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Sirtuins are homologs of the yeast silencing information regulator 2 protein, an NAD+-
dependent (histone) deacetylase. In mammals seven different sirtuins, SIRT1–7, have been
identified, which share a common catalytic core domain but possess distinct N- and C-
terminal extensions. This core domain elicits NAD+-dependent deacetylase and in some
cases also ADP-ribosyltransferase, demalonylase, and desuccinylase activities. Sirtuins
have been implicated in key cellular processes, including cell survival, autophagy, apop-
tosis, gene transcription, DNA repair, stress response, and genome stability. In addition
some sirtuins are associated with disease, including cancer and neurodegeneration.These
findings suggest strongly that sirtuins are tightly controlled and potentially responsive to
different signal transduction pathways. Here, we review the posttranslational regulation
mechanisms of mammalian sirtuins and discuss their relevance regarding the physiologi-
cal processes, with which the different sirtuins are associated. The available data suggest
that the N- and C-terminal extensions are the targets of posttranslational modifications
(PTM) that can affect the functions of sirtuins. Mechanistically this can be explained by the
interaction of these extensions with the catalytic core domain, which appears to be con-
trolled by PTM at least in some cases. In contrast little is known about PTM and regulation
of the catalytic domain itself.Together these findings point to key regulatory roles of the N-
and C-terminal extensions in controlling sirtuin functions, thus connecting these regulators
to different signaling pathways.
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INTRODUCTION
The first paper describing acetylation of histones at lysine residues
was published almost 50 years ago (Allfrey and Mirsky, 1964).
Although for many years the physiological role of lysine acetylation
(Kac) was undefined, the last decade has witnessed a large increase
in our knowledge about the consequences of this modification.
Acetylation results in the loss of the positive charge at lysines under
physiological conditions and affects the chemical appearance of
proteins, resulting in altered functional properties (Figure 1).
These include effects on protein–protein interaction and on the
catalytic activity of enzymes among others (reviewed in Kim and
Yang,2011). Parallel to these findings enzymes were discovered that
are able to transfer acetyl groups from acetyl-CoA to substrates
(K-acetyltransferases, KATs) and enzymes that are able to remove
acetyl groups, thus providing evidence that acetylation of lysines is
a reversible posttranslational modification (PTM). Besides acety-
lation, lysines are the target of additional PTMs, including methy-
lation, sumoylation, and ubiquitination, which can compete with
each other for one given lysine (Figure 1). Besides histones many
other proteins have been recognized to be acetylated. These appear
to be distributed throughout all cellular compartments. A recent
survey using mass spectrometry has identified more than 1700
acetylated proteins in mammals (Kim et al., 2006; Choudhary et al.,
2009). Furthermore comparative analyses revealed that acetylation

sites are significantly higher conserved than phosphorylation sites
(Choudhary et al., 2011). Proteins modified by lysine acetylation
control diverse cellular processes such as chromatin remodeling,
protein synthesis, cell cycle, nuclear transport, actin nucleation,
and mitochondrial metabolism (Choudhary et al., 2011). There-
fore it’s not surprising that acetylation has been linked to dif-
ferent diseases, including cancer and neurodegeneration. Indeed
inhibitors of deacetylases have entered clinics as therapeutic drugs
(Marks, 2010). Thus these as well as many other findings demon-
strate that acetylation is an important PTM, which participates in
controlling key physiological processes in cells.

Based on structural and functional similarities, mammalian
deacetylases can be divided into four major classes. Class I HDACs
are similar to yeast Rpd3 and contain HDAC1, -2, -3, and -8,
whereas class II HDACs are homologs of yeast Hda1 and include
HDAC4, -5, -6, -7, -9, and -10. Sirtuins which are related to yeast
silent information regulator 2 (Sir2) are also termed class III
HDACs, while HDAC11 forms the class IV on its own (reviewed
in De Ruijter et al., 2003; Haigis and Sinclair, 2010). The sirtu-
ins are the subject of this review. The sirtuin protein family was
founded by the yeast Sir2 (Brachmann et al., 1995). The initial find-
ings from genetic studies suggested that Sir2 controls chromatin
and gene expression. In particular Sir2 was identified to partici-
pate in silencing of homothallic mating (HM) loci and telomeric
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FIGURE 1 | Lysines are targeted by multiple posttranslational

modifications. Acetylation is a reversible PTM that is controlled by
acetyltransferases and deacetylases. These enzymes transfer acetyl groups
from acetyl-CoA to lysine residues with loss of the positive charge.
Acetylated lysine residues provide docking sites for proteins that possess a
Kac interaction domain, e.g., bromodomains. Lysines can also be modified
by a number of additional PTMs as indicated. These modifications compete
with each other, thus acetylation can potentially interfere with these other
PTMs. The removal of acetyl groups is catalyzed by HDAC and sirtuin
deacetylases. Sirtuins are NAD+-dependent enzymes that transfer the
acetyl group onto ADP-ribose under release of nicotinamide. This results in
the generation of O-acetyl-ADP-ribose, a molecule with second messenger
properties.

chromosomal regions and to interfere with rDNA recombination
(Gottlieb and Esposito, 1989; Braunstein et al., 1993). These func-
tions have obtained wide interest because they have been linked
to lifespan regulation. Indeed overexpression of Sir2 was shown
to increase lifespan in yeast (Kaeberlein et al., 1999). Although
similar effects were reported for Drosophila melanogaster and
Caenorhabditis elegans (Tissenbaum and Guarente, 2001; Rogina
and Helfand, 2004), more recent findings suggest that Sir2 does not
affect longevity in these organisms (Burnett et al., 2011). While for
many years the molecular base of the observations made in yeast
was undefined, a break-through finding was the description of
Sir2 as a nicotinamide adenine dinucleotide (NAD+)-dependent
histone deacetylase (Imai et al., 2000). Sir2 and Sir2-like proteins
hydrolyze one NAD+ for each acetyl group removed from a sub-
strate, with release of the nicotinamide moiety (Figure 1; Landry
et al., 2000). The acetyl group is transferred to ADP-ribose to
form a novel O-acetyl-ADP-ribose product (Tanner et al., 2000),
which has been suggested to function as a second messenger (Tong
and Denu, 2010). Very recently it was shown that SIRT5 can also
remove acyl-groups from malonylated or succinylated substrate

peptides, thereby forming O-malonyl-ADP-ribose or O-succinyl-
ADP-ribose, respectively (Du et al., 2011; Peng et al., 2011). Addi-
tionally, distinct sirtuins (SIRT4 and SIRT6) were reported to
catalyze the transfer of ADP-ribose from NAD+ to substrate pro-
teins (Liszt et al., 2005; Ahuja et al., 2007). These observations
provide evidence that some sirtuins may be able to perform more
than one biochemical reaction.

