, the effects of adiponec-

tin on both GH and LH secretion as well as its interaction with
major stimulatory regulators of somatotrophs (ghrelin and
GHRH) and gonadotrophs (GnRH) and with their correspond-
ing receptors (GHS-R, GHRH-R, and GnRH-R), were evaluated
in rat pituitary cell cultures. Results show that adiponectin
inhibits GH and LH release as well as both ghrelin-induced GH
release and GnRH-stimulated LH secretion in short-term (4 h)
treated cell cultures, wherein the adipokine also increases
GHRH-R and GHS-R mRNA content while decreasing that of
GnRH-R. Additionally, we demonstrate that the pituitary ex-
presses both adiponectin and adiponectin receptors under
the regulation of the adipokine. In sum, our data indicate that
adiponectin, either locally produced or from other sources,
may play a neuroendocrine role in the control of both soma-
totrophs and gonadotrophs. (Endocrinology 148: 401–410,
2007)

ADIPONECTIN IS A collagen-like 30-kDa protein that
belongs to the family of adipose tissue-specific or

enriched hormones termed adipokines, which play impor-
tant roles in the regulation of food intake and energy ho-
meostasis as well as in vascular homeostasis and immunity
(reviewed in Refs. 1 and 2). Adiponectin, also known as
acrp30 (3), apM-1 (4), GBP28 (5), or adipoQ (6), is the most
abundantly secreted adipokine and, in fact, plasma adi-
ponectin levels are considerably high (3–30 �g/ml in human,
3–6 �g/ml in rodents) (7). Accumulating experimental ev-
idence indicates that this adipokine is involved in the reg-
ulation of multiple processes. Thus, adiponectin, whose cir-
culating levels are reduced in obese and diabetic human and
mice (6–8), is considered as an insulin-sensitizing factor be-
cause it reduces endogenous glucose production by increas-
ing hepatic insulin sensitivity (9, 10), increases glucose up-
take in adipocytes (11) and myocytes, and enhances fatty acid
oxidation in muscle (12, 13). This adipokine has been also
reported to modulate the endotelial inflammatory response
and to exert a direct antiatherogenic effect (reviewed in Refs.
14 and 15). Finally, adiponectin has been also proposed to
exert antiangiogenic and antitumoral actions (16, 17) as well

as to regulate osteoblast proliferation and differentiation
(18).

Recently, two adiponectin receptors, AdipoR1 and Adi-
poR2, were identified by expression cloning (19). Both re-
ceptors, which share 67% amino acid identity, appear to be
integral membrane receptors containing seven transmem-
brane domains but, contrary to G protein-coupled receptors,
their N terminus is intracellular and the C terminus is ex-
tracellular. Initial studies on the distribution of adiponectin
receptors showed that AdipoR1 mRNA was most abundant
in skeletal muscle, although it was also present in other
tissues and organs such as heart, liver and brain, whereas
AdipoR2 was predominantly expressed in liver (19). More
recently, the expression of AdipoR1 and AdipoR2 has been
also demonstrated in pancreatic �-cells (20), endothelial cells
(21), bone-forming cells (22), hypothalamus (23), adipocytes
(24), or placenta (25), which further supports the pleiotropic
actions reported for this adipokine. In line with this notion,
adiponectin mRNA has been also detected in multiple loca-
tions besides white and brown adipose tissue, including
skeletal muscle (26, 27), osteoblastic cells (22), cardiomyo-
cytes (28), and placenta (25) in murine and human. A recent
report by Maddineni et al. (29) confirmed the widespread
distribution of adiponectin in chicken tissues and showed
that the adipokine is also abundantly expressed in the an-
terior pituitary. Interestingly, pituitary GH, which has im-
portant metabolic roles (30), has been shown to regulate
adiponectin secretion and AdipoR expression in human and
mouse adipocytes (24, 31). Based on these findings, in the
present study we aimed at investigating whether adiponec-
tin may play a reciprocal, endocrine role and regulate so-
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matotroph cell function. We also investigated the response of
pituitary gonadotrophs to this adipokine because of the
known relationship between energy homeostasis and fertil-
ity and the demonstrated effects of other regulators of energy
homeostasis such as the adipocyte-derived hormone leptin
on reproduction (32). Specifically, the effect of adiponectin on
both GH and LH release and its interaction with major stim-
ulatory regulators of somatotrophs, ghrelin and GHRH (re-
viewed by Ref. 33), and gonadotrophs, GnRH (34), as well as
with their corresponding receptors, was evaluated in rat
pituitary cell cultures after either short- (4 h) or long-term (24
h) exposure to the adipokine. Further insight on adiponectin
function at the pituitary was assessed by analyzing the ex-
pression of both adiponectin and adiponectin receptors in the
cell cultures.

