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ABSTRACT

We use vertically-resolved numerical hydrodynamic simulations to study star formation and

the interstellar medium (ISM) in galactic disks. We focus on outer disk regions where diffuse

H I dominates, with gas surface densities Σ = 3 −20 M⊙ pc−2 and star-plus-dark matter volume

densities ρsd = 0.003−0.5 M⊙ pc−3. Star formation occurs in very dense, self-gravitating clouds

that form by mergers of smaller cold cloudlets. Turbulence, driven by momentum feedback

from supernova events, destroys bound clouds and puffs up the disk vertically. Time-dependent

radiative heating (FUV from recent star formation) offsets gas cooling. We use our simulations

to test a new theory for self-regulated star formation. Consistent with this theory, the disks

evolve to a state of vertical dynamical equilibrium and thermal equilibrium with both warm and

cold phases. The range of star formation surface densities and midplane thermal pressures is

ΣSFR ∼ 10−4 −10−2 M⊙ kpc−2 yr−1 and Pth/kB ∼ 102 −104 cm−3 K. In agreement with obser-

vations, turbulent velocity dispersions are ∼ 7 km s−1 and the ratio of the total (effective) to

thermal pressure is Ptot/Pth ∼ 4−5, across this whole range (provided shielding is similar to the

Solar neighborhood). We show that ΣSFR is not well correlated with Σ alone, but rather with

Σ
√

ρsd, because the vertical gravity from stars and dark matter dominates in outer disks. We

also find that ΣSFR has a strong, nearly linear correlation with Ptot, which itself is within ∼ 13%

of the dynamical-equilibrium estimate Ptot,DE. The quantitative relationships we find between

ΣSFR and the turbulent and thermal pressures show that star formation is highly efficient for

energy and momentum production, in contrast to the low efficiency of mass consumption. Star

formation rates adjust until the ISM’s energy and momentum losses are replenished by feedback

within a dynamical time.

Subject headings: galaxies: ISM — galaxies: kinematics and dynamics — galaxies: star for-

mation — method: numerical — turbulence
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1. Introduction

Large-scale star formation rates in galaxies are observed to correlate with both the gaseous and stellar

content, and with the galaxy’s gravitational potential well (e.g. Ryder & Dopita 1994; Kennicutt 1998;

Wong & Blitz 2002; Boissier et al. 2003; Salim et al. 2007; Leroy et al. 2008; Bigiel et al. 2008, 2010,

2011; Genzel et al. 2010; Daddi et al. 2010; Shi et al. 2011). Empirical fits in disks often adopt power-

law (“Kennicutt-Schmidt”) forms for the relationship among the surface density of star formation ΣSFR, the

surface density of gas Σ, the surface density of the old stellar disk Σs, and the orbital angular velocity Ω.

From the “supply side” point of view, gas represents the fuel for star formation, and the stellar disk

and dark matter halo help to define dynamical timescales within the interstellar medium (ISM) that could

affect how rapidly gas collects and collapses: the galactic orbital time, the vertical oscillation period and

flow crossing time, and the gravitational free-fall time. Power laws naturally arise if the star formation rate

is proportional to the ratio of the gas content and one of these dynamical times. The observed timescale for

gas to be converted to stars, tSF,gas ≡Σ/ΣSFR is, however, generally quite long compared to these dynamical

times. Together, the empirical results present a picture of star formation that is sensitive to both fuel supply

and ambient environmental conditions, and that has low apparent efficiency.

In recent work, Ostriker et al. (2010) (hereafter OML10) and Ostriker & Shetty (2011) (hereafter OS11)

have argued that star formation rates respond to demand, as well as supply. Maintaining an equilibrium

state in the ISM requires constant inputs of energy and momentum, and contributions from star formation

are critical. Star formation can be self-regulated via feedback, in such a way that supply and demand

match within the ISM: heating balances cooling, pressure balances gravity, and turbulent driving balances

dissipation. The theory of OML10 and OS11 proposes that observed star formation rates can be understood

as a response to the needs of the ISM. Because each massive star injects so much energy, only a relatively

modest star formation rate (implying a long tSF,gas) is necessary. From the point of view of energy and

momentum sources and sinks, star formation is in fact quite efficient.

To see why feedback is vital, it is key to consider the internal thermal and dynamical state of the ISM,

rather than just integrated properties. The internal vertical dynamical time tdyn ∝ (Gρtot)
−1/2, for ρtot the

total (gas + stellar) density, depends on the thicknesses of the gaseous and stellar disks. In particular, the

contribution from gas gravity alone gives Σ/tdyn ∝ Σ3/2/H1/2. The gas disk thickness H depends (linearly

or quadratically) on the vertical velocity dispersion of the gas, which includes both thermal and turbulent

terms.1 Because thermal energy is radiated away, and turbulent energy is dissipated (in shocks and shear

layers) on timescales <∼ tdyn ≪ tSF,gas, the internal energy must be continuously replenished. Young, high-

mass stars restore this energy and preserve the life of the ISM. If star formation feedback were entirely

absent and the only heating source were the cosmic background radiation, tdyn would drop by nearly two

orders of magnitude, with a corresponding (or greater) increase in ΣSFR.

OML10 and OS11, considering respectively mid-to-outer disks and central starburst regions, showed

1In this work we neglect the magnetic term, which is likely to be small (see below) but would provide a minimum vertical

support in the limit of vanishing turbulent terms.
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that observed star formation rates are quantitatively consistent with analytic predictions that follow from

imposing thermal and dynamical equilibrium in the diffuse ISM. OS11 also presented initial results of

numerical simulations that include turbulent driving associated with star formation, confirming the analytic

theory for molecule-dominated regions. Additional results from simulations in the starburst regime will be

presented in Shetty & Ostriker (2011, in preparation).

In this paper, we use time-dependent numerical simulations to test the OML10 theory (and extensions

based on OS11), for the outer-disk regime where the ISM is dominated by diffuse atomic gas. A crucial

aspect of our simulations is that we vertically resolve the disk (our grid scale is 1 pc). We shall show that, as

assumed by OML10, thermal and vertical dynamical equilibrium are both satisfied in our numerical models.

We shall also show that feedback from star formation is largely responsible for sustaining both the thermal

and turbulent pressure (and energy) in the atomic ISM. We numerically calibrate the yield relation between

ΣSFR and the thermal and turbulent pressures in the diffuse ISM, demonstrating that near-linear relations

hold for both Pth and Pturb. By combining these feedback relations with dynamical equilibrium, we show

that ΣSFR depends nearly linearly on the weight of the diffuse ISM (i.e. the dynamical-equilibrium pressure

Ptot,DE ≈ Pth +Pturb). The correlation between ΣSFR and Ptot (or Ptot,DE) is stronger and more general than

other star formation relations that are commonly cited.

In addition to testing the thermal/dynamical equilibrium theory of star formation, our numerical models

allow us to address a number of interesting issues related to observations of diffuse atomic gas in the Milky

Way and external galaxies (Dickey et al. 1990; Braun 1997; van Zee & Bryant 1999; Heiles & Troland 2003;

Young et al. 2003; Petric & Rupen 2007; Dickey et al. 2009; Kalberla & Kerp 2009). These observations

show that (1) turbulent velocity dispersions are typically ∼ 10 km s−1, relatively independent of location or

star formation rate; (2) both cold and warm atomic gas are pervasive, in proportions that appear relatively in-

dependent of location; (3) the thermal pressure is a small fraction of the total pressure. Our numerical results

are consistent with these observations, and can be understood based on the thermal/dynamical equilibrium

model with energy and momentum feedback from star formation.

Our numerical models are idealized in that they represent a local patch of unmagnetized gas in a fea-

tureless disk where star formation is primarily responsible for the injection of thermal and kinetic energies.

Thus, in this paper we do not capture the potential consequences of galactic structural features and certain

instabilities that may affect ISM dynamics and star formation. The ISM surface density averaged over ∼
kpc scales can be significantly affected by large-scale gravitational instability (e.g., Wada & Norman 1999,

2007; Kim & Ostriker 2001, 2002, 2007; Li et al. 2005; Tasker & Bryan 2006; Tasker & Tan 2009; Tasker

2011; Bournaud et al. 2007; Bournaud & Elmegreen 2009; Hopkins et al. 2011), spiral arm compression

(e.g. Kim & Ostriker 2002, 2006; Shetty & Ostriker 2006; Kim et al. 2008, 2010; Dobbs & Bonnell 2006,

2008; Dobbs et al. 2008, 2011; Wada & Koda 2004; Wada 2008; Wada et al. 2011), and Parker instability

(e.g. Basu et al. 1997; Kim et al. 1998, 2001, 2002; Mouschovias et al. 2009). Since the timescales to collect

gas over >∼ kpc scales from gravitational instabilities and spiral arms are longer than local dynamical times,

our models may nevertheless provide a good first approximation to the effects of star formation feedback

on local regions within larger gas accumulations. In addition, initial tests we have conducted which include

magnetic fields (permitting Parker instability) show similar behavior to our unmagnetized models.



– 4 –

As well as producing ∼ kpc-scale overdensities, both gravitational instabilities (e.g. Wada et al. 2002;

Kim et al. 2003; Kim & Ostriker 2007; Agertz et al. 2009; Aumer et al. 2010; Bournaud et al. 2010) and

spiral shocks (e.g. Kim & Ostriker 2006; Kim et al. 2006, 2010; Dobbs et al. 2006), together with magne-

torotational instabilities (e.g., Kim et al. 2003; Piontek & Ostriker 2004, 2005, 2007), drive turbulence in the

ISM. In particular, turbulence levels >∼ 10 km s−1 can be produced by large-scale gravitational instability,

and may be important during the highly-transient early evolution of disk galaxies. Several of the above

numerical models have shown, however, that unless energy (representing feedback) is locally injected into

massive, high-density clumps that form, the result is irreversible gravitational collapse and star formation

far exceeding observed rates. Stellar feedback therefore appears to be crucial for disrupting bound clouds

(thus limiting star formation) and maintaining – over many galactic orbits – turbulent ISM levels similar to

those observed in nearby galaxies.

The plan of this paper is as follows. In Section 2, we begin by summarizing the theory developed in

OML10 and OS11. Section 3 describes the numerical methods and parameters used for our time-dependent

simulations, and Section 4 presents our model results. These include time averages of star formation rates,

thermal and turbulent pressures, gas layer scale-heights, thermal and turbulent velocity dispersions, and

mass fractions of gas components. In Section 5, we use our numerical results to test the validity of the

physical assumptions and adopted parameters in the OML10 theory. Here, we also demonstrate the balance

between turbulent driving and dissipation (as in OS11), and quantify the feedback yield relations between

Pth and Pturb, and ΣSFR. We compare our numerical results to several simple prescriptions for star formation

in Section 6. Section 7 summarizes and discusses our main results.

2. Summary of Thermal/Dynamical Equilibrium Model

In this section, we briefly summarize the OML10 thermal/dynamical equilibrium model, highlighting

the fundamental assumptions and predictions that we shall test in this work. We then draw on OS11 to

outline additional predictions related to the dynamical state and star formation rate in disks dominated by

turbulent, diffuse gas, and describe how these hypotheses will be tested.

OML10 considered a multiphase, turbulent galactic ISM disk with thermal properties mediated by

stellar heating. The gaseous disk, with total surface density of neutral gas Σ, is immersed within the stellar

disk and dark matter halo, whose combined midplane density is given by ρs +ρdm ≡ ρsd. The neutral gas

disk is composed of two components: diffuse gas, with surface density averaged over large scales Σdiff; and

gravitationally bound clouds (GBCs) with surface density averaged over large scales (i.e. many individual

bound clouds) ΣGBC = Σ−Σdiff. The diffuse component includes both warm, rarefied gas and cold, dense

gas in cloudlets that are not massive enough to be gravitationally bound. Star formation takes place within

the gravitationally-bound component.

The first key assumption of OML10 is that the volume-filling diffuse ISM disk is in force balance in the

vertical direction. The combined inward gravitational force of the stars, dark matter, and gas (both diffuse

and GBC components) must be matched by the outward pressure forces within the diffuse gas. Averaging
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the vertical component of the momentum equation over time and in the horizontal direction, OML10 showed

that in a state of dynamical equilibrium, Ptot = Ptot,DE for

Ptot,DE ≡ πGΣ2
diff

4
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; (1)

that is, the total effective midplane pressure2 Ptot must support the weight of the overlying diffuse gas in the

total gravitational field. Although we use the symbol Ptot,DE to denote the vertical weight, it is important to

note that the weight and effective pressure balance only if equilibrium holds, and only in an averaged sense.

In equation (1), α is the ratio of total (effective) pressure to thermal pressure in the diffuse medium, ζd

is a dimensionless parameter characterizing the gas density profile (ζd = 1/π for a Gaussian profile), cw =

(kTw/µ)1/2 is the thermal speed of the warm gas, and f̃w = v2
th,diff/c2

w for vth,diff the mass-weighted thermal

velocity dispersion in the diffuse gas. The quantity f̃w is also equal to ρw/ρ0 for ρw the warm medium

density and ρ0 the volume-averaged density of the diffuse medium (including cold cloudlets, assumed to

be in pressure equilibrium with the warm medium) at the disk midplane. The mass fraction of the warm

medium in the diffuse gas is comparable to f̃w (see OML10). In a state of dynamical equilibrium, the

midplane diffuse-gas thermal pressure Pth = ρ0v2
th,diff is equal to

Pth,DE =
Ptot,DE

α
(2)

(see equation 11 of OML10). If the dominant contributions to the total effective pressure are thermal and

turbulent terms with Pturb = ρ0v2
z,diff, then α = (v2

th,diff + v2
z,diff)/v2

th,diff = σ2
z,diff/v2

th,diff for vz,diff the turbulent

vertical velocity dispersion and σz,diff the total vertical velocity dispersion in the diffuse gas (σz,diff is a

direct observable for a face-on disk). Note that in equation (1), the product c2
w f̃wα = Ptot/ρ0, which is equal

to σ2
z,diff if turbulent and thermal terms dominate the effective pressure, i.e. Ptot ≈ Pth +Pturb.

Next, OML10 assumed that the diffuse ISM is in a state of thermal equilibrium, in which cold and

warm atomic phases coexist at a midplane thermal pressure Pth,TE. In order for the diffuse gas to be in the

two-phase regime, Pth,TE must fall between the minimum pressure Pmin for the cold phase and the maximum

pressure Pmax for the warm phase (cf. Field et al. 1969). Both Pmax and Pmin depend linearly on the local

radiative heating rate per particle, Γ, which itself depends approximately linearly on the locally-averaged

star formation rate surface density, ΣSFR, if young massive stars are responsible for most of the heating.

Motivated by detailed modeling of heating and cooling in the Solar neighborhood (Wolfire et al. 2003) and

numerical simulations of turbulent multiphase gas (Piontek & Ostriker 2005, 2007), OML10 assumed that

Pth,TE is comparable to the geometric-mean pressure Ptwo ≡ (PminPmax)1/2. Based on the results of Wolfire

2As discussed in OML10, Ptot is actually a pressure difference between the midplane and the top of the neutral layer. Thus, if the

cosmic-ray and magnetic scale heights far exceed that of the neutral gas, there is not a significant contribution to Ptot from magnetic

or cosmic-ray terms (even if their midplane pressures are large), and the weight of the diffuse neutral layer must be supported

primarily by turbulent and thermal pressure.
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et al. (2003), OML10 adopted a geometric mean “two-phase” pressure given by

Ptwo/kB = 3×103 cm−3 K
4G′

0

1 +3Z′
d(Σ/Σ0)0.4

, (3)

where kB is the Boltzmann constant, G′
0 = JFUV/JFUV,0 is the mean FUV intensity relative to the Solar

neighborhood value JFUV,0 = 2.2×10−4 erg s−1 cm−2sr−1, Σ0 = 10 M⊙ pc−2 is the surface density of neutral

gas at the Solar circle (Dickey & Lockman 1990; Kalberla & Kerp 2009), and Z′
d is the dust abundance

relative to Solar neighborhood value. In the Solar neighborhood, Ptwo/kB = 3000 cm−3 K for the OML10

prescription.

In a state of simultaneous thermal and dynamical equilibrium, heating and cooling are in balance so that

Pth = Pth,TE ∼ Ptwo, and vertical forces are in balance so that Pth = Pth,DE. With Ptwo ∝ G′
0 ∝ JFUV ∝ ΣSFR,

the surface density of star formation should be proportional to Pth. Thus, equating (2) and (3) yields an

expression for the star formation rate, with ΣSFR proportional to the right-hand side of equation (1) – i.e. to

the weight of the diffuse gas layer in the total gravitational field. In low-density outer-disk regions where

the diffuse gas dominates GBCs (Σdiff → Σ and ΣGBC → 0), an approximate form for ΣSFR is then given by

ΣSFR,low ≈ 3×10−4 M⊙ kpc−2 yr−1

(

Σ

10 M⊙ pc−2

)

[

1 +3

(

Z′
dΣ

10 M⊙ pc−2

)0.4
]

×
[

2

α

(

Σ

10 M⊙ pc−2

)

+
(

50 f̃w

α

)1/2 (

ρsd

0.1 M⊙ pc−3

)1/2
]

(4)

(see eqs. 22 and A13 in OML10). The numerical coefficient in equation (4) is calibrated based on the local

Milky Way value ΣSFR,0 = 2.5×10−3 M⊙ kpc−2 yr−1 (Fuchs et al. 2009).

In the case when ΣGBC/Σ is non-negligible, in order to obtain a closed set of equations, OML10 made

the additional assumption that star formation within GBCs has a gas consumption timescale tSF,GBC so that

ΣSFR =
ΣGBC

tSF,GBC

=
Σ−Σdiff

tSF,GBC

. (5)

If GBCs have relatively uniform properties, then tSF,GBC will be relatively constant. By equating (2) and

(3), and combining with equation (5), OML10 obtained a cubic equation that can be solved for ΣSFR as a

function of Σ and ρsd in the general case; an approximate form is given by

ΣSFR ≈
[

tSF,GBC

Σ
+

1

ΣSFR,low

]−1

(6)

(see eqs. 23 and A14 in OML10). Note that for low surface density outer disks, equation (4) is recovered

and ΣSFR is independent of tSF,GBC – i.e. the star formation rate becomes independent of the rate at which

gas in GBCs collapses to make stars.