Sirtuins are conserved from prokaryotes to mammals and
they all share a common core domain comprising approximately
200–275 amino acids. A phylogenetic analysis of the catalytic
domains allows subdividing the sirtuins into five classes, i.e., I–
IV and U, with the latter only found in Gram-positive bacteria
(Frye, 2000). Besides the founding member Sir2, the yeast Sac-
charomyces cerevisiae expresses four additional sirtuins, which are
termed “homologs of sir two” (Hst1–4). Seven human sirtuins
have been identified so far, which can be grouped into four of
the phylogenetic classes: SIRT1, SIRT2, and SIRT3 belong to class
I, SIRT4 to class II, SIRT5 to class III, and SIRT6 and SIRT7 to
class IV (Frye, 2000). Of these, SIRT1 shares the highest sequence
similarity with yeast Sir2 and Hst1, and SIRT2 and SIRT3 with
Hst2 (North and Verdin, 2004). SIRT4 to SIRT7 are more closely
related to prokaryotic sirtuins or sirtuins of D. melanogaster and
C. elegans.

The mammalian sirtuins are localized in different subcellular
compartments. While SIRT1, SIRT6, and SIRT7 are predominantly
found in the nucleus, albeit with different subnuclear distribu-
tions, SIRT3, SIRT4, and SIRT5 are mitochondrial. SIRT2 is the
only human sirtuin, which is primarily localized in the cytoplasm
(Michishita et al., 2005).

The findings summarized above, including the observations on
longevity in yeast, the role of NAD+ as cofactor, and the localiza-
tion of the different sirtuins to distinct subcellular compartments,
notably the mitochondria, suggested early on that sirtuins might
have fundamental roles in metabolism. Indeed Sir2 is mediating
at least in part the effects elicited by caloric restriction (reviewed
in Lu and Lin, 2010). Of note is also that sirtuins in higher organ-
isms have been suggested to contribute to longevity (reviewed
in Guarente, 2011). Moreover the findings that sirtuins carry
out NAD+-dependent reactions suggest an involvement of these
enzymes in mammalian metabolic control and offer the possibility
for modulation of their activity by small molecules. The involve-
ment of sirtuins in many physiological processes (see also below)
suggests that these enzymes themselves are most likely controlled
by different signaling pathways in response to both extracellu-
lar and intracellular cues. The use of NAD+ must be controlled
because of its central function in metabolic pathways, suggest-
ing that enzymes that consume NAD+ will most likely be part
of feedback control mechanisms of such pathways. In addition
the enzymatic processes of deacetylation and of ADP-ribosylation
need to be regulated to adjust for optimal, functionally relevant
levels of substrate acetylation and ADP-ribosylation. Despite the
many reasons for posttranslational control of sirtuin function, we
know relatively little about such mechanisms. The available evi-
dence suggests that the N- and C-terminal extensions relative to the
catalytic core domains of the seven mammalian sirtuins are targets
of PTMs, while hardly any information is available on how the cat-
alytic domain itself is controlled (Figure 2). Here we summarize
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FIGURE 2 | Schematic overview of human sirtuins and their PTMs. The
seven mammalian sirtuins are schematically indicated with the blue boxes
depicting the sirtuin-typic catalytic core domain. The catalytic domains are
flanked by distinct N- and C-terminal extensions (gray boxes). The numbers
below indicate amino acid numbers for orientation. Two isoforms (IF) are
shown for SIRT2 and SIRT5, respectively. The ESA (“essential for SIRT1
activity”) sequence of SIRT1 (see below) is indicated. PTMs, nuclear
localization sequences, nuclear export sequences, and proteolytic cleavage
sites are indicated. The precise amino acids modified by the different PTMs
are given inTable 1.

what has been learned about the regulation of mammalian sirtuins
by PTMs.

SIRTUINS AND THEIR REGULATION BY PTMs
All sirtuins share a common catalytic domain, which binds NAD+.
In contrast to this conserved core domain, the enzymes differ
in sequence and length of their C- and N-terminal extensions.
These are well suited to participate in the regulation of sirtuins
and indeed most PTMs that have been identified to date target
these extensions (Figure 2). Several scenarios can be imagined. The
extensions may communicate with the catalytic domain, thereby
controlling the activity of sirtuins. For example the C-terminal
extension of yeast Hst2 interacts with the NAD+-binding region,
while the N-terminal region of Hst2 engages with the Kac sub-
strate binding site, suggesting different modes of autoregulation
(Zhao et al., 2003). Furthermore the N-terminal extension has

been suggested to function in trimer formation, which might
influence enzymatic activity. Together these findings indicate a
more general role of these C- and N-terminal sequences in the
regulation of sirtuin function.

SIRT1
Among the seven human sirtuins, SIRT1 shares the highest
sequence homology with yeast Sir2 (Voelter-Mahlknecht and
Mahlknecht, 2006). In addition SIRT1, similar to its ancestor Sir2,
is primarily localized in the nucleus and involved in chromatin
remodeling as it deacetylates several lysine residues of histones,
including acetylated lysines 9 of histones H3 (H3K9ac), H3K14ac,
H4K16ac, and H1K26ac (Vaquero et al., 2004). Moreover SIRT1
targets also non-histone proteins and its activity can be regulated
by its ability to shuttle between nuclear and cytoplasmic compart-
ments (Tanno et al., 2007; Hisahara et al., 2008). The increasing
number of known SIRT1 substrates includes the transcription
factor and tumor suppressor p53 as well as several other transcrip-
tional regulators and cofactors, among them NF-κB, members of
the forkhead family (FOXOs), peroxisome proliferator-activated
receptors (PPAR), and p300 (reviewed in Rahman and Islam,
2011). Molecular studies revealed that SIRT1 is involved in the
regulation of diverse cellular processes ranging from lipid and
glucose metabolism to aging and stress response. Of particular
relevance for many of these processes is the AMP-activated pro-
tein kinase (AMPK)-SIRT1 signaling axis. AMPK is activated in
response to increasing amount of AMP and thus functions as an
energy sensor that responds to cellular metabolic stress, including
calorie restriction (reviewed in Fulco and Sartorelli, 2008). Maybe
not surprising then is the finding that Sirt1 knockout mice have
a high prenatal or early postnatal death rate (Cheng et al., 2003;
McBurney et al., 2003).

