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The main function of the corpus luteum (CL) is to synthesize and secrete
progesterone (P4), which regulates the duration of the estrous cycle and maintains of
pregnancy in many species. Both synthesis and action of this hormone is regulated
by many luteotropic and luteolytic factors. Progesterone also affects its own
synthesis by regulation of the activity and genes expression of crucial enzymes
which control steroidogenesis. The physiological effect of P4 on luteal cells is
mediated through the nuclear receptor which occurs in two specific A and B receptor
isoforms and also by non-genomic pathways. The nature of non-genomic action of
P4 has not been fully understood. It is possible that P4 can temporarily impair
binding of oxytocin to its receptor or it can bind one of the three potential membrane
receptors. It is assumed that one of these proteins, progesterone receptor membrane
component 1 may be involved in regulation of CL function and it can participate in
protecting bovine CL against luteolysis. This review summarize the data involving
the molecular regulation of P4 synthesis, its intracellular and membrane receptor and
the genomic and non-genomic action in the bovine CL.
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INTRODUCTION

The corpus luteum (CL) is a transient endocrine gland formed following
ovulation from the secretory cells of the follicle. The main function of CL is
production of progesterone (P4), which regulates various reproductive functions.
Progesterone plays a key role in regulation of the length of estrous cycle and in
the implantation of the blastocyst (1). Preovulatory surge of LH is crucial for the
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luteinization of follicular cells and CL maintenance, however, CL is less

dependent on LH stimulation during the early luteal phase. Since early CL

requires luteotropic support for its growth and development, the other factors

supports the role of LH to maintain CL development and its functioning. Indeed,

it was found that products of luteal origin i.e. prostaglandins (PG) I2 and E2,

oxytocin, noradrenaline and growth factors efficiently stimulate progesterone

synthesis in bovine early CL (1, 2). Thus, it is accepted that though, hormonal and

neural signals are critical for normal course of estrous cycle in domestic animals,

CL has a broad area of autonomy. Corpus luteum autoregulate synthesis of P4 (3),

which in turn, supports its own synthesis, affecting transcription of genes

encoding steroidogenic enzymes (4, 5). Moreover, high P4 concentrations in

luteal cells protect them against apoptosis, while disruption or impairment of

steroidogenesis or reduced ability of P4 production and induced luteal cells death

(6). This paper is focused on the molecular regulation of P4 synthesis and action

within bovine CL.

MOLECULAR REGULATION OF PROGESTERONE SYNTHESIS IN CL

Cholesterol, which can be derived from the diet or be synthesized de novo (7,

8) and transported to the ovaries by lipoproteins (HDL and LDL) is a common

precursor for steroids synthesis. Progesterone among others steroid hormones is

the most important physiological regulator involved in the CL life span and

implantation of the blastocyst. Ovarian steroidogenesis is regulated by several

factors playing modulatory role during the estrous cycle. Centrally and locally

produced factors modulate expression of genes encoding synthesis of

steroidogenic enzymes and that way influence on the secretory function of CL.

The first step of the steroidogenesis occurs in mitochondria. Transport of the

cholesterol into the mitochondrion is the rate-limiting step in P4 synthesis. The

main protein which is responsible for the transport of cholesterol from the outer

to the inner mitochondrial membrane is Steroidogenic Acute Regulatory Protein

(StAR). It is synthesized as a 37 kDa protein precursor and processed to the 30

kDa mature protein after crossing mitochondrial membrane (9). Interaction of

StAR with the outer mitochondrial membrane results in a conformational changes

of protein and creates StAR's cholesterol binding pocket (10). Besides StAR,

peripheral benzodiazepine receptor and endozepine, the natural ligand for this

receptor also appears to be involved in the regulation of the rate of cholesterol

transport (11). Inner mitochondrial membrane is linked with cytochrome

P450scc, which is the first component of the enzyme complex that cleaves the

side of chain from cholesterol to form pregnenolone. Thereafter, pregnenolone is

converted to P4 by 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD),

associated with the smooth endoplasmic reticulum (11).
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Luteinizing hormone (LH) is accepted as the most important regulator of lutel
steroidogenesis, though this process is also regulated by several others luteotropic
factors. Membrane receptors for LH are located mainly in small luteal cells.
Binding of LH to its receptor, leads to cAMP-dependent activation of the protein
kinase A (PKA) and increases P4 production. The amount of LH receptors varies
in the course of the estrous cycle. It is low in early and late days of the estrous
cycle and high in mid CL (12). In bovine and human CL LH increases
simultaneously the expression of genes encoding StAR, cytochrome P450scc and
3β-HSD synthesis (4, 13).

