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Abstract Almost 25 centuries ago, Hippocrates, the father

of medicine, proclaimed “Let food be thy medicine and

medicine be thy food.” Exploring the association between

diet and health continues today. For example, we now know

that as many as 35% of all cancers can be prevented by

dietary changes. Carcinogenesis is a multistep process

involving the transformation, survival, proliferation, inva-

sion, angiogenesis, and metastasis of the tumor and may

take up to 30 years. The pathways associated with this

process have been linked to chronic inflammation, a major

mediator of tumor progression. The human body consists of

about 13 trillion cells, almost all of which are turned over

within 100 days, indicating that 70,000 cells undergo

apoptosis every minute. Thus, apoptosis/cell death is a

normal physiological process, and it is rare that a lack of

apoptosis kills the patient. Almost 90% of all deaths due to

cancer are linked to metastasis of the tumor. How our diet can

prevent cancer is the focus of this review. Specifically, we will

discuss how nutraceuticals, such as allicin, apigenin, berberine,

butein, caffeic acid, capsaicin, catechin gallate, celastrol,

curcumin, epigallocatechin gallate, fisetin, flavopiridol, gam-

bogic acid, genistein, plumbagin, quercetin, resveratrol, san-

guinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and

zerumbone, derived from spices, legumes, fruits, nuts, and

vegetables, can modulate inflammatory pathways and thus

affect the survival, proliferation, invasion, angiogenesis, and

metastasis of the tumor. Various cell signaling pathways that are

modulated by these agents will also be discussed.
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1 Introduction

Tumor formation in humans is a multistage process

involving a series of events and generally occurs over an

extended period. During this process, accumulation of

genetic and epigenetic alterations leads to the progressive

transformation of a normal cell into a malignant cell.

Cancer cells acquire several abilities that most healthy cells

do not possess: they become resistant to growth inhibition,

proliferate without dependence on growth factors, replicate

without limit, evade apoptosis, and invade, metastasize, and

support angiogenesis [1]. Although the mechanisms by

which cancer cells acquire these capabilities vary consider-

ably among the various types of tumors, most of the

physiological changes associated with these mechanisms

involve alteration of signal transduction pathways. During

the past quarter century, researchers’ understanding of the

proteins involved in the various steps of tumor cell develop-

ment has grown, providing opportunities for identifying new

targets for therapeutic development (Fig. 1).

Despite the development of these new therapies, however,

cancer remains the second-leading cause of death in the USA

and accounts for nearly one in every four deaths. The

American Cancer Society estimates that 569,490 Americans

will die of cancer in 2010 (www.cancer.org/docroot/stt/stt_0.

asp). It is now believed that 90–95% of all cancers are

attributed to lifestyle, with the remaining 5–10% attributed to

faulty genes [2]. In 2010, for example, about 171,000 cancer
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deaths will be caused by tobacco use alone. In addition, one

third of all cancer deaths in America are attributed to poor

nutrition, physical inactivity, overweight, and obesity [3].

Multiple epidemiological and animal studies have shown

that consumption of foods rich in fruits and vegetables

decreased the occurrence of cancers [4–8]. Almost 30 years

ago, Professors Doll and Peto, after conducting an

epidemiological study for the World Health Organization,

suggested that appropriate nutrition could prevent approxi-

mately 35% of cancer deaths and that up to 90% of certain

cancers could be avoided by dietary enhancement [9, 10]. A

recent elegant review by Chan and Giovannucci [11]

provided an overview of the epidemiological evidence

supporting the roles of diet, lifestyle, and medication in
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Fig. 1 Progression of tumor cell

development involves survival,

proliferation, invasion, angio-

genesis, and metastasis. NF-κB

activation regulates tumor cell

development by targeting one or

more steps in the pathway.

Carcinogens activate NF-κB,

whereas nutraceuticals inhibit

NF-κB
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reducing the risk of colorectal cancer. Similarly, a wealth of

information is available, implicating dietary agents in

cancers of the skin [12], prostate [13, 14], breast [15], lung

[16, 17], and gastrointestinal tract [18]. These studies suggest

that much of the suffering and death from cancer could be

prevented by consuming a healthy diet, reducing tobacco

use, performing regular physical activity, and maintaining an

optimal body weight.

It is now clear that cancerous phenotypes result from the

dysregulation of more than 500 genes at multiple steps in cell

signaling pathways [19, 20]. This indicates that inhibition of

a single gene product or cell signaling pathway is unlikely to

prevent or treat cancer. However, most current anticancer

therapies are based on the modulation of a single target. The

ineffective, unsafe, and expensive monotargeted therapies

have led to a lack of faith in these approaches. Therefore, the

current paradigm for cancer treatment is either to combine

several monotargeted drugs or to design drugs that modulate

multiple targets. As a result, pharmaceutical companies have

been increasingly interested in developing multitargeted

therapies. Many plant-derived dietary agents, called nutra-

ceuticals, have multitargeting properties. In addition, these

products are less expensive, safer, and more readily available

than are synthetic agents [19]. Some nutraceuticals are

currently in clinical trials (www.clinicaltrials.gov), but others

have already been approved for human use [21–23].

A nutraceutical (a term formed by combining the words

“nutrition” and “pharmaceutical”) is simply any substance

considered to be a food or part of a food that provides

medical and health benefits [23, 24]. The term nutraceutical

was coined by Stephen DeFelice in 1989 [23, 25]. During

the past decade, a number of nutraceuticals have been

identified from natural sources, some of which are shown in

Fig. 2. Nutraceuticals are chemically diverse (Fig. 3) and

target various steps in tumor cell development (Fig. 4;

Table 1).

Because of the vast number of nutraceuticals identified to

date, we cannot discuss all of them.Wewill therefore focus on

some of the more promising nutraceuticals in this review,

including allicin, apigenin, berberine, butein, caffeic acid,

capsaicin, catechin gallate, celastrol, curcumin, epigallocate-

chin gallate (EGCG), fisetin, flavopiridol, gambogic acid,

genistein, plumbagin, quercetin, resveratrol, sanguinarine,

silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone,

in the context of five specific processes of tumorigenesis:

survival, proliferation, invasion, angiogenesis, and metastasis.

Since chronic inflammation is one of the major mediators of

tumor progression and nuclear factor-κB (NF-κB) is one of

the major inflammatory transcription factors involved in the

regulation of various steps of tumor cell development, we will

also discuss how nutraceuticals can modulate NF-κB and can

thus affect survival, proliferation, invasion, angiogenesis, and

metastasis of the tumor.

2 Regulation of inflammatory pathways

by nutraceuticals

During the past two decades, much evidence has emerged,

indicating that, at the molecular level, most chronic diseases,

including cancer, are caused by a dysregulated inflammatory

response [26]. One of the most important links between

inflammation and cancer is proinflammatory transcription

factor NF-κB. NF-κB is a ubiquitous and evolutionarily

conserved transcription factor that regulates the expression

of genes involved in the transformation, survival, prolifera-

tion, invasion, angiogenesis, and metastasis of tumor cells

(Fig. 1).

The first clue linking NF-κB to cancer was the

realization that c-rel, which is the cellular homolog of the

v-rel oncogene, encodes a NF-κB subunit and that all of

these proteins share the same DNA binding domain, the Rel

homology domain [27]. Constitutively active NF-κB has

now been identified in tissues of most cancer patients,

including those with leukemia and lymphoma and cancers

of the prostate, breast, oral cavity, liver, pancreas, colon,

and ovary [26].

