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 Introduction 

 The derivation of human embryonic stem cells (hESCs) 
in 1998 opened up many exciting new opportunities to 
further investigate the therapeutic potential of stem cells 
 [1] . Mouse and human ESCs share many properties: they 
originate from a pluripotent population of cells within 
the pre-implantation embryo, are karyotypically normal, 
can be propagated indefinitely (self-renewal) and can dif-
ferentiate in vitro and in vivo into cells representative of 
the three embryonic germ layers [for review, see  2 ]. Al-
though very similar, mouse and human ESCs also show 
major differences. In particular, the underlying mecha-
nisms of mouse and human ESC maintenance of pluripo-
tency appear to be different [for review, see  3, 4 ].

  Neural stem cells give rise to neural and neuronal pro-
genitor cells. While neural stem/progenitor cells (NS/
PCs) can differentiate into neurons, astrocytes and oligo-
dendrocytes, neuronal progenitor cells, or neuroblasts, 
differentiate only into neurons. Oligodendrocyte pro-
genitor cells (OPCs) derived from their neural progeni-
tors share properties with both stem cells and progenitor 
cells and give rise to oligodendrocytes, which allow my-
elination within the central nervous system (CNS) [for 
review, see  5 ]. During development, NS/PCs contribute 
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 Abstract 

 Lysophospholipids are bioactive signalling molecules able 
to act through the binding of their specific G-protein-cou-
pled receptors to exert pleiotropic effects on a wide range 
of cells. The most widely studied signalling lysophospholip-
ids are lysophosphatidic acid (LPA) and sphingosine-1-phos-
phate (S1P). LPA and S1P have been identified to have wide-
spread developmental, physiological and pathological 
actions in the central nervous system and more recently 
have been shown to induce biological effects on various 
stem cell types. This review aims to summarise the current 
knowledge on LPA and S1P regulation of embryonic and 
neural stem cell biology.  Copyright © 2009 S. Karger AG, Basel 
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to the neurogenesis of the CNS. In the adult, NS/PCs are 
located predominantly in neurogenic regions of the CNS, 
such as the subventricular zone and hippocampus but are 
also scattered throughout the CNS. NS/PCs can migrate 
to areas of injury, and also to tumours, and differentiate 
into neuronal and glial cell types  [6] , thus are likely to 
contribute to the repair of damaged tissue. NS/PCs have 
been extensively studied with the aim of using endoge-
nous and/or donor NS/PCs to replace neurons and re-
store circuitry in a neurodegenerative microenviron-
ment.

  The factors that control the regulation of stem cell sur-
vival, proliferation, migration and differentiation are still 
emerging. Considerable evidence now exists demonstrat-
ing the potent effects of lysophospholipids, and in par-
ticular lysophosphatidic acid (LPA) and sphingosine-1-
phosphate (S1P), on the biology of stem cells. This review 
aims to summarise the current knowledge of the regula-
tion of embryonic and neural stem cell maintenance and 
differentiation by LPA and S1P.

  Lysophospholipid Metabolism and Signalling 

 Lysophospholipids are simple phospholipids with only 
a single O-acyl chain. Despite their generally simple 
structure, lysophospholipids appear to be involved in 
regulating a wide array of cellular processes through 
their functions as extracellular ligands for cell surface re-
ceptors and as intracellular second messengers. Biologi-
cal effects have been described for a wide variety of phos-
pholipids and lysophospholipids, including sphingo-
sylphosphorylcholine, platelet-activating factor, alkyl 
glycerol phosphate and cyclic phosphatidic acid. The 
most extensively studied bioactive lysophospholipids, 
however, are LPA and S1P.

  LPA and S1P Metabolism 
 Various pathways exist to facilitate the formation of 

LPA. Most of the LPA in serum and plasma appears to 
arise from the activity of autotaxin, a secreted lysophos-
pholipase D that generates LPA from lysophospholipids 
such as lysophosphatidylcholine, lysophosphatidylserine 
or lysophosphatidylethanolamine released from activat-
ed platelets  [7] . LPA can also be generated extracellularly 
from the deacylation of phosphatidic acid by the activity 
of secreted phospholipases A 1  and A 2  [for review, see  8 ]. 
A similar route for LPA generation catalysed by intracel-
lular phospholipases A 1  and A 2  also occurs within cells 
which appears responsible for the high levels of LPA 

stored in platelets  [8] . Although less abundant, LPA can 
also arise from phosphorylation of monoacylglycerol by 
monoacylglycerol kinase  [9]  or acylation of glycerol 3-
phosphate by glycerol 3-phosphate acyltransferase  [10] .