Materials and Methods
Reagents

Rat GH and LH were kindly supplied by Dr. A. F. Parlow (Pituitary
Hormones and Antisera Center, Harbor-University of California-Los
Angeles Medical Center, Torrance, CA). Fetal bovine serum (FBS) was
obtained from Sera-Lab Ltd. (Crawley Down, UK). Tripure Reagent was
purchased from Invitrogen (Paisley, Scotland, UK), PowerScript reverse
transcriptase from BD Bioscience (Erembodegem, Belgium), QuiaQuick
Gel Extraction Kit from QIAGEN GmBH (Hilden, Germany), and Eco-
Taq polymerase from Ecogen (Barcelona, Spain). Human Pituitary
Gland PolyA RNA was obtained from CLONTECH (Newark, NJ). Re-
combinant Mouse gAdiponectin/gACRP30 was purchased from R&D
Systems Inc. (Minneapolis, MN), human ghrelin was purchased from
Bachem Ltd. (Merseyside, UK), and GHRH (1–29) was obtained from
UCB Bioproducts (Brain L’Alleud, Belgium). DMEM, collagenase type
V, trypsin type I, soybean trypsin inhibitor I, deoxyribonuclease I, an-
tibiotic-antimycotic solution, BSA, and all other reagents were pur-
chased from Sigma Chemical Co. (London, UK), unless otherwise spec-
ified. Tissue culture products were obtained from Invitrogen (Grand
Island, NY).

Animals

Male Sprague Dawley rats (200–250 g; Harlan Iberica, Barcelona,
Spain) were housed in air-conditioned rooms (22–24 C) under a 12-h
light, 12-h dark cycle and fed standard rat chow and water ad libitum.

Animals were killed by decapitation between 0900 h and 1300 h.
Pituitary glands were immediately removed, the posterior lobes were
discarded, and the anterior lobes were transferred to sterile cold (4 C)
DMEM supplemented with 0.1% BSA and antibiotic-antimycotic solu-
tion. All the animal procedures were conducted according to the prin-
ciples approved by the Cordoba University Ethical Committee for an-
imal experimentation in accordance with the European Union normative
for care and use of experimental animals.

Pituitary cell dispersion and culture

Isolated cells from rat anterior pituitary were obtained using a dis-
persion protocol previously described (35). Briefly, for each experiment,
three to four anterior pituitaries were pooled, minced, and enzymatically
dissociated by sequential incubation in DMEM supplemented with 0.3%
trypsin (type I), 0.1% collagenase (type V), 0.1% soybean trypsin inhib-
itor I, 2 �g/ml deoxyribonuclease I, and Ca2�/Mg2�-free salt solution
with EDTA (2 and 1 mm). Finally, the tissues were mechanically dis-
persed using a siliconized Pasteur pipette until a homogeneous cellular
suspension was obtained. After each step, the cellular suspension was
centrifuged at 60 � g for 5 min. Cellular viability, as estimated by the
trypan blue test, was always above 90%.

Dispersed adenohypophyseal cells were plated at a density of 300,000
cells/200 �l DMEM onto 24-well culture plates and incubated at 37 C
in a 5% CO2 atmosphere in 1 ml culture medium supplemented with 10%
FBS and 0.1% gentamycine sulfate. After 48 h of culture, medium was
replaced by fresh DMEM-FBS. Cultures were maintained for 3 d before
treatments. On the day of the experiment, medium was removed and
cells were preincubated in 1 ml serum-free DMEM for 2 h to stabilize
basal GH secretion. Medium was then replaced with fresh DMEM con-
taining the test substances at the appropriate concentrations or the
corresponding control vehicle, and incubated for either 4 h or 24 h at 37
C. Specifically, cultures were challenged with either adiponectin alone
at doses ranging 10�7 to 10�9 m, or in combination with ghrelin, GHRH,
or GnRH. For the combined treatments, a single dose of ghrelin, GHRH
and GnRH (10�8 m) was chosen based on results obtained previously on
rat pituitary cell cultures (36–38).