In its resting stage, NF-κB resides in the cytoplasm as

a heterotrimer consisting of p50, p65, and the inhibitory

subunit IκBα [28]. On activation, the IκBα protein

undergoes phosphorylation, ubiquitination, and degrada-

tion. p50 and p65 are then released, are translocated to the

nucleus, bind specific DNA sequences present in the

promoters of various genes, and initiate their transcription.

A number of proteins are involved in the NF-κB signaling

pathway. Because of the relevance of the NF-κB signaling

pathway in cancer, this pathway has been proven to be an

attractive target for therapeutic development. More than

700 inhibitors of the NF-κB activation pathway have been

reported, including antioxidants, peptides, small RNA/

DNA, microbial and viral proteins, small molecules, and

engineered dominant-negative or constitutively active

polypeptides [29].

During the past two decades, our laboratory and other

researchers’ laboratories have shown that nutraceuticals can

exert anticancer activity by suppressing the NF-κB signaling

pathway. Curcumin, derived from the ancient Indian medicine

turmeric, is a widely studied nutraceutical. When human

colonic epithelial cells were pretreated with curcumin,

inhibition in tumor necrosis factor (TNF)-α-induced cyclo-

oxygenase 2 (COX-2) gene transcription and NF-κB activa-

tion was observed [30]. Curcumin inhibited IκB degradation

through downregulation of NF-κB-inducing kinase and IκB

kinase (IKK). Curcumin has also been reported to suppress

the TNF-α-induced nuclear translocation and DNA binding

of NF-κB in a human myeloid leukemia cell line through

suppression of IκBα phosphorylation and subsequent deg-

radation [31]. Curcumin has been shown to inhibit IκBα

Cancer Metastasis Rev
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Fig. 2 Common sources of nutraceuticals, which include spices, legumes, fruits, nuts, and vegetables
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phosphorylation in human multiple myeloma cells [32] and

murine melanoma cells [33] through suppression of IKK

activity, which contributed to its antiproliferative, proapop-

totic, and antimetastatic activities. Recently, we showed that

curcumin has the potential to sensitize human colorectal

cancer to capecitabine by modulation of cyclin-D1, COX-2,

matrix metalloproteinase (MMP)-9, vascular endothelial

growth factor (VEGF), and CXC chemokine receptor 4

(CXCR4) expression in an orthotopic mouse model. This

was accompanied by inhibition in NF-κB activation [34].

Guggulsterone, obtained from the Commiphora mukul

tree, suppresses NF-κB activation through inhibition of

IKK-dependent IκBα degradation [35]. Resveratrol, a

phytoalexin present in grapes, was shown to induce

apoptosis and suppress constitutive NF-κB in rat and

human pancreatic carcinoma cell lines [36]. Mammary

tumors isolated from rats treated with resveratrol displayed

reduced expression of COX-2 and MMP-9, accompanied

by reduced NF-κB activation [37]. Treatment of human

breast cancer MCF-7 cells with resveratrol also suppressed

NF-κB activation and cell proliferation [37]. Capsaicin, a

major ingredient of the pepper, has shown chemopreventive

and chemoprotective effects [38–42]. Topical application of

capsaicin has been associated with inhibition in phorbol 12-

myristate 13-acetate (PMA)-induced mouse skin tumor

formation and NF-κB activation [43]. The inhibitory effect

of capsaicin on NF-κB activation was attributed to
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Table 1 Sources of nutraceuticals and their molecular target linked to cancer

Nutraceuticals (source) Molecular target

ACA (blue ginger, Alpina galangal) Survivin, IAP-1/-2, XIAP, Bcl-2, Bcl-xL, Bfl-1/A1, FLIP, cyclin-D1, c-Myc [95]

Allicin (garlic, Allium sativum) ICAM-1, FGF2, VEGF [182]

Anacardic acid (cashew, Semecarpus anacardium) Bcl-2, Bcl-xL, cFLIP, cIAP-1, survivin, cyclin-D1, COX-2 [52]

Apigenin (parsley, Petroselinum crispum) ICAM-1, HIF-1, VEGF [231, 270]

Berberine (barberry, Berberis vulgaris) Bcl-2, Bcl-xL, cyclin-D1, c-Myc, FAK, IKK, NF-κB, u-PA, MMP-2/-9 [59, 60,

271]

Butein (cashew, Semecarpus anacardium) IAP-2, Bcl-2, Bcl-xL, cyclin-D1, c-Myc, ERK-1/-2, NF-κB [188, 189]

Caffeic acid (coffee, Coffea arabica) MMP-9 [190]

Capsaicin (chili pepper, Capsicum) Bcl-2, Bcl-xL, survivin, E2F, PI3K/AKT/Rac1, VEGF, p38MAPK, p125(FAK),

AKT [86, 150, 191, 233]

Catechin gallate (red pine, Pinus resinosa) MMP-2/-9 [194]

Celastrol (Chinese thunder of god vine, Tripterygium

wilfordii)

Bcl-2, Bcl-xL, survivin, cyclin-B1, p21, p27, p38MAPK, FAK [79, 135, 195]

Curcumin (turmeric, Curcuma longa) IAP-1, Bcl-2, survivin, PAK1, cyclin-D1, VEGF, NF-κB, AP-1 [125, 234]

EGCG (green tea, Camellia sinensis) Bcl-2, Bcl-xL, Mcl-1, PI3K/AKT, Ras/ERK, JAK/STAT, NF-κB, AP-1, u-PA,

VEGF, ERK-1/-2 [82, 239, 272]

Evodiamine (Evodia fructus, Evodia spp.) Bcl-2, Bcl-xL, Mcl-1, cdc25c, cyclin-B1, cdc2, NF-κB, MMP-9 [96, 136]

Fisetin (smoke tree, Cotinus coggygria) TAK-1, COX-2, Wnt/EGFR/NF-κB, ERK-1/-2, MMP-2, u-PA, NF-κB [144, 204,

273]

Flavopiridol (Dysoxylum binectariferum) IAP-1, Bcl-2, survivin, CDKs, MMP-2/-9, c-erbB-2, HIF-1α, VEGF [61, 206, 241,

274]

Gambogic acid (gamboge tree, Garcinia hanburyi) Bcl-2, p53, p21, ATR, Chk-1, VEGFR2, c-Src, FAK, AKT [63, 137, 242]

Garcinol (kokum, Garcinia indica) Src, ERK, AKT, nicotinic receptor, cyclin-D3 [64, 275]

Genistein (soybeans, Glycine max) Bcl-2, Bcl-xL, ATM, Chk-1/-2, cdc25, NF-κB, AP-1, u-PA, VEGF, FGF-2, NF-κB,

AKT [83, 208, 245]

Indole-3-carbinol (broccoli, Brassica oleracea) p53, casp-8, E-cadherin, α-, β-, and γ- catenin [65, 210]

Noscapine (Papaveraceae, Papaver rhoeas) Bcl-2, COX-2 [97, 276]

Plumbagin (Plumbago, Plumbago europaea) NF-κB, Bcl-2 [91]

Quercetin (parsley, Petroselinum crispum) Bcl-xL, cyclin-D1, MMP-2/-9, VEGF, STAT-3 [214, 277]

Resveratrol (red grapes, Vitis vinifera) Survivin, NF-κB, MMP-2/-9, VEGF, FGF, MAPK [66, 215, 251]