  In contrast to that of LPA, generation of S1P occurs by 
only a single route via the phosphorylation of sphingo-
sine by the sphingosine kinases (SphKs), of which 2 have 
been identified in mammals (SphK1 and SphK2). Growth 
factor or cytokine-induced activation of SphK1 results in 
re-localisation of this enzyme to the plasma membrane 
where it appears to be the major source of S1P under these 
conditions  [11, 12] . Notably, however, knockout mouse 
studies indicate that both SphK1 and SphK2 may play an 
equivalent role in maintaining plasma S1P levels  [13, 14] . 
The cellular source of circulating S1P has been the subject 
of considerable recent debate with studies suggesting 
platelets  [15] , erythrocytes  [16]  and vascular endothelial 
cells  [17]  as major sources of S1P. Release of this intracel-
lular S1P has been thought to be mediated by ATP-bind-
ing cassette (ABC) transporters, specifically ABCC1 in 
mast cells  [18] , although recent zebrafish genetic studies 
have identified a novel sphingolipid transporter, spinster 
2 (also called two of hearts) that appears to also function 
in this manner  [19, 20] . Interestingly, SphK1 can also be 
secreted where it may generate S1P extracellularly, al-
though this appears likely to generate only a minor pro-
portion to the pool extracellular S1P  [21–23] .

  Cellular Signalling by LPA and S1P 
 Plasma levels of LPA and S1P dramatically increase 

after injury due to their (or their precursor’s) release from 
activated platelets, leading to a variety of responses in tis-
sues, including in the CNS. These lysophospholipids have 
effects on most cells, eliciting responses to alter prolifera-
tion, survival, migration and differentiation. Many of 
these effects are mediated through widely expressed G-
protein-coupled receptors (GPCRs) for these lysophos-
pholipids  [24] . Five S1P receptors (S1P 1–5 ) have been es-
tablished, while up to 7 receptors for LPA have been iden-
tified, including LPA 1–5 , and the more recently discovered 
GPCRs P2Y5  [25–27]  and GPR87  [28] . A further GPCR, 
P2Y10, has also been recently proposed to have both S1P 
and LPA as ligands  [29] , although further characterisa-
tion of this receptor is required.

  The S1P and LPA receptors are differentially expressed 
and linked to different G proteins, allowing these lyso-
phospholipids to elicit a variety of cell-specific responses 
through the activation of classic G i , G q , G 12 , and possibly 
G s , signalling pathways  [24, 30, 31] . Depending on the 
receptors present, many of the signalling effects of LPA 
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and S1P are mediated through the activation of extracel-
lular signal-regulated kinases 1/2 (ERK1/2), phospholi-
pase C (PLC), and small GTPases, as well as through cal-
cium mobilisation, and the activation or inhibition or ad-
enylate cyclase (AC;  fig. 1 ). While many of the downstream 
pathways leading from each individual lysophospholipid 
receptor have been elucidated, it is becoming increasing-
ly clear that lysophospholipid-regulated biological out-
comes are commonly dependent on integration of signals 
from multiple lysophospholipid receptors as well as their 
well-established cross-talk with cytokine and growth 
factor receptors, such as the platelet-derived growth fac-
tor (PDGF) and epidermal growth factor (EGF) receptors 
 [22, 32–35] . Thus, the challenge remains to understand 
how the integration of these divergent signalling path-
ways leads to the fine control of cellular processes.

  In addition to GPCR-mediated signalling, LPA can 
also act as an intracellular second messenger via its as-
sociation with the nuclear transcription factor, peroxi-
some proliferator-activated receptor  �  (PPAR � )  [36] . 
PPAR �  regulates genes involved in vascular inflamma-
tion, adipocyte differentiation, as well as glucose and fat-
ty acid metabolism  [37] , and binding of LPA appears to 
stimulate its transcriptional activity. An intracellular 
second messenger role for S1P has long been proposed, 
but to date no direct intracellular targets of S1P have been 
identified and remains a future challenge.

  LPA/S1P Signalling in Embryonic Stem Cells  

 LPA/S1P Signalling in Mouse Embryonic Stem Cells 
 Mouse ESCs (mESCs) express LPA and S1P receptors 