Medium samples were collected at the end of the experiments, cen-
trifuged at 6000 � g for 5 min, and the supernatants were stored at �20

TABLE 1. Sequences of the primers employed for RT-PCR amplifications

Gene Primer sequence (5�–3�) GenBank accession no.

rGHS-R F: GGACCAGAACCACAAGCAGA NM_032075
R: GGCTCGAAGGACTTGGAAAA

rGHRH-R F: CACTGCCCCAGGAACTACAT NM_012850
R: TAGGAGATGTGGAGGCCAAC

rGnRH-R F: CGATCTTCTCGCAATGTGTGACC NM 031038
R: GCACGGGTTTAGGAAAGCAAAG

rAdiponectin F: CTCCACCCAAGGAAGCTTGT NM_144744
R: GGCTCGAAGGACTTGGAAAA

rAdipoR1 F: CTTCTACTGCTCCCCACAGC NM 001037979
R: TCCCAGGAACACTCCTGCTC

rAdipoR2 F: CCACACAACACAAGAATCCG NM 207587
R: CCCTTCTTCTTGGGAGAATGG

hAdiponectin F: CCTAAGGGAGACACTGGTGA NM_004797
R: GTAAAGCGAATGGGCATGTT

hAdipoR1 F: TACCAGCCAGATGTCTTCCC NM_015999
R: AGTGTCAGTACCCGCACCTC

hAdipoR2 F: GGACCGAGCAAAAGACTCAG NM_024551
R: AAAGTGCATGACCGAAGAGC

rHPRT F: CAGTCCCAGCTCGTGATTA NM_012583
R: AGCAAGTCTTTCAGTCCTGTC

h18S F: CCCATTCGAACGTCTGCCCTATC GI36162
R: TGCTGCCTTCCTTGGATGTGGTA

F, Forward; R, Reverse; r, rat, h, human.
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C until hormone determinations. Cells in the culture plates were pro-
cessed for RNA extraction as indicated below.

Hormone measurement by RIA

LH and GH levels in culture media were measured in a volume of
25–50 �l using a double antibody method and RIA kits kindly supplied
by the National Institutes of Health (Dr. A. F. Parlow). Rat GH-I-7 and
LH-I-9 were labeled with 125I using the chloramine-T method and Iodo-
Gen precoated iodination tubes (Pierce, Rockford, IL), respectively. Hor-
mone concentrations were expressed using the reference preparations
LH-RP-3 and GH-RP-2 as standards. Intra- and interassay coefficients of
variation were �6% and 9% for GH, and 8% and 10% for LH. The
sensitivity of the assay was 5 pg/tube for GH and 20 pg/tube for LH.

Accuracy of hormone determinations was confirmed by assessment
of rat serum samples of known hormone concentrations used as external
controls.

RNA extraction and cDNA synthesis

Total RNA was isolated using Tripure Reagent from rat pituitary
cultured cells and following manufacturer’s instructions. Rat pituitary
RNA and human pituitary PolyA RNA (2 �g) were reverse transcribed
to cDNA by using PowerScript reverse transcriptase as recommended
in the manufacturer’s manual. Briefly, reverse transcription (RT) reac-
tions were carried out in a 20 �l final volume by adding 2 �g total RNA,
1 �l of PowerScript, 10 �m deoxynucleotide triphosphate (dNTP) mix-
ture and 250 ng of random hexamer primers. The reaction mixtures were
incubated at 70 C for 10 min and at 42 C for 1 h. Finally, reactions were
terminated by heating at 70 C for 15 min and cooling on ice.

PCR amplification

PCR analysis was applied to assess the expression of adiponectin and its
two receptors, AdipoR1 and AdipoR2, in rat and human pituitary by using
specific primers (Table 1). As internal control for RT, amplification of a
150-bp fragment of rat hypoxanthine-guanine phosphoribosobyl-trans-
ferase (HPRT) (for rat pituitary) or a 137-bp fragment of 18S ribosomal RNA
(for human pituitary) was carried out in parallel in each sample. PCRs were
performed in a 25-�l final volume using an iCycler IQ (Bio-Rad, Madrid,
Spain) thermocycler by adding 1 �l of RT product (cDNA, 100 ng), 0.1 �m
reverse and forward primers, 0.8 mm dNTPs, and 0.125 U EcoTaq DNA
Polymerase. Temperature profiles for adiponectin, AdipoR1, AdipoR2,
HPRT, and 18S were as follows: 95 C/30 sec, 60 C/30 sec, and 72 C/30 sec
for 35 cycles. For all different primer pairs used, a negative control with
identical amount of non-retrotranscribed total RNA was performed. PCR
products were electrophoresed in a 2% agarose gel containing ethidium
bromide and extracted using QuiaQuick Gel Extraction Kit. Identities of
amplicons were confirmed by sequencing (Central Sequencing Service,
University of Cordoba, Cordoba, Spain).