Involvement of noradrenergic system in ovarian steroidogenesis

Bovine ovaries are supplied with adrenergic nerves, which essentially support
steroidogenesis in the granulosa and luteal cells (14). Denervation of ovaries
markedly reduced the secretion of ovarian steroids (14). Luteal concentration of
noradrenaline (NA) and its precursor - dopamine (DA) varies throughout the
luteal phase (15), and CL can synthesize NA from DA (16, 17). The highest
amounts of DA and NA were found in the early CL, but they decreased in mid CL
and again increased in the late CL. Beta-receptor concentrations, however, in
bovine CL was highly correlated with plasma concentrations of P4 during the
course of the estrous cycle (18). Stimulation of the ovarian β-receptor in cows by
infusion of NA, which mimics of a short-term stress, increased P4 and ovarian
OT secretion within a few minutes (19, 20, 21). Furthermore, NA stimulated
activity of 3β-HSD and cytochrome P450scc (15) and peptidyl glycine-amidating
mono-oxygenase (PGA) (22). PGA is a crucial enzyme involved in post-
translational processing of OT synthesis. At the same time, P4 reduced the
activity of mono-amino-oxidase and catechol-O-methyl transferase, the enzymes
primarily responsible for an intracellular degradation of catecholamines (23).
Thus this way, P4 prolongs the half-life of NA and the duration of stimulatory
influence on P4 synthesis. However, NA affects neither StAR, cytochrome
P450scc and 3β-HSD gene expression nor the level of functional proteins
encoding by these genes (4). Therefore we assume that short-term stimulation of
CL by NA can rather stimulate P4 secretion only, but not its synthesis. Schematic
involvement of some hormones in luteal cell function is presented on Fig. 1.

Noradrenaline may also interact in bovine CL with nitric oxide (NO), which is
involved in a modulation of NA output and synthesis in vascular tissue (24).
Furthermore, NO caused dose-dependent decrease of P4 in human granulosa cells
(25). This effect was elicited through the inhibition of cytochrome P450 action (26)
and through activation of luteolytic mediators such as prostaglandin (PG) F2α in
bovine luteal cells (27). These results were supported by observed decrease of StAR
protein, cytochrome P450scc and 3β-HSD genes expression and by the low level of
their products in response to NO in bovine luteal cells (4). Changes observed on the
gene level were followed by the reduction of P4 secretion from luteal cells and by
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apoptosis of these cells (6). However, it was also suggested that NO shows
antiluteolytic effect acting as activator of cyclooxygenase pathway followed by
increase secretion of PGE2 (26). So, it was assumed that NO may be a luteolytic
factor but may also play indirectly, antiluteolytic or luteotropic role in luteal cells,
affecting the increase of PGE2 secretion. This effect is suppose to be a dose-
dependent, but further studies are needed to elucidate the role of NO in bovine CL.

Progesterone receptor isoforms

Progesterone affects the target cells through the specific receptor (PR) isoforms
in CL of human (29) and bovine (3) CL, mouse ovary (30, 31), and rat brain (32)
which occurs in A (PR-A) and B (PR-B). Both isoforms are transcribed from the
same gene but are controlled by two promoters. Human PR-A is shorter by about
164 nucleotides than the PR-B (33). It was established that PR-B acts mainly as an
activator of progesterone-responsive genes, while PR-A acts as a modulator or
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Fig. 1. Molecular regulation of progesterone synthesis in the bovine luteal cell. LH, P4, PGE2 increase

the gene expression of StAR, cytochrome P450scc and 3β-HSD, which are crucial enzymes of

steroidogenesis (1). Progesterone influences on its own synthesis by increasing of P450scc and 3β-

HSD activity (2). Even though noradrenaline (NA) stimulates progesterone secretion and increases

P450scc and 3β-HSD activity (3) it does not affect gene expression of these enzymes. LH and PGE2

(on days 6-10 of the estrous cycle) increases of gene expression of PR-R (4). P4 increases protein level

for OT-R only on days 6-10 (5), while OT stimulates of its own gene expression on days 11-16 (6).



repressor of PR-B activity (33). PR-A isoform has also revealed a similar inhibitory
effect on other nuclear receptors like glucocorticoid, androgen, and
mineralocorticoid receptor-mediated gene transcription (34). This suggests that the
ratio of both isoforms (A and B) during the estrous cycle can modulate P4 influence
on the function of female reproductive tract. Inactive steroid receptor is located in
the cell cytoplasm and connected with heat shock proteins (HSP). After passing the
cell membrane, hormone is bound to the receptor, which is subsequently released
from HSP and translocates to the nucleus. There, the receptor dimerizes and binds
the DNA sequences in target gene promoter called Hormone Responsive Elements
(HRE). Next, receptor recruits a number of coactivators or repressors, resulting in
enhanced or decreased gene transcription (35).