With the identification of the tumor suppressor p53 as a SIRT1
substrate, a role of this enzyme in tumor formation was postu-
lated (Luo et al., 2001; Vaziri et al., 2001; Langley et al., 2002).
Upon deacetylation by SIRT1, the activity of p53 is reduced and
thus SIRT1 appears to function as an oncoprotein (Chen et al.,
2005; Kim et al., 2007; Yuan et al., 2011). However, there are also
reports that describe SIRT1 as a tumor suppressor (Yi and Luo,
2010). These alternative activities are possibly the result of cell-
type specific effects and/or a consequence of distinct regulation of
SIRT1 that might differentially affect the activities of substrates.

SIRT1 is by far the largest human sirtuin with 747 amino acids
due to its extensive N- and C-terminal extensions (Figure 1). The
N-terminal extension of SIRT1 contains two functional nuclear
localization sequences (NLS) and two nuclear export sequences
(NES). These are responsible for the nucleo-cytoplasmic shut-
tling of SIRT1 (Tanno et al., 2007), which determines at least
in part the enzyme’s ability to interact with distinct substrates
(Hisahara et al., 2008). Furthermore the nuclear-cytoplasmic dis-
tribution of SIRT1 is regulated by signals, for example during
differentiation (Tanno et al., 2007). While SIRT1 is nuclear in pro-
liferating C2C12 myoblasts, it is cytoplasmic in differentiated cells.
Moreover inhibition of PI3K prevents the nuclear localization
of SIRT1 in proliferating cells, suggesting that PI3K-dependent
signaling controls the shuttling. Whether the PI3K signaling cas-
cade targets directly SIRT1 or some accessory factor or factors is
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not known. One kinase that might be involved in this process is
JNK, although this kinase is not typically activated downstream
of PI3K. JNK interacts with SIRT1 upon oxidative stress, phos-
phorylates SIRT1 at Ser27, Ser47, and Thr530, thereby enhancing
its nuclear localization (Nasrin et al., 2009). Furthermore these
phosphorylations increase the enzymatic activity of SIRT1 in a
substrate-specific manner with histone H3, but not p53, becoming
a better substrate. In contrast to the findings with JNK, mTOR-
dependent phosphorylation of Ser47 alone results in inhibition of
SIRT1 deacetylase activity (Back et al., 2011). Thus combinator-
ial effects of different phosphorylations appear to control SIRT1
function.

Using a mass spectrometry approach, 13 phosphorylation sites
were identified in SIRT1 (Sasaki et al., 2008). Seven of these sites
are located in the N-terminal region, including Ser27 and Ser47,
and six in the C-terminal region, including Thr530 (Figure 2).
Two of the identified sites, Thr530 and Ser540, are potential sub-
strates of cyclin B/cyclin-dependent kinase 1 (CDK) complexes.
The functional analysis suggests that these two phosphorylation
sites are required for normal cell cycle progression. For example,
while wild-type SIRT1 rescues the growth defect of cells lacking
endogenous Sirt1, a mutant, in which Thr530 and Ser540 are sub-
stituted by alanines, is unable to rescue the knockout cells (Sasaki
et al., 2008).

In addition to the sites mentioned above, four protein kinase
CK2 phosphorylation sites have been identified in murine Sirt1.
These are Ser154, Ser649, Ser651, and Ser683 in the N- and C-
terminal extensions (Kang et al., 2009). Two of these sites have
been described in human SIRT1 at the corresponding amino acids
Ser659 and Ser661 (Zschoernig and Mahlknecht, 2009). It has been
suggested that phosphorylation by CK2 stimulates catalytic activ-
ity of Sirt1 and its ability to interact with p53, one of its substrates
(Kang et al., 2009). Whether all four CK2 sites are required for the
observed effects remains to be determined. Of note is that Ser659
and Ser661 lie within a region of SIRT1 that is referred to as the
ESA (essential for SIRT1 activity) motif (Figure 3). This spans a
small region from amino acids 641–665 in human SIRT1 (Kang
et al., 2011). The ESA interacts with the catalytic domain, acti-
vates the catalytic activity, and increases the affinity for substrates.
Moreover the binding site for ESA in the catalytic domain is also
the interaction site of DBC1, an endogenous SIRT1 inhibitor (Kim
et al., 2008). The two CK2 phosphorylation sites flank one of the
two identified key residues within ESA that are important to con-
trol catalytic activity (Figure 3). Thus it is well possible that these
phosphorylation sites modulate the interaction of the C-terminal
region with the catalytic domain and therefore are potentially
of considerable functional relevance. One possible explanation
is that the phosphorylation of the two sites within ESA regulates

FIGURE 3 | Control of SIRT2 catalytic activity by the ESA motif and

regulation by phosphorylation. Two CK2 phosphorylation sites lie
within the essential for SIRT1 activity (ESA) sequence motif found in
the C-terminal extension of SIRT1. These phosphorylation sites flank
one of the two key residues of the ESA motif (indicated in red).
CK2-mediated phosphorylation is proposed to enhance the interaction

of ESA with the catalytic core, thereby increasing SIRT1 affinity for
substrates and enhancing catalytic activity. The ESA motif competes
with DBC1 binding, a negative regulator of SIRT1. Enhanced interaction
of ESA with the core domain of SIRT2 in response to CK2
phosphorylation would prevent binding of DBC1 and thus abrogate its
inhibitory effect.
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SIRT1 activity and substrate recognition by modulating the inter-
action of the ESA with the catalytic domain. This might affect
the catalytic center and substrate binding through an allosteric
mechanism. Additionally it might affect binding of DCB1, which
is a SIRT1 inhibitor. Thus the control of SIRT1 function by its
own C-terminal domain and the regulation of this interaction by
CK2, although molecularly not fully explored yet, may represent
an important regulatory mechanism (Figure 3).