Real-time quantitative RT-PCR

To evaluate changes in gene expression in rat pituitary cell cultures
exposed to adiponectin, real-time RT-PCR was performed using the
iCycler iQ real-time PCR detection system (Bio-Rad Laboratories, Her-
cules, CA) according to the manufacturer’s instructions. PCR primers for
amplification of the receptor for GHRH (GHRH-R), the receptor for
ghrelin/GH secretagogues (GHS-R), the receptor for GnRH (GnRH-R),
adiponectin, AdipoR1, AdipoR2, and HPRT were based on the corre-
sponding rat and human mRNA sequences published in GenBank and
are shown in Table 1. The primers used amplify PCR products between
100 and 500 bp long.

The 25-�l amplification mixture contained 2 �l cDNA (corresponding
to 50 ng cDNA), 12.5 �l of 2� iQ Supermix containing 50 mm KCl, 20
mm Tris-HCl, 0.2 mm dNTPs, 3 mm MgCl2, 2.5 U iTaq DNA polymerase,
and SYBR Green I as fluorescent dye. PCRs consisted of an initial ac-
tivation and denaturing cycle at 95 C for 5 min, followed by 35 cycles
at 95 C/30 sec, 60 C/30 sec and 72 C/30 sec. The amount of PCR products
formed in each cycle was estimated on the basis of SYBR Green I flu-
orescence dye. No-template controls were included in all assays, yield-

FIG. 1. Effect of adiponectin, alone (panels A and B) or in combination
with GHRH or ghrelin (panel C), on GH release from cultured rat
pituitary cells. After 3 d of culture in DMEM-FBS, cells were equil-
ibrated for 3 h in serum-free DMEM and then incubated in the ab-
sence (C, Control) or presence of the corresponding test substances for
the times indicated. A, Secretory response of rat pituitary cells to 4 h
treatment with increasing doses (10�9–10�7 M) of adiponectin. B,
Secretory response of rat pituitary cells to 24 h treatment with in-
creasing doses (10�9–10�7 M) of adiponectin. C, Secretory response of
rat pituitary cells to 4 h treatment with adiponectin (ADIPO; 10�7 M),
GHRH (10�8 M), and ghrelin (GHRE; 10�8 M), alone or in combination.
At the end of the incubations, culture media were recovered and GH
release was evaluated by RIA. Data are expressed as a percentage of
basal values in control cultures (100%, 27.5 � 7.5 ng GH/ml, 5074.8 �
163.0 ng GH/ml, and 332.1 � 160.9 ng GH/ml for Fig. 1, A–C, re-
spectively) and are the mean (�SEM) of three independent experi-
ments. At least three replicate wells were evaluated per treatment in
each experiment. a, P � 0.05 vs. corresponding control; b, P � 0.05 vs.
ghrelin alone.
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ing no consistent amplification. cDNAs were sequenced to ensure that
the correct mRNA transcripts were quantified (Central Sequencing Ser-
vice, University of Cordoba, Cordoba, Spain).

Calculation of relative expression levels of the different transcripts
was performed based on the cycle threshold (CT) method. Thus, the CT
value for each sample was calculated using the iCycler iQ real-time PCR
detection system software with an automatic fluorescence threshold
setting. Reactions were performed, at least, in triplicate. Standard curves
were constructed for the receptors and HPRT (internal control) by plot-
ting values of CT (the cycle at which the fluorescence signal exceeds
background) vs. log cDNA input (in nanograms). Accordingly, CT values
from each experimental sample were then used to calculate the amount
of GHRH-R, GHS-R, GnRH-R, adiponectin, AdipoR1, and AdipoR2
mRNAs relative to the standard (HPRT).

Statistical analysis

Data are expressed as the mean � sem of the number of experiments
indicated in each figure. A minimum of three replicate wells per treat-
ment were tested in each experiment. To avoid variability between
experiments, samples from each experiment were analyzed in the same
assay and expressed as a percentage of the corresponding control value.
To compare experimental treatments we applied a one-way ANOVA
followed by a statistical test for multiple comparisons (Duncan’s mul-
tiple range test and critical ranges) or, for nonparametric data, a Kruskal-
Wallis Multiple Comparison Test followed by a Mann-Whitney U Test
to compare pairs of data groups. Statistical analysis was assessed by the
program Statistica for Windows (Statsoft Inc., Tulsa, OK). Differences
were considered significant at P � 0.05.