OML10 took tSF,GBC = 2 Gyr based on the empirical linear correlation (Bigiel et al. 2008) between the

molecular mass in CO and the SFR at 750 pc scale for a set of disk galaxies (at moderate Σ <∼ 100 M⊙ pc−2),
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and adopted α ≈ 5 and f̃w ≈ 0.5 as typical values based on observations of the Milky Way and other well-

studied disk galaxies. If the same set of parameters is adopted for all galaxies (note that the dependence on

f̃w/α in equation 4 is weak: ΣSFR ∝ ( f̃w/α)0.5), ΣSFR is a function of just Σ and ρsd. OML10 applied this

formulation to azimuthally-averaged data for a sample of spiral galaxies to predict ΣSFR as a function of

galactocentric radius R. The resulting predicted profiles of ΣSFR are overall in remarkably good agreement

with the observations. For a few galaxies, however, observed values of ΣSFR are offset from the prediction.

The difference may owe to different values of α, f̃w, and/or tSF,GBC from the adopted values, or to effects

associated with azimuthal averaging when there is strong spiral structure. It should also be noted that there

are still significant uncertainties in the observations, which might lead to offsets with respect to the theory.

Empirical determinations of Σ and tSF,GBC are uncertain since some gas may be undetected in both 21 cm

and CO lines, and since the conversion factor XCO from CO to H2 can vary by a factor ∼ 2 (XCO varies even

more at low metallicity, and where Σ >∼ 100 M⊙ pc−2). The age of the young-star population, as well as the

treatment of extended vs. concentrated tracers of star formation, can also affect the empirical estimates of

ΣSFR. In addition, as discussed by OML10, values of ρsd are uncertain as stellar disk thickness estimates for

face-on galaxies are obtained via scaling relations rather than being directly measured.

In this paper, we focus on the low-Σ case, corresponding to outer disks where the gas is primarily

diffuse and atomic. In this regime, ΣSFR is predicted to depend on α and f̃w but not on tSF,GBC, according to

equation (4). Using our numerical simulations, in which Σ and ρsd are independent variables, we can directly

test the primary assumptions of the OML10 theory. Since we can measure α, f̃w, Σdiff (and ΣGBC = Σ−Σdiff)

together with Pth from the simulation outputs for any model, we can test whether the measured midplane

thermal pressure in fact agrees with the dynamical equilibrium value Pth,DE predicted by equation (2). We can

also investigate whether the measured midplane Pth is close to Ptwo, following the hypothesis of OML10 that

the system evolves to a state of thermal equilibrium having both a warm and cold atomic phase. Similarly,

we can test whether the sum of the measured thermal and turbulent pressures Pth +ρ0v2
z,diff = Ptot is consistent

with the dynamical equilibrium prediction of equation (1) (since the present simulations do not include

magnetic fields, cosmic rays, or radiation pressure, these terms do not enter Ptot). Further, we can check

whether our numerical results for α and f̃w agree with empirically-estimated values, and explore how much

variation in α and f̃w there is among models with different Σ and ρsd. Finally, we can compare the value

of ΣSFR from the simulations with the theoretical prediction based on simultaneous thermal and dynamical

equilibrium (cf. equation 4).

In addition to testing the theory of OML10, we can use our numerical simulations to test more general

ideas related to the self-regulation of star formation, as introduced by OS11. We consider the situation in

which the ISM is dominated by diffuse gas, so that ΣGBC/Σdiff → 0 and Σdiff → Σ. We also assume the

effective pressure is dominated by thermal and turbulent terms3, and take ζd ≈ 1/π and c2
w f̃wα = σ2

z,diff → σ2
z

3That is, we assume cosmic ray, magnetic field, and radiation effects are unimportant – see OML10 and OS11 for an evaluation

and discussion of these.
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so that equation (1) for the weight becomes

Ptot,DE =
πGΣ2

4

{

1 +
[

1 +
32σ2

z

π2G
ρsd

Σ2

]1/2
}

. (7)

A simplified expression for Ptot,DE, within 20% of equation (7), is

Ptot,DE ≈ πGΣ2

2
+Σ(2Gρsd)1/2σz (8)

= 104kB cm−3 K

(

Σ

10 M⊙ pc−2

)

×
[

0.33

(

Σ

10 M⊙ pc−2

)

+1.4

(

ρsd

0.1 M⊙ pc−3

)1/2
( σz

10 km s−1

)

]

.

The vertical dynamical equilibrium equation is

Pth +Pturb = ρ0v2
th,diff +ρ0v2

z,diff = ρ0σ
2
z = Ptot,DE. (9)

As noted above, it is expected that Pth = ρ0v2
th,diff ∝ ΣSFR in a state of thermal equilibrium. In addition,

OS11 argued that if mechanical feedback from star formation provides the dominant contribution to the

vertical turbulent motions, then the turbulent pressure Pturb should also scale roughly linearly with ΣSFR, as

Pturb = fp
p∗

4m∗
ΣSFR. (10)

Here, p∗ is the mean radial momentum injected by each massive star, m∗ is the total mass in stars formed per

massive star, and the order-unity coefficient fp parameterizes the details of turbulent momentum injection

and dissipation. When turbulence dominates the pressure and self-gravity dominates the vertical weight,

equations (7), (9) and (10) with fp ≈ 1 combine to yield a prediction that ΣSFR ≈ 2πGΣ2m∗/p∗. OS11

found that this prediction is in good agreement with both numerical simulations (for a cold-gas dominated

ISM) and with observations of molecule-dominated starburst regions with Σ >∼ 100 M⊙ pc−2.

More generally, if star formation is responsible for both heating and driving vertical motions in the

diffuse ISM, we expect the thermal and turbulent pressure contributions to scale roughly linearly with ΣSFR.

Normalizing relative to convenient dimensional units for observational comparison, we can define

Pth/kB

103 cm−3 K
≡ ηth

ΣSFR

10−3 M⊙ kpc−2 yr−1
(11)

Pturb/kB

103 cm−3 K
≡ ηturb

ΣSFR

10−3 M⊙ kpc−2 yr−1
. (12)

The parameters ηth and ηturb are yield coefficients that measure the efficacy of feedback. For the fiducial

parameters adopted in OML10, ηth = 1.2[0.25 + 0.75Z′
d(Σ/10 M⊙ pc−2)0.4]−1, where the factor in square

brackets is unity in the Solar neighborhood. For the fiducial value p∗/m∗ = 3000 km s−1 adopted in OS11

(assuming supernovae are the most important sources of momentum), ηturb = 3.6 fp. Note that with the
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heating and turbulent driving yield coefficients as defined in equations (11) and (12), α = (Pth +Pturb)/Pth = 1+
ηturb/ηth if only thermal and turbulent stresses contribute to the effective midplane pressure. We thus expect

ηth +ηturb ∼ 1.2 +3.6 ∼ 5 and α ∼ 1 +(3.6/1.2) = 4 under conditions similar to the Solar neighborhood. The

latter is comparable to the value α = 5 adopted in OML10 for comparisons of equation (6) with observations

of ΣSFR. By exploring the relations between the measured values of Pth, Pturb, and ΣSFR in our simulations,

we can numerically evaluate ηth and ηturb, testing whether these quantities (and therefore α) are indeed

near-constant.

Combining equations (9), (11) and (12), the self-regulated star formation rate in a diffuse-gas-dominated

region where the pressure is controlled by energy and momentum feedback from massive stars has the form

ΣSFR = 2×10−3 M⊙ kpc−2 yr−1
(ηth +ηturb

5

)−1 Ptot,DE/kB

104 cm−3 K
. (13)

For outer-disk regions, equation (7) or (8) may be used for the ISM weight Ptot,DE. In galactic-center regions

where the bulge potential exceeds that of the disk, ρsd → ρb/3 for ρb the bulge stellar density (see OS11).

For very dust-poor systems, FUV radiation escapes more easily from star-forming regions and pene-

trates further in the diffuse ISM, which may make the heating yield ηth comparable to or even larger than ηturb

(see OML10 and Bolatto et al. 2011). Alternatively, in regions where Σ is extremely high and reprocessed

IR radiation is trapped, radiation pressure becomes important and a term ηrad ∝ ΣκIR would be included

in equation (13). Since the cosmic ray and magnetic pressures presumably increase with higher ΣSFR in

analogy with equations (11) and (12), corresponding feedback terms could be included in equation (13),

with the values of ηCR and ηmag appropriately taking account of differing vertical scale heights compared to

the neutral, star-forming gas (see OS11).

Using our present simulations, we can test whether the generalized feedback-regulated star formation

prediction ΣSFR ∝ Ptot,DE is satisfied. We will also compare our results to the power-law form ΣSFR ∝
Σ1+p traditionally used in fitting observations, and to the form ΣSFR ∝ Σρ

1/2

0 that is frequently adopted in

numerical simulations of galaxy formation/evolution in the cosmological context.

3. Numerical Methods and Models

3.1. Basic Equations

The numerical models of this paper investigate thermal and dynamical evolution of gas in a vertically

stratified, differentially rotating, self-gravitating galactic disk under the influence of interstellar cooling,

heating, and radiative and mechanical feedback from star formation. We set up a local Cartesian frame

whose center is located at a galactocentric radius R0 and rotates with an angular velocity Ω = Ω(R0). In

this local frame, x ≡ R −R0, y ≡ R0(φ−Ωt), and z represent the radial, azimuthal, and vertical coordinates,

respectively. Our simulation domain is a two-dimensional rectangular region with size Lx ×Lz in the x̂ – ẑ

plane with y = 0 (hereafter XZ plane), representing a radial-vertical slice of the disk, although we implicitly

consider the thickness Ly(≪ Lx,Lz) in the y-direction for the purposes of computing star formation rates and
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momentum feedback (see Section 3.2.1). We include nonzero velocity in the y-direction in order to treat

epicyclic motions self-consistently. The equilibrium background velocity relative to the center (x = z = 0)

of the simulation domain is given by v0 = −qΩxŷ, where q ≡ −(d lnΩ/d lnR)|R0
is the local dimensionless

shear rate. In terms of q, the epicycle frequency κ is given by κ2 = (4 −2q)Ω2. We assume a flat rotation

curve so that q = 1 and κ =
√

2Ω.

We expand the basic equations of hydrodynamics in the local frame, neglecting terms arising from

the curvilinear geometry. The resulting shearing-sheet equations (e.g. Kim et al. 2002; Piontek & Ostriker

2007) are
∂ρ

∂t
+∇· (ρv) = 0, (14)

∂v

∂t
+v ·∇v = −

1

ρ
∇P −2Ω×v +2qΩ

2xx̂ −∇Φ+gsd, (15)

∂e
∂t

+∇· (ev) = −P∇·v −ρL+K∇2T, (16)

∇2
Φ = 4πGρ, (17)

where Φ is the self-gravitational potential of the gas, gsd is the external gravity from the stellar disk and the

dark matter halo, ρL is the net cooling function, and K is the thermal conductivity. Assuming that the gas

is predominantly atomic and has cosmic abundances, P = 1.1nkBT is the gas pressure where n = ρ/(1.4mp)

is the number density of hydrogen nuclei. We adopt an ideal gas law so that the internal energy density is

given by e = P/(γ −1) with index γ = 5/3. For the external gravity, we take the simple form

gsd = −4πGρsdzẑ, (18)

where ρsd is the midplane density of the stellar disk plus that of the dark matter halo. Since the scale height

of the gas is much smaller than those of the stellar disk and the dark matter halo, gsd given in equation (18),

corresponding to vertically-uniform ρsd, is a reasonable approximation in studying dynamics of the gas.

The net cooling function per volume is given by ρL≡ n[nΛ(T ) −Γ]. For the cooling rate of the diffuse

ISM, we adopt the fitting formula obtained by Koyama & Inutsuka (2002):

Λ(T ) = 2×10−19 exp

(

−1.184×105

T +1000

)

+2.8×10−28
√

T exp

(

−92

T

)

erg cm3 s−1, (19)

with temperature T in degrees Kelvin. Cooling at low T is dominated by the 158µm fine-structure line

of C II, whereas cooling at high T is dominated by Lyα line emission; both lines are collisionally excited.

The heating rate Γ is dominated by the photoelectric effect on small dust grains and polycyclic aromatic

hydrocarbons (PAHs) by FUV photons with energy 6 eV < hν < 13.6 eV (Bakes & Tielens 1994). The

diffuse FUV radiation field, with intensity JFUV, is produced by young O and B stars and therefore should

depend on recent star formation. We thus allow Γ to vary with time, while keeping Γ uniform throughout the

simulation box (i.e. JFUV is treated as spatially constant). We follow Koyama & Inutsuka (2002) in adopting

a fiducial heating rate in the Solar neighborhood Γ0 = 2× 10−26 erg s−1. In thermal equilibrium (ρL = 0)

for this cooling function, two stable phases co-exist for a range of densities and pressures: the maximum
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pressure for the warm phase is Pmax/kB = 5.5× 103(Γ/Γ0) cm−3 K occurring at Tmax = 5000 K and n1 =

1.0(Γ/Γ0) cm−3, and the minimum pressure for the cold phase is Pmin/kB = 1.8×103(Γ/Γ0) cm−3 K at Tmin =

188 K and n2 = 8.7(Γ/Γ0) cm−3. The two-phase pressure is thus given by Ptwo/kB ≡ (PminPmax)1/2/kB =

3.1× 103(Γ/Γ0) cm−3 K. For Solar-neighborhood conditions, Ptwo is essentially the same as adopted in

OML10, Ptwo/kB = 3000 cm−3 K (see equation 3). We describe our prescription for connecting Γ with the

(time-dependent) star formation rate, including metagalactic FUV radiation, in § 3.2.2.

Thermal conduction plays an important role in the development of thermal instability (TI). Conduc-

tion not only sets the critical wavelength (the “Field length”) of TI (Field 1965), but also determines the

thickness of interface layers between cold and warm phases (Begelman & McKee 1990). Inclusion of ther-

mal conductivity is therefore essential to resolve TI in numerical simulations (Koyama & Inutsuka 2004;

Piontek & Ostriker 2004; Kim et al. 2008). A realistic value of thermal conductivity in the diffuse ISM at

T < 104 K is K ∼ 2.5× 103T 1/2 erg s−1 cm−1 K−1 (Parker 1953). The corresponding Field length is then

λF ∼ 0.2 pc for the typical density n = 1 cm−3 and temperature T = 103 K of the thermally unstable gas,

which would require an extremely fine numerical grid ∆x <∼ λF/3 in order for TI to be resolved. In addi-

tion, hydrodynamic simulations involving supersonic turbulence inherently suffer from a significant level

of numerical diffusion (e.g., Gazol et al. 2005; Kim et al. 2008), which is larger than the physical conduc-

tivity unless ∆x is extremely small. Adopting a realistic value of K is therefore prohibitively expensive

for multi-dimensional simulations in kpc-scale numerical boxes. Fortunately, however, dynamics on larger

scales are not sensitive to the exact conduction scale, similar to large-scale dynamics in supersonic flows

being insensitive to the exact thickness of shocks. In this paper, we therefore adopt a numerical conductivity

of K = 4×107 erg s−1 cm−1 K−1/[1 + (0.05 cm−3/n)] as in Koyama & Ostriker (2009a), which enables us to

resolve the Field length numerically, and limits thermal conduction in low-density regions.

We solve the time-dependent partial differential equations (14)-(17) using a modified version of the

Athena code (Stone et al. 2008; Stone & Gardiner 2009). Athena employs a single-step, directionally un-

split Godunov method for (magneto)hydrodynamics in multispatial dimensions, providing several schemes

for integration in time, spatial reconstruction, and solution of the Riemann problem. We use the van Leer

algorithm (Stone & Gardiner 2009) for integration, with piecewise linear reconstruction and the HLLC Rie-

mann solver. We solve the net cooling function based on implicit time integration using Simpson’s rule

(e.g., Koyama & Ostriker 2009a) with a limit for the maximum temperature change of 50%. We also use an

explicit conduction solver for isotropic thermal conduction, and revert to first order flux updates if a negative

density appears during the higher-order update (Lemaster & Stone 2009). The gravitational potential is cal-

culated using fast Fourier transforms in disk geometry with vacuum boundary conditions in the z-direction

(Koyama & Ostriker 2009a). At the x-boundaries, we apply shearing-periodic boundary conditions (Hawley

et al. 1995). In the z-direction, we adopt periodic boundary conditions for the hydrodynamic variables so

as to maintain a constant mass within the domain. By running comparison models using outflow bound-

ary conditions in z, we have checked that the boundary conditions do not affect the simulation outcomes

significantly.
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3.2. Prescription for Star Formation Feedback

In our simulations, self-gravitational collapse and ensuing feedback from star formation control both

thermal and dynamical evolution of the model ISM. We consider both mechanical (momentum input) and

radiative (thermal energy input) feedback effects. Mechanical feedback drives turbulence that supports the

disk in the vertical direction, while radiative feedback affects the thermal pressure by changing the heating

rate. In this section, we detail our prescription for star formation feedback.4

3.2.1. Mechanical Feedback

Star formation in our models occurs only inside clouds where the gas density is larger than a critical

value. The threshold density ρcr should be large enough for star formation to occur only in self-gravitating

regions. In addition, these self-gravitating regions should be resolved on the grid, i.e. the Jeans wavelength

λJ(ρcr) = [πc2
cr/(Gρcr)]

1/2 should exceed the grid spacing ∆x (taken to be 1 pc in our models), where ccr

denotes the thermal speed at the threshold temperature Tcr. Since the cooling time is very short, dense clouds

are generally in thermal equilibrium, and ncr = Γ/Λ(Tcr). Equation (19) then yields

λJ ≈ 1.4T 3/4
cr e−46/Tcr (Γ/Γ0)−1/2 pc, (20)

for T . 100 K. For a fixed λJ , we obtain Tcr (and hence ncr) as a function of Γ/Γ0. A simple power-law fit

for λJ = 2.7 pc gives ncr ≈ 500(Γ/Γ0)0.2 cm−3, which we take as the threshold density for star formation in

our simulations. Although slightly lower threshold density would be needed to meet the Truelove criterion

λJ/∆x > 4 (Truelove et al. 1997, 1998) and limit artificial fragmentation in collapsing clouds, our choice is

acceptable in the current context since our aim is not to follow cloud collapse and fragmentation but instead

to disperse self-gravitating clouds by turning on star formation feedback, as explained below.