It is impossible to determine mRNA for PR-A, since its all sequence is a part of
mRNA for PR-B (Fig. 2). Therefore amount of mRNA for PR-A is showed as a
ratio of mRNA expression for PR-B to the total amount of mRNA for PR described
as PR-AB together (36). The level of PR-B mRNA in human CL was 100-1000-fold
lower than PR-AB mRNA and it was lower in mid luteal phase than in early and
late luteal phase (29). The proportion of PR isoforms mRNA concentrations
depends on steroid concentrations. It is suggested (36) that a high concentration of
P4 within luteal cell induces the expression of PR-A mRNA, which represses the
transcription of PR-B mRNA, and as a result PR function and P4 effect is
suppressed. On the other hand, a low P4 concentration might suppress the
expression of PR-A mRNA followed by the increase of PR-B mRNA transcription.
This will induce of PR function and the effect of P4 within target cell (Fig. 3). In
contrast, the treatment of mouse granulosa cells with RU486, P4 antagonist (30)
resulted the down-regulation of both PR isoforms and simultaneous increase of
caspase-3 activation, decrease of proliferating cell level and the reduction the rate
of ovulation. These results indicate that elimination of PR isoforms are some part
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of inhibitory mechanism of RU486 action upon ovary. It is also assumed that
overexpression the one of PR isoform leads to disruption of P4 signalling and may
play a role in development and progression of breast cancer (37).

There is also the third PR-C isoform identified in human myometrium (38) or
placenta (39). This is N-terminally truncated isoform of PR-C with molecular mass
of about 60 kDa and resides in the cytoplasm of the expressing cells. PR-C lacks
the first zinc finger of the DNA binding domain but can still bind of the P4 (40).
This isoform can be bound to the PR-B isoform thereby reducing the capacity of
PR-B to bind transcriptional factors and reducing their transcriptional activity (38).

Autoregulation of progesterone synthesis

Progesterone has also been shown to regulate its own synthesis in CL of sheep
(41) and cow (3) and in rat granulosa cells (42). Treatment of bovine luteal slices
with P4 increased 3β-HSD activity, with an intensity comparable to LH, whereas
P4 antagonist diminished stimulatory effects of P4 on 3β-HSD activity (3).
Moreover, P4 also stimulated gene expression for StAR protein, cytochrome
P450scc and 3β-HSD on days 6-10 and 11-16 of the estrous cycle (4) and this
way increased its own synthesis in luteal cells (3). Increase P4 concentrations in
luteal cells protected them from apoptosis, while disruption of steroidogenesis
and reduced ability of luteal cells to produce P4 induced cell death (6).

Luteolysis in cows, depends on pulsatile secretion of PGF2α from the uterus
(1) and is followed by rapid decrease of P4 synthesis in CL. Soon thereafter, CL
undergoes structural regression and cells become apoptotic. There are a few
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symptoms of cell apoptosis and the expression of BAX and BCL-2 regulatory
genes belong to them (43). High expression of BAX gene in CL is associated with
the cell death, while high expression of BCL-2 gene protects the cell from
apoptosis (44). Moreover, decrease of P4 synthesis in cells treated with PGF2α
causes a marked increase of mRNA for caspase-3, pivotal executor of apoptosis
(6). Our data showed also that P4 stimulates the expression of anti-apoptotic bcl-
2 mRNA on days 6-15 of the estrous cycle in the cow and decreases the ratio of
bax/bcl-2 gene transcription. Whereas decrease of caspase-3 activity was
observed in luteal cells treated with P4 (6).

Prostaglandin E2 (PGE2) synthesized in CL is also an important
luteotrophic/antiluteolytic factor. It prevents apoptosis of luteal cells, supposedly
by the support of luteal P4 production, which increases of bcl-2 gene expression.
Similar mechanism is turned on by LH, resulted in increase P4 concentration in
medium but do not affect bcl-2 gene expression (6). The highest production of
PGE2 was observed in the early CL (45), suggesting the possibility of
neutralization of PGF2α action and increase of P4 synthesis. On the other hand,
P4 stimulates PGE2 secretion from bovine CL suggesting that there is a positive
feedback loop between P4 and luteal PGE2 during the early luteal phase of the
estrous cycle in cow (46). It is worthy to notice that PGE2 stimulates
steroidogenesis like LH does. Binding of PGE2 to specific receptors causes an
increase of cyclic AMP followed by an activation of protein kinase A (PKA),
which subsequently phosphorylates the regulatory proteins and affects the
transcription of selected genes (47). Therefore, the high luteal concentration of
PGE2 stimulates StAR protein, 3β-HSD and cytochrome P450scc gene expression
and increases of their protein products (4), that leads to an increase of P4 synthesis.