Besides phosphorylation, SIRT1 is modified by additional
PTMs, including sumoylation. SUMO, a small ubiquitin-related
modifier, can be attached in vitro close to the C-terminal end
of SIRT1 at Lys734, which lies within a sumoylation consensus
sequence (ΨKXE). This modification increases catalytic activity
as measured by p53 deacetylation (Yang et al., 2007). Upon stress
SIRT1 associates with the nuclear desumoylase SENP1, which
reduces the catalytic activity of SIRT1 and consequently allows
efficient activation of p53. How modification by SUMO stimu-
lates the catalytic activity of SIRT1 is not known. However the
recent findings that the C-terminal region is key to enhance SIRT1
activity suggests that sumoylation may participate in this regula-
tion. A possibility is that sumoylation enhances the interaction of
the ESA motif with the catalytic domain or modifies CK2 phos-
phorylation (Figure 3). But clearly other explanations are also
possible, including the subnuclear relocalization of sumoylated
SIRT1, which might affect accessibility to substrates, or allosteric
effects of the sumoylation (reviewed in Wilkinson and Henley,
2010). Thus it appears that sumoylation of SIRT1 is relevant for
stress control in cells.

Furthermore, SIRT1 is also targeted by methylation. The
methyltransferase Set7/9 interacts with and methylates SIRT1 at
Lys233, Lys235, Lys236, and Lys238 of the N-terminal extension.
Although it is unclear whether methylation affects directly SIRT1
deacetylase activity, the interaction of Set7/9 with SIRT1 disrupts
the binding of SIRT1 with p53. Consequently p53 acetylation and
transactivating activity is enhanced (Liu et al., 2011). Despite the
lack of information about direct consequences of lysine methy-
lation, it is worth remembering that lysines can be modified by
multiple PTMs and thus methylation may compete with acety-
lation and ubiquitination (Figure 1; reviewed in Yang and Seto,
2008).

Recently it was reported that nuclear SIRT1 is transnitrosylated
by nitrosylated GAPDH (Kornberg et al., 2010). As a consequence
acetylation of PGC-1α, a SIRT1 substrate, increases in cells, sug-
gesting that SIRT1 deacetylation activity is inhibited by nitrosyla-
tion. Mutational analysis implies that two cysteines, Cys387 and
Cys390, within the catalytic core of SIRT1 are targeted by nitrosyla-
tion. These cysteines are of special interest because they participate
in the coordination of a structurally relevant Zn2+ ion and nitro-
sylation might result in protein misfolding (Kornberg et al., 2010).
It will be of interest to define whether nitrosylation is a general
regulatory mechanism of sirtuins.

Similar to yeast Hst2, purified endogenous SIRT1 can exist as
a homotrimer (Zhao et al., 2003; Vaquero et al., 2004). Because
SIRT2 was also purified as a homotrimer (Vaquero et al., 2006), this
structural organization may be characteristic for sirtuins. Struc-
tural analysis of the Hst2 trimer suggests that the N-terminal
region is involved in trimer formation. Whether this is also true

for SIRT1 and SIRT2 remains to be determined. Because of the
many PTMs that have been mapped in the N-terminal extension
of SIRT1 (Table 1), it is well possible that trimer formation is
regulated by signaling, an aspect that needs further exploration.

SIRT2
SIRT2 is ubiquitously expressed and the only sirtuin, which is pre-
dominantly localized in the cytoplasm (Afshar and Murnane, 1999;
Michishita et al., 2005; Voelter-Mahlknecht et al., 2005). SIRT2 was
purified as a homotrimer out of cell extracts similar to SIRT1 and
Hst2 (see above; Vaquero et al., 2006). It is not known how trimer
formation is regulated and what the consequences are for SIRT2
function. Human SIRT2 is expressed in at least two isoforms. The
longer SIRT2 variant 1 consists of 389 amino acids whereas variant
2 lacks the first 37 N-terminal amino acids, thus being comprised
of 352 amino acids (Figure 2). The catalytic domain of SIRT2 vari-
ant 1 and 2 is located between amino acids 84–268 and 47–231,
respectively (Voelter-Mahlknecht et al., 2005). The predominant
cytoplasmic localization of SIRT2 is dictated by an NES in its
N-terminal extension (amino acids 41–51 and 4–14 of the long
and short protein variants, respectively; Wilson et al., 2006; North
and Verdin, 2007a). In the cytoplasm, SIRT2 colocalizes at least
in part with the microtubule network. Consistent with this find-
ing is that Lys40 of α-tubulin is a SIRT2 substrate (North et al.,
2003). Moreover, SIRT2 can also translocate into the nucleus and
a predominant nuclear or chromatin-associated SIRT2 localiza-
tion is detected during G2/M transition and in mitosis of the
cell cycle (Vaquero et al., 2006; North and Verdin, 2007a). It is
unclear how SIRT2 translocates into the nucleus because the pro-
tein lacks any obvious NLS. Nuclear substrates of SIRT2 include
H4K16ac and H3K56ac, modifications that are implicated in DNA
damage response and cancer (Vaquero et al., 2006; Vempati et al.,
2010). Also it remains to be defined how the cell cycle-dependent
nuclear localization is regulated. One possibility is that signals in
late G2 control the activity of the NES. Indeed in chemically syn-
chronized cells SIRT2 is hyperphosphorylated during the G2/M
transition and in M phase, which is paralleled by a mobility shift
in SDS-PAGE (Dryden et al., 2003; North and Verdin, 2007b). This
correlates with the nuclear translocation of SIRT2 and suggests
a regulatory role for Cyclin B/CDK1 and other mitosis-specific
kinases (reviewed in Morgan, 2008). But alternative mechanisms
may also be in place, such as stimulation of nuclear uptake and/or
tight interaction with nuclear structures in late G2 or mitosis.

Particularly high SIRT2 protein expression in the brain is found
in myelin-forming oligodendrocytes, correlating with the expres-
sion profiles of the differentiation markers CNPase (2′,3′-cyclic
nucleotide 3′-phosphodiesterase) and MBP (myelin basic protein;
Li et al., 2007; Southwood et al., 2007; Werner et al., 2007). Interest-
ingly only the shorter variant 2 is present in the myelin-enriched
fraction of adult mouse brain or in the cytoplasm of murine cere-
bellar granule cells (Suzuki and Koike, 2007; Werner et al., 2007),
suggesting that the N-terminal region is involved in controlling
the subcytoplasmic localization.