Not all clouds with ρ≥ ρcr immediately undergo gravitational collapse and star formation, since the star

formation efficiency and the computational time step should be considered as well. Let us consider a star-

forming region with density ρ ≥ ρcr. Assuming that our simulation domain represents a two-dimensional

slab with thickness Ly in the y-direction, the mass in the cloud above the threshold is Mcl = Ly
∫

ρ≥ρcr
ρdxdz.

For the thickness of the slab, we take Ly = 2rsh, where rsh is the initial radius of an SN shell explained below.

This choice of Ly is due to the fact that the most significant feedback in the simulation domain comes from

SN events occurring within 2rsh in the y-direction. The SFR expected from the cloud is

Ṁ∗ = ǫff

Mcl

tff(ρ)
(21)

4Other recent numerical studies of the ISM have used somewhat different prescriptions for radiative and mechanical feedback

from those we adopt. For example, Joung et al. (2009) adopted Γ ∝ Σ
0.4
gas together with type-II SN rates scaling as ΣSN ∝ Σ

1.4
gas;

Agertz et al. (2009) included feedback from supernovae based on a volumetric star formation rate ρSFR ∝ ρ
1.5
gas but did not include

diffuse UV heating; and Tasker (2011) adopted a photoelectric heating rate that declines exponentially outward, but did not include

mechanical feedback from supernovae.
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where ǫff is the star formation efficiency per free-fall time, tff(ρ) ≡ (3π/(32Gρ))1/2. We take ǫff = 0.01 as a

fiducial value consistent with theory and observations (Krumholz & McKee 2005; Krumholz & Tan 2007).

The probable number of massive stars to form within the cloud in a time interval ∆t is then given by

N∗ =
Ṁ∗

m∗
∆t, (22)

where m∗ is the total mass of stars in all masses formed per massive star. We define massive stars as those

that undergo supernovae, and adopt m∗ = 100 M⊙ for all simulations consistent with the initial mass function

of Kroupa (2001). For a given computational time step ∆t, N∗ calculated from equation (22) is typically

∼ 10−4 −10−3 (as small as ∼ 10−6 immediately after SN explosions due to small time step), much smaller

than unity. Therefore, in zones where ρ≥ ρcr we generate a uniform random number Ñ ∈ [0,1) at each time

step, and turn on feedback only provided N∗ > Ñ .

We implement mechanical feedback from star formation in a very simple way, by injecting momentum

in the form of an expanding spherical velocity distribution to represent the radiative stage of a SN (cf., Shetty

& Ostriker 2008). As the initial radius of the shell in three dimensions, we take rsh = 10 pc, corresponding to

the SN shock radius at the shell formation time (Cioffi et al. 1988; Koo & Kang 2004). We assume the center

of the sphere is at a location yoff distributed randomly in the range |yoff| ≤ rsh, so that the initial shell radius

in the XZ plane (at y = 0) is Rmax ≡
(

r2
sh −y2

off

)1/2
, varying between 0 and rsh. We use a random number to

choose the value of yoff for each feedback event. When a feedback event occurs, we first redistribute mass,

momentum, and thermal energy within a circular region of radius Rmax by taking spatial averages. We then

add to the momentum density in the x- and z-directions according to

ρvsh,2D =

{

pmax

(

R
r2

sh

)

R, R ≤ Rmax,

0, R > Rmax,
(23)

where R is the position vector with respect to the center of the SN sphere in the XZ plane, and pmax is

the momentum density at R = Rmax. By requiring the mean momentum input from equation (23) (averaged

over yoff) is equal to the outward momentum that a three-dimensional shell would have, one obtains pmax =

15p∗/(32r3
sh), where p∗ is the total radial momentum in three dimensions. In all simulations, we take

p∗ = 3×105 M⊙ km s−1 corresponding to the late stages of a single SN with energy ESN = 1051 erg (Cioffi

et al. 1988). The velocity profile v(R) ∝ R2 is chosen to guarantee an initially divergence-free velocity field

at R = 0.

We note a few caveats that should be kept in mind regarding our simplified prescription for star for-

mation feedback. First, as our main focus is on the diffuse gas component (which dominates by mass), our

treatment does not attempt to follow the evolution and destruction of star-forming clouds in detail. Thus,

we do not introduce a time delay prior to the momentum injection, or separately model effects of expanding

H II regions or winds (the former was previously considered in Koyama & Ostriker 2009a, which found

that only relatively low levels of turbulence were induced in the diffuse ISM). In this first study, our goal

is primarily to incorporate turbulent driving in the diffuse ISM at a realistic level for a given star formation

rate, which is accomplished by simply injecting momentum impulsively. Future work should improve this
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treatment, but experience with numerical models of turbulent giant molecular clouds has shown that much

astronomical insight can be gained even when idealized treatments of turbulent driving are adopted (Mac

Low & Klessen 2004; McKee & Ostriker 2007).

Second, although our feedback treatment aims to model turbulent driving in the neutral warm/cold

ISM that is induced by SNe, our approach does not attempt to model the high-temperature interiors of SN

remnants themselves. Previous work has shown that it is difficult to model SN explosions by injecting

thermal energy in large scale simulations because of overcooling: radiative energy losses are too rapid due

to lack of spatial resolution (Katz 1992). At resolution levels that are affordable, far too little thermal energy

ends up being converted to kinetic energy; instead it is radiated away. In order to avoid overcooling, in

some simulations radiative cooling is artificially turned off until blast waves have developed (e.g., Thacker

& Couchman 2001; Agertz et al. 2011), or the initial sizes of regions where SN energy is injected are set

such that the gas temperature T ∼ 107 K, where a dip is present in the cooling function (Joung & Mac

Low 2006). For simulations such as ours which include self-gravity, SN events occur within very dense

regions. Since the cooling rate is proportional to the square of the gas density, experiments we conducted

with thermal energy injection and a coronal-gas cooling function showed that the cooling time was still

unrealistically short at the resolution of our simulations, even if we adjusted the gas temperature to the dip

of cooling function. Thus, although hot gas created in SNe may be quite important in many ways (including

driving galactic winds), the present models focus just on the warm/cold ISM and star formation, and leave

the interesting issues of the hot ISM for future work.

3.2.2. Radiative Feedback

Since the photoelectric heating rate is proportional to the intensity of the FUV radiation field, we simply

take Γ∝ JFUV, with a proportionality constant depending on the heating efficiency of small grains and PAHs

(see e.g., Bakes & Tielens 1994). There are two sources of the FUV radiation field in outer disk: JFUV,local,

the FUV radiation emitted by recently-formed OB stars locally in the disk, and JFUV,meta, the metagalactic

FUV radiation field. Radiation originating in the inner regions of the galaxy could also reach the outer

galaxy, but this contribution is smaller than the local radiation unless the optical depth is very low.

If FUV escapes into the diffuse ISM from star-forming regions at the midplane at rate per unit area

ΣFUV, then JFUV = ΣFUV[1−E2(τ⊥/2)]/(4πτ⊥) for τ⊥ = ΣκFUV the optical depth through the diffuse neutral

ISM, and E2 the second exponential integral. As the radiative transfer factor depends only logarithmically on

1/τ⊥ at low optical depth, for simplicity OML10 adopted JFUV ∝ ΣFUV ∝ ΣSFR for application to galaxies

with dust abundance not far from Solar and a moderate range of diffuse-H I surface densities. In galaxies

with very low dust abundance, UV may escape much more easily from star forming regions, and also travel

further through the diffuse ISM. This would lead to an increase in both ΣFUV/ΣSFR and JFUV/ΣFUV relative

to the Milky Way, so that the ratio JFUV/ΣSFR could be much higher than in the Solar neighborhood. Bolatto

et al. (2011) found that the warm H I and star formation content of the SMC indeed appears to require a

higher ratio of JFUV/ΣSFR than in normal disks like the Milky Way.



– 15 –

In this work, we assume the heating rate due to local FUV scales with the local star formation rate as

Γ/Γ0 = fradΣSFR/ΣSFR,0, where ΣSFR,0 = 2.5×10−3 M⊙ kpc−2 yr−1 is the SFR surface density in the Solar

neighborhood (Fuchs et al. 2009) and Γ0 = 2×10−26 erg s−1 (Koyama & Inutsuka 2002). The parameter frad

thus implicitly includes the normalized heating efficiency of the FUV radiation, allows for additional forms

of heating such as X-rays (see Wolfire et al. 1995, 2003), and would vary depending on details of radiative

transfer. Note that frad = 4/[1 +3(Z′
dΣ/10 M⊙ pc−2)0.4] is adopted in OML10 based on the fit in Wolfire et

al. (2003); this has frad = 1 in the Solar neighborhood.

The total volumetric heating rate is then written as

Γ = Γ0

[

frad

(

ΣSFR

ΣSFR,0

)

+
(

JFUV,meta

JFUV,0

)]

. (24)

Note that the heating by the metagalactic FUV given by the second term in equation (24) provides a min-

imum heating rate when ΣSFR is extremely small. We adopt JFUV,meta = 0.0024JFUV,0 (Sternberg et al.

2002), so that in practice JFUV,meta is negligible in most cases. The cooling and heating rates we adopt give

geometric-mean two-phase pressure equal to

Ptwo/kB = 1.2×103 cm−3 K frad

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)

. (25)

Thus, comparing to equation (11), if we were to find Pth = Ptwo for the mean midplane thermal pressure,

it would imply ηth = 1.2 frad for the dimensionless heating-feedback yield coefficient. As we shall show in

Section 5.2, Pth at the midplane is in fact between +10% and −40% of Ptwo, so that ηth remains very close to

1× frad.

In order to change the heating rate self-consistently, we need to calculate the recent SFR at each time

step. We do this by counting the number of the recent SN events, so that the SFR surface density is calculated

by

ΣSFR =
NSNm∗

LxLytbin

, (26)

where tbin is the time bin over which the SFR is averaged, and NSN denotes the total number of SN events

that occurred during the time span (t − tbin, t). We note that ΣSFR corresponds to a space and time average

of Ṁ∗ divided by the surface area. Since only recent star formation contributes to gas heating via FUV

radiation, if the simulations were in three dimensions and optical depth effects were included, the averages

should be taken at least over tFUV × (πd2) to cover the whole domain of influence, where tFUV ∼ 10 Myr is

the FUV luminosity-weighted lifetime of OB stars (Parravano et al. 2003) and d ∼ 200 pc/(Σ/10 M⊙ pc−2)

is the effective in-plane distance for radiation to travel.5 However, our simulation domain represents a

radial-vertical slab with effective thickness Ly = 2rsh = 20 pc in the y-direction, with Ly ≪ d. Since the

size of our domain in the x-direction is large enough (Lx
>∼ d), it is desirable to take a temporal bin at least

5The effective in-plane distance for FUV radiation to travel is given by d ∼ 2H/(ΣκFUV) where H is the scale height of the gas

disk and κFUV ∼ 1 −2×10−21 cm2( H atom)−1
∼ 0.1 pc2 M−1

⊙ is the dust opacity in the FUV band. By taking H ∼ 100 pc, we have

d ∼ 200 pc/(Σ/10 M⊙ pc−2).
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tbin ∼ tFUV(d/Ly) ∼ 10tFUV/(Σ/10 M⊙ pc−2) in order to limit stochasticity in the heating rate. We thus set

tbin equal to a half of the orbital period (see below for definition). Since our set of model parameters is chosen

to maintain Ω ∝ Σ, this implies tbin ∝ Σ−1. With this choice, tbin(Σ/10 M⊙ pc−2) ∼ 100 Myr ∼ 10tFUV.

3.3. Model Parameters

Since the feedback parameters are all specified, we now turn to the disk parameters. Our initial con-

ditions for the gaseous disk consist of warm-phase gas with uniform thermal speed cw = 7 km s−1. The

gravitational susceptibility of the disk depends on three parameters: gas surface density Σ, the angular ve-

locity of galactic rotation Ω, and the stellar plus dark matter density at the midplane ρsd. Both Σ and Ω enter

the Toomre stability parameter

Qinit ≡
κcw

πGΣ
, (27)

while ρsd determines the degree of vertical disk compression induced by the stellar disk and dark matter

halo. It is convenient to define

s0 ≡
πGΣ2

2c2
wρsd

= 0.28

(

Σ

10 M⊙ pc−2

)2
( cw

7 km s−1

)−2
(

ρsd

0.05 M⊙ pc−3

)−1

, (28)

which measures the relative strengths (in the vertical direction) of gas self-gravity and the external gravity

from stars and dark matter (Kim et al. 2002). For Solar-neighborhood conditions, s0 ≈ 0.3. Assuming

s0 ≪ 1, the equilibrium density distribution is a Gaussian profile

ρ(z) = ρ0 exp(−z2/2H2
w), (29)

where ρ0 = Σ/[(2π)1/2Hw] and

Hw =
cw

(4πGρsd)1/2
= 134 pc

( cw

7 km s−1

)

(

ρsd

0.05 M⊙ pc−3

)−1/2

, (30)

is the scale height.

To simulate disk evolution in a range of environments systematically, we vary Σ and ρsd while keeping

Qinit = 2 fixed, so that the angular velocity at the center of the domain varies as Ω = 28 km s−1 kpc−1(Σ/10 M⊙ pc−2).

We consider four main series of models: QA, QB, S, and G. The model parameters are summarized in Ta-

ble 1. In Series QA and QB, ρsd varies as ρsd ∝Σ2 so that the stellar Toomre parameter Qs ∝Ω/
√

ρs ∝Q
√

s0

implicitly has the same value for all members of each series. For the QA series, s0 = 0.28 and for the

QB series s0 = 0.07. Thus, models in Series QB have four times larger ρsd (i.e. a more confining stel-

lar vertical potential) than those with the same Σ in Series QA. The model Series QA and QB represent

conditions typical in disk galaxies at different galactocentric radii, from mid-disks (i.e. slightly inside the

Solar circle) to far outer disks (e.g., Koyama & Ostriker 2009a).6 For Series S, we fix ρsd and vary Σ to

6Very far outer galaxies with negligible stellar disks and only dark matter contributing to ρsd ∝ R−2 would have s0 =

2(πGΣ)2(cwΩdm)−2, which could reach unity, but these conditions are not studied in the current work.
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explore the effect of the gas surface density independent of the strength of the external vertical gravity.

In Series G, Σ and Ω are held constant, while ρsd varies; this allows us to isolate the effect of the exter-

nal vertical gravity. Our fiducial model is Model QA10 with Σ = 10 M⊙ pc−2, Ω = 28 km s−1 kpc−1, and

ρsd = 0.05 M⊙ pc−3; this model is similar to the Solar neighborhood. The corresponding orbital period is

torb = 2π/Ω = 220 Myr(Ω/28 km s−1 kpc−1)−1 = 220 Myr(Σ/10 M⊙ pc−2)−1, which we use as the time unit

in our presentation.

The model series above all have the same feedback parameters. In addition, we consider Series R, in

which frad is varied to explore the effect of varying heating for a given ΣSFR. All other parameters in Series R

are the same as Model QA10 (which has frad = 1). We ran four models labeled R02, R05, R25, and R50 with

frad = 0.25, 0.5, 2.5, and 5.0, respectively. Since the ratio of local heating rate to local SFR surface density

Γ/ΣSFR ∝ frad (see equation 24), larger frad implies a higher heating rate for a given ΣSFR, corresponding to

lower shielding (e.g. from lower dust abundance) than in the Solar neighborhood. Smaller frad corresponds

to higher shielding. In reality, frad should depend on both dust abundance and the total column of gas, since

both of these can affect shielding. For the present study, we simply treat frad as an autonomous variable in

order to explore effects of varying shielding (or heating efficiency, which for present purposes is equivalent).

For the vertical extent of our simulation boxes, we take Lz = 4Hw (this varies depending on the model;

see Table 1). In the horizontal direction, we take Lx = 512 pc as the standard value. In order to check

the effect of the box size, we have run Model QA10x2, which has the same parameters as Model QA10

except the horizontal box size is extended to Lx = 1,024 pc; this model confirmed that overall evolution and

statistical properties are indeed similar. We vary the number of zones from model to model to make the

grid spacing ∆x = ∆z = 1 pc for all the models. In order to seed TI, isobaric perturbations consisting of a

Gaussian random field with flat power for 1 ≤ kLz/2π ≤ 8 and zero power for kLz/2π > 8 are added to the

initial density and temperature distributions. The amplitude of the initial perturbations is set to 10% of the

midplane density. We evolve each model until t/torb = 3, well beyond the time required for the system to

reach a quasi-steady state.

3.4. Classification of Gas Components

Before describing the simulation results, we establish terminology for the various gas components

we shall discuss. In the neutral ISM, gas in GBCs and diffuse gas are distinguished based on whether

the gravitational energy and total pressure significantly exceed that of the surrounding gas at similar z,

or not. In general, the GBC component consists of the population of giant molecular clouds (GMCs),

including both molecular gas inside GMCs and dense atomic shielding layers. Observations of the Milky

Way (Solomon et al. 1987; Heyer et al. 2009; Roman-Duval et al. 2010) and Local Group galaxies (Bolatto

et al. 2008) have reported that GMCs have similar surface densities ΣGMC ∼ 100 M⊙ pc−2, corresponding

to nGMC ∼ 40 cm−3(MGMC/106 M⊙)−1/2. Since we do not take into account radiative transfer and formation

of hydrogen and CO molecules explicitly, we cannot directly identify structures in our models that would

be observed as GMCs. In this work, we simply define gas with n ≥ nGBC = 50 cm−3 as being within the
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GBC component, since observed GMCs have comparable densities. We emphasize that this classification

is essentially a nomenclature shorthand, allowing us to refer to the densest gas as the “GBC component”.

The designation of gas as “GBC” or “diffuse” component is not used in any way within the simulations

themselves. We note that the density threshold for star formation (see section 3.2.1), which is much larger

than nGBC, ensures that star formation in our numerical models takes place only within the GBCs.