Changes of gene expression encoding hormone receptors in the luteal cells
varies in course of the estrous cycle and depend on the intensity of luteal
steroidogenesis. Our studies revealed that LH stimulates the abundance of mRNA
for oxytocin receptor (OT-R) in luteal cells from days 6-10 of the estrous cycle,
and the abundance of mRNA for P4-R in luteal cells from days 6-16 of the estrous
cycle. Since P4 can stimulate its own synthesis, this would suggests that LH
amplifies this process. However, P4 alone was not able to affect the expression of
the gene for its own receptor on either 6-10 or 11-16 days of the estrous cycle, but
enhanced the transcription of the OT-R gene. These relationship between
transcription of PR-R and OT-R gene suggests that there is a positive feedback
mechanism between these hormones, and that each of these hormones play as a
local, intra-ovarian factor that improves the function of the CL (3, 5). We have
also looked for some relationship between OT and β2-receptor (β2-R) stimulation
in CL (5). It was found that transcription of OT-R gene during the estrous cycle
was the highest at the beginning of the estrous cycle, declined in mid cycle and
rised again toward the end of the estrous cycle. The β2-R gene transcription was
also highest at the beginning of the estrous cycle, however, continuously
decreased and reminded the lowest values at the end of the estrous cycle.
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Surprisingly, the highest protein level encoded by these two genes is accompanied
by the lowest transcription of these genes. The results suggest that OT-R takes
part in both luteotropic and luteolytic processes, while β2-R may be involved
mainly in the formation of a newly-formed CL.

Concluding, LH plays a key role in both CL formation in the place of ruptured
follicle and its functioning throughout the estrous cycle. However, a lot of factors
produced locally within CL are also essentially involved in P4 synthesis as an
auto-paracrine factors.

MOLECULAR MECHANISM OF PROGESTERONE EFFECT IN CL

Non-genomic influence of progesterone on the target cell

Except the physiological effects of P4 mediated through interaction with
specific nuclear progesterone receptor (PR-A and PR-B) on the target cell (48),
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P4 can also elicit the cell response within seconds or minutes which is too short
to activate the genomic way (Fig. 4). The non-genomic effect of P4 has been
found in the number of tissues from the female reproductive tract (49-53)
including cows (54-61). The nature of this mechanism has not been fully
understood. It is possible that P4 may temporarily modify or impair binding of
some ligands to their membrane receptor (49, 53, 54), or that P4, as lipophilic
substance, can change permeability of cell membrane and this way affect the
affinity of other ligands to their membrane receptors (62, 63). Presumably, P4 can
be bound by specific membrane receptors (52, 55, 64-66). At least three different
proteins, which can be potential membrane progesterone receptor: membrane
progestin receptor (mPR), RDA 288 protein and progesterone membrane receptor
component 1 (PGRMC1) (52, 66).

Membrane progesterone receptor

Membrane progestin receptor (mPR) has characteristic seven transmembrane
domain and activates an inhibitory G protein. It suggests that these proteins may
be G-protein coupled receptors (GPRC)s (67). For the first time GPRC was
isolated from the sea trout ovary, but it was showed also in different tissues of
human, pig, mouse (67, 68), sheep (69) and rat (70). There are known three
izoforms of this receptors: mPRα, mPRβ, mPRγ (67). Expression of mPR is
highly tissue-specific. Expression of mPRα subtypes in human was found mainly
in reproductive system, mPRβ was found in nervous system and mPRγ in
digestive system (67). Similar tissue distribution was reported for mPRβ and
mPRγ mRNA in rat (70). Expression of mPR in sheep was observed in
reproductive system, as well as in hypothalamus and pituitary. Localization of
mPR isoforms in animals suggests that these receptors may participate in control
of female reproductive function (69).

The mechanism of P4 action via mPR involves a decrease of tissue adenylate
cyclase activity or increase of MAP kinase activity in target cells (52, 67). It is
suggested that decrease of intracellular cAMP would suppress steroidogenesis, while
MAPK activation could be a part of apoptotic mechanism in many rat cell types (52).
Therefore, P4 acting via mPR can increase cell apoptosis in different organs.