Sanguinarine (bloodroot, Sanguinaria canadensis) Bcl-2, MMP-2/-9, VEGF, AKT [67, 69, 253]

Silibinin (milk thistle plant, Silybum marianum) p53, Bax, Apaf-1, casp-3, CDK-2/-4/-6, cyclin-D1/-D3/-E, p18, p21, p27,

MMP-2, u-PA, TIMP-2, NOS, COX, HIF-1α, VEGF [84, 130, 216, 254]

Sulforaphane (broccoli, Brassica oleracea italica) Rb-E2F-1, MMPs [133, 219]

Taxol (Pacific yew, Taxus brevifolia) VEGF [257]

γ-Tocotrienol (Palm, Nigella sativa) AKT, ERK, MMP-2/-9, TIMP-1/-2, HIF-1α, VEGF, ERK-1/-2 [220, 258]

Ursolic acid (rosemary, Rosmarinus officinalis) JNK, AKT, COX-2, cyclin-D1, NF-κB, MMP-9, VEGF, NO [148, 221, 259]

Vanillin (vanilla bean) MMP-9, HGF, PI3K/AKT, VEGF [260]

Zerumbone (wild ginger, Zingiber zerumbet) Bcl-2, cyclin-B1, cdc25c, cdc2, NF-κB, MMP-9 [81, 139, 223]

ACA acetoxychavicol acetate, AKT AKT8 virus oncogene cellular homolog, AP-1 activator protein 1, Apaf-1 apoptotic protease activating factor

1, ATM ataxia telangiectasia mutated, ATR ataxia telangiectasia and Rad3-related protein, Bax Bcl-2-associated X protein, Bcl-2 B cell lymphoma

2, Bcl-xL B cell lymphoma extra large, casp caspase, cdc25c cell division cycle 25 homolog c (Schizosaccharomyces pombe), CDK cyclin-

dependent kinase, Chk checkpoint kinase, c-Myc cellular v-myc myelocytomatosis viral oncogene homolog (avian), COX-2 cyclooxygenase 2,

E2F elongation 2 factor, EGCG epigallocatechin gallate, EGFR epidermal growth factor receptor, ERK extracellular signal-regulated kinase, FAK

focal adhesion kinase, FGF fibroblast growth factor, FLIP FLICE/caspase 8 inhibitory protein, HIF-1 hypoxia-inducible factor 1, HGF hepatocyte

growth factor, IAP inhibitor of apoptosis protein, ICAM-1 intercellular adhesion molecule 1, IKK IκB kinase, JAK Janus-activated kinase, JNK c-

Jun N-terminal kinase, MAPK mitogen-activated protein kinase, Mcl-1 myeloid cell leukemia 1, MMP matrix metalloproteinase, NF-κB nuclear

factor kappa B, NO nitric oxide, NOS nitric oxide synthase, PAK1 p21-activated kinase 1, PI3K phosphoinositide 3 kinase, Rac1 Ras-related C3

botulinum toxin substrate 1, Ras Rat sarcoma, Rb retinoblastoma protein, u-PA urokinase-type plasminogen activator, c-Src cellular Rous sarcoma

oncogene cellular homolog, STAT signal transducers and activators of transcription protein, TAK-1 TGF-β-activated kinase 1, TIMP tissue

inhibitor of metalloproteinases, VEGF vascular endothelial growth factor, VEGFR2 vascular endothelial growth factor receptor 2, Wnt wint, XIAP

X-chromosome-linked IAP
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blockage of IκBα degradation and NF-κB translocation

into the nucleus.

Caffeic acid phenethyl ester has been shown to suppress

NF-κB activation by suppressing the binding of the p50–

p65 complex directly to DNA [44], whereas both sangui-

narine and emodin act by blocking the degradation of

IκBα. Alkaloid sanguinarine can prevent phosphorylation

and degradation of IκBα in response to TNF, phorbol ester,

interleukin (IL)-1, or okadaic acid stimulation [45]. Similar

to sanguinarine, emodin inhibits TNF-dependent IκBα

degradation [46]. Recently, emodin was shown to oxidize

the redox-sensitive site on NF-κB and prevented NF-κB

binding to target DNA in HeLa cells, which was associated

with a reduction in tumor size [47].

EGCG, an antioxidant found in green tea, has been

shown to suppress malignant transformation in a 12-O-

tetradecanoylphorbol-13-acetate-stimulated mouse epider-

mal JB6 cell line, which is mediated by blocking NF-κB

activation [48]. EGCG treatment of human epidermal

keratinocytes resulted in significant inhibition of

ultraviolet-B-induced activation of IKKα, phosphorylation,

and subsequent degradation of IκBα and nuclear translo-

cation of p65 [49]. More recently, EGCG was found to

abrogate p300-induced p65 acetylation in vitro and in vivo,

to increase the level of cytosolic IκBα, and to suppress

TNF-α-induced NF-κB activation. Furthermore, EGCG

treatment inhibited the acetylation of p65 and the expres-

sion of NF-κB target genes in response to diverse stimuli

[50]. Another nutraceutical, gallic acid, obtained from

natural products such as gallnuts, sumac, oak bark, and

green tea, was recently reported to possess anti-histone

acetyltransferase activity, thus showing the potential to

downregulate NF-κB activation [51]. Anacardic acid,

derived from traditional medicinal plants, can also inhibit

NF-κB activation by inhibiting p65 acetylation [52].

Thus, nutraceuticals may block one or more steps in the

NF-κB signaling pathway, such as the inhibition of IKK

activity, IκBα phosphorylation, p65 nuclear translocation,

p65 acetylation, and p65 DNA binding. Some nutraceuticals

that have the potential to suppress NF-κB activation are

shown in Fig. 1. NF-κB can be activated by various

carcinogens, some of which are also shown in Fig. 1.

3 Regulation of tumor cell development

by nutraceuticals

3.1 Regulation of tumor cell survival by nutraceuticals

Under normal physiological conditions, the human body

maintains homeostasis by eliminating unwanted, damaged,

aged, and misplaced cells. Homeostasis is carried out in a

genetically programmed manner by a process referred to as

apoptosis (programmed cell death) [53–55]. Cancer cells

are able to evade apoptosis and grow in a rapid and

uncontrolled manner. One of the most important ways by

which cancer cells have gained this ability is through

mutation in the p53 tumor suppressor gene. Without a

functional p53 gene, cells lack the DNA-damage-sensing

capability that would normally induce the apoptotic

cascade. A complex set of proteins, including caspases,

proapoptotic and antiapoptotic B cell lymphoma (Bcl)-2

family proteins, cytochrome c, and apoptotic protease

activating factor (Apaf)-1, execute apoptosis either by an

intrinsic or extrinsic pathway. The intrinsic pathway is

mitochondria dependent, whereas the extrinsic pathway is

triggered by death receptors (DRs).

Some antiapoptotic proteins such as Bcl-2 and B cell

lymphoma extra large (Bcl-xL) [56] and survivin [57] are

overexpressed in a wide variety of cancers. Therefore,

selective downregulation of antiapoptotic proteins and

upregulation of proapoptotic proteins and p53 in cancer

cells offer promising therapeutic interventions for cancer

treatment. A number of nutraceuticals have shown potential

against tumor cell survival by inducing apoptosis with use

of various mechanisms in multiple types of cancer cells

(Table 2).