The diffuse component, defined as gas with n < nGBC, consists of thermally-stable cold and warm

phases as well as a thermally-unstable phase. We classify the phases of the diffuse component based on its

density rather than temperature such that it is warm gas if n < n1, cold gas if n > n2, and unstable gas if

n1 < n < n2 (see definitions of n1 and n2 following equation 19). Note that n1 and n2 depend on Γ (and

hence ΣSFR) and thus vary with time. In what follows, fGBC and fdiff denote the mass fractions of GBC and

diffuse components in the whole gas, respectively. Similarly, the mass fractions of cold, unstable, and warm

phases within the diffuse component are represented by fc, fu, and fw, respectively. Note that fGBC + fdiff = 1

and fc + fu + fw = 1.

4. Simulation Results

In this section, we describe results of our numerical simulations. Our models evolve in a generally

similar manner to those of Koyama & Ostriker (2009a), which also included self-gravity, radiative heating

(at fixed Γ) and cooling, and feedback from star formation. In the models of Koyama & Ostriker (2009a),

only feedback associated with H II regions was considered. H II regions were modeled by applying intense

heating in dense enough regions that met criteria for star formation; expansion of the overpressured gas

provided turbulent driving. Since SN explosions are more energetic than expanding H II regions, however,

our present models achieve a higher (more realistic) level of turbulence at saturation than those in Koyama

& Ostriker (2009a). Also, the variable radiative heating rate in the present simulations enables us to explore

self-regulation of thermal pressures.

4.1. Overall Evolution

We begin by describing evolution of Model QA10x2, which has Σ = 10 M⊙ pc−2 and ρsd = 0.05 M⊙ pc−3.

Figure 1 displays snapshots for Model QA10x2 at t/torb = 0, 0.1, and 0.2 to show early time evolution. The

initial gas disk has a Gaussian density profile with scale height Hw = 134 pc and constant temperature, shown

in Figure 1(a). Since the initial disk is out of thermal equilibrium, it rapidly evolves and separates into two

phases, with a cold dense layer near the disk midplane sandwiched by diffuse warm gas at larger |z|. At

the same time, TI develops locally, creating numerous cloudlets in the midplane dense layer. The cold

midplane slab has a surface density of Σc = 7 M⊙ pc−2 and a typical sound speed cc = 1 km s−1. The cold

slab has Toomre stability parameter Qc ∼ 0.3 with Jeans length λ2D,c ≡ c2
c/(GΣc) = 33 pc, so that it is quite

gravitationally unstable. The slab soon fragments gravitationally to form many dense clouds, which grow

in size and mass by merger with their neighbors. Massive clouds undergo runaway collapse as self-gravity
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dominates the internal pressure, eventually producing stars and SN explosions when the density exceeds ρcr.

The first SN feedback event occurs at about t/torb = 0.1. Figure 1(b) shows formation of dense clouds and

the first SN explosion from Model QA10x2. Subsequent SN events drive the gas disk into a turbulent state,

as seen in Figure 1(c).

The kinetic energy associated with expanding shells disperses dense clouds in the midplane, and causes

the disk to puff up in the vertical direction. Successive stages of gravitational contraction and feedback-

induced expansion result in quasi-periodic oscillations of the disk thickness. Warm gas located ahead of

the expanding shells is swept up by shocks and collected into the shells. Pre-existing dense gas becomes

even denser from shock compression. Ensuing radiative cooling in the postshock regions increases the

shell density (e.g., Mufson 1974; McCray et al. 1975). High-density expanding shells disintegrate due to

a combination of dynamical processes, forming small dense cloudlets that subsequently merge together to

grow into new dense clouds. These newly formed dense clouds collapse internally and create additional

stars when their internal density exceeds the threshold value, leading to further SN feedback events that

repeatedly stir up and restructure the surrounding medium.

Figure 2 plots temporal evolution of the mass fractions of the various gas components, the density-

weighted vertical scale height

H ≡
(

∫

ρz2dxdz
∫

ρdxdz

)1/2

, (31)

and the SFR surface density. The initial changes in the mass fractions and the disk scale height shown

in Figure 2 reflect early-time thermal response of the gas to the net cooling function. The formation of

new dense clouds is quickest at the compression phase of the disk oscillation, as evidenced by the negative

correlation between fGBC and H shown in Figure 2. Within a few tenths of an orbit, the system evolves into

a quasi-steady state in the sense that ΣSFR, gas fractions, and other statistical properties fluctuate but do not

systematically change over time.

Notice that H in Figure 2 shows quasi-periodic oscillations over the entire evolution of Model QA10x2,

which also produces temporal variations in other physical quantities. The dominant timescale is roughly

half of the natural vertical oscillation period, ∼ 0.5(π/Gρsd)1/2. The mean value and standard deviation

of the disk scale height are 〈H〉 = 86 pc and ∆H = 12 pc, respectively, where the angle brackets 〈〉 denote

a temporal average over 2 < t/torb < 3. When the disk is compressed vertically, it produces more dense

clouds and hence more active star formation. The enhanced radiative and mechanical feedback from star

formation then increases the thermal pressure and the velocity dispersion of the gas, causing the disk to re-

expand. Disk expansion temporarily suppresses star formation activity, which then reduces the total pressure

and leads to a decrease in the disk scale height. At saturation, the mass fraction of the diffuse component

in model QA10x2 has a mean value 〈 fdiff〉 = 0.77 and fluctuation amplitude of ∆ fdiff ∼ 0.06. The cold,

unstable, and warm phases amount to fractions 〈 fc〉 = 0.46, 〈 fu〉 = 0.22, and 〈 fw〉 = 0.32, respectively, of

the diffuse gas mass. The SFR surface density has a mean value 〈ΣSFR〉 = 1.9× 10−3 M⊙ kpc−2 yr−1 and

standard deviation ∆ΣSFR = 4.0×10−4 M⊙ kpc−2 yr−1. Note that ∆ΣSFR is small, since in evaluating ΣSFR

we have already time-averaged SN events over tbin = 0.5torb (cf. Fig. 2).
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Figure 3 displays the density structure (including newly formed dense clouds) and velocity field around

an expanding shell at t/torb = 2.22, well after Model QA10x2 has reached a quasi-steady state. The expand-

ing shell, near the center of the simulation box in Figure 3(a), was created by a SN event at t/torb = 2.18.

Figure 3(b), showing a zoomed-in section of the shell, illustrates that dense (internal n ∼ 102 −103 cm−3)

clouds form in regions of converging velocity fields, indicated as white arrows. The mean velocities of

the dense clouds, represented by black arrows, generally follow the background converging velocity fields

(with an additional random component), suggesting that cloud collisions will ensue. The rectangular sec-

tion marked in Figure 3(b) is enlarged in Figure 3(c) to show the internal velocity fields of three selected

massive dense clouds. The internal one-dimensional velocity dispersion in each cloud is ∼ 1 km s−1, which

is supersonic since the mean sound speed inside the dense clouds is ∼ 0.5 km s−1. The dense cloud near

(x,z) = (−175,−25) pc will have a star formation event at a time ∆t = 0.01torb after this snapshot.

Figure 4(a) shows the distribution of the gas in the n–P plane from Model QA10x2, averaged over

t/torb = 2 −3. The colorbar labels the mass fraction in logarithmic scale. While a large fraction of the gas

remains close to thermal equilibrium (given by the solid curve), a non-negligible portion is out of thermal

equilibrium (∼ 18% by mass departs from equilibrium by |∆ logP| > 0.15), since the gas is continuously

disturbed by turbulent motions.7 The thermal equilibrium curve is for the time-averaged heating rate; fluc-

tuations ∆Γ = 0.16Γ0 relative to the mean value 〈Γ〉 = 0.76Γ0 displace the equilibrium curve upward and

downward. Variations in heating imply that gas can be out-of equilibrium with respect to the mean curve

(even if instantaneous thermal equilibrium holds). Initially after a SN event, some cold gas is converted to

the diffuse warm phase, while later shock compression and subsequent cooling during later stages of the

shell expansion convert some warm gas to the cold phase.

Figures 4(b,c) plot the probability density functions (PDFs) of thermal pressure and number density

distributions shown in Figure 4(a), respectively. Thick and thin lines denote the mass- and volume-weighted

PDFs. The range of thermal pressure in our models spans more than three orders of magnitude, although

most of the mass is near the mode of the PDF. The peak value of the pressure PDF corresponds to the mean

thermal pressure at the midplane. The volume-weighted pressure PDF extends toward very small values

mainly due to warm gas at high altitude, while self-gravitating dense clouds near the midplane occupy the

high end of the mass-weighted pressure PDF. The mass-weighted density PDF shows the bimodal shape

characteristic of the classical two-phase ISM (e.g., Field et al. 1969; Wolfire et al. 1995; Piontek & Ostriker

2004), although supersonic turbulent motions and frequent phase transitions increase the mass fraction in

the unstable phase, making the peaks less prominent (e.g., Gazol et al. 2005; Gazol et al. 2009; Audit &

Hennebelle 2005, 2010; Hennebelle & Audit 2007; de Avillez & Berry 2001; de Avillez & Breitschwerdt

2005; Piontek & Ostriker 2005, 2007; Joung & Mac Low 2006; Joung et al. 2009; Koyama & Ostriker

2009a).

Evolution of other models in Series QA is qualitatively similar to that of our standard model. One

7The thermal conductivity adopted is somewhat larger than the realistic value, and the numerical diffusion caused by large flow

speeds also contributes, which may increase the unstable-mass fraction at the expense of the cold gas in our models (e.g., Kim et

al. 2008).
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notable trend is that physical quantities exhibit larger-amplitude fluctuations with decreasing Σ. In low-Σ

models where SN events are rare and intermittent, even a single SN explosion stirs up the whole simulation

domain because there is not enough mass to limit shell expansion. This gives rise to large variations in H,

which in turn increases the dispersions of Pth and ΣSFR, for lower-Σ models. In models with high Σ, on

the other hand, SN events are frequent and spatially correlated. Shell expansion is frequently limited by

surrounding dense gas and nearby SN shells. Consequently, the temporal changes of the disk scale height in

these models are less dramatic than in low-density models.

Compared to Series QA, models in Series QB have smaller H, as a result of a more-confining vertical

gravitational potential (four times larger ρsd). The resulting SFR is correspondingly larger in Series QB com-

pared to Series QA. Series S and G also reach quasi-steady states, and their trends with increasing/decreasing

Σ or ρsd follow the same patterns as in Series QA and QB. In particular, independent increases in either Σ

or ρsd (with the other parameter controlled) produce an increase in ΣSFR. The statistical properties of the

models vary depending on the input “environmental” parameters (i.e. Σ and ρsd), as we shall describe and

explore in the remainder of this paper.

4.2. Statistical Properties of the Gas

We have seen in Section 4.1 that after a brief transient, our models approach a quasi-steady state,

which may be thought of as an approximate thermal and dynamical equilibrium (with fluctuations about the

mean). In this subsection, we present the time-averaged values of the physical quantities that characterize

the thermal and dynamical properties of the gas. These values will be used in Section 5 to compare our

numerical results with the analytic predictions summarized in Section 2.

In our models, the total pressure at the midplane consists only of the thermal and turbulent components

since we do not include a magnetic field. We measure these two pressures directly from simulation data as

Pth =

∫ z=+∆z/2

z=−∆z/2

∫

PΘ(n<nGBC)dxdz
∫ z=+∆z/2

z=−∆z/2

∫

Θ(n<nGBC)dxdz
, (32)

Pturb =

∫ z=+∆z/2

z=−∆z/2

∫

ρv2
zΘ(n<nGBC)dxdz

∫ z=+∆z/2

z=−∆z/2

∫

Θ(n<nGBC)dxdz
, (33)

where Θ(X) is 1 if the logical argument ‘X’ is true and 0 otherwise. These definitions give volume-weighted

averages of pressure for the diffuse component (all gas at n < nGBC = 50 cm−3) at the midplane (the horizontal

planes z = ±∆z/2). Figure 5(a) plots as solid and dotted lines the midplane thermal and turbulent diffuse-

gas pressures, respectively, in Model QA10x2 as functions of time. After a quasi-steady state is reached

(t/torb > 1), the mean values are 〈Pth/kB〉 = 1,680 cm−3 K and 〈Pturb/kB〉 = 5,440 cm−3 K, with fluctuation

amplitudes ∆Pth/〈Pth〉 = 0.21 and ∆Pturb/〈Pturb〉 = 0.52. Since the midplane includes high-velocity injection

regions associated with SN, there are large spikes in the midplane value of Pturb. The overall fluctuations of

Pth and Pturb follow the pattern of variations in H due to vertical oscillations, as shown in Figure 2.
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While we can measure midplane pressures in simulations, the most direct observables are mass-weighted

velocity dispersions. We calculate the mass-weighted vertical turbulent and thermal velocity dispersions of

the diffuse component using

vz,diff ≡
[
∫

ρv2
zΘ(n<nGBC)dxdz

∫

ρΘ(n<nGBC)dxdz

]1/2

, vth,diff ≡
[
∫

PΘ(n<nGBC)dxdz
∫

ρΘ(n<nGBC)dxdz

]1/2

. (34)

The rms total velocity dispersion of the diffuse component in the vertical direction is given by σz,diff ≡
(v2

z,diff +v2
th,diff)

1/2. Figure 5(b) displays the time evolution of vth,diff and vz,diff in Model QA10x2 as solid

and dotted lines, respectively. The vertical turbulent velocity dispersion saturates at 〈vz,diff〉 = 6.8 km s−1

with relative fluctuation amplitude ∆vz,diff/〈vz,diff〉 = 0.30, while the thermal component has a smaller mean

value 〈vth,diff〉 = 3.7 km s−1 and standard deviation ∆vth,diff = 0.2 km s−1. Many spikes in vz,diff reflect energy

injection events associated with SN explosions. Since the shock-heated gas occupies a very small volume

only near the midplane, the thermal velocity dispersion vth,diff averaged over the whole domain varies more

smoothly than the volume-weighted mean Pth averaged only near the midplane.

Tables 2 and 3 list the mean values and standard deviations of several physical quantities characterizing

the gas disk, for all models. Here and hereafter, we omit angle brackets for convenience; all the symbols

represent time-averages over t/torb = 2−3, unless stated otherwise. Column (1) labels each run as in Table 1.

In Table 2, Column (2) gives the logarithm of ΣSFR in units of M⊙ kpc−2 yr−1. Columns (3) and (4) give the

logarithm of Pth/kB and Pturb/kB, respectively, in units of cm−3 K. Column (5) lists the midplane number

density n0 of hydrogen in units of cm−3 defined in analogy with equation (32) but for n rather than P in

the integral. Column (6) gives the scale height of the diffuse gas Hdiff ≡ [
∫

ρz2Θ(n<nGBC)dxdz/
∫

ρΘ(n<

nGBC)dxdz]1/2 in units of pc.

In Table 3, Columns (2) and (3) give the turbulent and thermal velocity dispersions of the diffuse

component in units of km s−1, while Column (4) gives the mass-weighted vertical velocity dispersion for all

the gas σz ≡ [
∫

(ρv2
z +P)dxdz/

∫

ρdxdz]1/2 in units of km s−1. Column (5) lists fdiff, the fraction of mass in

the diffuse component (by definition, all gas at n < nGBC = 50 cm−3 is diffuse). In Columns (6) and (7), we

list α ≡ (v2
th,diff +v2

z,diff)/v2
th,diff and f̃w ≡ v2

th,diff/c2
w, respectively; these parameters are necessary to test the

OML10 theory. Note that f̃w ≈ fw (the mass fraction of diffuse gas that is warm) since v2
th,diff = fwc2

w + fcc2
c

and the thermal speed cw of the warm medium is an order of magnitude larger than that of the cold medium

cc. Also note that α in Table 3 (based on mass-weighted velocities or pressures averaged over the box)

is close but not identical to the ratio Ptot/Pth at the midplane. Finally, Column (8) gives the numerically-

measured timescale to convert high-density gas into stars, τSF,GBC ≡ (1 − fdiff)Σ/ΣSFR in Gyr units; here

1 − fdiff = fGBC is simply defined as the mass fraction at n > nGBC = 50 cm−3.

Figure 6 plots the mean values of turbulent and total velocity dispersions (a) vz,diff (b) σz,diff, and (c) σz

as functions of ΣSFR for all models except Series R. The mean values over the whole set of models shown

in Figure 6 are vz,diff = 6.8± 0.6 km s−1, σz,diff = 7.7± 0.6 km s−1, and σz = 7.0± 0.4 km s−1. It is clear

that σz,diff increases slightly as ΣSFR increases, while vz,diff ∼ σz ∼ 7 km s−1 is more-or-less constant in all

models (excluding Series R). The slight increase of σz,diff with ΣSFR is due to an increase of vth,diff with a

higher proportion of warm gas at higher ΣSFR, although thermal speeds (averaged over both warm and cold
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gas) are lower than turbulent speeds for all models except R50 (see Table 3).

The nearly constant value of vz,diff, over two orders of magnitude in ΣSFR, owes to a balance between

driving and dissipation for the turbulent momentum (see Section 5.2 for a detailed discussion). The total

vertical velocity dispersion for the whole gaseous medium is also nearly constant in all models, σz ∼ 7 km s−1

(see Fig. 6c). This is because the higher proportion of warm gas in the diffuse medium (raising σz,diff as

ΣSFR increases) is counterbalanced by a lower proportion of the gas being in the diffuse component (which

has higher velocity dispersion than the dense, dynamically- and thermally-cold GBC component) at higher

ΣSFR. That is, with σz ≈ f 1/2

diff σz,diff, the larger σz,diff is offset by smaller fdiff, for models with higher ΣSFR.