SIRT2 positively regulates the transcription factor sterol
response element binding protein 2 (SREBP-2) thereby pro-
moting cholesterol biosynthesis in neurons (Luthi-Carter et al.,
2010). Cholesterol influences membrane thickness and fluidity

www.frontiersin.org February 2012 | Volume 3 | Article 29 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Flick and Lüscher Posttranslational regulation of sirtuins

Table 1 | Summary of posttranslational modification sites of human sirtuins.

Sirtuin Target site Type of

modification

Modifier Source

SIRT1 Ser14 P Sasaki et al. (2008)

Ser26 P Sasaki et al. (2008)

Ser27 P JNK Nasrin et al. (2009), Sasaki et al. (2008)

Ser47 P JNK, mTOR Nasrin et al. (2009), Back et al. (2011), Sasaki et al. (2008)

Ser172 P Sasaki et al. (2008)

Ser173 P Sasaki et al. (2008)

Lys233 Me Set7/9 Liu et al. (2011)

Lys235 Me Set7/9 Liu et al. (2011)

Lys236 Me Set7/9 Liu et al. (2011)

Lys238 Me Set7/9 Liu et al. (2011)

Cys387 NO GAPDH Kornberg et al. (2010)

Cys390 NO GAPDH Kornberg et al. (2010)

Thr530 P JNK, CycB/CDK1 Nasrin et al. (2009), Sasaki et al. (2008)

Ser540 P CycB/CDK1 Sasaki et al. (2008)

Ser659 P CK2 Zschoernig and Mahlknecht (2009)

Ser661 P CK2 Zschoernig and Mahlknecht (2009)

Ser719 P Sasaki et al. (2008)

Lys734 Sumo SENP1 Yang et al. (2007)

Ser747 P Sasaki et al. (2008)

SIRT2 Ser368 P CycB/CDK1, CycE/CDK2,

CycA/CDK2, CycD3/CDK4,

p35/CDK5

North and Verdin (2007b); Pandithage et al. (2008)

Ser372 P Nahhas et al. (2007)

Ac p300 Han et al. (2008)

SIRT3 Ser101 P Olsen et al. (2010)

Ser103 P Olsen et al. (2010)

Ser105 P Olsen et al. (2010)

Ser114 P Olsen et al. (2010)

Ser117 P Olsen et al. (2010)

Ser118 P Olsen et al. (2010)

SIRT4 Ser255 P Yu et al. (2007)

Ser261 P Yu et al. (2007)

Ser262 P Yu et al. (2007)

SIRT6 ADPr SIRT6 Liszt et al. (2005)

Tyr294 P Dephoure et al. (2008)

Ser303 P Dephoure et al. (2008)

For an overview of the localization of the different modifications relative to other recognizable elements and domains of human sirtuins see Figure 2. Ac, acetylation;

ADPr, ADP-ribosylation; Me, methylation; NO, nitrosylation; P, phosphorylation; Sumo, sumoylation; JNK, JUN N-terminal kinase; Cyc, cyclin; CDK, cyclin-dependent

kinase. Note that amino acid numbers for SIRT2 refer to the longer isoform 1 (IF1 in Figure 2).

and is essential for myelin membrane growth (Saher et al., 2005).
However, cholesterol is also reported to have a detrimental effect
in neurons and presents a risk factor in neurodegenerative diseases
like Alzheimer’s (AD) and Parkinson’s diseases (PD; reviewed in
Stefani and Liguri, 2009; Huang et al., 2011). Consistent with these
findings, SIRT2 inhibition reduces toxicity of mutant huntingtin
by decreasing sterol biosynthesis (Luthi-Carter et al., 2010). Simi-
larly SIRT2 knockdown or SIRT2 inhibition decreases α-synuclein
toxicity, a protein frequently mutated in and associated with PD
(Outeiro et al., 2007). Together these findings implicate SIRT2 in
the control of toxicity resulting from aggregation-prone proteins
in both neurons and oligodendrocytes.

Beside SREBP-2, SIRT2 is also involved in the regulation of
other transcription factors, including NF-κB (Rothgiesser et al.,
2010), FOXO1 (Jing et al., 2007; Zhao et al., 2010), and FOXO3
(Wang et al., 2007). Thus, through modulating these transcrip-
tional regulators, SIRT2 affects most likely multiple cellular
processes, such as signaling, gene expression, and autophagy.

To date two phosphorylation sites have been identified in SIRT2
(Figure 2 and Table 1). They are located in the C-terminal exten-
sion in close proximity to each other at Ser368/331 and Ser372/335
(numbering according to the two translational variants). The
phosphorylation of each site results in a mobility shift of the pro-
tein on SDS-PAGE, which results in a characteristic triple band
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pattern (Nahhas et al., 2007; Pandithage et al., 2008). Ser368/331
is part of a Cyclin/CDK consensus motif and has been demon-
strated to be a substrate of Cyclin B/CDK1, Cyclin E/CDK2, Cyclin
A/CDK2, Cyclin D3/CDK4, and p35/CDK5 (North and Verdin,
2007b; Pandithage et al., 2008). Consistent with these in vitro
studies is the finding that Ser368/331 is phosphorylated when cells
enter S phase, suggesting that this phosphorylation is not the sig-
nal for nuclear accumulation of SIRT2, which begins in late G2
(Pandithage et al., 2008). Phosphorylation of SIRT2 at Ser368/331
reduces its enzymatic activity as measured by deacetylation of
core histones and of α-tubulin (Pandithage et al., 2008). Moreover
SIRT2 interferes with neurite outgrowth in primary neurons, cor-
relating with α-tubulin deacetylation, a process that is antagonized
by phosphorylating Ser368/331 providing evidence that the C-
terminal extension of SIRT2 controls activity in cells (Pandithage
et al., 2008). So far, nothing is known about a kinase responsible
for phosphorylation of Ser372/335 or about its influence on SIRT2
function.