with variation between mESC lines which might reflect 
differences in the strains used, or in the experimental 
conditions used to derive or maintain mESCs  [38–40] . 
All 5 S1P receptors are expressed in R1 mESCs  [39] , while 
S1P 4  is not found to be expressed in CGR8 and ES-D3 
mESCs  [40] . LPA 1–3,5  have been described in R1 mESCs 
 [39, 41] . Both LPA and S1P are positive regulators of 
mESC proliferation with data showing that LPA increas-
es the mESC proliferation rate  [41]  and that antagonists 
of S1P 1–2  inhibit basal mESC proliferation  [40] . In mESCs, 
the main pathway allowing maintenance of pluripotency 
appears to be through the activation of the JAK/STAT3 
pathway, leading to the transcription of self-renewal 
genes [for review, see  42 ]. Although demonstrated in oth-
er cell types  [43, 44] , stimulation of STAT3 by either LPA 
or S1P in mESCs has not yet been described. However, 
Todorova et al.  [41]  recently demonstrated that LPA in-
duces mESC proliferation through the PLC/calcium mo-
bilisation-induced expression of  c-myc.  As both LPA and 
S1P stimulate ERK1/2 phosphorylation  [40, 45] , a path-
way involved in mESC proliferation but also differentia-
tion  [42, 46] , these bioactive lipids can also potentially be 
regulators of mESC differentiation. Indeed, in parallel to 
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  Fig. 1.  General signalling pathways regu-
lated by S1P and LPA. Association of S1P 
and LPA receptors with G-protein families 
and the general signalling pathways regu-
lated are indicated. 
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its effect on proliferation, S1P promotes mESC-embryoid 
body (EB) differentiation towards cardiomyocytes  [47] . 
However, ERK1/2 activation by LPA induces the expres-
sion of the early gene  c-fos  which would suggest a role in 
maintenance rather than in differentiation  [45] . JNK1/2 
phosphorylation is also stimulated by LPA, yet its bio-
logical significance remains to be characterised  [45] . 
Since pharmacological tools for blocking/stimulating 
specific aspects of lysophospholipid signalling are only 
now becoming commercially available, little is currently 
known of LPA/S1P receptor subtype-specific effects in 
mESCs. Yet activation of the ERK1/2 pathway by S1P 
seems to be mediated by S1P 5 /G i  and not involved in the 
regulation of basal mESC proliferation  [40] .

  Endogenous sphingolipid metabolism is likely to play 
a role in ESC maintenance and differentiation. Ceramide 
is a precursor of sphingosine and its levels are closely re-
lated to those of S1P. Ceramide induces the binding of 
prostate apoptosis response protein 4 (PAR-4) to the 
atypical protein kinase C  �   [48] , an effect responsible for 
ceramide-induced apoptosis in cells showing elevated 
levels of PAR-4. As S1P antagonises ceramide-induced 
apoptosis  [49] , it is likely to protect any cell type with high 
levels of PAR-4 from ceramide-induced apoptosis  [50] . In 
mESCs, the endogenous levels of ceramide are low, in-
crease upon EB formation until the early phase of NS/PC 
differentiation and finally decrease during the following 
steps of neural differentiation  [48] . Furthermore, there is 
an asymmetric distribution of PAR-4 and endogenous 
ceramide levels in cells within EBs, with PAR-4 being 
more expressed within the ESC of the EBs  [48] . This re-
strictive partitioning suggests a specificity of apoptosis 
by ceramide on ESCs while the NS/PCs further prolifer-
ate or differentiate  [48] , which, as a consequence, reduces 
the amount of ESCs and enriches EBs in NS/PCs  [51] . EBs 
and neurospheres are often considered a better source of 
cells than undifferentiated ESCs for stem cell engraft-
ment, as they have less potential to induce the formation 
of teratomas, due to their reduced differentiation poten-
tial. However, the inoculation of EBs or neurospheres in 
vivo can always be contaminated by less committed cells. 
Thus, a selective-induced apoptosis of the less committed 
cells within EBs by ceramide has the potential of prevent-
ing teratoma formation and enriching EBs in NS/PCs 
when injected in vivo  [51] .

  LPA/S1P Signalling in Human Embryonic Stem Cells 
 Some of the most potent protocols for long-term hESC 

culture require the presence of a feeder cell layer of mouse 
embryonic fibroblasts (MEFs) in serum or Knockout 