We note that the values of velocity dispersions given in Table 3 and plotted in Figure 6 are mass-

weighted averages over the entire simulation volume rather than just averages at the midplane (which would

be vth,mid = (Pth/ρ0)1/2 and vz,mid = (Pturb/ρ0)1/2, where ρ0 = 1.4mpn0). We report volume-averaged values

because these are the closest to direct observables. However, the OML10 theory (and dynamical equilibrium

considerations more generally) use midplane values of the pressure, which depend on midplane velocity

dispersions. We have found vth,diff/vth,mid ∼ 1.3 and vz,diff/vz,mid ∼ 1.3 for all models. The reason for this

difference is that the gas is somewhat differentially stratified, with cold phase preferentially concentrated

near the midplane, which makes vth,mid slightly smaller value than vth,diff. Also, since the gas density and the

turbulent dissipation rate increase near the midplane, vz,mid is slightly smaller than vz,diff averaged over the

whole volume.

Figure 7 plots the mean values of (a) α, (b) f̃w, and (c) fw fdiff as functions of ΣSFR for all models

except Series R. There is a weak decreasing trend of α with ΣSFR, but overall α has a small range, ∼
3 −6. The small range of α = (v2

th,diff +v2
z,diff)/v2

th,diff implies that the ratio of turbulent to thermal pressure

Pturb/Pth = v2
z,diff/v2

th,diff in the diffuse gas is close to constant (for a given frad) over a very large range of

ΣSFR. The parameter f̃w increases as ΣSFR increases since a higher heating rate increases the warm-gas

mass fraction and f̃w = v2
th,diff/c2

w = fw + (1 − fw)c2
c/c2

w ≈ fw. Note that α = 1 + (v2
z,diff/c2

w)/ f̃w, so that with

cw ∼ vz,diff ∼ 7 km s−1 (see Fig. 6), the decline in α ∼ 1 +1/ f̃w from ∼ 6 to ∼ 3 is just as expected when

f̃w increases from ∼ 0.2 to ∼ 0.5. The mass fraction of warm gas in the whole medium fw fdiff is nearly

constant, implying the warmer diffuse gas at higher ΣSFR is offset by a higher fraction of the medium in a

very dense component (here defined as n > nGBC = 50 cm−3).

For Series R (see Tables 2 and 3), vth,diff and f̃w increase as frad increases (corresponding to increasing

heating at given ΣSFR). On the other hand, vz,diff decreases as frad increases, for the R series. Combining

these effects, α = 1 + v2
z,diff/v2

th,diff decreases by nearly an order of magnitude for increasing frad in the R

series. At large frad, vth,diff exceeds vz,diff. On the other hand, σz,diff and σz decrease only slightly as frad

increases, while ΣSFR decreases by a factor ∼ 2. Thus, frad appears to affect primarily the energy distribution

between thermal and turbulent components that results from star formation feedback, together with the

proportions of cold and warm gas, for the parameter regime we have explored.
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5. Test of the Thermal/Dynamical Equilibrium Model

5.1. Vertical Dynamical Equilibrium

Having obtained the statistical properties of the multiphase, turbulent gas from our time-dependent

numerical simulations, we are now in a position to examine the validity of the assumptions made in OML10,

and to compare our numerical results with the predictions of the OML10 analytic theory.

We first focus on the vertical force balance between (self plus external) gravity and total (thermal

plus turbulent) pressure. If dynamical equilibrium holds, the total midplane pressure Ptot should match the

vertical weight of diffuse gas, Ptot,DE. Taking ζd = 1/π, we rewrite equation (1) in terms of fdiff ≡ Σdiff/Σ

and σz,diff = cw( f̃wα)1/2 as

Ptot,DE = fdiff

πGΣ2

4







(2 − fdiff) +

[

(2 − fdiff)
2 +

32σ2
z,diffρsd

π2GΣ2

]1/2






(35)

= 1.7×103 kB cm−3 K fdiff

(

Σ

10 M⊙ pc−2

)2

×






(2 − fdiff) +

[

(2 − fdiff)
2 +37

( σz,diff

7 km s−1

)2
(

ρsd

0.1 M⊙ pc−3

)(

Σ

10 M⊙ pc−2

)−2
]1/2







,

Since the second term in the square brackets of equation (35) dominates for the range of parameters we

have explored (suitable for outer disks), an approximate form for equation (35) is:

Ptot,DE ≈ fdiffσz,diffΣ(2Gρsd)1/2 ≈ f 1/2

diff σzΣ(2Gρsd)1/2 (36)

≈ 1.0×104kB cm−3 K f 1/2

diff

( σz

7 km s−1

)

(

Σ

10 M⊙ pc−2

)(

ρsd

0.1 M⊙ pc−3

)1/2

,

where we take σz,diff ≈ f −1/2

diff σz based on the fact that the velocity dispersions of very dense gas are smaller

than those of the diffuse component. This is similar to the formula adopted by Blitz & Rosolowsky (2004,

2006), except that our expression includes the correction factor fdiff and allows for the dark matter contribu-

tion to ρsd (see also OML10). Although the factor fdiff in equation (36) is close to unity in outer disks, this

correction would be quite important in inner-disk regions where gas is dominated by gravitationally-bound

GMCs. For the current models, we note that fdiffσz,diff/cw = α fdiff f̃wcw/σz,diff ∼ f 1/2

diff σz/cw ∼ 1.0 insensitive

to model parameters since σz ∼ σz,diff ∼ cw ∼ 7−8 km s−1, α∼ 4−5, and fdiff f̃w ∼ 0.2−0.3 if frad = 1. Thus,

if dynamical equilibrium is satisfied, we expect the midplane pressure to correlate well with Σ
√

ρsd.

Figure 8(a) plots the midplane total pressure of the diffuse component Ptot ≡ Pth +Pturb measured from

the simulations (as listed in Table 2) as a function of Σ
√

ρsd for all models. The errorbars denote the

standard deviations of the pressure fluctuations. The dynamical-equilibrium prediction of equation (35) (or

the approximation in equation 36) for Ptot,DE can be evaluated directly from the model inputs Σ and ρsd in

Table 1 and simulation results for fdiff, vz,diff, and vth,diff listed in Table 3. In the lower panel of Figure 8(a),
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we plot the relative difference between the measured Ptot and Ptot,DE computed from equation (35). These

values agree with each other within 13%. This close agreement verifies that effective hydrostatic equilibrium

is indeed satisfied. In addition, this suggests that the midplane total pressure in a star-forming disk is set

by environmental parameters such as the gas surface density, external gravity, the level of the turbulence,

etc. Since the parameters appearing in equation (35) can be inferred relatively directly from observables for

spatially-resolved face-on galaxies (modulo uncertainties in the stellar-disk scale height), the total midplane

pressure in diffuse gas is an empirically-accessible quantity.

Adopting the dependence on “environmental” parameters Σ and ρsd following equation (36), the nu-

merical results are well fitted by

Ptot = 9.9×103kB cm−3 K

(

Σ

10 M⊙ pc−2

)(

ρsd

0.1 M⊙ pc−3

)1/2

. (37)

This fit is overplotted as a dotted line in the upper panel of Figure 8(a). Comparison of the fit to the numerical

results (equation 37) with the analytic prediction (equation 36) shows that averaging over our model suite,

fdiffσz,diff ≈ f 1/2

diff σz = 7.0 km s−1.

For accounting purposes, we have arbitrarily adopted the choice nGBC = 50 cm−3 as the minimum for

the dense-gas GBC component. One might be concerned that this may significantly affect the value obtained

for Ptot,DE. As seen in equation (36), however, Ptot,DE for the present models depends on nGBC just through

Ptot,DE ∝ f 1/2

diff because σz ∼ 7 km s−1 is nearly constant for all models. We have checked that if we instead

chose nGBC = 100 cm−3, fdiff increases by about 10%, resulting in only about 3% change in Ptot,DE. Thus,

for the diffuse-dominated regime studied in the present work, Ptot,DE does not depend sensitively on the

specific choice for nGBC as long as it is large enough. In the regime where gravitationally-bound gas is more

important, or where self-gravity is comparable to the external gravity, the more exact expression in equation

(1) (or equation 35) should be used for Ptot,DE.

While an empirical measure of total midplane pressure can be obtained from spatially-resolved obser-

vations of Σ, ρsd, and σz,diff, pressure-sensitive lines can be used to obtain empirical estimates of Pth even

from unresolved observations. It is thus useful to consider how Pth relates to environmental properties in our

models. Figure 8(b) plots the midplane thermal pressure of the diffuse component Pth (as listed in Table 2) as

a function of Σ
√

ρsd for all models except Series R. The lower panel shows the relative difference between

Pth and Pth,DE = Ptot,DE/α as defined in equation (2), or multiplying equation (35) by 1/α. (Note that this

differs slightly from the lower panel of Figure 8(a) because our measured α is based on volume-averaged

rather than midplane pressures.) The errorbars denote the standard deviations of the pressure fluctuations.

The dynamical-equilibrium prediction Pth,DE agrees with the measured Pth at the midplane within 17%,

excluding Series R. The dotted line in the upper panel of Figure 8(b) gives our best fit

Pth = 2.2×103kB cm−3 K

(

Σ

10 M⊙ pc−2

)(

ρsd

0.1 M⊙ pc−3

)1/2

. (38)

Multiplying equation (36) by 1/α, the thermal pressure in outer-disk regions is approximately given by

Pth,DE ≈ ( fdiff/α)σz,diffΣ(2Gρsd)1/2. Note that the connection between thermal pressure and the parameters
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Σ and ρsd expressed by equation (38) results from vertical force balance and the fact that α and fdiffσz,diff ≈
f 1/2

diff σz are nearly constant.

As seen in Section 4.2, since the amount of energy injected into the thermal component depends on

frad, Pth is proportional to frad for Series R, resulting in significant changes of Pth for the same Σ and ρsd

(see Table 2). The relation Pth ∼ Pth,DE still approximately holds provided that the inverse variation of α

with frad is included for varying frad (see equation 46). Although σz and fdiff are insensitive to frad, the large

variation of α with frad implies that the results for Series R significantly depart from equation (38). This is

why Series R is omitted from Figure 8(b).

It is also possible to estimate the midplane density and the scale height. If dynamical equilibrium

holds, the mean midplane mass density is given by ρ0,DE = Ptot,DE/σ2
z,diff = Pth,DE/v2

th,diff, or hydrogen number

density n0,DE = ρ0,DE/(1.4mp) by

n0,DE = 0.20 cm−3 fdiff

( σz,diff

7 km s−1

)−2
(

Σ

10 M⊙ pc−2

)2

×






(2 − fdiff) +

[

(2 − fdiff)
2 +37

( σz,diff

7 km s−1

)2
(

ρsd

0.1 M⊙ pc−3

)(

Σ

10 M⊙ pc−2

)−2
]1/2







. (39)

For a Gaussian distribution, the scale height in vertical dynamical equilibrium is

Hdiff,DE =
fdiffΣ

(2π)1/2ρ0,DE

= 580 pc
( σz,diff

7 km s−1

)2
(

Σ

10 M⊙ pc−2

)−1

×






(2 − fdiff) +

[

(2 − fdiff)
2 +37

( σz,diff

7 km s−1

)2
(

ρsd

0.1 M⊙ pc−3

)(

Σ

10 M⊙ pc−2

)−2
]1/2







−1

. (40)

Figure 9 plots the measured values of (a) the midplane number density n0 and (b) the scale height of the

diffuse gas Hdiff versus the corresponding dynamical-equilibrium estimate given in equation (39) and (40),

respectively. Our best fits for imposed unity slopes give n0/n0,DE = 1.4 and Hdiff/Hdiff,DE = 0.87. These

differences owe to small differences between the mass-weighted thermal velocity dispersion vth,diff and the

slightly-lower midplane value vth,mid, as discussed in Section 4.2.

5.2. Thermal Equilibrium and Turbulent Balance

As described in Section 2, OML10 hypothesized that the gas disk evolves to a state in which both

cold and warm phases can coexist at the midplane, at the same thermal pressure, with heating balanced by

cooling. For given heating rate, a range of pressures between Pmin and Pmax permits both a cold and warm

phase in thermal equilibrium. For definiteness, OML10 assumed that the midplane thermal pressure Pth in

the diffuse medium is comparable to the geometric-mean pressure Ptwo = (PminPmax)1/2.



– 27 –

In our numerical models, the heating rate evolves with the SFR according to equation (24). Assuming

the JFUV,meta contribution is negligible, the geometric-mean pressure is given by equation (25), correspond-

ing to Ptwo/kB = 3.1×103 cm−3 K( fradΣSFR/ΣSFR,0), where the coefficient is slightly different from that in

equation (3) since the adopted cooling function in our simulations is slightly different from that in Wolfire et

al. (2003). For each model, the mean value of ΣSFR measured from the simulation sets the mean of Ptwo; the

mean midplane thermal pressure is also measured (see Section 5.1 and Table 2). Using these measurements,

Figure 10 plots Pth/Ptwo as a function of ΣSFR for all models. The dotted line is our best fit

Pth

Ptwo

= 0.79

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)−0.09

. (41)

The measured thermal pressure of the diffuse gas is thus smaller than the geometric-mean pressure, but only

slightly: Pth agrees with Ptwo within ∼ 40% for all models, while Pth varies over more than two orders of

magnitude for our whole suite of models (see Table 2). This proves that the assumption Pth ≈ Ptwo of the

OML10 theory is a reasonable first approximation.

Using the numerical result given in equation (41), we are now in a position to evaluate the thermal yield

from feedback ηth defined in equation (11). We find

ηth = 0.99 frad

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)−0.09

. (42)

Our numerical calibration of ηth gives a value ∼ 30% lower for the Solar neighborhood than the value 1.2 frad

adopted in OML10, and includes a weak decrease of ηth with increasing ΣSFR.

The tendency for ηth to decrease with increasing ΣSFR can be understood as follows. Models with

higher Σ and ΣSFR have a larger diffuse-gas density, and hence shorter cooling times, compared to models

with lower Σ and ΣSFR. In the n–P plane, a shorter cooling time implies that Pth will more quickly drop

towards Pmin, such that Pth/Ptwo will be slightly lower for higher-Σ, higher-ΣSFR models. Models with lower

Σ have longer cooling times, such that Pth does not drop as quickly after heating events, and remains closer

to Ptwo.

Under the assumption that the dynamics of the gas disk has reached a statistical steady state (as Figure 5

indicates), the rates of turbulent driving and dissipation must balance each other. For mean momentum p∗
and mass m∗ per supernova, the rate of injection of vertical momentum per unit area per unit time to each

side of the disk is Pdriv ≡ 0.25(p∗/m∗)ΣSFR, assuming spherical blasts at the midplane (OS11). If the injected

vertical momentum is preserved until the gas falls back to the midplane, the vertical momentum flux across

the disk Pturb would be equal to 2Pdriv. If, however, the injected vertical momentum is dissipated within a

vertical crossing time, then Pturb = Pdriv. Finally, if the space-time distribution of star formation sites is such

that expanding shells collide with each other in the vertical direction, then partial cancellation of injected

momentum would yield Pturb < Pdriv.

OS11 parameterized the uncertainties in dissipation and driving by introducing a factor fp ≡ Pturb/Pdriv.

Here, we use results of our numerical simulations to directly compare the measured turbulent pressure with

the vertical momentum injected by supernovae in our models. We characterize the return on mechanical
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feedback from star formation using the turbulent yield parameter ηturb defined in equation (12). The param-

eter fp is related to ηturb by ηturb ≡ 3.6 fp[(p∗/m∗)/3000 km s−1].

Figure 11 plots our measurement of the ratio Pturb/Pdriv for all models, as a function of ΣSFR. The

dotted line shows our best fit omitting the R series,

Pturb

Pdriv

= 0.97

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)−0.17

. (43)

Our numerical calibration of the mechanical feedback yield is therefore

ηturb = 3.5

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)−0.17

, (44)

where we use p∗/m∗ = 3000 km s−1 for all models. The numerical result in equation (43) shows that fp ≈ 1

provides a good overall estimate; this is also consistent with the results of simulations presented in OS11

(for the molecule-dominated starburst regime). The numerical result that fp (and ηturb) decrease weakly with

increasing ΣSFR suggests that vertical collisions of shells become more important at higher star formation

rates, as would be expected. On the other hand, disks with lower ΣSFR suffer somewhat less momentum

dissipation because star formation sites are more isolated (in space and time), and shells expand into a more

rarefied medium.

As discussed in OS11, the result Pturb ∼ Pdriv is equivalent to having the dissipation time of turbulence

comparable to the flow crossing time over the largest energy-containing scale (Stone et al. 1998; Mac Low et

al. 1998), which here is the vertical disk thickness Hdiff ∼ Hdiff,DE. Feedback provides an input momentum

per unit time per unit area of ∼ Pdriv ∼ ΣSFR p∗/m∗. For a dissipation time ∼ Hdiff/vz,diff, the dissipation

rate of vertical momentum in the diffuse ISM, per unit time per unit area is ∼Σv2
z,diff/Hdiff ∼ ρv2

z,diff ∼ Pturb.

Thus, driving is balanced by dissipation on a crossing time provided Pturb ∼ Pdriv, as in equation (43).

Combining equations (11) and (12), we have

Ptot/kB

103 cm−3 K
≡ η

ΣSFR

10−3 M⊙ kpc−2 yr−1
, (45)

where η ≡ ηth +ηturb is the combined yield of thermal and mechanical feedback, with the respective contri-

butions given in equations (42) and (44) from our numerical results. Other sources of vertical support that

are associated with star formation (e.g. radiation pressure, cosmic rays, and magnetic fields driven by turbu-

lence) would contribute additional terms to η. Since ηth and ηturb decrease weakly with ΣSFR, the increase

of Ptot with ΣSFR is slightly sublinear.

Using equations (42) and (44), we obtain an expression for the ratio between total and thermal pressure

in the diffuse gas:

α = 1 +
ηturb

ηth

= 1 +3.5 f −1
rad

(

ΣSFR

10−3 M⊙ kpc−2 yr−1

)−0.08

. (46)
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This explains the very weak decreasing trend of α with ΣSFR for frad = 1 (see Fig. 7a). In addition, this

implies the value α ≈ 5 adopted by OML10 (based on empirical evidence) is in good agreement with the

results of numerical simulations (for frad ∼ 1). Similarly, since f̃w = v2
th,diff/c2

w = σ2
z,diff/(c2

wα), f̃w ∼ [1 +
3.5 f −1

rad(ΣSFR/10−3 M⊙ kpc−2 yr−1)−0.08]−1(σz,diff/cw)2, where σz,diff/cw = 1.1(ΣSFR/10−3 M⊙ kpc−2 yr−1)0.04

for all models (see Fig. 6b). This form is consistent with the trend for f̃w to increase slightly with increasing

ΣSFR, and to increase significantly with increasing frad (see Table 3).