Results
Effect of adiponectin on GH release in rat pituitary
cell cultures

Exposure of dispersed anterior lobe cells to adiponectin at
doses ranging between 10�9 and 10�7 m for 4 h induced a

significant inhibition of GH release, an effect which was
already noticeable at the lower concentration of the protein
tested (Fig. 1A). Specifically, 10�9 m adiponectin reduced GH
secretion by 34% with respect to control values. Although
10�7 m adiponectin evoked the highest numerical reduction
in GH release (52%), this effect was not significantly higher
than that induced by lower doses of the protein. In contrast
to that found in cultures treated for 4 h with the adipokine,
only the highest dose of adiponectin used modified basal GH
release after long-term exposure (24 h) (Fig. 1B). Specifically,
10�7 m adiponectin induced a 2-fold increase in GH secretion
when compared with the values observed in control cultures.

To investigate whether adiponectin modulates the secre-
tory response of somatotrophs to the GH regulators GHRH
and ghrelin, cultures of rat pituitary cells were treated for 4 h
with 10�8 m of the peptides in the presence or absence of the
adipokine. As shown in Fig. 1C, 10�7 m adiponectin inhibited
the stimulatory effect of ghrelin on GH release but not that
evoked by GHRH.

Effect of adiponectin on the expression of receptors for
ghrelin/GHS and GHRH

PCR analysis of ghrelin/GHS-R and GHRH-R mRNA in
cell cultures after adiponectin treatment revealed that this
adipokine regulates the expression levels of both receptors in
rat anterior pituitary cells. Thus, 10�7 m adiponectin signif-
icantly increased mRNA levels of both GHS-R (Fig. 2A) and
GHRH-R (Fig. 2C) at 4 h. However, the stimulatory action of
adiponectin on GHS-R mRNA content (34% over basal lev-
els) was lower than that observed for GHRH-R (448% over

FIG. 2. Effect of adiponectin on mRNA levels of rat pitu-
itary ghrelin/GHS-R (panels A and B) and GHRH-R (panels
C and D) in vitro. After 3 d of culture, dispersed rat pituitary
cells were incubated in medium alone (C, Control) or in the
presence of 10�9–10�7 M adiponectin for 4 h (panels A and
C) or 24 h (panels B and D). After culture, cells were har-
vested and GHS-R and GHRH-R mRNA levels were deter-
mined by real-time RT-PCR. Receptor-specific band inten-
sities were determined and adjusted by the signal intensity
for HPRT. The averaged results were then calculated and
expressed as a percentage of vehicle-treated control levels.
Data are the mean (�SEM) of seven (panel A) or four (panels
B–D) separate experiments. At least three replicate wells
were evaluated per treatment in each experiment. a, P �
0.05 vs. corresponding control.
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basal levels), whose transcript levels were also significantly
enhanced by a lower dose of the adipokine (10�8 m). In
contrast, 10�9 m had no effect on the expression levels of
either GHS-R or GHRH-R.

Long-term (24 h) treatment of pituitary cell cultures with
adiponectin caused no variations in basal mRNA content of
either GHS-R (Fig. 2B) or GHRH-R (Fig. 2D) at any of the
doses tested.

Effect of adiponectin on LH release in rat pituitary
cell cultures

Similar to that found for GH, adiponectin significantly
inhibited LH release in rat pituitary cell cultures exposed to
doses ranging from 10�9 m to 10�7 m for 4 h (Fig. 3A). All the
doses tested evoked similar reductions in LH secretion. In
contrast, such an inhibitory effect was no longer evident after
24-h treatment with the adipokine (Fig. 3B).

As for the case of somatotrophs, we also investigated
whether adiponectin may modify the response of gonado-
trophs to their primary hypothalamic regulator, GnRH.
Thus, we observed that the stimulatory effect induced by
10�8 m GnRH on LH release in 4 h-treated cultures was
reduced by 74% in the presence of 10�7 m adiponectin (Fig.
3C).

Effect of adiponectin on the expression of GnRH receptor

In pituitary cell cultures exposed to any of the doses of
adiponectin tested for 4 h, GnRH-R mRNA levels were re-
duced by 50% when compared with the corresponding val-
ues obtained in cultures exposed to medium alone (Fig. 4A).
GnRH-R transcript content in adiponectin-treated cultures
remained below basal levels after 24 h of exposure to the
adipokine (Fig. 4B).

Expression of adiponectin, AdipoR1, and AdipoR2 in
the pituitary

We also investigated the expression of the adiponectin/
adiponectin receptor system in the pituitary. RT-PCR anal-
ysis demonstrated the expression of both the adipokine and
its two receptors, AdipoR1 and AdipoR2, in rat pituitary
extracts (Fig. 5A). Similar results were obtained in human
pituitary tissue extracts, which also exhibited adiponectin as
well as both AdipoR1 and AdipoR2 mRNA expression (Fig.
5B).