Serum Replacement �  media (hESC media). hESCs and 
MEFs have different profiles of lipid content and basal 
sphingolipid metabolism, with sphingosine, S1P, sphin-
gomyelin and glucosylceramide found at lower levels in 
hESCs than in MEFs  [52] , suggesting that MEFs may re-
lease bioactive sphingolipids in the culture medium. This 
could account for some of the MEF-mediated effects on 
hESCs. hESCs are target cells of LPA and S1P, as their re-
ceptors LPA 1–5  and S1P 1–3  have been found to be expressed 
on various hESC lines  [53–55] . No biological effect of LPA 
on hESCs has been described so far  [53] , and contrary to 
what was described in mESCs, we have not observed 
modification of the intracellular calcium concentration 
in hESCs treated with LPA [Wong and Pebay, unpub-
lished data]. While S1P does not substantially prevent 
spontaneous differentiation of hESCs, its co-incubation 
with PDGF allows the long-term maintenance of hESCs 
in vitro in the absence of serum and in the presence of 
MEFs  [53] . This long-term maintenance of hESCs by S1P 
and PDGF is at least G i -, ERK1/2- and SphK-dependent 
 [53] . S1P and PDGF appear to act on the different levels 
of hESC maintenance: pluripotency, proliferation and 
survival, through the activation of specific signalling 
pathways  [53, 56] . Exposure to S1P results in sustained 
activation of the ERK1/2 pathway (at least 5 h) but not the 
PI3K/Akt pathway, while PDGF stimulates both ERK1/2 
and PI3K/Akt pathways  [56, 57] . Interestingly, although 
the Smad2/3 pathway appears to be essential to hESC 
maintenance in different culture systems  [58] , neither 
S1P nor PDGF modifies Smad2 phosphorylation even af-
ter 2 h of incubation  [56] . We have also found that S1P 
and PDGF stimulate the phosphorylation of p38 and, 
less potently, JNK1/2, although the physiological conse-
quences of this have not yet been established ( fig. 2 ). S1P 
stimulates proliferation and inhibits apoptosis and ne-
crosis of hESC when added to a MEF-conditioned me-
dium supplemented in basic fibroblast growth factor 
(bFGF)  [54] . As these data were obtained in the presence 
of bFGF, whether this effect is indeed independent of 
bFGF remains to be assessed. The sole application of S1P 
is anti-apoptotic to hESCs, an effect abolished by inhibi-
tion of the ERK1/2 or PI3K/Akt pathways, but not altered 
by the inhibition of the mammalian target of rapamycin 
 [56] . Since S1P does not activate the PI3K/Akt pathway in 
these cells, inhibition of this pathway leading to a pro-
survival effect is probably linked to its basal activation 
independent of S1P. Microarray analysis showed that S1P 
modifies the expression of a large number of genes 
( 1 1,000) in hESCs with an up-regulation of anti-apop-
totic, cell cycle progression and cell adhesion genes, and 
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down-regulation of pro-apoptotic genes, suggesting that 
S1P is an important factor in hESC maintenance  [57] . 
However, S1P also down-regulates pluripotency genes in 
particular  nanog  and  Oct-4   [57] , which suggests that S1P 
by itself is not sufficient to maintain hESCs undifferenti-
ated. In an attempt to identify compounds within hESC 
media that benefit hESC maintenance, Garcia-Gonzalo 
and Belmonte  [59]  identified that albumin-associated lip-
ids present in media stimulate hESC renewal, yet did not 
observe the obvious effect of either LPA or S1P on hESCs, 
which confirms our findings that sole application of S1P 
or LPA does not maintain hESCs in culture  [53] .

  From the studies discussed above it is clear that LPA 
and S1P have different effects on mouse and human ESCs. 
This is not surprising as the signalling pathways involved 
in maintenance or differentiation in both cells are differ-
ent. Indeed, in both cell types S1P stimulates the ERK1/2 
pathway, a signalling pathway generally involved in the 
differentiation of mESCs and in the maintenance of 
hESCs. Whether this reflects a variation between species 
or a difference in the cells used to generate ESC lines 
needs to be further determined.

  Ceramide, while not a lysophospholipid, is a precursor 
to S1P and has been observed to have effects on hESCs, 
although the true role of this lipid in hESC regulation re-
mains somewhat controversial. Indeed, as is observed in 
the mouse, undifferentiated hESCs within EBs are sensi-
tive to ceramide and undergo apoptosis following incu-
bation with ceramide  [51] . Another recent study showed, 
however, that colonies of undifferentiated hESCs are re-

sistant to ceramide-induced apoptosis while more differ-
entiated hESCs within the colonies are not  [60] . Indeed, 
the authors of this latter study exploited this characteris-
tic to successfully maintain hESCs in culture by adding 
ceramide  [60] . Thus, in 2 different assays using hESCs, 
the sensitivity towards ceramide appeared to be different. 
These contradictory results might be due to the different 
culture systems used in these studies, and it is tempting 
to speculate that it may reflect a variation in ceramide 
metabolism, including cellular SphK activity, depending 
on the environment in which hESCs are cultivated.

  Induced Pluripotent Stem Cells 
 In 2006, a novel technology was developed whereby 

4–6 genes are introduced into an adult somatic cell re-
sulting in its reprogramming into an ‘embryonic-like’ or 
pluripotent cell, named induced pluripotent stem cell 
(iPS)  [61–66] . Derivation of human iPS from diseased 
cells allows the generation of hESC-like cells, without 
having to derive hESCs from fertilised oocytes or clon-
ing. As iPS can be generated from biopsies, these cells 
open new avenues to study diseases, and overcome rejec-
tion if injected into the source patients. In theory, ESCs 
and iPSs are able to differentiate into all cell types of the 
body. For this reason, they generate great hope for human 
therapy/regenerative medicine, as well as being useful as 
a human cell model for drug discovery. Our data indicate 
that iPSs express the mRNA for S1P 1,3  and LPA 1–4 , which 
differs from hESC expression ( fig. 3 ). This might suggest 
different roles of S1P and LPA in these cells than in hESCs 