Finally, we note that although turbulent energy dominates over thermal energy in equilibrium (unless

frad is large), the radiative heating rate exceeds the rate of heating from dissipation of turbulent energy,

except in far outer disks. The energy input rate ratio is ηth/ηturb times the ratio of the turbulent dissipation

time (∼ Hdiff/vz,diff; see Section 6) to the cooling time (assuming thermal equilibrium). In the Solar neigh-

borhood, the cooling time is ∼ 1 Myr, whereas the turbulent dissipation time is ∼ 20 Myr, implying a rate

ratio ∼ 5. Moving outward in the disk, the radiative-to-turbulent heating rate ratio decreases ∝ nHdiff/vz,diff,

which is ∝ Σ for vz,diff ∼ constant.

6. Star Formation Laws

In this section, we compare the SFRs obtained in our numerical simulations to SFR formulae that are

widely used in the literature, both as fitting functions for empirical studies, and as prescriptions for star

formation in numerical models of galaxy formation/evolution. We also introduce a new formula that relates

ΣSFR to the total pressure in the diffuse ISM. This relation follows the general form expected when thermal

and dynamical equilibrium are both satisfied, and when both thermal and turbulent pressure are controlled

by feedback from star formation.

We begin with the orbital time prescription, expressed as ΣSFR ∝ ΣΩ (Kennicutt 1998). A relationship

of this kind is expected if the star formation timescale is proportional to the orbital time, which would be

true if star formation is governed by large-scale gravitational instabilities and the Toomre Q parameter is

near its critical value (e.g. Quirk 1972; Wyse & Silk 1989; Silk 1997; Elmegreen 1997; Kim & Ostriker

2001, 2007; McKee & Ostriker 2007). Figure 12 plots the mean values of ΣSFR from our numerical models

as a function of ΣΩ. The dotted line is the our best fit ΣSFR = 0.008ΣΩ for an imposed unity slope, while

the dashed line denotes the empirical relation obtained by Kennicutt (1998), ΣSFR = 0.017ΣΩ. The RMS

fractional deviation of the measurements compared to the fit is 43%. In our simulations, the sites of star

formation are mainly small-scale dense clouds formed by local thermal and gravitational instabilities, rather

than very massive clouds formed by large-scale instabilities. Thus, orbital and epicyclic motions do not

directly control star formation in our models. Rather, the similarity between the behavior of ΣSFR and ΣΩ

in Figure 12 reflects the correlation of input parameters chosen for our simulations: we set Ω ∝ Σ for all

models, and since the specific star formation rate increases with Σ, it also increases with Ω.

We next consider ΣSFR as a function of Σ, as shown in Figure 13(a). Also plotted as filled and

empty contours are the recent pixel-by-pixel measurements of Bigiel et al. (2008, 2010) for ΣSFR and

Σ in the regions inside and outside the optical radius, respectively, of nearby spiral and dwarf galaxies.
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Consistent with the observational results for Σ <∼ 10 M⊙ pc−2, Figure 13(a) shows that there can be sig-

nificant variation in ΣSFR at a given value of Σ. A single power-law fit to the numerical results gives

ΣSFR = 2.2× 10−3 M⊙ kpc−2 yr−1(Σ/10 M⊙ pc−2)1.6 (not shown in Figure 13a), with 33% RMS fractional

deviation. Although the power law we find is similar to empirical results, our simulations indicate that

a single power-law Kennicutt-Schmidt relation Σ ∝ Σ1+p is not a good fit in outer-galaxy regions where

Σ <∼ 10 M⊙ pc−2 and diffuse atomic gas dominates. Close inspection of Figure 13(a) shows that individ-

ually, the QA and QB series each follows a relation close to ΣSFR ∝ Σ2, but these relations are vertically

offset from each other. The reason the QA series has lower SFR than the QB series is that the latter has four

times larger ρsd at a given value of Σ, and the reason both series approximately follow ΣSFR ∝Σ2 is that we

have set ρsd ∝ Σ2 in both series, as we shall discuss below.

We remark that the current suite of models is not intended to match the full parameter range of ob-

served galaxies, but instead to explore the fundamental physical dependence of star formation on environ-

mental conditions using carefully controlled numerical models. Nevertheless, Series QA, which includes

Solar neighborhood conditions and extends to higher and lower Σ assuming constant Q and s0, follows the

observed distribution of ΣSFR vs. Σ quite well. At very low gas surface density Σ = 2.5 M⊙ pc−2, the results

from our models have higher ΣSFR than much of the observed distribution for far outer disks. This is largely

because we chose low input values of s0 to show the effects of stellar gravity clearly in our controlled series

of models (lower s0 corresponds to higher ρsd for a given Σ – see equation 28). Realistic values of s0 in far

outer disks are likely to be higher (see Section 3.3). Higher s0 would reduce the vertical gravity and hence

reduce ΣSFR (following the secular trend of decreasing ΣSFR with increasing s0 = 0.02 to 0.07 to 0.28 from

Series S to QB to QA at Σ = 2.5 M⊙ pc−2). In addition, Series QA, QB, and S fix frad = 1, whereas frad is

likely to increase in far outer disks because of lower shielding where the dust abundance and Σ are lower

(see Section 3.2.2). The models of Series R show that ΣSFR systematically decreases with increasing frad for

fixed Σ and ρsd. Thus, the difference between the present model results and observations at low Σ is simply

due to differences between model inputs and ambient conditions of gravity and shielding in outer galaxies.

This emphasizes once again that Σ alone does not determine ΣSFR.

For typical parameters in outer disks, the weight associated with the external (star+dark matter) gravity

term ∝ ρ
1/2

sd exceeds the weight associated with gaseous self-gravity in equation (7) (or 8) for the dynamical-

equilibrium diffuse-ISM pressure Ptot,DE, which is equal to the diffuse-ISM weight. Since the external-

gravity dominates, we have Ptot,DE ∝ Σρ
1/2

sd σz as in equation (36) (see also Figure 8a), and Ptot,DE ∝ ηΣSFR

(equation 45) so that ΣSFR ∝ Σρ
1/2

sd σz/η for η = ηth +ηturb. Since σz and the yield parameters ηth, ηturb are

all close to constant (see Fig. 6 and equations 42 and 44), we expect ΣSFR ∝ Σρ
1/2

sd .

Figure 13(b) plots results from the simulations for ΣSFR vs. Σρ
1/2

sd , showing a much tighter relationship

than ΣSFR vs. Σ in Figure 13(a). Comparing measured values to the fit in equation (47) below, the RMS

fractional deviation is 24%. This is consistent with recent empirical findings that star formation is correlated

with the stellar, not just the gaseous, content of galactic disks (see Section 1).

In both panels of Figure 13, we overplot the simultaneous solutions of equations (5), (11), and (35),

adopting σz = 7 km s−1, α = 5, and tSF,GBC = 1.3 Gyr, along with the numerical fit for ηth (equation 42 with
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frad = 1). If we instead adopt ηth = 1, the results are quite similar since ηth is nearly constant. The black

dot-dashed curve takes s0 = 0.28 as in Series QA, the red dashed curve takes s0 = 0.07 as in Series QB, and

the blue dotted (s0 = 0.02) and green long-dashed (s0 = 1.1) curves bracket the overall range of s0 for our

model suite (see Table 1). The predicted curve for s0 = 0.28 (as in Series QA) follows the observations quite

well within the optical radius. As discussed above, larger values of s0 and frad are likely present in far outer

disks, which would produce a steeper ΣSFR vs. Σ relation moving to very low Σ (outside typical optical

radii). The agreement between numerical models and the simultaneous solution of equations (5), (11), and

(35) confirms the analytic thermal/dynamical equilibrium theory for star formation developed in OML10. In

that work, comparison to individual galaxies shows excellent agreement when both Σ and ρsd in the theory

are set from the observations.

In panel Figure 13(b), the black solid line denotes the power-law solution obtained by combining

equations (11), (38), and (42) (with frad = 1) to obtain a prediction for ΣSFR:

ΣSFR = 2.4×10−3 M⊙ kpc−2 yr−1

(

Σ

10 M⊙ pc−2

)1.1 (

ρsd

0.1 M⊙ pc−3

)0.55

. (47)

We note that for outer disk regions, the focus of the present models, the approximation fdiff ≈ 1 is satisfied,

such that the single equation (36) takes the place of the simultaneous solution of equations (5) and (35). That

is, the prediction for outer-disk star formation is independent of tSF,GBC. If, rather than using the numerical

fit (42) for ηth, we had instead simply adopted a constant value of ηth ≈ 1, then we would obtain a very

similar form to equation (47), except the exponent of ρsd would be 0.5, the exponent of Σ would be 1, and

the coefficient in front would be 2.2× 10−3η−1
th M⊙ kpc−2 yr−1. Small differences between the numerical

results and the analytic prediction for outer disk regions are due to the fact that some of the idealizations of

equation (36) are not fully satisfied in the numerical models. For example, the S series models at Σ = 15 and

20 M⊙ pc−2 have non-negligible gravity from the gas, which increases Pth,DE above the estimate in equation

(36), and results in ΣSFR exceeding the estimate of (47), which neglects the vertical gas gravity. Also, we

note that the R series, because it has frad 6= 1, is not expected to agree with equation (47). In fact, members

of the R series lie both above and below the prediction, consistent with expectations.

A prescription for star formation commonly used in numerical simulations of galaxy formation and

evolution within a cosmological context is to make the star formation timescale proportional to the self-

gravitation or free-fall time of the gas, ∝ ρ−1/2. In the context of disks, it is natural to adopt the mean

midplane density ρ0 as a reference value, so that the SFR surface density would be given by

ΣSFR ≡ ǫff(ρ0)
Σ

tff,0
, (48)

where tff,0 = [3π/(32Gρ0)]1/2 is the free-fall time at the midplane and ǫff(ρ0) is a star formation efficiency

per free-fall time at the mean midplane density. Figure 14(a) plots ΣSFR from the numerical simulations as a

function of Σ/tff,0. The dotted line shows our best fit ΣSFR = 0.008(Σ/tff,0) for an imposed unity slope. Note

that ǫff(ρ0) = 0.008 is similar to (but slightly smaller than) the value ǫff(ρcr) = 0.01 imposed at high density

(ncr ∼ 500 cm−3) for star formation to occur in the numerical models. The free-fall time prescription gives a

tighter relation than ΣSFR vs. ΣΩ or ΣSFR vs. Σ, but there is still scatter.
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Although the free-fall time is commonly adopted as the controlling dynamical timescale, in many

circumstances self-gravity is less important in confining and condensing gas than the gravity of the stars

and dark matter. For a given total velocity dispersion σz,diff, the vertical dynamical time is related to the

disk thickness by tdyn ≡ Hdiff/σz,diff. Since Hdiff ≡ Σdiff/(
√

2πρ0) = σz,diff/(4πGρsd)1/2 if external gravity

dominates, or Hdiff = σz,diff/(π2Gρ0)1/2 if gas self-gravity dominates, tdyn ∼ 0.3/(Gρmid)1/2 with ρmid =

ρ0 +ρsd includes both limits. If self-gravity dominates, tff,0 = 1.7tdyn, but if ρ0 ≪ ρsd, tdyn ≪ tff,0, and the

“external” gravity sets tdyn and Hdiff.

For a disk with significant turbulent contribution to the total velocity dispersion σz,diff, tdyn is compara-

ble to the vertical crossing time tver ≡ Hdiff/vz,diff. The vertical crossing time is the timescale for turbulence

to be dissipated, reducing the disk thickness and raising ρ0. For a low filling-factor cloudy medium, small,

cold, dense clouds can also “fall” to the midplane due to the combined vertical gravitational force of stars,

dark matter, and gas. When they reach the midplane, these small, dense clouds collide dissipatively, collect-

ing into high-mass clouds that are internally gravitationally unstable and make stars. The vertical crossing

time tver is thus expected to control how rapidly the diffuse cold component collects into self-gravitating

clouds and initiates star formation.

Figure 14(b) plots ΣSFR from the numerical simulations as a function of Σ/tver. The dotted line indi-

cates our best fit ΣSFR = 0.0025(Σ/tver) for an imposed unity slope. The coefficient of this fit denotes the

star formation efficiency per vertical dynamical time ǫver = 0.0025. The measured SFR surface density is

well described by the vertical dynamical time prescription, although there is still scatter (but slightly less

than in Figure 14a). The RMS fractional deviations of measured ΣSFR compared to the estimated ΣSFR are

26% and 21% for the free-fall time and the vertical dynamical time prescriptions, respectively.

The good correlations shown in Figure 14 for both the tff,0 and tver prescriptions are presumably because

both implicitly have similar scaling to ΣSFR ∝Σ
√

ρsd (shown in Figure 13b). Since ρ0 ∼ ρ0,DE ∝ Σ/Hdiff ∝
Σρ

1/2

sd (when external gravity dominates), Σ/tff,0 is basically proportional to Σ3/2ρ
1/4

sd . For Series QA and

QB, Σ1/2ρ
1/4

sd ∝ ρ
1/2

sd because we take ρsd ∝ Σ2 for these models. Thus, Σ/tff,0 ∝ Σ
√

ρsd for Series QA

and QB. Although Series S and G have somewhat different input parameter dependence, the parameter

coverage of these model series is not extensive enough to reveal a clear difference between ΣSFR ∝ Σ
√

ρsd

and ΣSFR ∝ Σ/tff,0. For regions dominated by external gravity, we have tver ≈ (4πGρsd)−1/2σz,diff/vz,diff, so

that Σ/tver ∝ Σρ
1/2

sd since σz,diff ∼ vz,diff for our models (and for the real ISM).

We note that the vertical dynamical time prescription for star formation is closely connected to the

regulation of turbulent pressure by feedback from star formation, and to the relationship between input

momentum and mean velocity dispersion in the disk (OS11). As shown in Section 5.2, a balance between

turbulent momentum driving and dissipation is achieved in our models. If ΣSFR = ǫverΣ/tver, the momentum

driving rate per unit mass becomes 2Pdriv/Σ = 0.5ǫver p∗/(m∗tver). Equating this with the expected turbulence

dissipation rate ∼ 0.5v2
z,diff/Hdiff = 0.5vz,diff/tver, we obtain vz,diff ∼ ǫver p∗/m∗. Using our adopted value

p∗/m∗ = 3,000 km s−1 and the efficiency ǫver = 0.0025 measured from our numerical models, this yields

vz,diff = 7.5 km s−1, remarkably similar to the mean value vz,diff = 6.8 km s−1 obtained from our numerical

simulations.
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As argued in Section 2, energy and momentum feedback from star formation are often the dominant

sources of heating and turbulence driving, in which case both Pth and Pturb (and therefore Ptot) in the diffuse

ISM are predicted to vary approximately ∝ ΣSFR (see equations 11 and 12). As we show in Section 5.2, our

simulations indeed evidence near-linear relations. In Figure 15, we plot the measured ΣSFR as a function of

(a) the measured (Pth/kB)/ frad and (c) the measured Ptot/kB, for all of our numerical models. All quantities

are time-averaged. Note that the thermal pressure is divided by frad to compensate for the effect of the

varying assumed heating efficiency (Γ/ΣSFR). The dotted lines in panels (a) and (c) are obtained from

equations (11) and (45), respectively, with numerical calibrations (42) and (44) for the feedback yields ηth

and ηturb. The dashed line in panel (c) plots our best fit omitting the R series:

ΣSFR = 2.6×10−3 M⊙ kpc−2 yr−1

(

Ptot/kB

104 cm−3 K

)1.18

. (49)

The power slightly steeper than unity reflects the weak decline of feedback yields ηth and ηturb with ΣSFR,

as discussed in Section 5.2 (cf. equation 45) . Comparing equation (49) with equation (13), we see that

our numerical results yield η = 3.9[Ptot/(104kB cm−3 K)]−0.18 (for frad = 1), quite close to the estimate η ∼ 5

obtained by combining the theory of OML10 and OS11 (see Section 2).

In addition to heating/cooling and turbulent driving/dissipation balance, vertical dynamical equilibrium

is expected to apply, so that the total diffuse-gas pressure at the midplane is equal to the vertical weight

Ptot = Ptot,DE. Thus, a hallmark of self-regulated star formation, when thermal, turbulent, and dynamical

equilibrium are all satisfied, is that a relation close to ΣSFR ∝ Ptot,DE is expected to apply (see equation 13).

To the extent that α ∼ const., we also expect ΣSFR ∝ Pth,DE/ frad = Ptot,DE/(α frad). In Figure 15 we plot the

measured ΣSFR from numerical simulations as a function of (b) (Pth,DE/kB)/ frad, and (d) Ptot,DE/kB, for all

models. The dynamical-equilibrium pressures are computed from input parameters Σ and ρsd using equation

(35) and mean measured values of fdiff, σz,diff, and α for each model.8 Dotted and dashed lines are as for

Figures 15(a,c).

Figures 15(c,d) show that ΣSFR is extremely well correlated with Ptot and Ptot,DE. The RMS fractional

deviations of the numerical results from the relation given in equation (49) are only 14% and 16% for Ptot

and Ptot,DE, respectively. The correlation is worse if the R series is included. This is because ηth ∝ frad, so

that higher frad reduces ΣSFR compared to other models with the same midplane pressure.

Based on the results of our numerical simulations, we conclude that star formation rates should be

most closely correlated with the total midplane pressure of the diffuse gas, as in equation (49).9 The relation

between diffuse-gas pressure and star formation rate has less scatter than the relation between ΣSFR and the

8If we compute Ptot,DE from equation (35) using constant values fdiff = 0.78 and σz,diff = 7.7 km s−1 (the mean values over the

model suite), the best fit to ΣSFR vs. Ptot,DE analogous to equation (49) would have a coefficient 2.2×10−3 and a power 1.05.