Some of the most common ways that nutraceuticals inhibit

survival of tumor cells is by activating caspases, inducing

proapoptotic proteins, and downregulating antiapoptotic

proteins. Acetoxychavicol acetate, for example, a tropical

ginger compound, decreased cell viability in breast-

carcinoma-derived MCF-7 and MDA-MB-231 cells through

a casp-3-dependent increase in apoptosis [58]. In a recent

study, berberine induced apoptosis that was associated with

reduction in mitochondrial membrane potential and changes

in the Bcl-2-associated X protein (Bax)/Bcl-2 ratio [59].

Berberine also induced casp-3, casp-8, and casp-9 activation

and the release of cytochrome c from mitochondria through

generation of reactive oxygen species (ROS) [59]. Katiyar et

al. [60] showed that berberine can induce apoptosis in A549

and H1299 human lung cancer cells that correlated with

disruption of mitochondrial membrane potential, reduction in

Bcl-2 and Bcl-xL levels, and increased Bax, Bcl-2 homol-

ogous antagonist/killer (Bak), and casp-3 activation.

Flavopiridol, a semisynthetic flavone, was shown to

enhance TNF-induced apoptosis through activation of the

bid-cytochrome–casp-9–casp-3 pathway in human myeloid

cells. This induced apoptosis was associated with inhibited

AKT8 virus oncogene cellular homolog (AKT) activation

and inhibited expression of various antiapoptotic proteins

such as inhibitor of apoptosis protein (IAP)-1, IAP-2, X-

chromosome-linked IAP (XIAP), Bcl-2, and Bcl-xL [61].

Gu et al. [62] showed that gambogic acid can induce

apoptosis in MCF-7 cancer cells through upregulation of

p53 and downregulation of Bcl-2. In human malignant
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Table 2 Effect of nutraceuticals on tumor cell survival

Nutraceuticals Effect

ACA Suppressed TNF-induced NF-κB-dependent expression of survivin, IAP-1/2, XIAP, Bcl-2,

Bcl-xL, Bfl-1/A1, and FLIP in nonspecific cancer cell type [95]

Anacardic acid Inhibited Bcl-2, Bcl-xL, cFLIP, cIAP-1, and survivin in various cancer cells [52]

Anethole Increased the survival time and reduced the weight and volume of tumor in a mice model bearing EAT [278]

Berberine Reduced Bcl-2 and Bcl-xL levels and increased Bax, Bak, and casp-3 activation in A549 and

H1299 human lung cancer cells [60]

β-Escin Downregulated Bcl-2 and IAP-2 in leukemic and human myeloid cells through inhibition of NF-κB signaling [103]

Betulinic acid Decreased the expression of survivin in LNCaP prostate cancer cells through targeted degradation of Sp proteins [75]

Butein Downregulated the expression of NF-κB-regulated gene products such as IAP-2, Bcl-2, and Bcl-xL [189]

Capsaicin Downregulated STAT-3-regulated expression of Bcl-2, Bcl-xL, and survivin in multiple myeloid cells [86]

Celastrol Enhanced TRAIL-induced apoptosis through the downregulation of cell survival proteins and upregulation

of DRs in human breast cancer cells [79]

Coronarin Inhibited NF-κB-regulated expression of IAP-1, Bcl-2, and survivin [100]

Curcumin Induced apoptosis in prostate cancer cells through downregulation of Bcl-2 and Bcl-XL and upregulation

of p53, Bax, Bak, PUMA, Noxa, and Bim [71]

Deguelin Induced apoptosis in HTLV-1-transformed T cells via inhibition of survivin and STAT-3 phosphorylation

through mediation of ubiquitin/proteasome pathway [87]

EGCG Inhibited survival of EFT through increased expression of Bax and decreased expression of Bcl-2, Bcl-XL,

and Mcl-1 proteins and inhibition of IGFIR activity [82]

Embelin Enhanced TRAIL-mediated apoptosis in malignant glioma cells by downregulation of the short isoform of FLIP [72]

Emodin Inhibited IL-6-induced JAK2/STAT-3 and induced apoptosis via downregulation of Mcl-1 in myeloid cells [85]

Evodiamine Reduced survival of cancer cells through downregulation of NF-κB-dependent antiapoptotic gene products [96]

Fisetin Induced apoptosis in chemoresistant human pancreatic AsPC-1 cells through suppression of DR3-mediated

NF-κB activation [93]

Flavopiridol Induced apoptosis in human myeloid cells through activation of the bid-cytochrome–casp-9–casp-3 pathway

and inhibition in AKT activation [61]

Gambogic acid Induced apoptosis, upregulated p53, and downregulated Bcl-2 in MCF-7 cells [62]

Garcinol Induced apoptosis through downregulation of NF-κB signaling in breast cancer cells [90]

Genistein Induced apoptosis in human ovarian cancer cells by phosphorylation and activation of p53 and decrease in the

ratios of Bcl-2/Bax and Bcl-xL/Bax [83]

Indirubin Enhanced TNF-induced apoptosis through modulation of NF-κB signaling pathway in various cancer cells [98]

Indole-3-carbinol Induced apoptosis through activation of p53 and caspase pathway in A549 cells [65]

Isodeoxyelephantopin Potentiated apoptosis through suppression of NF-κB-regulated gene products in various cancer cells [99]

Noscapine Sensitized leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-κB signaling pathway

and inducing apoptosis [97]

Oleandrin Sensitized lung cancer cells to TRAIL-induced apoptosis by upregulating DR4 and DR5 [76]

Plumbagin Induced apoptosis in human breast cancer cells through inactivation of NF-κB and downregulation of Bcl-2 [91]

Resveratrol Downregulated survivin and induced apoptosis in human multidrug-resistant SPC-A-1/CDDP cells [66]

Sanguinarine Induced apoptosis in human leukemic U937 cells via Bax upregulation, Bcl-2 downregulation, and casp-3

activation [69]

Silymarin Inhibited survival of hepatic carcinoma cells by upregulating p53, Bax, Apaf-1, and casp-3 and downregulating

Bcl-2 and survivin [84]

Sulforaphane Inhibited growth of orthotopically implanted PC-3 tumors through upregulation of DR4, DR5, Bax, and Bak

and inhibition of NF-κB, PI3K/AKT, and MEK/ERK activation pathways [94]

Thymoquinone Suppressed NF-κB-dependent antiapoptotic gene products in various cancer cells [101]

γ-Tocotrienol Suppressed NF-κB-dependent antiapoptotic gene products and potentiated apoptosis in various cancer cells [102]

Withanolides Potentiated apoptosis in cancer cells through suppression of NF-κB activation and NF-κB-regulated

antiapoptotic proteins [104]
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melanoma A375 cells, gambogic acid induced apoptosis

that was associated with increased Bax expression and

decreased Bcl-2 expression [63]. Garcinol was shown to

induce apoptosis through inhibition of tyrosine phosphor-

ylation of focal adhesion kinase (FAK) and downregulation

of Rous sarcoma oncogene cellular homolog (Src), extra-

cellular signal-regulated kinase (ERK), and AKT survival

signaling in human colorectal cancer cell line HT-29 [64].

Indole-3-carbinol induced apoptosis through activation of

p53 and cleavage of casp-3, casp-8, and casp-9 in lung

cancer A549 cells [65].

Resveratrol induced apoptosis in human multidrug-

resistant SPC-A-1/CDDP cells associated with downregu-

lation in survivin [66]. Sanguinarine sensitized human

gastric adenocarcinoma AGS cells to TNF-related

apoptosis-inducing ligand (TRAIL)-induced apoptosis via

downregulation of AKT and activation of casp-3 [67]. In

MDA-MB-231 human breast carcinoma cells, sanguinarine

induced apoptosis through mediation of ROS production,

decrease in mitochondrial membrane potential, release of

cytochrome c, activation of casp-3 and casp-9, and down-

regulation of antiapoptosis proteins XIAP and cIAP-1 [68].