S1P PDGF

Control 5 20 120 5 20 120
S1P +
PDGF

JNK1/2

p38

�-Tubulin

S1P

PDGF

U0126

LY294002

JNK1/2

p38

�-Tubulin

a

b – + – + + +

– – + + + +

– – – – + –
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  Fig. 2.  S1P and PDGF induce the phosphorylation of JNK1/2 and 
p38 in hESC (n  1 3), in an ERK1/2-dependent manner.  a  S1P (10 
 �  M ) and PDGF (20 ng/ml) stimulate JNK1/2 and p38 phosphory-
lation in hESC. 5, 20, 120 = Time of activation in minutes.  b  Co-
incubation of S1P + PDGF (20 min) induces phosphorylation of 

JNK1/2 and p38 in hESC. JNK1/2 and p38 phosphorylation are 
regulated by ERK1/2 as U0126 reduces JNK and p38 phosphoryla-
tion induced by S1P/PDGF. The membranes were stripped and 
re-blotted with  � -tubulin as a loading control. 



 Stem Cell Maintenance and Neural 
Differentiation by LPA and S1P 

Neurosignals 2009;17:242–254 247

or be a consequence of a non-total reprogramming of fi-
broblasts into iPSs. However, their biological effects in 
iPSs have not yet been investigated. These data also indi-
cate phenotypic variation between iPSs and hESCs.

  LPA/S1P Signalling in Neural Stem/Progenitor and 

Oligodendrocyte Progenitor Cells 

 LPA/S1P Receptor Expression in Neural Stem/
Progenitor and Oligodendrocyte Progenitor Cells 
 Neural Stem/Progenitor Cells 
 S1P and LPA receptors are expressed in neuroblasts 

and NS/PCs and both ligands display a range of effects on 
these cells. It seems, however, that receptor expression 
varies between species, developmental stage and origin
of the NS/PCs. Rat embryonic hippocampal NS/PCs ex-
press S1P 1–3,5  and undetectable levels of S1P 4   [67]  and im-
mortalised rat embryonic hippocampal progenitor H19-
7 cells express LPA 1,4   [68] . Mouse and rat embryonic 
forebrain NS/PCs express all 5 S1P receptors (S1P 1–5 ), al-
though quantitative PCR showed some variation in the 
expression of these receptors  [69, 70] . Indeed, mouse em-
bryonic forebrain NS/PCs predominantly express S1P 1,2 , 
lower levels of S1P 3  and weak levels of S1P 4,5   [70] , while 
rat embryonic forebrain NS/PCs predominantly express 
S1P 1 , lower levels of S1P 2,4  and weak levels of S1P 3,5   [69] . 
Rat embryonic forebrain NS/PCs also express LPA 2 1 1,3 , 

but no data are available on the expression of other LPA 
receptors  [69] . Seven-day postnatal mouse forebrain NS/
PCs express LPA 1–3   [71] . In the human, hESC-derived 
NS/PCs express LPA 1–5  and S1P 1,3  ( fig. 4 a), although their 
relative abundance is not yet known  [55] , and hESC-de-
rived neuroepithelial cell line (NEP) – a stable line that 
resembles hESC-derived NS/PCs and grows under ad-
herent conditions  [72]  – expresses LPA 1,2,4 1 5 , S1P 1–3 1 5  and 
undetectable levels of LPA 3  and S1P 4   [73] .

  From these studies it is clear that differential receptor 
expression can partially explain the variation in cellular 
effect of LPA or S1P on NS/PCs, as these different recep-
tors signal through different G proteins. In particular, 
LPA 4,5  are hypothesised to stimulate G s  as they stimulate 
adenylate cyclase signalling in some cell types  [38, 74, 75] , 
thus their absence would potentially remove the possibil-
ity of G s /cAMP production. The absence of other recep-
tor subtypes might have fewer consequences on cell sig-
nalling. For instance, S1P 4  or LPA 3  show redundancy of 
signalling with other receptors; thus, their absence (as 
observed in human NEP) is likely not to be associated 
with a lack of signalling.