9Although our current numerical models have only explored the diffuse-dominated case, we still expect thermal, turbulent,

and vertical dynamical equilibrium to hold in the volume-filling diffuse gas even if it is not the dominant component of the ISM

by mass (see OML10, OS11, and Section 2). In this case, equations (45) and (13) are still expected to hold with near-constant

yield coefficients η, so that Ptot or Ptot,DE would still vary nearly linearly with ΣSFR. It is important to note, however, that in the

GBC-dominated case, this is best interpreted as ΣSFR setting fdiff (by equating [35] and [45] with ΣSFR ≈ Σ/tSF,GBC) rather than the
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gas surface density Σ alone, or the combination ΣΩ. The relation between ΣSFR and Ptot is also more general

than ΣSFR ∝ Σ
√

ρsd (which applies when external gravity exceeds gas self-gravity and σz,diff ∼ const.), or

ΣSFR ∝ Σ/tver (which applies for turbulence-dominated disks with ǫver ∼ const.). In regions dominated by

diffuse gas, it is fundamentally the weight of the ISM that regulates star formation rates, since star formation

rates must adjust until the pressure driven by feedback matches this weight. For outer disks that are diffuse-

dominated ( fdiff ∼ 1), the weight (or Ptot,DE, given by equation 7 or by the approximation in equation 8)

depends only on Σ, ρsd, and σz. As noted above, an increase in frad (which would be associated with low

dust abundance) leads to a decrease in ΣSFR ∝ Ptot,DE/η, because ηth ∝ frad.

7. Summary and Discussion

In this paper, we have used time-dependent numerical simulations to investigate the regulation of star

formation, as well as the thermal and turbulent properties of the gas, in the regime where diffuse atomic gas

dominates the multiphase ISM. For the Milky Way and similar galaxies, this corresponds to the outer disk

– i.e. roughly the Solar circle and beyond. Physical effects included in our numerical models (see Section

3) include differential rotation, Coriolis forces, gaseous self-gravity, vertical gravity due to the stellar disk

and dark matter halo, interstellar cooling and heating, thermal conduction, and feedback from recent star

formation in the form of radiative and mechanical energy. Although this initial set of models involves

a number of simplifications (e.g. we consider only a local box representing thin radial-vertical slices so

that very large-scale gravitational instabilities are absent; we do not include galactic magnetic fields and

spiral arms; we omit hot gas and treat feedback from SNe via localized momentum injection; we do not

explicitly treat radiative transfer), it captures a very important aspect of real ISM disks that is missing in

many numerical studies of galactic star formation. Namely, the vertical thickness of the disk, and therefore

the mean gas density, is primarily controlled by (time-variable) turbulence. The turbulent vertical velocity

dispersion depends on competition between driving by energy inputs from star formation, and dissipation

through shocks and the mode-coupling turbulent cascade.

To explore the dependence of ΣSFR on environmental parameters, we run models with varying total

gas surface density Σ and midplane density ρsd of stars plus dark matter. The angular velocity Ω is set

such the Toomre stability parameter Qinit = 2 for a velocity dispersion of 7 km s−1. Our models are highly

dynamic, but each reaches a statistical steady state within a few tens of Myr. In this quasi-steady state, the

star formation rate, disk scale height, mass fractions of various gas phases, turbulent velocity dispersion, and

other physical properties fluctuate about well-defined mean values (Fig. 2). Low-amplitude quasi-periodic

oscillations of the disk thickness are correlated with episodes of bound cloud formation (at maximum com-

pression) and feedback-driven expansion. Small cold clouds repeatedly fall to the midplane and collect (due

to self-gravity) into more massive clouds, which are then dispersed by feedback from star formation. We

use the measured mean properties to test the theory of star formation and diffuse-ISM regulation developed

diffuse-ISM weight setting ΣSFR (see OML10). If GBCs dominate the mass, ΣSFR is controlled by the density (and pressure) within

the bound clouds.
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in OML10 and OS11, as outlined in Section 2.

The main results from our simulations are as follows:

1. We find that most of the gas is at pressures, densities, and temperatures close to thermal equilibrium

(Fig. 4). The system evolves to a state in which both warm and cold stable phases are present, with mean

midplane thermal pressure Pth within ∼ 40% of the “two-phase” pressure Ptwo ≡ (PminPmax)1/2, decreasing

weakly with increasing ΣSFR (equation 41). This evolution involves continuous re-adjustment of the thermal

equilibrium curve, as Ptwo ∝ Γ ∝ ΣSFR. Since ΣSFR varies by two orders of magnitude for our model

suite, the thermal equilibrium curve shifts up and down by the same factor. The midplane thermal pressure

increases from Pth/kB ∼ 100 cm−3 K to ∼ 104 cm−3 K going from low-Σ, low-ρsd to high-Σ, high-ρsd models

(Fig. 8). This finding is consistent with the conclusion of Wolfire et al. (2003) that H I should be found in

two phases out to large distances in the Milky Way (based on an assumed heating rate that declines outward),

as well as observations indicating both phases are indeed present out to ∼ 20 −25 kpc (Dickey et al. 2009).

Other nearby galaxies also show evidence for both warm and cold atomic gas (Braun 1997; Dickey et al.

2000; Young et al. 2003). The analytic model of OML10 adopted the assumption that the midplane thermal

pressure is equal to Ptwo; our numerical results show that this is indeed a good first estimate. The result

Pth ∼ Ptwo implies that radiative heating approximately balances cooling. From the point of view of thermal

energy replenishment, this means that star formation is highly efficient.

2. By comparing the prediction of dynamical-equilibrium pressure with the measured time-averaged

midplane pressure in our numerical simulations, we find that vertical dynamical equilibrium is satisfied

within 13% for the total pressure (lower panel of Fig. 8a). For the present models, the total weight of the

diffuse ISM (Ptot,DE, given in equation 1 or 35) is matched by a combination of thermal and turbulent pres-

sure. In outer disks, where diffuse gas dominates the total surface density Σdiff ≈ Σ, simplified expressions

for the total midplane pressure in equilibrium are given by equations (7) and (8). In many outer-disk regions

(including the Solar neighborhood), the vertical gravity from the stars exceeds that from the gas, such that in

equilibrium Ptot ∝ Σ
√

ρsd if the vertical velocity dispersion is constant. The results from our simulations fit

this form well (equation 37), with a similar result for midplane thermal pressure (equation 38). The numer-

ical results that Pth ≈ Pth,DE and Ptot ≈ Ptot,DE demonstrate the validity of the vertical dynamical equilibrium

assumption in the theory of OML10, and confirms prior findings from simulations by Koyama & Ostriker

(2009b).

3. Based on our numerical measurements of the thermal and turbulent pressures, we find a ratio

Ptot/Pth = α ≈ 4 −5 for essentially all our models (Fig. 7a) when we fix frad ≡ (Γ/Γ0)(ΣSFR/ΣSFR,0)−1 = 1

(see equation 24). This is consistent with the assumption of OML10 that α is relatively constant for galaxies

with shielding properties (and hence JFUV/ΣSFR) similar to the local Milky Way. The near-constancy of α

results from the fact that both thermal and turbulent pressure are driven by feedback (see below). When frad

is varied (for Series R models), corresponding to varying dust shielding or FUV heating efficiency, α varies

because Pth ∝ frad in thermal equilibrium. Higher frad (lower shielding) reduces α following equation (46);

for large frad, Pth can exceed Pturb.

4. We find that the fraction of diffuse gas in the warm component f̃w ≡ v2
th,diff/c2

w increases from
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∼ 20% to ∼ 50% from low- to high-ΣSFR, when we hold frad = 1, corresponding to Γ/ΣSFR = const. The

upper range, with half of the diffuse gas warm (for models similar to the Solar neighborhood), is comparable

to findings of Heiles & Troland (2003) based on 21 cm emission and absorption observations. We find (for

Series R) that the warm fraction steeply increases as frad increases (higher Γ/ΣSFR, corresponding to lower

shielding by dust). This trend is consistent with the finding of Dickey et al. (2000) that the SMC, with a

relative metallicity ∼ 0.2, has a much higher warm-to-cold H I ratio than the Solar neighborhood. We note

that in real galaxies, frad would be inversely correlated with Σ (see Section 3.2.2), which would increase the

warm fraction at low Σ compared to the frad = 1 models in Series QA, QB, and S presented here.

5. The time-averaged turbulent vertical velocity dispersions in all of our models are vz,diff ≈ 7 km s−1,

with no systematic dependence on ΣSFR (Fig. 6). Total vertical velocity dispersions σz,diff in the diffuse

medium are larger by ∼ 1 −2 km s−1. The turbulent amplitudes we find, and the lack of correlation of σz,diff

with ΣSFR, are consistent with observations of H I velocity dispersions in the Milky Way and nearby face-

on galaxies (Heiles & Troland 2003; Dickey et al. 1990; van Zee & Bryant 1999; Petric & Rupen 2007;

Kalberla & Kerp 2009). As discussed in Section 6 (see also OS11), turbulent velocity dispersions vz,diff ∼
ǫver p∗/m∗ are expected if the star formation efficiency per vertical crossing time is ǫver ≡ tverΣSFR/Σ (for

tver ≡ Hdiff/vz,diff), and the momentum injection per stellar mass from feedback is p∗/m∗. Confirming this

expectation, the turbulent amplitudes we find are consistent with the mean value ǫver = 0.0025 measured from

our numerical models, for the momentum feedback parameter p∗/m∗ = 3000 km s−1 used in our simulations.

6. To assess the balance of turbulent driving and dissipation in our numerical models, we compare

the measured turbulent pressure at the midplane Pturb ≡ ρ0v2
z,diff with the fiducial momentum injection rate

per unit area Pdriv ≡ 0.25(p∗/m∗)ΣSFR from star formation feedback. Fig. 11 shows that these are approxi-

mately equal, decreasing weakly with increasing ΣSFR (equation 43). Since Pturb represents the characteristic

vertical momentum per unit area in the diffuse ISM (Σdiffvz,diff) divided by 2Hdiff/vz,diff, this implies the mo-

mentum dissipation timescale is comparable to the crossing time tver = Hdiff/vz,diff, consistent with previous

numerical results on turbulent driving and dissipation (e.g. Stone et al. 1998; Mac Low et al. 1998). Another

way to think of this result is that the momentum injected in the diffuse ISM by star formation per unit time

is comparable to the existing vertical momentum divided by the dynamical time. Thus, from the point of

view of momentum replenishment, star formation is highly efficient.

7. We use our numerical models to calibrate the feedback yield parameters ηth and ηturb, respectively

equal to the ratio Pth/ΣSFR and Pturb/ΣSFR in suitable units (see equations 11 and 12). Both yield param-

eters decrease only very weakly with increasing ΣSFR (see equations 42 and 44), with thermal yield also

depending on the radiation penetration parameter as ηth ∝ frad. This explains why α = Ptot/Pth = 1+ηturb/ηth

is nearly constant (for frad = 1). The values ηth ∼ 1× frad and ηturb ∼ 4 obtained from our numerical models

are consistent with the analytic predictions of OML10 and OS11, respectively.

8. We compare our numerical results for ΣSFR to several commonly-used formulae, ΣSFR ∝ ΣΩ,

ΣSFR ∝Σ1+p, ΣSFR = ǫff(ρ0)Σ/tff,0 (see Figs. 12, 13, 14). The first two relations are not well correlated with

the numerical results. The third relation has improved correlation, but this is in part because tff,0 ∝ (Gρsd)−1/2

for most of our model suite, and ΣSFR is well correlated with Σρ
1/2

sd (Fig. 13; see also equation 47). We also
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compare to the relation ΣSFR = ǫverΣ/tver for tver = Hdiff/vz,diff the vertical crossing time, which limits how

rapidly cold clouds can collect at the midplane. The fitted efficiencies are ǫff(ρ0) = 0.008 and ǫver = 0.0025,

with a stronger correlation to the vertical crossing-time than free-fall-time prescription.

9. The best star formation correlation we find is with the total midplane pressure – either as measured in

the simulations (Ptot), or as estimated from vertical dynamical equilibrium (Ptot,DE). Equation (49) fits ΣSFR

within 16% for all models (excluding Series R), as shown in Fig. 15. Series R shows that ΣSFR drops if the

shielding is reduced (higher frad). Our numerical result that ΣSFR has a near-linear correlation with Ptot,DE is

consistent with the analytic models of OML10 and OS11 for star formation in diffuse-gas dominated regions

– either outer disks or starbursts. The near-linear relation between ΣSFR and Ptot,DE is also consistent with a

similar empirical result found by Leroy et al. (2008), and with the previous empirical findings that molecular

gas (the immediate precursor of star formation) increases nearly linearly with the ISM pressure (Wong &

Blitz 2002; Blitz & Rosolowsky 2004, 2006). A relationship of the form ΣSFR ∼ Ptot,DE/η (see equation 45)

implies that star formation responds to demand: the star formation rate increases until the midplane pressure

(controlled by thermal and turbulent feedback) balances the vertical weight of the diffuse ISM.

That energy input from massive stars determines the midplane pressure and thus self-regulates the star

formation rate suggests it is crucial to include stellar feedback, when simulating galactic star formation

numerically. Indeed, work by Hopkins et al. (2011) contemporary with the present study used SPH simu-

lations to show that ΣSFR is consistent with the observed Kennicutt-Schmidt relations only when feedback

is included (see also Dobbs et al. 2011). Without feedback, dense clouds collapse in a runaway fashion,

increasing the star formation rate by ∼ 1 −2 orders of magnitude. Using grid-based simulations of Milky-

Way-type galaxies, Tasker (2011) similarly found that star formation rates are at least an order of magnitude

higher than observations if feedback is not included to drive turbulence and unbind dense clouds that form.

Including feedback is known to strongly affect the star formation history in long-term simulations of galaxies

(e.g. Governato et al. 2007).

Stellar feedback also appears essential for driving and maintaining turbulence in the direction per-

pendicular to the disk plane over many galactic orbits. Other proposed mechanisms for generating ISM

turbulence include large-scale gravitational instabilities (e.g., Wada et al. 2002; Kim et al. 2003; Kim &

Ostriker 2007; Agertz et al. 2009; Aumer et al. 2010; Bournaud et al. 2010), magnetorotational instabil-

ities (e.g., Kim et al. 2003; Piontek & Ostriker 2004, 2005, 2007), and non-steady motions generated in

spiral shocks (e.g. Kim & Ostriker 2006; Kim et al. 2006, 2010; Dobbs et al. 2006). Turbulence driven by

these processes has lower vertical than horizontal velocity dispersions, because they all tap galactic rotation.

Rotational-gravitational instabilities are able to produce turbulence levels comparable to observed values,

although vertical dispersions drop to <∼ 4 km s−1 after several galactic orbits (Agertz et al. 2009). In addi-

tion, gravitationally-driven turbulence is dominated by large scales (i.e., clump-to-clump motions) that do

not prevent collapse within clumps. Without stellar feedback to unbind dense clouds that form, the resulting

star formation rates are too high. Gravitationally-driven turbulence is likely to be most important during the

transient, gas-rich early stages of galaxy formation at high redshift (e.g. Ceverino et al. 2010). Character-

izing turbulence in galaxies requires subtraction of a “background state,” and this becomes more difficult to

define when there are large secular motions including prominent radial flows and collapsing clumps. Even
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steady spiral shocks create a (steady) azimuthal velocity profile that can differ by tens of km s−1 from the

background rotation curve. It will be interesting to analyze in detail how non-stellar processes combine with

stellar feedback to power turbulence over both large and small scales in disk galaxies, providing a more

complete understanding of galactic star formation over all redshifts.

As noted above, the present numerical models involve radical simplifications compared to the real

star-forming ISM. Given the success of these simple models, it is clearly worthwhile to pursue further

computational modeling along similar lines, improving on the numerical idealizations we have made. One

of the advantages of local numerical models that resolve ∼ pc − kpc is that the scales involved directly

correspond to those accessible in high-resolution observations of nearby galaxies. Results from successive

model refinements can be compared to observations to identify a “minimal physics” set, incorporating only

the most important effects to minimize computational cost.