Regulation of pituitary adiponectin, AdipoR1, and AdipoR2
mRNA content by adiponectin

Results obtained in rat pituitary cell cultures exposed to
increasing doses of adiponectin showed that this adipokine
regulates its own expression. To be more specific, a 4-h treat-
ment with 10�7 m adiponectin increased by 68,8% adiponec-
tin transcript content with respect to that found in control
cultures (Fig. 6A). Pituitary adiponectin mRNA content re-
mained increased after 24 h of exposure to the protein (Fig.
6B). In particular, 10�8 m adiponectin induced a 4-fold in-
crease in its mRNA levels in 24 h-treated cultures with re-
spect to control values.

Analysis of the effect of adiponectin on the expression of

FIG. 3. Effect of adiponectin, alone (panels A and B) or in combination
with GnRH (panel C), on LH release from cultured rat pituitary cells.
After 3 d of culture in DMEM-FBS, cells were equilibrated for 3 h in
serum-free DMEM and then incubated in the absence (C, Control) or
presence of the corresponding test substances for the times indicated.
A, Secretory response of rat pituitary cells to 4 h treatment with
increasing doses (10�9–10�7 M) of adiponectin. B, Secretory response
of rat pituitary cells to 24 h treatment with increasing doses (10�9–
10�7 M) of adiponectin. C, Secretory response of rat pituitary cells to
4 h treatment with adiponectin (ADIPO; 10�7 M) and GnRH (10�8 M),
alone or in combination. At the end of the incubations, culture media
were recovered and LH release was evaluated by RIA. Data are
expressed as a percentage of basal values in control cultures (100%,
25.1 � 19 ng LH/ml, 34.3 � 18 ng LH/ml, and 5.9 � 1.4 ng LH/ml for
Fig. 3, A–C, respectively) and are the mean (�SEM) of four (panel A)
or three (panels B and C) separate experiments. a, P � 0.05 vs.
corresponding control; b, P � 0.05 vs. GnRH alone.
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AdipoR1 and AdipoR2 showed that short-term (4 h) admin-
istration of the adipokine did not modify mRNA levels of
either of the two receptors at any of the doses examined (Fig.
6, C and E). However, 24 h of exposure of pituitary cell
cultures to adiponectin induced a significant decrease in
AdipoR1 mRNA content when administered at 10�8 m (Fig.
6D). In contrast, AdipoR2 mRNA levels increased in cultures
exposed to 10�7 m of the adipokine for 24 h (Fig. 6F).

Discussion

In the present study, we have shown that adiponectin
regulates hormone secretion and gene expression in two
endocrine cell types of the rat pituitary, somatotrophs and
gonadotrophs, in vitro. In addition, we provide evidence
demonstrating that both adiponectin and the two adiponec-
tin receptors, AdipoR1 and AdipoR2, are expressed in the
pituitary, thus indicating the existence of a local regulatory
system for this adipokine at the pituitary level.

The effect of adiponectin on somatotrophs was assessed by
analyzing both GH secretion and the expression of key so-
matotroph receptors, namely the GHRH receptor and the
ghrelin/GHS receptor (39–41), in rat pituitary cell cultures
after both short- and long-term exposure to the adipokine.

Our results demonstrate that adiponectin inhibited basal GH
release from the rat pituitary, an effect that was noticeable in
short-term-treated cultures at adiponectin doses as low as
10�9 m. In contrast to its inhibitory action on GH secretion,
adiponectin increased both GHS-R and GHRH-R mRNA lev-
els. Taken together, these results strongly support the idea
that adiponectin regulates somatotroph cell function. In par-
ticular, adiponectin would play a dual short-term action;
thus, it decreases hormone secretion while up-regulating
mRNA levels of the two main stimulatory receptors in so-
matotrophs. These results suggest that adiponectin, which
would primarily act as an inhibitor of GH release, addition-
ally and rapidly activates a compensatory mechanism in
somatotrophs that might facilitate the response of the cells to
future stimulation by GHRH and/or ghrelin. In line with
these findings, the GH secreto-inhibitor somatostatin in-
creased GHS-R levels in 4 h-treated porcine pituitary cell
cultures, although the peptide did not modify GHRH-R ex-
pression (42). Interestingly, factors known to stimulate GH
release such as GHRH, ghrelin and/or synthetic GHSs de-
crease pituitary GHRH-R and GHS-R transcript content, re-
spectively, in the short-term (42–44).