  Oligodendrocyte Progenitor Cells 
 As observed in NS/PCs, data obtained in OPCs sug-

gest variation in receptor expression between species. 
LPA 1  and S1P 5 1 1–3  are expressed by embryonic and adult 
rodent OPCs  [76–79] , while human fetal OPCs express 

M + – + M + – + – + – M– M + – + + + – + –– –

S1P1 S1P2 S1P3 S1P4 S1P5 LPA1 LPA2 LPA3 LPA4 LPA5
a b

  Fig. 3.  S1P and LPA receptor mRNA are expressed in human iPS. 
RT-PCR for S1P (   a ) and LPA ( b ) receptors with (+) or without (–) 
RT in human iPS. M = DNA ladder. Expected sizes: S1P 1  480 bp; 
S1P 2  502 bp; S1P 3  505 bp; S1P 4  701 bp; S1P 5  460 bp; LPA 1  621 bp; 

LPA 2  775 bp; LPA 3  482 bp; LPA 4  318 bp, and LPA 5  185 bp. RT-PCR 
were performed as described by Pebay et al.  [53]  and Dottori et al. 
 [55] . Data are representative results of independent experiments 
performed on 2 different iPS cell lines: hiPS1 and ESCL4.         
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high levels of S1P 1 , low levels of S1P 5 1 3  and undetectable 
levels of S1P 4   [80] . LPA receptor expression in human 
OPCs has not yet been described. In a mESC-derived cell 
line hypothesised to be OPCs, due to the expression of the 
marker A2B5 (which is however also found on other glial 
cells), S1P 1  was also shown to be expressed  [50] .

  LPA/S1P Signalling in the Developing CNS 
 In the developing central and peripheral nervous sys-

tems, LPA and S1P have been shown to target endothelial 
cells, microglia  [81, 82] , astrocytes  [83–87] , oligodendro-
cytes  [88] , Schwann cells  [89] , neurons  [90]  and stem cells 
 [30, 53, 55, 91] . Studies suggest that during development, 
LPA stimulates neuronal differentiation of embryonic cor-
tical neuroblasts, neural progenitors and early cortical 
neurons  [68, 71, 92, 93] . LPA can be produced and released 
by post-mitotic neurons, oligodendrocytes  [77, 94]  and 
Schwann cells  [91, 95] , and it is now hypothesised that LPA 
is an important factor for cortical neurogenesis by ‘guid-
ing’ the migration and differentiation of neuroblasts, then 
neurons, from the ventricular zone to their final destina-

tion during development  [92, 93, 95, 96] . Data also suggest 
a local synthesis and release of S1P within the CNS. For 
example, cerebellar astrocytes have been shown to release 
S1P in response to basic fibroblast growth factor (bFGF), 
NS/PCs express SphK1 and SphK2, and glutamate induces 
the release of high levels of S1P by OPCs  [67, 78, 97] . Little 
is known of the effect of S1P in neuroblasts and NS/PCs, 
and reports on the effect of LPA often appear contradic-
tory. Indeed, effects vary between NS/PCs of embryonic or 
adult origin, and between species, which might either re-
flect fundamental differences in LPA signalling between 
species or may simply be due to the examination of differ-
ent cell populations and/or variation in the LPA concen-
tration used. Yet, the effects of S1P and LPA on neural pro-
genitor cells have been described on differentiation, pro-
liferation, morphological changes and migration.

  Neuroblasts 
 LPA stimulates neuronal differentiation of mouse ce-

rebral cortex neuroblasts, NS/PCs and early neurons, 
possibly via LPA 1 /G i  proteins  [92, 93, 95] . Proliferation of 
mouse cerebral cortex neuroblasts in response to LPA 
was observed in vitro but not retrieved in vivo    [92] . Mor-
phological rearrangements are also induced by LPA. 
These include cell rounding, membrane retraction, for-
mation of retraction fibres and cluster compaction  [92, 
95, 98, 99] , through LPA 1 -mediated Rho activation  [95] . 
Notably, no comparable effects were observed in these 
cells with S1P  [95] . Interestingly, LPA also depolarises 
mouse embryonic cortical neuroblasts by increasing ion-
ic conductances  [100] , which in turn activates the electri-
cal responses preceding GABA and  L -glutamate signal-
ling  [100] .

  Neural Stem/Progenitor Cells 
 NS/PCs can be maintained in culture as neurospheres 