By employing high-resolution ISM simulations to identify the key processes controlling star formation,

it will be possible to enhance subgrid models for computational galaxy formation studies in the cosmological

context. While feedback to drive turbulent pressure plays a dominant role in the ISM of the Milky Way

and similar galaxies, feedback to drive thermal pressure is likely to be increasingly important where there

is minimal dust shielding, potentially leading to large frad and ηth ≫ ηturb. Some current simulations of

dust-poor galaxies at high redshift use subgrid shielding models to estimate the abundance of cold, star-

forming gas (e.g. Gnedin et al. 2009; Gnedin & Kravtsov 2010; Kuhlen et al. 2011). A subgrid model that

incorporates both shielding and turbulence could potentially bridge over a wide range of redshifts.
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Table 1. Model Parameters

Model Σ ρsd Ω Hw Lz s0

[ M⊙ pc−2] [ M⊙ pc−3] [ km s−1 kpc−1] [ pc] [ pc]

QA02 2.5 0.0031 7 528 2048 0.28

QA05 5.0 0.0125 14 269 1024 0.28

QA07 7.5 0.0281 21 179 768 0.28

QA10 10.0 0.0500 28 134 512 0.28

QA15 15.0 0.1125 42 89 384 0.28

QA20 20.0 0.2000 56 67 256 0.28

QB02 2.5 0.0125 7 269 1024 0.07

QB05 5.0 0.0500 14 134 768 0.07

QB07 7.5 0.1125 21 89 512 0.07

QB10 10.0 0.2000 28 67 384 0.07

QB15 15.0 0.4500 42 44 256 0.07

S02 2.5 0.0500 7 134 768 0.02

S05 5.0 0.0500 14 134 768 0.07

S07 7.5 0.0500 21 134 512 0.16

S10 10.0 0.0500 28 134 512 0.28

S15 15.0 0.0500 42 134 512 0.62

S20 20.0 0.0500 56 134 512 1.10

G02 10.0 0.0250 28 190 768 0.55

G05 10.0 0.0500 28 134 512 0.28

G10 10.0 0.1000 28 95 512 0.14

G20 10.0 0.2000 28 67 384 0.07

Note. — Models S05, S10, G05, and G20 are identical to QB05, QA10, QA10,

and QB10 models, respectively. All models in Series QA, QB, S, and G have frad =

1. Models in the R series (not listed) have the same parameters as model QA10,

except frad = 0.25, 0.5, 2.5, and 5.0 for R02, R05, R25, and R50, respectively. All

models have Lx = 512 pc except model QA10x2, which is the same as QA10 but

with Lx = 1024 pc.
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Table 2. Disk Properties 1

Model log〈ΣSFR〉 log 〈Pth/kB〉 log〈Pturb/kB〉 〈n0〉 〈Hdiff〉

(1) (2) (3) (4) (5) (6)

QA02 −4.20± 0.23 1.94± 0.35 2.61± 1.51 0.05± 0.08 342± 111

QA05 −3.52± 0.12 2.53± 0.22 3.03± 0.72 0.39± 0.30 174± 37

QA07 −3.03± 0.11 2.95± 0.16 3.57± 0.73 0.82± 0.46 132± 29

QA10 −2.74± 0.11 3.24± 0.15 3.85± 0.60 1.12± 0.58 92± 18

QA10x2 −2.72± 0.09 3.23± 0.08 3.74± 0.52 1.32± 0.40 94± 10

QA15 −2.38± 0.10 3.50± 0.11 4.08± 0.51 1.70± 0.69 70± 9

QA20 −2.06± 0.10 3.86± 0.07 4.19± 0.63 2.76± 0.70 51± 5

QB02 −3.85± 0.15 2.29± 0.23 2.71± 0.63 0.30± 0.26 157± 53

QB05 −3.15± 0.08 2.81± 0.21 3.45± 0.61 0.56± 0.40 118± 38

QB07 −2.79± 0.12 3.19± 0.13 3.75± 0.71 1.07± 0.55 77± 20

QB10 −2.58± 0.09 3.43± 0.13 3.90± 0.62 1.88± 0.86 56± 12

QB15 −2.24± 0.05 3.72± 0.09 4.27± 0.55 2.97± 0.98 44± 6

S02 −3.45± 0.07 2.60± 0.23 3.25± 0.56 0.40± 0.30 110± 33

S07 −2.93± 0.07 3.08± 0.12 3.62± 0.68 1.09± 0.47 90± 13

S15 −2.43± 0.11 3.44± 0.12 3.96± 0.70 1.50± 0.94 95± 22

S20 −2.31± 0.10 3.64± 0.07 4.08± 0.53 1.79± 0.58 87± 7

G02 −2.82± 0.08 3.13± 0.20 3.66± 0.77 0.88± 0.52 136± 34

G10 −2.66± 0.06 3.31± 0.14 3.86± 0.60 1.57± 0.68 82± 13

R02 −2.61± 0.06 2.73± 0.25 3.97± 0.66 0.98± 0.54 99± 15

R05 −2.72± 0.08 2.94± 0.15 3.85± 0.77 1.42± 0.48 96± 17

R25 −2.87± 0.12 3.48± 0.12 3.53± 0.60 1.11± 0.45 92± 12

R50 −2.96± 0.22 3.69± 0.16 3.31± 0.37 1.29± 0.58 97± 20

Note. — The mean values and standard deviations of physical quantities are averaged over

t/torb = 2 −3. Col. (2): Logarithmic value of the SFR surface density ( M⊙ kpc−2 yr−1). Cols.

(3)-(4): Logarithmic values of the midplane thermal and turbulent pressures over kB ( cm−3 K).

Col. (5): Midplane number density of hydrogen ( cm−3). Col. (6): Scale height of the diffuse

component ( pc). See Section 4.2 for definitions.
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Table 3. Disk Properties 2

Model
˙

vz,diff

¸ ˙

vth,diff

¸

〈σz〉 〈 fdiff〉 α f̃w τSF,GBC

(1) (2) (3) (4) (5) (6) (7) (8)

QA02 6.20± 4.57 3.27± 0.78 6.86± 4.67 0.92± 0.07 4.59± 5.56 0.23± 0.12 3.31± 3.35

QA05 6.28± 2.95 3.25± 0.43 6.78± 2.85 0.90± 0.06 4.74± 3.65 0.25± 0.07 1.73± 1.17

QA07 6.90± 2.78 3.49± 0.46 7.36± 2.51 0.89± 0.06 4.90± 3.31 0.29± 0.08 0.92± 0.56

QA10 7.23± 2.28 3.73± 0.42 7.39± 2.02 0.77± 0.09 4.75± 2.51 0.32± 0.07 1.26± 0.60

QA10x2 6.80± 2.07 3.74± 0.18 7.01± 1.73 0.77± 0.06 4.31± 2.04 0.32± 0.03 1.19± 0.40

QA15 6.95± 1.94 4.05± 0.30 7.02± 1.71 0.67± 0.06 3.95± 1.70 0.36± 0.05 1.20± 0.36

QA20 6.94± 1.67 4.59± 0.22 6.80± 1.30 0.54± 0.06 3.29± 1.12 0.46± 0.05 1.06± 0.27

QB02 5.35± 3.26 2.93± 0.39 5.87± 3.18 0.91± 0.08 4.32± 4.15 0.19± 0.05 1.64± 1.47

QB05 7.07± 3.34 3.36± 0.45 7.37± 3.02 0.87± 0.08 5.44± 4.36 0.27± 0.07 0.89± 0.59

QB07 7.15± 2.81 3.62± 0.31 7.16± 2.43 0.76± 0.09 4.89± 3.13 0.30± 0.05 1.12± 0.53

QB10 6.68± 2.17 3.70± 0.32 6.55± 1.79 0.67± 0.08 4.25± 2.19 0.31± 0.06 1.26± 0.41

QB15 7.88± 2.05 4.02± 0.26 7.29± 1.58 0.59± 0.05 4.83± 2.06 0.35± 0.04 1.07± 0.18

S02 7.14± 3.58 3.04± 0.41 7.25± 3.30 0.84± 0.08 6.53± 5.75 0.22± 0.06 1.12± 0.62

S07 6.41± 2.68 3.50± 0.29 6.80± 2.44 0.82± 0.05 4.35± 2.85 0.29± 0.05 1.12± 0.38

S15 6.76± 1.92 4.25± 0.31 7.01± 1.76 0.70± 0.10 3.54± 1.49 0.40± 0.06 1.20± 0.51

S20 6.08± 1.43 4.42± 0.22 6.62± 1.25 0.67± 0.05 2.89± 0.91 0.43± 0.05 1.34± 0.37

G02 7.13± 2.26 4.00± 0.34 7.68± 2.11 0.85± 0.05 4.18± 2.09 0.37± 0.06 1.01± 0.39

G10 6.82± 1.99 3.83± 0.30 6.99± 1.77 0.74± 0.07 4.17± 1.91 0.34± 0.05 1.18± 0.37

R02 8.36± 2.35 2.28± 0.19 7.85± 1.92 0.78± 0.07 14.51± 7.93 0.11± 0.02 0.91± 0.32

R05 6.80± 2.01 2.87± 0.28 6.84± 1.92 0.80± 0.06 6.62± 3.50 0.19± 0.04 1.05± 0.37

R25 5.25± 1.77 4.87± 0.40 6.72± 1.91 0.77± 0.06 2.16± 0.80 0.54± 0.09 1.69± 0.65

R50 4.49± 1.85 5.70± 0.49 6.78± 1.84 0.85± 0.07 1.62± 0.52 0.73± 0.12 1.39± 0.92

Note. — The mean values and standard deviations of physical quantities are averaged over t/torb = 2 −3. Cols. (2)-(3):

Vertical turbulent and thermal velocity dispersions of the diffuse gas ( km s−1). Col. (4): Total vertical velocity dispersion

for all gas ( km s−1). Cols. (5)-(7): Mass fraction of the diffuse gas ( fdiff), the ratio of total pressure to turbulent pressure

(α), and the square of mass-weighted thermal to warm-medium thermal speed (v2
th,diff/c2

w = f̃w) in the diffuse gas. Col.

(8): Timescale to convert dense gas into stars ( Gyr). See Section 4.2 for definitions.
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Fig. 1.— Density snapshots for Model QA10x2 (logarithmic color scale) at t/torb = 0, 0.1, and 0.2. The

initial single-temperature gas disk (a) evolves rapidly via thermal instability into a configuration with mid-

plane cold cloudlets sandwiched by outer layers of warm gas. In (b), the first SN explosions occur in dense

clouds near x = −200 pc produced by mergers and self-gravitating contraction of smaller clouds. Subsequent

SN explosions disperse the dense clouds and drive the disk into a turbulent state (c), in which filamentary

structures of cold gas are found at all heights.
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Fig. 2.— Time evolution in Model QA10x2 of (a) the mass fractions of the diffuse ( fdiff, solid) and GBC

( fGBC, dotted) components, (b) the mass fractions of the cold ( fc, dashed), unstable ( fu, dotted), and warm

( fw, solid) phases within the diffuse component, (c) the density-weighted vertical scale height H, and (d)

the SFR surface density ΣSFR. The initial increase of fGBC and fc stops at t = 0.1torb = 22 Myr when the first

SN event occurs inside a massive dense cloud. The model reaches a quasi-steady state after a few tenths of

an orbital time, in the sense that the physical quantities fluctuate but do not evolve secularly. Note that fdiff

is positively correlated with H.
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Fig. 3.— (a) Density structure in the whole simulation domain of Model QA10x2 at t/torb = 2.22, including

a large, fragmented, expanding shell produced by a recent SN event. (b) The rectangular section in (a)

is enlarged to identify dense clouds (n > 50 cm−3), outlined by black contours, that formed in a region of

converging flow where the shell collides with surrounding gas. The white arrows represent the background

velocity field, while the black arrows show the mean velocity of each dense cloud. (c) The section marked

in (b) is further enlarged to show internal velocity structure of three selected dense clouds. The colorbars

(whose range differs from panel to panel) indicate number density in logarithmic scale. The sizes of the

arrows outside the boxes in (b) and (c) correspond to 10 km s−1 and 5 km s−1, respectively.
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Fig. 4.— (a) Distribution of gas in the n-P/kB plane for Model QA10x2, averaged over t/torb = 2 −3. The

colorbar gives the mass fraction in logarithmic scale. The solid curve marks the locus of thermal equilibrium

at the mean heating rate of 〈Γ〉 = 0.76Γ0. Mass-weighted (thick) and volume-weighted (thin) probability

distribution functions are shown for (b) thermal pressure and (c) number density. The vertical dotted lines

in (b) and (c) mark the mean midplane thermal pressure and number density, respectively, of the diffuse gas.

These results show that the system evolves to a state in which approximate two-phase thermal equilibrium

at a common pressure holds for the atomic gas.
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Fig. 5.— Time evolution of the midplane thermal and turbulent pressures (a) and the thermal and turbulent

velocity dispersions (b) of the diffuse component for model QA10x2. In (a), Pth initially decreases as the gas

cools, while Pturb increases rapidly after the gas falls toward midplane and is stirred up by SN explosions.

After a few cloud formation and feedback cycles (a few 10s of Myr), Pth and Pturb reach saturation values of

〈Pth/kB〉 ∼ 1,680 cm−3 K and 〈Pturb/kB〉 ∼ 5,440 cm−3 K, respectively, with a relative fluctuation amplitudes

of 0.21 and 0.52. In (b), the velocity dispersions saturate at 〈vth,diff〉 = 3.7 km s−1 and 〈vz,diff〉 = 6.8 km s−1,

respectively, with relative fluctuation amplitudes of 5% and 30%.
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Fig. 6.— (a) The vertical turbulent velocity dispersion of the diffuse gas vz,diff, (b) the total (turbu-

lent+thermal) velocity dispersion of the diffuse gas σz,diff, and (c) the total velocity dispersion of all gas

σz, as functions of the SFR surface density ΣSFR for all models except Series R. The points and errorbars

give the mean and standard deviations over t/torb = 2 −3. For the whole set of models shown in this figure,

vz,diff = 6.8±0.6 km s−1, σz,diff = 7.7±0.6 km s−1, and σz = 7.0±0.4 km s−1. The dotted lines in all panels

show 7 km s−1 for reference.
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Fig. 7.— Computed values of (a) the ratio of total-to-thermal velocity dispersion for the diffuse gas α ≡
1 +v2

z,diff/v2
th,diff, (b) the square of mass-weighted thermal to warm-medium thermal speed v2

th,diff/c2
w = f̃w,

and (c) the product fw fdiff (for fw ≈ f̃w the warm gas mass fraction in the diffuse gas and fdiff the diffuse mass

fraction), as functions of ΣSFR for all models except Series R. The points and errorbars give the mean and

standard deviations over t/torb = 2−3. Over more than two orders of magnitude in ΣSFR, the balance between

energy input (heating, turbulent driving) and energy output (cooling, turbulent dissipation) maintains nearly

constant α = Ptot/Pth and both warm and cold gas phases.
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Fig. 8.— Top: Midplane (a) total and (b) thermal pressures of the diffuse gas as functions of Σ
√

ρsd.

The points and errorbars give the mean and standard deviations over t/torb = 2 − 3. The dotted lines

in upper panels show fits Ptot/kB = 9.9× 103 cm−3 K(Σ/10 M⊙ pc−2)(ρsd/0.1 M⊙ pc−3)1/2 and Pth/kB =

2.2×103 cm−3 K(Σ/10 M⊙ pc−2)(ρsd/0.1 M⊙ pc−3)1/2, respectively. Bottom: Relative differences between

measured midplane pressures and the dynamical equilibrium estimates using equation (35). The mean mid-

plane pressure Ptot varies only 13% relative to Ptot,DE, showing that vertical dynamical equilibrium is an

excellent approximation.
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Fig. 9.— Measured versus estimated values of (a) midplane number densities and (b) disk scale heights of

the diffuse gas. The points and errorbars give the mean and standard deviations over t/torb = 2 −3. The esti-

mated midplane number density n0,DE ≡ ρ0,DE/(1.4mp) and scale height Hdiff,DE are obtained from dynam-

ical equilibrium as equations (39) and (40), respectively. The dashed lines show our best fits n0 = 1.4n0,DE

and Hdiff = 0.87Hdiff,DE for imposed unity slopes, while the dotted lines indicate one-to-one correspondence.
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Fig. 10.— Measured midplane thermal pressure Pth of the diffuse gas relative to the two-phase thermal

equilibrium pressure Ptwo, as a function of ΣSFR. The points and errorbars give the mean and standard

deviations over t/torb = 2 − 3 for each model. The dotted line, with a slope of −0.09, gives the best fit.

Heating/cooling and mass exchange between warm and cold atomic phases enables the mean pressure to

track the (radiation) energy input from star formation Pth ∝ Ptwo ∝ ΣSFR over more than two orders of

magnitude in ΣSFR.
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Fig. 11.— Measured midplane turbulent pressure Pturb of the diffuse gas relative to the vertical momentum

flux injected by star formation Pdriv, as a function of ΣSFR. The points and errorbars give the mean and

standard deviations over t/torb = 2 − 3 for each model. The dotted line with a slope of −0.17 gives the

best fit. The result Pturb ∼ Pdriv indicates that turbulent driving is consistently balanced by dissipation on

approximately a vertical crossing time, even though both terms vary by more than two orders of magnitude

as ΣSFR changes.
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Fig. 12.— Measured ΣSFR as a function of ΣΩ for all models. The points and errorbars give mean values

and standard deviations over t/torb = 2−3. The dotted line shows our best fit ΣSFR = 0.008ΣΩ for an imposed

unity slope, and the dashed line shows the empirical result ΣSFR = 0.017ΣΩ of Kennicutt (1998).
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Fig. 13.— SFR surface density ΣSFR as a function of (a) Σ and (b) Σρ
1/2

sd for all models. The points

and errorbars give the mean and standard deviations over t/torb = 2 −3, respectively. In both panels, blue

dotted, red dashed, black dot-dashed, and green long-dashed lines give the theoretical predictions obtained

by solving equations (5), (11), and (35) simultaneously for s0 = 0.02,0.07,0.28, and 1.10, respectively. The

parameters σz = 7 km s−1, α = 5, and tSF,GBC = 1.3 Gyr are held fixed for these analytic comparisons, while

ηth varies following the numerical fit in equation (42) with frad = 1. Filled and empty contours in (a) show

the observational measurements in the regions inside (Bigiel et al. 2008) and outside (Bigiel et al. 2010) of

the optical radius, respectively, for nearby spirals and dwarf galaxies: the contour levels from dark to light

correspond to 10%, 25%, 50%, and 75% of the data. With higher s0 and/or frad at low Σ (not shown), the

models can match the observations beyond the optical radius. The black solid line in (b) denotes the power-

law solution for ΣSFR in equation (47). Note that ΣSFR is much better correlated with the combination Σρ
1/2

sd

than with Σ alone.
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Fig. 14.— Measured SFR surface density ΣSFR as a function of (a) Σ/tff,0 and (b) Σ/tver for all numerical

models, where tff,0 = (3π/(32Gρ0))1/2 and tver = Hdiff/vz,diff are computed using time-averaged values of the

variables. The points and errorbars give the mean and standard deviations over t/torb = 2−3. The dotted lines

in (a) and (b) show our best fits for imposed unity slopes, ΣSFR = 0.008(Σ/tff,0) and ΣSFR = 0.0025(Σ/tver),

respectively.
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Fig. 15.— Surface density of star formation ΣSFR measured from the simulations as functions of (a) the

measured midplane thermal pressure of the diffuse gas Pth, (b) the predicted midplane thermal pressure

Pth,DE, (c) the measured midplane total pressure of the diffuse gas Ptot, and (d) the predicted midplane

total pressure Ptot,DE. The points and errorbars give the mean and standard deviations over t/torb = 2 − 3.

Predicted pressures use the dynamical equilibrium equation (35) and measured values of fdiff, α, and σz,diff

for each model. In (a) and (b) Pth and Pth,DE are divided by frad to compensate for varying heating efficiency

so that Series R may be compared with other series. In top and bottom panels, dotted lines are obtained

from equations (11) and (45), respectively, using the numerical calibrations (42) and (44). The dashed

lines in bottom panels show the best fit given by equation (49). The pressures and ΣSFR are extremely

well correlated, consistent with the idea that ΣSFR adjusts until the pressures (driven by feedback) match

equilibrium requirements.