A second potential membrane progesterone receptor is RDA 288 protein called
also plasminogen activator inhibitor RNA binding protein (PAIRBP1). Its
expression was showed in rat ovarian follicle and luteal cells (52) as well as in
human granulosa and luteal cells (71). It is proposed that PAIRBP1 can take part
in the anti-apoptic influence of P4 in granulosa cells (52, 71). PAIRBP1 may bind
to a transmembrane protein PGRMC1 and form a P4 receptor-membrane
complex (72, 73). This complex is localized in the extracellular surface of the cell
membrane and takes part in anti-apoptic and anti-mitotic action of P4 (72, 73).
Moreover, it was determined that activation of this complex by P4, increased the
level of cAMP and activities protein kinase G (PKG). This leads to the reduction
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of intracellular Ca2+ concentration in the cell and this way the receptor-membrane

complex can participates in anti-apoptotic effect of P4, as observed earlier in

granulosa cells (52, 71).

Another membrane receptor is PGRMC1 protein, which was isolated for the

first time from pig liver (74). Expression of PGRMC1 was also detected in

preovulatory mouse follicles (75), porcine granulosa cells (76), rat granulosa and

luteal cells in rat (52, 70) and human (77). Moreover, this receptor is also

localized in the endoplasmic reticulum and in Golgi apparatus (52, 78, 79). It was

found that the expression of PGRMC1 protein is regulated by P4 in the brain

regions involved in the female reproductive behavior (80). Overexpression of

PGRMC1 in Chinese hamster ovary cells increased P4 binding to the cell

membrane (52). In ovarian cells of rats overexpression of ovarian PGRMC1

enhanced P4 responsiveness, while PGRMC1 antibody blocked the antiapoptotic

action of P4 (52). These data do not allow to specify the role of PGRMC1

precisely. It is assumed that PGRMC1 may be involved in the regulation of luteal

function affecting the transcription of genes responsible for anti-apoptotic

processes and the synthesis of proteins which participate in the cells cross-talk

(70, 71). The possible mechanism of PGRMC1 action may involve an activation

of various kinases after P4 binding with the SH2 and SH3 receptor domains.

Moreover, it is suggested that activation of protein kinase G (PKG) and

phosphorylation of numerous proteins can be the first sign of intracellular events

associated with the ligand activation of PGRMC1 (52).

Recently, we have found that P4 can affect the function of bovine endometrial

and luteal cells without modulation of transcription, because the actinomycin D

(blocker of transcription process) did not change the effect evoked by P4 (54, 58).

We also found that P4, its precursor-pregnenolone (P5) and metabolite-17β-

hydroxyprogesterone (17βOHP4) suppressed the influence of OT on the secretion

of PGF2α, but not PGE2, from bovine endometrial cells and reduced [Ca2+]

release from this cells via non-genomic pathway (54, 57, 59). Moreover, we

observed that P4 reduced [Ca2+] release from bovine luteal (56) and myometrial

cells (58) after short time (30-240 min) of preincubation of the cells in the present

of this steroid. This inhibitory effect of P4 appeared after short-term culture,

indication non-genomic mechanism of P4 action. It is also possible that the non-

genomic effect of P4 observed in bovine endometrial and luteal cells was evoked

partly via membrane progesterone receptor. The results of our studies

demonstrated the expression of PGRMC1 mRNA in bovine CL (61) and

endometrial cells (Kowalik and Kotwica - unpublished data). PGRMC1 mRNA

is expressed during CL development (61). This data suggest that PGRMC1

protein may be involved in non-genomic mechanism of P4 action on luteal and

endometrial cells function in cow (56, 58, 60). But it may also participate in the

regulation of luteal function affecting transcription of genes responsible for anti-

apoptotic processes and synthesis of proteins which play a role in regulating cell
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survival through a cell-contact-mediated mechanism (70, 71). It is also possible
that PGRMC1may have influence on regulation of steroids synthesis (81).

The data from the presented studies indicate that P4 and other steroids affect
the target cells by both genomic and non-genomic mechanism. It is suggested that
non-genomic pathway of steroids influence on the cell can inhibit secretion of
luteolytic PGF2α and this way support action of PGE2 and further CL function.
Therefore, it is possible that non-genomic action of P4 on endometrial secretion
of PGF2α and PGE2 is the one more mechanism involved in the maintenance of an
early pregnancy (59).
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