Simultaneous treatment of rat pituitary cells with adi-
ponectin and the somatotroph regulators ghrelin and GHRH
revealed that, whereas the adipokine reduced the stimula-
tory effect of ghrelin on GH secretion, it did not modify
GHRH-induced GH release. The discrepancy between adi-
ponectin effects on ghrelin- and GHRH-induced GH secre-
tion might be related to the selective activation of distinct
signaling routes by the ghrelin/GHS-R system (i.e. phospho-
lipase C/inositol phosphate/protein kinase C) and the
GHRH/GHRH-R system (i.e. adenylate cyclase/cAMP/pro-
tein kinase A) (reviewed by Ref. 33) which, in turn, would be
differentially counteracted by adiponectin. Additionally, the
marked stimulatory effect of adiponectin on GHRH-R
mRNA expression in short-term cultures, which was indeed
considerably higher than that evoked by the adipokine on
ghrelin/GHS-R mRNA levels, might also contribute to the
differences observed in the interaction between adiponectin
and the two peptides on GH release.

FIG. 4. Effect of adiponectin on mRNA levels of rat pituitary GnRH-R
in vitro. After 3 d of culture, dispersed rat pituitary cells were incu-
bated in medium alone (C, Control) or in the presence of 10�9–10�7

M adiponectin for 4 h (panel A) or 24 h (panel B). Data are the mean
(�SEM) of five (panel A) and three (panel B) independent experiments,
each performed in triplicate. See Fig. 2 for further details. a, P � 0.05
vs. corresponding control.

FIG. 5. Expression of adiponectin, AdipoR1 and AdipoR2 mRNA in
rat (panel A) and human (panel B) pituitary extracts. Amplification
products (110, 137, 109, and 150 bp, for rat adiponectin, AdipoR1,
AdipoR2, and HPRT, respectively; 173, 210, 182, and 137 bp, for
human adiponectin, AdipoR1, AdipoR2, and 18S, respectively) were
sequenced to ensure correct amplification. Amplification of HPRT or
18S served as internal controls.
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The stimulatory action of adiponectin on the expression of
receptors that mediate positive cellular responses seems to be
specific for somatotrophs because it was not observed for
mRNA expression of the primary stimulatory receptor of
gonadotrophs, the GnRH receptor (45, 46). Conversely, the
adipokine caused a marked decrease in GnRH-R mRNA
levels in rat pituitary cultures despite the fact that, similar to
that found for GH release, it inhibited LH secretion. When
viewed together, these results indicate that adiponectin acts
on gonadotrophs by reducing hormone release as well as
gonadotroph sensitivity to GnRH and can therefore be con-
sidered as a potent negative regulator of this cell type. In line
with this idea are our results on the combined administration
of adiponectin and GnRH demonstrating that the adipokine

is also able to reduce significantly GnRH-induced LH release.
It is important to note that, whereas a considerable number
of peptides, including various neuropeptides and cytokines
as well as the adipokine leptin, have been shown to exert
direct stimulatory effects on gonadotropin release (47, 48),
only certain opioid agonists have been reported so far to
inhibit spontaneous and GnRH-induced LH release by the
anterior pituitary in vitro (49), thus highlighting the relevance
of our findings supporting a role for adiponectin as a novel
inhibitor of gonadotroph cell function. Moreover, data from
24 h-treated cultures indicate that adiponectin induces long-
acting inhibition of gonadotrophs, at least in terms of gene
expression. In contrast, the effect of adiponectin on mRNA
levels of somatotroph receptors disappeared in long-term-

FIG. 6. Effect of adiponectin on mRNA levels of rat pi-
tuitary adiponectin (panels A and B), AdipoR1 (panels C
and D), and AdipoR2 (panels E and F) in vitro. After 3 d
of culture, dispersed rat pituitary cells were incubated in
medium alone (C, Control) or in the presence of 10�9–
10�7 M adiponectin for 4 h (A, C, and E) or 24 h (panels
B, D, and F). Data are the mean (�SEM) of four (panel A),
three (panel B) or five (panels C–F) separate experi-
ments. At least three replicate wells were evaluated per
treatment in each experiment. See Fig. 2 for further
details. a, P � 0.05 vs. corresponding control.
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treated cultures, wherein an increase in GH release in re-
sponse to high-dose adiponectin was actually observed. In
sum, our data demonstrate that adiponectin, by acting di-
rectly at the pituitary, regulates both somatotroph and go-
nadotroph cells and that this regulation is cell type specific
and time dependent.