Phosphorylation of SIRT2 by p35/CDK5 is of special interest
because similar to SIRT2, CDK5 is highly expressed in the brain
and its protein levels are upregulated in differentiating cells, i.e.,
oligodendrocytes (He et al., 2011). Moreover CDK5 is capable to
interfere with SIRT2 function by phosphorylating Ser368/331 in
primary neurons, as mentioned above (Pandithage et al., 2008).
Furthermore CDK5 is an important cell cycle suppressor in post-
mitotic neurons (Cicero and Herrup, 2005). This activity requires
nuclear localization of CDK5, which is mediated by an interac-
tion with p27 (Zhang et al., 2008). Upon stress, e.g., induced by
β-amyloid expression in an AD model, association between p27
and CDK5 is disrupted resulting in reduced nuclear CDK5 levels
(Zhang et al., 2010). An increasing number of publications provide
evidence that CDK5 also plays a role in many non-neuronal tissues
(reviewed in Lalioti et al., 2010). For example CDK5 is required
for the DNA damage response, suggesting that this kinase partic-
ipates in stress signaling (Turner et al., 2008). Together with the
above-summarized studies implicating SIRT2 in stress response in
cells of the nervous system the findings suggest that the interac-
tion with and regulation by CDK5 may be part of a stress signaling
network.

Additionally SIRT2 is acetylated by the KAT p300. This acety-
lation, although the site of modification has not been mapped,
interferes with the catalytic activity of SIRT2 (Han et al., 2008).
Predictions of acetylation sites indicate that the C-terminal exten-
sion provides multiple target lysine residues (Li et al., 2006),
further supporting the concept that the N- and C-terminal regions
are particularly relevant to control catalytic activities of sirtuins.

SIRT3
Three sirtuins are located in mitochondria. Of these SIRT3 is
the best studied. It is broadly expressed including brown but not
white adipose tissue (Shi et al., 2005). Indeed, SIRT3 is required
for PGC-1α-mediated differentiation of brown adipose tissue in
an estrogen-related receptor α (ERRα)-dependent manner (Kong
et al., 2010; Giralt et al., 2011). The transcriptional coactivator
PGC-1α regulates genes involved in energy metabolism, suggesting
that SIRT3 participates in this process (Shi et al., 2005). More-
over SIRT3 regulates the cellular response to oxidative stress and

calorie restriction. Thus, upon cellular stress, e.g., increase in reac-
tive oxygen species (ROS) or nutrient deprivation, human SIRT3
transcription is stimulated (Shi et al., 2005; Chen et al., 2011), and
the protein translocates to the mitochondrial inner membrane
(IMS; Michishita et al., 2005; Scher et al., 2007). There it deacety-
lates and thereby activates the enzymes isocitrate dehydrogenase 2
(Idh2) and superoxide dismutase 2 (SOD2), which are involved in
reducing cellular oxidants, including oxidized glutathione (GSSG)
and reactive oxygen species (ROS) (Schlicker et al., 2008; Qiu et al.,
2010; Someya et al., 2010; Chen et al., 2011). Recently, it has been
discovered that SIRT3 acts as a tumor suppressor. Sirt3-deficient
mice show increased genomic instability as a result of enhanced
superoxide levels. Mouse embryonic fibroblasts (MEFs) of such
animals are transformed by a single oncoprotein, i.e., with MYC
or RAS (Kim et al., 2010). In addition, SIRT3 activates several
key enzymes associated with fatty-acid oxidation (3-hydroxy-
3-methylglutaryl-CoA synthase/HMGCS2, Long-chain acyl-CoA
dehydrogenase/LCAD, Acetyl-CoA synthetase 2/AceCS2) and the
urea cycle (ornithine transcarbamoylase/OTC) (Hallows et al.,
2006, 2011; Hirschey et al., 2010; Shimazu et al., 2010). Together
these findings suggest that upon caloric restriction SIRT3, in
addition to SIRT1, plays a key role in modulating mitochondr-
ial activities and stimulating the use of alternative energy sources
by promoting β-oxidation and amino acid catabolism.

The N-terminal extension of SIRT3 contains a mitochondrial
targeting signal peptide (Figure 2). During import of SIRT3 into
the mitochondrial matrix, the protein is proteolytically cleaved
at position 101 and thus enzymatically activated (Schwer et al.,
2002). It has been postulated that the proteolytically shortened
N-terminal region and the C-terminal extension form a module
that might regulate the access of substrate proteins to the active
site (Schlicker et al., 2008).

Presently we know very little about the regulation of SIRT3
function. The biological significance, as summarized briefly above,
would suggest strongly that SIRT3 is regulated by signaling.
Indeed, six phosphorylated serine residues (out of a total of eight
possible sites) between positions 101 and 118 have been identified
in a high-resolution mass spectrometry-based phosphoproteome
analysis (Table 1) (Olsen et al., 2010). But their biological rel-
evance or influence on SIRT3 function has not been analyzed
yet. These phosphorylation sites are close to the mitochondrial
cleavage site in the N-terminal extension. Therefore it is possible
that phosphorylation modulates the enzymatic activity of SIRT3
in mitochondria either by regulating the proteolytic cleavage, by
influencing the interaction between the N- and C-terminal exten-
sion, or by regulating the interaction of the N-terminal region with
the catalytic domain.

SIRT4
SIRT4 is an additional mitochondrial sirtuin (Michishita et al.,
2005; Haigis et al., 2006). It resides as a soluble protein in the
mitochondrial matrix (Ahuja et al., 2007; Nakamura et al., 2008).
Similar to the other sirtuins, SIRT4 is ubiquitously expressed
(Michishita et al., 2005; Haigis et al., 2006; Ahuja et al., 2007).
Sirt4 knockout mice are viable and fertile and did not display
apparent phenotypic abnormalities. However these mice exhibit
increased insulin levels when compared to wild-type littermates
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(Haigis et al., 2006). This anomaly points to a function of SIRT4
in the insulin producing β-cells of the pancreatic islets. Indeed,
SIRT4 negatively regulates glutamate dehydrogenase (GDH) via
ADP-ribosylation. GDH is a mitochondrial enzyme, which cat-
alyzes the conversion of glutamate to α-ketoglutarate in the tricar-
boxylic acid (TCA) cycle and induces insulin secretion (Haigis
et al., 2006). A second possible explanation for the increased
insulin levels in Sirt4-deficient mice is that IDE (insulin-degrading
enzyme) interacts with SIRT4 (Ahuja et al., 2007). IDE regulates
insulin levels and SIRT4 appears to be a negative regulator of
this enzyme. Whether this occurs through direct interaction or by
ADP-ribosylation has not been determined. It is worth pointing
out that so far no deacetylase activity of SIRT4 has been identified.
It remains to be determined whether this enzyme is indeed defi-
cient of deacetylase activity or whether this is a reflection of the
lack of appropriate substrates.