in the presence of bFGF and EGF  [101, 102] . Further dif-
ferentiation of NS/PCs into mature neurons and glial cell 
types can be achieved by growth of the NS/PCs on lam-
inin or fibronectin substrates, respectively, and culturing 
without growth factors. LPA inhibits mouse embryonic 
cortical NS/PC growth as neurospheres, at least partially 
via transiently increasing cell death  [93] . Yet, in neuro-
spheres from 7-day postnatal mice, LPA induces clonal 
generation of neurospheres through activation of LPA 1 , 
supports neurosphere growth and proliferation through 
LPA 1,3   [71] , and in rat cortical NS/PCs, LPA stimulates 
( ! 1  �  M ) or inhibits (at concentrations of  1 1  �  M ) prolif-
eration, while also promoting neuronal differentiation 
and migration  [103] . However, in human NS/PCs derived 
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  Fig. 4.  S1P receptor mRNA expressed in hESC-derived NS/PC 
and S1P does not inhibit their neuronal differentiation.    a  RT-PCR 
for S1P receptors with (+) or without (–) RT in hESC-derived neu-
rospheres. M = DNA ladder; C = control PCR. Expected sizes as 
in the legend to figure 3. Data are representative results of at least 
3 independent experiments.  b  Quantification of neuron-forming 
neurospheres from hESC-derived neurospheres plated onto lam-
inin and incubated in the absence (control) or in the presence of 
S1P (10                          �  M ) for 5 days. Quantification was done by counting the 
number of spheres from which neuronal outgrowth was observ-
able. In some cases, neurospheres failed to attach, independent of 
the treatments, and these floating neurospheres were not taken 
into consideration for quantification. Data are expressed as the 
means  8  SEM from at least 3 independent experiments. p  1  0.05 
(n = 3) by t test.     
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from hESCs, pathological concentrations of LPA (10  �  M ) 
inhibits neurosphere formation without modifying pro-
liferation or apoptosis  [55] , while LPA and S1P ( ! 0.1  �  M ) 
stimulate cell growth of NEP probably through G i  trans-
activation of EGF and activation of the ERK1/2 pathway 
 [73] . In rat hippocampal NS/PCs, LPA does not affect 
proliferation, probably due to the fact that it does not ac-
tivate ERK1/2 in these cells. LPA does, however, induce 
morphological rearrangements in these cells, an effect 
dependent on Rho-associated kinases  [67] , while S1P 
stimulates their proliferation through G i -dependent 
ERK1/2 activation, increases telomerase activity, induces 
Rho-mediated morphological changes, and increases ex-
pression of bFGF and  Egr-1  (early growth response-1) 
 [67] . Furthermore, LPA promotes neuronal differentia-
tion of mouse embryonic cortical NS/PCs  [93]  and of the 
immortalised embryonic hippocampal progenitor cell 
line H19-7, possibly through G s  and cAMP signalling 
 [68] . LPA, however, inhibits hESC-derived NS/PC neuro-
nal differentiation, while maintaining glial differentia-
tion  [55] , a reversible, receptor-mediated effect (at least by 
LPA 1/3 ) that is dependent on PI3K/Akt and Rho/ROCK 
 [55] . In NEP, in addition to stimulating cell growth, LPA 
and S1P also induce reversible cell rounding through 
Rho/ROCK  [73] , while no obvious effect of S1P on hESC-
derived NS/PC differentiation was observed ( fig. 4 b). 
Thus, although similar, hESC-derived NS/PCs and NEP 
do not show similar responses to LPA and S1P. Further 
work is required to examine if these apparent differences 
are real, or are simply reflective of the different condi-
tions under which these studies have been performed.

  LPA/S1P Signalling in Oligodendrocyte Progenitors 
 One essential aspect of oligodendrocyte maturation 

is the formation of processes involved in the migration 
of OPCs and the myelination of neurons  [104] . LPA and 
S1P both target OPCs and inhibit this aspect of oligo-
dendrocyte maturation. Through the activation of the 
Rho pathway by LPA 1  and S1P 5 , respectively, LPA and 
S1P induce process retraction  [76, 77] . LPA and S1P ap-
pear to activate different signalling pathways in OPCs 
as (i) only S1P induces membrane ruffling  [76] , and (ii) 
S1P inhibits the integrin-driven migration of OPCs 
through S1P 5 /Rho  [78] . S1P 5  is preferentially expressed 
in the oligodendrocytic lineage  [79]  and is responsible 
for the S1P inhibition of rodent OPC migration  [78] . In 
human OPCs, the S1P analogue FTY720 regulates S1P 
receptor expression, leading to temporally regulated bi-
ological effects: FTY720 first induces process retraction 
and inhibition of differentiation through the S1P 5,3 /Rho 

pathway, and secondly stimulates process extension, cell 
survival in a S1P 1 /ERK1/2-dependent manner  [80, 105, 
106] .

  Studies also indicate cross-talk between neurotrophin 
and S1P signalling in OPCs. Neurotrophin-3 (NT-3) 
stimulates the proliferation and survival of OPCs via the 
phosphorylation of cAMP-response element-binding 
protein (CREB)  [107] , a signalling pathway that is par-
tially controlled by SphK  [94] . S1P also stimulates CREB 
phosphorylation, an effect mediated by the protein ki-
nase C/ERK pathway  [94] . As dihydro-S1P mimics the 
effect of S1P in OPCs, it was proposed that S1P acts 
through the binding of its specific receptors after its re-
lease from cells following NT-3 activation of SphK1  [94] . 
Lastly, Bieberich and colleagues identified a small sub-
population of NS/PCs, named NPC2 cells, that have high 
levels of PAR-4. Notably, S1P rescues these cells (which 
may be OPCs) from ceramide-induced apoptosis, prob-
ably through S1P 1   [50]  providing further evidence that 
the balance between ceramide and S1P may be an impor-
tant influence on stem cell biology and differentiation 
protocols  [50, 51, 108–110] .