Human leukemia U937 cells, when treated with sanguinar-

ine, induced apoptosis through upregulation of Bax,

induction of caspase activation, and downregulation of

Bcl-2 [69]. Curcumin, the major polyphenol present in

turmeric, is a potent inducer of apoptosis in cancer cells.

Curcumin induces upregulation of proapoptotic proteins

such as Bax, Bcl-2-interacting mediator of cell death (Bim),

Bak, p53 upregulated modulator of apoptosis (Puma), and

PhoRbol-12-myristate-13-acetate-induced protein 1 (Noxa)

and downregulation of the antiapoptotic proteins Bcl-2 and

Bcl-xL [70, 71].

Embelin was shown to enhance TRAIL-mediated apo-

ptosis in malignant glioma cells by downregulation of the

short isoform of FLICE/caspase-8 inhibitory protein [72].

Xanthohumol (XN), a chalcone, enhanced TRAIL-induced

apoptosis in prostate cancer cells [73]. In human colon

cancer cells, XN induced apoptosis through upregulation of

casp-3, casp-8, and casp-9 activation and downregulation in

Bcl-2 expression [74].

Transcription factor specificity proteins (Sp), including

Sp1, Sp3, and Sp4, are known to regulate survivin and are

required for survival of tumor cells. Betulinic acid, a

pentacyclic triterpene, was recently shown to decrease

expression of survivin and induce apoptosis in LNCaP

prostate cancer cells through targeted degradation of Sp

proteins [75].

Some nutraceuticals have been shown to induce apopto-

sis through upregulation of DRs. Oleandrin sensitized lung

cancer cells to TRAIL-induced apoptosis through upregu-

lation of DR4 and DR5 [76]. We recently showed that

garcinol can sensitize human colon cancer cells to TRAIL-

induced apoptosis through induction of DR4 and DR5 [77].

Capsaicin was shown to sensitize malignant glioma cells to

TRAIL-mediated apoptosis via DR5 upregulation and

survivin downregulation [78]. Similarly, celastrol potenti-

ated TRAIL-induced apoptosis through downregulation

of cell survival proteins and upregulation of DR4 and

DR5 in human breast cancer cells [79]. Enhancement in

TRAIL-induced apoptosis was recently observed in

human colon cancer cells by zerumbone. This was

mediated through upregulation of DR4 and DR5 and

generation of ROS [80]. In another study, zerumbone

triggered apoptotic events independent of functional p53

in liver cancer cells through upregulation of Bax and

downregulation of Bcl-2 [81].

Insulin-like growth factor I receptor (IGFIR) has

emerged as a key therapeutic target in many human

malignancies, including childhood cancers such as Ewing

family tumors (EFT). EGCG was found to inhibit survival

of EFT through inhibition of IGFIR activity, induction of

apoptosis through upregulation of Bax, and decreased

expression of Bcl-2, Bcl-XL, and myeloid cell leukemia

Table 2 (continued)

Nutraceuticals Effect

Xanthohumol Induces apoptosis in human colon cancer cells through upregulation of casp-3, casp-8, and casp-9 activation

and downregulation of Bcl-2 expression [74]

Zerumbone Induced apoptosis in HepG2 cells by upregulating Bax protein and downregulating Bcl-2 [81]

ACA acetoxychavicol acetate, Apaf-1 apoptotic protease activating factor 1, Bak Bcl-2 homologous antagonist/killer, Bax Bcl-2-associated X

protein, Bcl-2 B cell lymphoma 2, Bcl-xL B cell lymphoma extra large, Bim Bcl-2-interacting mediator of cell death, Bfl-1/A1 Bcl-2-related gene

expressed in fetal liver protein A1, casp caspase, DR death receptor, EGCG epigallocatechin gallate, EAT Ehrlich ascites tumor, EFT Ewing

family tumors, ERK extracellular signal-regulated kinase, FLIP FLICE/caspase 8 inhibitory protein, HTLV-1 human T cell leukemia virus type 1,

IAP inhibitor of apoptosis protein, IGFIR insulin-like growth factor I receptor, IL-6, interleukin 6, JAK Janus-activated kinase, Mcl-1 myeloid cell

leukemia 1, MEK MAPK/ERK kinase, NF-κB nuclear factor kappa B, Noxa PhoRbol-12-myristate-13-acetate-induced protein 1, PI3K

phosphoinositide 3 kinase, PUMA p53 upregulated modulator of apoptosis, Sp specificity protein, STAT signal transducers and activators of

transcription protein, TNF tumor necrosis factor, TRAIL TNF-related apoptosis-inducing ligand, XIAP X-chromosome-linked IAP
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(Mcl)-1 proteins [82]. Induction of DNA damage and

apoptosis in human ovarian cancer cells by genistein, a

predominant isoflavone present in soybeans, was mediated

through phosphorylation and activation of p53 and a

decrease in the ratio of Bcl-2/Bax, Bcl-xL/Bax, and

phosphorylated AKT levels [83]. Silymarin inhibited

survival of hepatocellular carcinoma HepG2 cells by

inducing apoptosis and facilitating cytochrome c release,

upregulating proapoptotic proteins, and downregulating

antiapoptotic proteins [84].

Some nutraceuticals have the potential to inhibit survival

of tumor cells through mediation of the signal transducers

and activators of transcription protein (STAT)-3 pathway.

Muto et al. [85] showed that emodin can induce apoptosis

in human myeloid cells through the elimination of Mcl-1.

Emodin inhibited IL-6-induced activation of Janus-

activated kinase 2 (JAK2) and phosphorylation of STAT-

3; it also triggered casp-3 and casp-9 activation. Induction

of apoptosis by emodin was almost abrogated in Mcl-1-

overexpressing myeloma cells. These observations indicat-

ed that emodin can induce apoptosis in myeloid cells via

downregulation of Mcl-1. Capsaicin has been reported to

induce apoptosis in multiple myeloid cells through down-

regulation of STAT-3-regulated expression of Bcl-2, Bcl-

xL, and survivin [86]. Adult T cell leukemia is an

aggressive malignancy of peripheral T cells infected with

human T cell leukemia virus type 1 (HTLV-1). Deguelin

was shown to induce apoptosis in HTLV-1-transformed T

cells via inhibition of survivin expression and STAT-3

phosphorylation through the ubiquitin/proteasome pathway

[87]. In our laboratory, deguelin induced apoptosis in

various cancer cells through the downregulation of anti-

apoptotic gene products [88].

Most nutraceuticals target by inhibiting NF-κB activa-

tion, thereby inhibiting NF-κB-regulated antiapoptotic

proteins. Acetoxychavicol acetate inhibited cellular growth

of multiple myeloma cells in vivo and in vitro through

induction of apoptosis, activation of casp-8, inactivation of

NF-κB, and downregulation of antiapoptotic proteins [89].