Further support for a regulatory role of adiponectin at the
pituitary is provided by our findings that both human and
rat pituitary gland express the two adiponectin receptors,
AdipoR1 and AdipoR2, which confirm and extend recent
observations from chicken pituitary (50). Likewise, in line
with previous data obtained from chicken (29), we provide
evidence showing that adiponectin is also expressed in the
pituitary of both rat and human, thus suggesting that this
gland may represent an important site of adiponectin pro-
duction and action in vertebrates. Together, these findings
demonstrate the coexistence of adiponectin and its cognate
receptors in the pituitary, an observation that mirrors those
found in other hormone-producing tissues including fat (24,
31) or placenta (25). Furthermore, taken as a whole, our data
strongly support the existence of an autocrine/paracrine
loop for adiponectin regulation in the pituitary. Consistent
with this notion, we demonstrate that adiponectin not only
controls GH and LH production but also regulates its own
expression, as well as that of AdipoR1 and AdipoR2. To be
more specific, adiponectin exerted a positive feedback on its
mRNA content as well as on AdipoR2 transcript level, which
likely reinforces the effects of this adipokine on the pituitary,
whereas it decreased the expression of AdipoR1 in the long-
term. Interestingly, a recent report has shown that adiponec-
tin and AdipoR2 expression levels in human placenta ex-
hibited parallel changes in response to in vitro treatment with
several cytokines, whereas AdipoR1 expression followed an
opposite pattern of response (25). When viewed together,
these results indicate that AdipoR1 and AdipoR2 are differ-
entially regulated in these tissues, thus suggesting that they
may act on different targets and/or mediate distinct actions
of adiponectin.

Previous studies have demonstrated that pituitary soma-
totrophs and gonadotrophs are also responsive to leptin (re-
viewed in Ref. 48) although, in contrast to that found herein
for adiponectin, it stimulates LH and GH secretion (51) and
decreases pituitary GHRH-R mRNA levels (52). In addition,
leptin also indirectly regulates the somatotropic and gona-
dotropic systems through its action on the hypothalamus
(reviewed in Refs. 53–55). Although some controversy exists
on the ability of adiponectin to cross the blood-brain barrier
(23, 56), the recent demonstration of the presence of adi-
ponectin mRNA in the chicken diencephalon (29), together
with the expression of the two adiponectin receptors in the
hypothalamus in mouse (23), would support a central effect
of adiponectin. Nevertheless, further studies are required to
elucidate whether adiponectin, as leptin, acts at the hypo-
thalamic level to regulate GH and LH production.

In addition to the potential autocrine/paracrine role of
locally produced adiponectin, systemic adiponectin may also
regulate pituitary cell function in an endocrine manner. In-
deed, our results show that adiponectin exerts its effects on
pituitary hormone release in vitro at doses equal or �10�7 m,
which fits well within the concentration range of circulating

adiponectin [1.5–3 � 10�7 m in rodents (7)]. In the case of
somatotrophs, these observations suggest that a functional
link is in place between adiponectin from fat depots and the
somatotropic axis that may be relevant for the control of
metabolism and growth. Likewise, some evidence exists sup-
porting an interaction between adiponectin and the gona-
dotropic axis, including the observation that transgenic fe-
male mice expressing high circulating adiponectin levels are
infertile (57). In view of our data on the inhibitory action of
adiponectin on gonadotrophs from male rat, it is tempting to
speculate that the adverse effect of adiponectin overexpres-
sion on fertility observed in transgenic female mice might be
due, at least in part, to a direct action of this adipokine on the
pituitary. In line with this notion, the reduction in LH se-
cretion (58) as well as in GH pulses (59) seen during fasting
in rats might be explained by the increase in adiponectin
serum levels observed in response to weight loss (8), which
would support a role for adiponectin as a mediator in the
adaptation of pituitary function to fasting. In all, these data
strongly suggest that adiponectin may serve as a signal that
links metabolic status and endocrine control of reproduction
and growth, as has been proposed for leptin (48). Interest-
ingly, circulating levels of leptin are inversely correlated to
those of adiponectin in obese and lean animals (6, 7, 48). This,
together with the divergent actions of these adipokines on
both somatotrophs and gonadotrophs, supports the view
that these two adipokines convey different metabolic signals
to the somatotropic and reproductive axes.

In summary, our results demonstrate that the pituitary
expresses the components of the adiponectin/AdipoR sys-
tem and that this expression is under the regulation of adi-
ponectin itself. Furthermore, our data show that adiponectin
inhibits both GH and LH release from the rat pituitary in vitro
and modulates the response of somatotrophs and gonado-
trophs to their primary stimulatory factors. Taken together,
these results suggest that the pituitary constitutes a relevant
site of action for adiponectin and support a role for this
adipokine as a link in the regulation of metabolism, growth,
and reproduction. Current studies in our laboratory on the
identification of the cellular distribution of adiponectin re-
ceptors as well as of the source of adiponectin in the pituitary
will likely help to understand the role of this adipokine in
pituitary hormone regulation.
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