Similar to SIRT3, SIRT4 possesses a mitochondrial targeting
signal in the N-terminal region and is proteolytically cleaved
within the N-terminal extension upon entry into the mitochondr-
ial matrix resulting in a 28 amino acids shortened protein (Ahuja
et al., 2007; Figure 2). It is not known whether the proteolytic
cleavage of SIRT4 influences its enzymatic activity, as was reported
for SIRT3 (Schwer et al., 2002).

Three phosphorylation sites have been identified in SIRT4 at
Ser255, Ser261, and Ser262 in a proteomics approach (Yu et al.,
2007). These sites are unique, as far as deduced from the currently
available analysis of PTMs of sirtuins, in that they are located
within or in close proximity to the catalytic domain (Figure 2 and
Table 1). Whether these are functionally relevant has not been
determined.

SIRT5
SIRT5, the third mitochondrial sirtuin, is ubiquitously expressed
(Michishita et al., 2005; Nakagawa et al., 2009). Very little is
known about SIRT5 function. Sirt5 knockout mice develop
inconspicuously until at least 18 months of age (Lombard et al.,
2007). However, they exhibit significantly elevated blood ammo-
nia levels compared to wild-type animals after caloric restriction or
fasting, which is presumably caused by a deregulated urea cycle. In
support SIRT5 can deacetylate and activate the carbamoyl phos-
phate synthetase 1 (CPS1), a mitochondrial enzyme of the urea
cycle (Nakagawa et al., 2009). It has been suggested that elevated
mitochondrial NAD+ levels in response to starvation activate
SIRT5 and in turn CPS1 is stimulated and initiates the detox-
ification of excess ammonia under physiological conditions. In
addition to its deacetylase activity SIRT5 was very recently reported
to elicit also NAD+-dependent demalonylase and desuccinylase
activities (Du et al., 2011; Peng et al., 2011). In line with this
observation CPS1 succinylation at Lys1291 is strongly increased
in Sirt5 knockout mice compared to wild-type littermates. Fur-
thermore SIRT5 can in vitro deacetylate the mitochondrial IMS
protein cytochrome c, which is involved in oxidative metabolism
and apoptosis (Schlicker et al., 2008). Up to now the functional
relevance of this observation has not been clarified.

SIRT5 is expressed as two distinct transcriptional variants due
to alternative splicing, encoding proteins with distinct C-terminal
regions (Figure 2). Both isoforms can be cleaved after the first

36 amino acids at a consensus sequence for the mitochondrial
processing peptidase upon entry into the mitochondrial matrix
(Michishita et al., 2005). Similar to SIRT4 no data are available
about a relationship between the N-terminal truncation of SIRT5
and its enzymatic activity (Schwer et al., 2002).

Both SIRT5 isoforms display mitochondrial localization. SIRT5
can enter the IMS and the mitochondrial matrix (Schlicker et al.,
2008). In contrast to the cleaved isoform two (IF2, derived from
the shorter splice variant), which seems to reside exclusively in the
mitochondria, cleaved IF1 is found additionally in the cytoplasm.
It appears that the different C-termini of the two SIRT5 isoforms
are responsible for their distinct subcellular distribution. The C-
terminal extension of IF2 is rich in hydrophobic amino acids and
functions as a mitochondrial membrane insertion signal (Mat-
sushita et al., 2011). Presently no PTM of SIRT5 are described
besides the proteolytic cleavage and thus nothing is known about
the role of this protein in signaling processes.

SIRT6
SIRT6 is expressed in most tissues (Liszt et al., 2005; Mostoslavsky
et al., 2006). It is, similar to SIRT1 and SIRT7, predominantly
localized in the nucleus (Liszt et al., 2005; Michishita et al., 2005),
where it associates with chromatin (Mostoslavsky et al., 2006). A
nuclear localization signal was discovered between amino acids
345 and 351 in the distal region of the C-terminal extension of
SIRT6 (Figure 2). This signal is necessary and sufficient for proper
nuclear localization of the protein (Tennen et al.,2010). In compar-
ison to other sirtuin knockout mice, Sirt6-deficient mice display a
severe phenotype. Despite normal development for several weeks
after birth, these mice die at about 1 month of age due to degen-
erative processes of multiple organs. These processes include loss
of subcutaneous fat and metabolic defects displayed by dramatic
drops of serum glucose and insulin-like growth factor 1 (IGF1) lev-
els. Additional symptoms are lordokyphosis, colitis, and a severe
lymphopenia (Mostoslavsky et al., 2006). One suggestion is that
this phenotype is the consequence of a loss of Sirt6-mediated inhi-
bition of NF-κB target gene expression (Kawahara et al., 2009,
2011). The absence of SIRT6-dependent repression of HIF1α

might also account for the phenotype (Zhong et al., 2010). Under
physiologic conditions SIRT6 interacts with these transcription
factors, i.e., NF-κB and HIF1α, and is transported to their tar-
get gene promoters where it deacetylates H3K9ac or H3K56ac
(Michishita et al., 2005; Kawahara et al., 2009; Yang et al., 2009). In
both cases, the binding of the respective transcription factor to its
target gene promoters is enhanced in Sirt6-deficient cells due to
locally elevated acetylation levels of H3K9. Further investigations
revealed that upon TNF-α signaling, SIRT6 binds to many pro-
moters, which are highly enriched for NF-κB, SP1, STAT1/3, ELK1,
E2F1, and FOXO1/4 binding motifs (Kawahara et al., 2011). Thus
SIRT6 appears to have widespread activities as a regulator of tran-
scription, in particular of genes whose products are involved in
glucose and lipid metabolisms.