  LPA/S1P Signalling in the Injured CNS through 
Neural Stem/Progenitor Cells 
 To date, little has been examined regarding the effects 

of LPA and S1P in the adult CNS, despite data strongly 
suggesting that neural responses to LPA and S1P stimuli 
are likely to significantly influence the amount of ensu-
ing damage or repair. Following events which damage the 
blood-brain barrier, ‘LPA-like activity’ is increased with-
in the cerebrospinal fluid and levels of LPA within the 
CNS are hypothesised to increase up to 10  �  M   [91, 111–
113] . Normally undetectable, levels of the LPA-producing 
enzyme autotaxin increase in astrocytes neighbouring a 
lesion of the adult brain  [114] , supporting a role for LPA 
in brain injury responses. LPA injections into mouse 
brain induce astrocyte reactivity at the site of the injury 
 [115] , while in the spinal cord following trauma, LPA in-
duces neuropathic pain and demyelination  [116–121] . 
LPA can stimulate astrocytic proliferation  [87, 111]  and, 
depending on its concentration, it can promote death of 
hippocampal neurons by apoptosis (1  �  M ) or by necrosis 
(10  �  M )  [122] . Moreover, LPA mediates microglial activa-
tion  [81]  and is cytotoxic to the neuromicrovascular en-
dothelium  [123] . Furthermore, data suggest an important 
role of LPA and S1P on embryonic and adult NS/PC dif-
ferentiation following trauma. For example, our studies 
with embryonic derived-NS/PCs show that a pathologi-
cal concentration of LPA (10  �  M ) inhibits neuronal dif-
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ferentiation of human NS/PCs, while lower concentra-
tions do not  [55] . This suggests that the presence of high 
levels of LPA within the CNS following an injury inhibits 
endogenous neuronal regeneration and maintains glio-
genesis. S1P levels also increase in the CNS following spi-
nal cord injury, brain injury or disruption of the blood-
brain barrier  [69, 70, 113, 124] . Following brain or spinal 
cord injury, S1P signalling is reported to mediate migra-
tion of NS/PCs towards the lesion sites  [69, 70] . Indeed, 
S1P is a potent chemoattractant of NS/PCs and induces 
the migration of endogenous NS/PCs towards brain-in-
jury sites  [70] , and of transplanted NS/PCs toward spinal 
cord injury sites via G i  and the Rho pathway  [69] . Exog-
enous NS/PC migration is also induced by LPA but to a 
lesser extent  [69] .

  LPA and S1P are also modulators of various cancers 
and can influence cancer stem cell biology. In humans, 
the CD133-positive cancer stem cells which represent 
a subpopulation of cells within glioblastoma  [125]  are 
highly tumorigenic, show resistance to chemotherapy 
 [126]  and are responsive to LPA and S1P. These cells ex-
press all S1P receptors and at least LPA 1–3 , with high lev-
els of LPA 1,3  and S1P 1,2,4  in vitro   and high levels of LPA 1  
and S1P 1,2  in vivo, a variation in receptor expression that 
might be due to a paracrine regulation within the tumour 
 [125] . Notably, both SphK1 and autotaxin are elevated in 
glioblastomas  [127–131] , and their products, S1P and 
LPA, have been shown to stimulate migration of these 
cells  [131–133] , which is likely to be responsible, at least in 
part, for the tumour invasiveness of the cancer stem cells 
 [125] .

  Conclusions 

 While still an emerging area of research, there is now 
considerable evidence pointing to important roles of ly-
sophospholipids in the regulation of stem cell biology. As 
described above, LPA and S1P have been shown to modu-
late proliferation, survival, differentiation and migration 
of embryonic and neural stem cells. This diverse array of 
biological effects clearly illustrates the complexity of ly-
sophospholipid signalling. Indeed, these lysophospholip-
ids can act both intracellularly and extracellularly, can 
bind to multiple receptors coupled to various G proteins 
to directly activate or inhibit various signalling pathways, 
and also cross-talk with other cytokine and growth factor 
receptors. It is apparent that stem and progenitor cells 
express different lysophospholipid receptors not only de-
pending on their source of origin, but also on the condi-
tions used for their isolation and/or culture. This illus-
trates the difficult task ahead of transposing to the hu-
man system the data obtained in both developing or adult 
animals and cultured stem and progenitor cells.
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