Garcinol induced apoptosis in human breast cancer MCF-7

and MDA-MB-231 cells through caspase activation and

downregulation of NF-κB-regulated genes [90]. Plumbagin

induced apoptosis with concomitant inactivation of Bcl-2

and the DNA binding activity of NF-κB in breast cancer

cells [91]. In non-small-cell lung cancer, plumbagin

induced apoptosis through mediation of c-Jun N-terminal

kinase (JNK) and the casp-3 pathway [92]. In addition,

Murtaza et al. [93] demonstrated that fisetin can induce

apoptosis in chemoresistant human pancreatic PaC AsPC-1

cells through suppression of DR3-mediated NF-κB activa-

tion. Sulforaphane inhibited survival of orthotopically

implanted PC-3 tumors through upregulation of DR4, DR5,

Bax, and Bak and inhibition of NF-κB, phosphoinositide 3-

kinase (PI3K)/AKT, and mitogen-activated protein kinase

(MAPK)/ERK kinase (MEK) activation pathways [94].

We have identified a number of nutraceuticals from

natural sources that target one or more steps in the NF-κB

activation pathway to sensitize and induce apoptosis in a

variety of cancer cells. The most popular among these are

acetoxychavicol acetate [95], evodiamine [96], noscapine

[97], indirubin [98], isodeoxyelephantopin [99], anacardic

acid [52], coronarin D [100], thymoquinone [101], γ-

tocotrienol [102], β-escin [103], and withanolides [104].

3.2 Regulation of tumor cell proliferation by nutraceuticals

Dysregulated proliferation is one of the major character-

istics of tumorigenesis. In normal cells, proliferation is

regulated by a delicate balance between growth signals and

antigrowth signals. Cancer cells, however, acquire the

ability to generate their own growth signals and become

insensitive to antigrowth signals [1]. Their growth is

controlled by cell cycle regulators at the G1/S-phase

boundary, in the S phase, and during the G2/M phases of

the cell cycle. A precise set of proteins called cyclins and

cyclin-dependent kinases (CDKs) control the progression of

cell cycle events. Whereas cyclin binding is required for

CDK activity, CDK inhibitors (CKIs) such as p21 and p27

prevent CDK activity and prevent cell cycle progression.

The G1-to-S-phase transition also requires cellular v-myc

myelocytomatosis viral oncogene homolog (c-Myc), and

inhibition of c-Myc expression leads to growth arrest [105].

Deregulated expression of c-Myc has been implicated in a

number of human malignancies [106, 107]. The expression

of c-Myc in turn is regulated by cdc25, a phosphatase that

activates CDKs.

The well-characterized tumor suppressor p53 has been

implicated in controlling the G1-to-S-phase transition and

in blocking cell cycle progression at the G1 phase in

response to DNA damage [108]. A number of genes

controlling cell cycle progression, including the CKI p21,

are transcribed in a p53-dependent manner [109, 110]. Rb is

a tumor suppressor retinoblastoma protein that, like p53,

functions as a negative regulator of cell growth [111]. Rb

inactivation or deletion has been found in many cancers,

including retinoblastomas and carcinomas of the lung,

breast, bladder, and prostate. By binding to and inhibiting

transcription factors such as elongation 2 factor (E2F),

which are necessary for S-phase entry, Rb is believed to

inhibit cell cycle progression [112]. On the other hand,

phosphorylation of Rb (pRb) by CDK/cyclin complexes

results in the release of active E2F species to stimulate the

transcription of genes involved in DNA synthesis and S-

phase progression [113–115]. COX-2, an inducible prosta-

glandin endoperoxide synthase 2, has been linked with

tumor cell proliferation. It can be rapidly induced by
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growth factors, cytokines, and tumor promoters and is

associated with inflammation [116–119]. Reports have

demonstrated increased amounts of COX-2 in both prema-

lignant and malignant tissues [120, 121].

Currently, a number of inhibitors based on cell cycle

regulators, including nutraceuticals, are being developed as

therapeutic intervention for cancer prevention. Nutraceut-

icals have been shown to have potential in cancer

prevention for halting cell cycle progression by targeting

one or more steps (Table 3) in the cell cycle. Most

nutraceuticals prevent the transition of cancer cells from

the G1 to S phase. Some of these nutraceuticals act through

p53 and some through Rb. Acetyl-keto-beta-boswellic acid

was shown to arrest colon cancer cells at the G1 phase,

which was associated with decreases in cyclin-D1, cyclin-

E, CDK-2, CDK-4, and pRb and an increase in p21 [122].

In Ehrlich ascites tumor cells, acetoxychavicol acetate was

shown to stimulate the accumulation of tumor cells in the

G1 phase of the cell cycle, which was accompanied by a

decrease in pRb and an increase in Rb [123]. β-Escin, a

triterpene saponin, induced cell cycle arrest at the G1/S

phase by inducing p21 and reducing pRb in a p53-

independent manner in HT-29 human colon cancer cells

[124]. In gastric cancer cells, curcumin was shown to

suppress the transition of cells from the G1 to S phase,

which was accompanied by a decrease in cyclin-D1 and

p21-activated kinase 1 activity [125].

Deguelin exhibited an antiproliferative effect in breast

cancer cells by arresting cells at the S phase [126]. Emodin

showed antiproliferative activity through a p53- and p21-

dependent pathway and arrested liver cancer HepG2 cells in

the G1 phase [127]. Fisetin was shown to arrest prostate

cancer LNCaP cells at the G1 phase, which was associated

with a decrease in cyclin-D1, cyclin-D2, and cyclin-E and

their activating partners CDK-2, CDK-4, and CDK-6 and

with the induction of p21 and p27 [128].

The effect of piceatannol on the proliferation of DU145

human prostate cancer cells was investigated. Piceatannol

caused cells to accumulate in the G1 phase and was

associated with a decrease in cyclin-A, cyclin-D1, CDK-2,

and CDK-4 [129]. Another nutraceutical, silibinin, caused

lung cancer cells to accumulate at the G1 phase, which

correlated with decreased CDK-2 and CDK-4 activities

[130]. Silymarin arrested hepatocellular carcinoma HepG2

cells at the G1 phase, concomitant to a reduction in β-

catenin, cyclin-D1, c-Myc, and proliferating cell nuclear

antigen [84]. Thymoquinone, a component of Nigella

sativa, was shown to abrogate the progression of prostate

cancer cells from the G1 to S phase. These effects

correlated with upregulation in p21 and p27 and down-

regulation in androgen receptor and E2F-1 [131]. Quercetin

also induced cell cycle arrest at the G1 phase by elevating

p53, p21, and p27 in a human hepatoma cell line in vitro

[132]. Sulforaphane was shown to suppress proliferation of

epithelial ovarian cancer cells through G1 cell cycle arrest,

reduction in pRb and free E2F-1, and increase in Rb [133].

Some nutraceuticals prevent tumor cell proliferation by

preventing transitions from the G2 to M phase. Butein was

shown to inhibit cell growth in human hepatoma cancer cell

lines—HepG2 and Hep3B—by inducing G2/M phase

arrest. This inhibition in cell growth was associated with

increased phosphorylation of ataxia telangiectasia mutated

(ATM), checkpoint kinase (Chk)-1, and Chk-2, and

reduction in cell division cycle 25 homolog c (cdc25c)

levels. The inhibition in cell growth was also correlated

with ROS generation and JNK activation [134]. Celasterol

was shown to inhibit cell proliferation in C6 glioma cells by

arresting the cells at the G2/M phase through upregulation

of p21 and p27 and downregulation of CDK-2 [135].

Evodiamine exhibited antiproliferative activity by arresting

human thyroid ARO cancer cells at the G2/M phase, which

was associated with decreased expression of cdc2-p15

[136].