Moreover SIRT6 seems to be involved in DNA repair and thus in
the maintenance of genomic integrity. Indeed MEFs derived from
Sirt6-deficient mice are more sensitive to irradiation and display
multiple chromosomal aberrations (Mostoslavsky et al., 2006).
SIRT6 associates with chromatin in response to DNA damage and
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stabilizes the DNA-dependent protein kinase (DNA-PK) at DNA
double-strand breaks (DSBs; McCord et al., 2009). Also SIRT6
deacetylates CtIP [C-terminal binding protein (CtBP) interacting
protein] in response to DNA damage, which promotes the abil-
ity of CtIP to mediate DSB repair by homologous recombination
(Kaidi et al., 2010). Finally SIRT6 is required for telomere mainte-
nance (Tennen and Chua, 2011). Together these findings provide
strong evidence for a role of SIRT6 in controlling genomic stability.

The conserved core domain of SIRT6 is not sufficient to
deacetylate H3K9ac or H3K56ac (Tennen et al., 2010). For SIRT6
the available evidence suggests that the N-terminal region is essen-
tial for deacetylase activity. This is reminiscent of the findings with
other sirtuins, which require either N- or C-terminal regions to
activate catalytic function as described above.

In addition to its deacetylase activity, SIRT6 has been reported
to be able to mono-ADP-ribosylate substrates. One substrate
identified is PARP1/ARTD1, which is activated by SIRT6 (Mao
et al., 2011). This provides an additional link to genomic stabil-
ity because ARTD1 is a DNA damage sensor and upon activation
synthesizes ADP-ribose polymers that are docking sites for repair
enzymes (reviewed in Kleine and Luscher, 2009). SIRT6 can also
auto-ADP-ribosylate but the site of modification and the func-
tional relevance are unclear (Liszt et al., 2005). It remains to be
elucidated whether the N-terminal extension is essential for the
ADP-ribosylation activity of SIRT6 as it is for the deacetylase
activity. Of note is that besides ADP-ribosylation, two C-terminal
phosphorylation sites at Tyr294 and Ser303 have been discovered
in a proteomic approach (Dephoure et al., 2008; Figure 2 and
Table 1). It remains to be seen whether these phosphorylations
influence SIRT6 function.

SIRT7
Out of the seven human sirtuins, SIRT7 is the least studied. It
is a nuclear protein that is concentrated in the nucleoli where it
interacts with components of the rDNA transcription machinery,
like RNA polymerase I (Pol I) and the rDNA transcription factor
UBF (Michishita et al., 2005). SIRT7 positively regulates rDNA
transcription (Ford et al., 2006; Grob et al., 2009). Knockdown
of SIRT7 in human cancer cell lines blocks cell proliferation and
causes apoptosis. This drastic effect implies that SIRT7 is required
for cancer cell viability (Ford et al., 2006). Further evidence sup-
porting this hypothesis is provided by enhanced SIRT7 expression
levels in breast carcinoma biopsies compared to normal tissue
(Ashraf et al., 2006). The tumor suppressor p53 is a substrate of
SIRT7 and thus this sirtuin appears to interfere with p53 function,
similar to SIRT1 (Vakhrusheva et al., 2008). Sirt7 knockout mice
are viable but suffer from progressive heart hypertrophy, accom-
panied by inflammation and decreased stress resistance, possibly a
consequence of altered p53 activity. Indirect evidence suggests that
SIRT7 is phosphorylated during mitosis by a CDK complex, but
no sites have been mapped nor functional consequences defined
(Grob et al., 2009).

CONCLUSION
Sirtuins have been identified as key regulators of multiple cel-
lular processes, mainly by functioning as NAD+-dependent
deacetylases but also as demalonylases, desuccinylases, and

ADP-ribosyltransferases. Despite the many processes that are gov-
erned, at least in part, by sirtuins, relatively little is known about
how these regulators are controlled. This is somewhat surprising
because sirtuins are implicated in many signaling processes. But
obviously their regulation has not been evaluated in great detail.

Sirtuins share a conserved catalytic domain, but differ in their
N- and C-terminal extensions. Apparent from the available data
is that the N- and C-terminal regions of the different sirtuins that
extend beyond the catalytic domains mediate regulation. Mul-
tiple PTMs target these extensions, including phosphorylation,
methylation, sumoylation, proteolytic cleavage, and possibly oth-
ers. Most of the relevant enzymes are not known presently and
thus the pathways that target sirtuins are poorly understood. Nev-
ertheless the emerging theme suggests that the N- and C-terminal
regions function as signal receivers that transmit information from
signaling pathways to the catalytic domain. In addition initial
findings suggest that these signals, which target the extensions
of sirtuins, may also control properties of the different sirtuins
beyond catalytic activity. Although the evidence is not complete,
trimerization, substrate specificity, and subcellular localization are
likely to be controlled by these extensions. To understand sirtuin
biology more thoroughly, it will be necessary to account for all
PTMs that control the N- and C-terminal extensions and to inte-
grate and connect these findings with distinct signaling pathways
to associate sirtuins with physiological processes. This will need
to be combined with more definitive studies addressing the func-
tions of the extensions both for intra- as well as intermolecular
interactions (Figure 4).

While the available evidence, although still incomplete, sug-
gests that the N- and C-terminal extensions are important to
control sirtuin function at multiple levels, considerably less is
known about posttranslational regulation that directly targets the
catalytic domain of either of the seven sirtuins. It is presently
not clear whether this reflects a true lack of direct regulation or
whether we simply have not identified the relevant processes yet.
Since many other enzymes are controlled by directly modulating

FIGURE 4 | Summary of the regulation of the catalytic activity of

Sirtuins. Most of the currently known PTMs that target sirtuins are
directed to the N- and C-terminal extensions. These extensions may control
sirtuin function by interacting with the catalytic core domain or with each
other. Additionally the extensions may control intermolecular interactions
(not indicated). Different PTMs target the N- and C-terminal extensions,
thereby possibly controlling either intra- or intermolecular interactions. The
regulation of Zn2+ binding by nitrosylation is potentially a common
regulatory mechanism of sirtuins. For more details see the text.
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the catalytic domain, it seems more likely that the latter expla-
nation is correct. The findings on nitrosylation of SIRT1 indicate
that the catalytic domain of at least this sirtuin is indeed regu-
lated. Nitrosylation is potentially controlling all sirtuins because
this modification targets cysteines that are important to coordinate
Zn2+ binding. Sirtuins have been recognized as targets for clinical
intervention. Understanding the repertoire of control mechanisms
that target sirtuins will likely provide additional targets worth con-

sidering. Thus unraveling the function and regulation of sirtuins
is important not only to understand basic cellular processes but
also for clinical applications.
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