Recently, an ataxia telangiectasia and Rad3-related

protein–Chk-1-mediated DNA damage response was shown

to trigger p53/p21activation and G2/M arrest in HepG2 and

A549 cells in response to gambogic acid treatment [137].

Betulinic acid evoked an increase in the G2/M phase

population and a decrease in the S-phase population in

human gastric adenocarcinoma cells. This correlated with a

decrease in Hiwi and its downstream target cyclin-B1

[138]. Zerumbone was shown to suppress proliferation of

leukemic NB4 cells by inducing G2/M cell cycle arrest,

decreasing cyclin-B1 expression, and phosphorylating

ATM/Chk-1/Chk-2 and cdc25c [139].

Berberine exhibited antiproliferative activity against

human osteosarcoma cells by inducing cell cycle arrest at

the G1 and G2/M phases. Whereas induction of G1 arrest

was accompanied by p53-dependent upregulation of p21,

G2/M arrest occurred regardless of p53 status [140].

Guggulsterone was shown to suppress the proliferation of

cancer cells through inhibition of DNA synthesis and

induction of cell cycle arrest in the S phase; these effects

were mediated through downregulation of cyclin-D1 and

cdc2 and upregulation of p21 and p27 [141].

NF-κB has been shown to bind to the promoter of genes

involved in cellular proliferation. A few nutraceuticals

target one or more steps in NF-κB activation to regulate

tumor cell proliferation. With use of an orthotopic murine

model of ovarian cancer, curcumin was shown to inhibit

tumor growth that correlated with inhibition in NF-κB and

a STAT-3 activation pathway [142]. In another study,

curcumin exhibited antiproliferative activity in association

with decreased expression of cyclin-D1 and CDK-4 in

breast cancer cell lines MDA-MB-231 and BT-483 [143].

Fisetin, a naturally occurring flavonoid, was shown to
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Table 3 Effect of nutraceuticals on tumor cell proliferation

Nutraceuticals Effect

ACA Induced accumulation of tumor cells in the G1 phase, decreased pRb in EATC [123]

AKBA Arrested colon cancer cells at the G1 phase by decreasing cyclin-D1, cyclin-E, CDK-2, CDK-4, pRb,

and increasing p21 [122]

Anacardic acid Downregulated NF-κB-dependent expression of cyclin-D1, COX-2, and c-Myc [52]

Berberine Exhibited antiproliferative activity against human osteosarcoma cells by inducing cell cycle arrest at G1

and G2/M phase and p53-dependent upregulation of p21 [140]

β-Escin Induced cell cycle arrest at the G1/S phase by inducing p21 and reducing pRb independent of p53 in HT-29 cells [124]

Betulinic acid Evoked G2/M cell cycle arrest associated with a decrease in Hiwi and cyclin-B1 in human gastric adenocarcinoma

cells [138]

Butein Inhibited cell growth in HepG2 and Hep3B through G2/M phase arrest, phosphorylation of ATM and Chk-1/2,

and reduction in cdc25c [134]

Capsaicin Decreased the expression of E2F-responsive cyclin-E, thymidylate synthase, cdc25A, and cdc6 in SCLC [150]

Celasterol Inhibited cell proliferation in C6 glioma cells by inducing G2/M phase arrest through upregulation of p21 and p27

and downregulation of CDK-2 [135]

Coronarin Suppressed NF-κB-dependent expression of cyclin-D1, c-Myc, and COX-2 [100]

Curcumin Suppressed G1/S-phase transition accompanied with a decrease in cyclin-D1 and PAK1 activity in gastric cancer

cells [125]

Deguelin Exhibited antiproliferative effect in breast cancer cells by arresting cells at the S phase [126]

Diosgenin Inhibited proliferation through downregulation of IKK activation and expression of cyclin-D1, c-Myc, and COX-2 [145]

Emodin Exhibited antiproliferative activity through p53- and p21-dependent G1-phase arrest in HepG2 cells [127]

Evodiamine Arrested human thyroid ARO cancer cells at G2/M phase concomitant with a decrease in cdc2 expression [136]

Fisetin Arrested LNCaP cells at G1 phase; decreased cyclin-D1, cyclin-D2, cyclin-E, CDK-2, CDK-4, and CDK-6; induced

p21 and p27 [128]

Flavopiridol Inhibited TNF-induced c-Myc expression through inhibition of NF-κB activation in various cancer cells [61]

Gambogic acid Induced G2/M arrest in HepG2 and A549 cells through ATR/Chk-1-mediated p53/p21 activation [137]

Genistein Inhibited growth of TRAMP cancer cells; repressed cyclin-B1; activated p21 through mediation of Myt-1

and Wee-1 kinases [164]

Gossypol Arrested MAT-LyLu prostate cancer cells at G0/G1 phase; downregulated cyclin-D1, CDK-4, and pRb through

modulation of TGF-β-1 and AKT signaling [151]

Guggulsterone Suppressed proliferation of cancer cells through cell cycle arrest in S phase; downregulated cyclin-D1 and cdc2

and upregulated p21 and p27 [35]

Isodeoxyelephantopin Inhibited proliferation through downregulation of NF-κB-regulated cyclin-D1, c-Myc, and COX-2 [99]

Morin Suppressed NF-κB-regulated cyclin-D1 and COX-2 [146]

Noscapine Inhibited proliferation of leukemic cells through suppression of NF-κB-regulated cyclin-D1 and COX-2 [97]

Piceatannol Accumulated DU145 human prostate cancer cells in G1 phase; decreased expression of cyclin-A, cyclin-D1,

CDK-2, and CDK-4 [129]

Pinitol Suppressed NF-κB-dependent cyclin-D1 and COX-2 expression [147]

Quercetin Induced cell cycle arrest at G1 phase, elevated p53, p21, and p27 in human hepatoma cell line [132]

Silibinin Accumulated lung cancer cells at G1 phase; decreased activity of CDK-2 and CDK-4 [130]

Sulforaphane Suppressed proliferation of EOC through G1 cell cycle arrest, reduction in pRb and free E2F-1, and upregulation

in Rb [133]

Thymoquinone Abrogated the progression of prostate cancer cells from G1 to S phase; upregulated p21 and p27; downregulated AR

and E2F-1 [131]

Ursolic acid Downregulated COX-2 and cyclin-D1 in nonspecific cell types [148]
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downregulate COX-2 expression and to inhibit prostaglan-

din E2 secretion in HT29 human colon cancer cells; this

correlated with decreased activity in wint signaling through

downregulation of β-catenin, inhibition in epidermal

growth factor receptor activity, activation of NF-κB, and

subsequent decrease in cyclin-D1 expression [144].

We have identified a number of nutraceuticals with the

potential to inhibit proliferation of cancer cells through

inhibition of the NF-κB activation pathway and NF-κB-

dependent gene products involved in proliferation such as

c-Myc, COX-2, and cyclin-D1. Some of these nutraceut-

icals are flavopiridol [61], anacardic acid [52], coronarin D

[100], diosgenin [145], isodeoxyelephantopin [99], morin

[146], noscapine [97], pinitol [147], and ursolic acid [148].

S-phase kinase-associated protein 2 (Skp2), an F-box

protein with an NF-κB binding site in its promoter, has

been implicated in the degradation of p21 and p27.

Recently, Tubocapsanolide A, a bioactive withanolide,

was shown to induce G1 growth arrest in A549, H358,

and H226 human lung cancer cells. The antiproliferative

effects of Tubocapsanolide A were mediated through

inhibition of binding of the RelA subunit of NF-κB to

Skp2, inhibition of Skp2 expression, and upregulation of

p21 and p27 [149].

The antiproliferative activity of capsaicin correlated with

decreased expression of E2F-responsive proliferative genes

such as cyclin-E, thymidylate synthase, cdc25A, and cdc6

in small-cell lung cancer [150]. Gossypol was shown to

inhibit the growth of MAT-LyLu prostate cancer cells by

arresting the cells at the G0/G1 phase and downregulating

cyclin-D1, CDK-4, and pRb expression. These effects of

gossypol were associated with modulation of transforming

growth factor β-1 and AKT signaling [151].

Genistein has been shown to inhibit the growth of

several cancer cells [152–157]. In breast cancer and

melanoma cells, genistein induced G2/M cell cycle arrest

[157, 158]. Although most studies indicated that genistein

causes G2/M arrest, some showed that genistein could also

arrest mouse fibroblast and melanoma cells at the G0/G1

phase of the cell cycle [159]. In addition, genistein was

shown to halt cell growth by upregulating p21 in various

cancer cells [160–163]. Touny and Banerjee [164] reported

the involvement of upstream kinases myelin transcription

factor 1 (Myt-1) and Wee-1 in the transcriptional repression

of cyclin-B1 and activation of p21in prostate cancer cells.

They found that genistein treatment increased Myt-1 levels

and decreased Wee-1 phosphorylation, providing new

insight into the possible mechanism of genistein-induced

G2/M arrest.

3.3 Regulation of tumor cell invasion by nutraceuticals

Tumor cell invasion and metastasis are interrelated pro-

cesses involving cell growth, cell adhesion, cell migration,

and proteolytic degradation of tissue barriers such as the

extracellular matrix and basement membrane. Several

proteolytic enzymes, including MMPs (chiefly MMP-2

and MMP-9) [165, 166] and intercellular adhesion mole-

cule (ICAM; chiefly ICAM-1), participate in the degrada-

tion of these barriers [167, 168]. A number of studies in

lung, colon, breast, and pancreatic carcinomas have

demonstrated overexpression of MMPs in malignant tissues

compared with adjacent normal tissues [169–176]. Apart

from MMPs, cysteine proteases [177] and serine proteases

[178] such as urokinase-type plasminogen activator (u-PA)

have also been involved in the invasion and metastasis of

cancer cells. Since both u-PA and u-PA receptor (u-PAR)

contain binding sites for NF-κB and activator protein (AP)-

1 in their promoter regions [179–181], inhibition of these

transcription factors will eventually result in the inhibition

of u-PA–u-PAR complex and subsequent suppression of

invasive behavior.

Table 3 (continued)

Nutraceuticals Effect

Tubocapsanolide A Induced G1 growth arrest in human lung cancer cells; inhibited binding of Rel A subunit of NF-κB to Skp2;

upregulated p21 and p27 [149]

Zerumbone Suppressed proliferation of leukemic NB4 cells by inducing G2/M cell cycle arrest, decreasing cyclin-B1 expression,

and phosphorylating ATM/Chk-1/2 and cdc25c [139]

ACA acetoxychavicol acetate, AKBA acetyl-11-keto-beta-boswellic acid, AKT AKT8 virus oncogene cellular homolog, AR androgen receptor,

ATM ataxia telangiectasia mutated, ATR ataxia telangiectasia and Rad3-related protein, cdc25c cell division cycle 25 homolog C (S. pombe), CDK

cyclin-dependent kinase, Chk checkpoint kinase, c-Myc cellular v-myc myelocytomatosis viral oncogene homolog (avian), COX-2 cyclo-

oxygenase 2, EATC Ehrlich ascites tumor cell, E2F elongation 2 factor, EGFR epidermal growth factor receptor, ERK extracellular signal-

regulated kinase, EOC epithelial ovarian cancer cells, IKK IκB kinase, JNK c-Jun N-terminal kinase, Myt-1 myelin transcription factor 1, NF-κB

nuclear factor kappa B, PAK1 p21-activated kinase 1, pRb phosphorylated retinoblastoma, Rb retinoblastoma protein, SCLC small-cell lung

cancer, Skp2 S-phase kinase-associated protein 2, STAT signal transducer and activator of transcription, TNF tumor necrosis factor, TGF-β

transforming growth factor β, TRAMP transgenic adenocarcinoma of mouse prostate model
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A wide variety of nutraceuticals derived from natural

sources has been shown to inhibit tumor cell invasion and

metastasis by targeting one or more molecules (Table 4).

Allicin inhibited TNF-α-induced ICAM-1 expression in

human umbilical endothelial cells (ECs) [182]. S-Allylcys-

teine and S-allylmercaptocysteine, obtained from garlic,

suppressed the invasion ability of androgen-independent

invasive prostate cancer cells [183] through restoration of

E-cadherin expression. Allyl isothiocyanate (AITC) sup-

pressed MMP-2 and MMP-9 at both protein and mRNA

levels in human hepatoma SK-Hep1 cells in vitro [184].

Apigenin plays an important role in inhibiting the adhesion

and motility of breast cancer cells through mediation of the

HER2–HER3–PI3K–AKT pathway [185]. Apigenin

inhibited metastasis of lung melanoma cells by inhibiting

vascular cell adhesion molecule 1 (VCAM-1) expression in

a dose-dependent manner [186].

Ezrin is highly expressed in metastatic tumors and is

involved in filopodia formation as well as promotion of

tumor metastasis. Berberine, an alkaloid, was recently

shown to inhibit invasion and motility in nasopharyngeal

carcinoma cell line 5-8F through repression of ezrin

phosphorylation at Thr567 by Rho kinase and inhibition in

filopodia formation [187]. Berberine has also been reported

to suppress in vitro migration and invasion of human SCC-

4 tongue squamous cancer cells through inhibition of FAK,

IKK, NF-κB, u-PA, and MMP-2 and MMP-9 [59].

Increasing evidence has shown that epithelial–mesen-

chymal transition plays a critical role in tumor cell

metastasis. Butein, a polyphenolic compound obtained

from stem bark of cashews, was recently shown to inhibit

migration and invasion through the ERK-1/ERK-2 and NF-

κB signaling pathways in human bladder cancer cells. The

inhibitory effect of butein was associated with the reversal

of epithelial–mesenchymal transition [188]. We have shown

that butein can inhibit TNF-α-induced invasion in human

lung adenocarcinoma H1299 cells, which was associated

with inhibition in NF-κB activation and downregulation in

MMP-9 [189].

Caffeic acid had a strong inhibitory effect on MMP-9

activity in nonspecific cell types in vitro [190]. Capsaicin

significantly inhibited the migration of highly metastatic

B16-F10 melanoma cells through inhibition of the PI3K/

AKT/rat sarcoma (Ras)-related C3 botulinum toxin sub-

strate 1 signaling pathway [191]. Carnosol reduced MMP-9

levels in mouse melanoma cells in vitro through down-

regulation of NF-κB and AP-1 [192]. β-Carotene inhibited

the invasion of rat ascites hepatoma AH109A cells in a

dose-dependent manner by acting as ROS quenchers [193].

Catechin gallate, a phenolic compound obtained from the

red pine, inhibited the invasion and migration of SK-Hep-1

human hepatocellular carcinoma cells, which strongly

correlated with reduced expression of MMP-2 and MMP-

9 [194]. Celastrol, a quinone methide triterpene from the

medicinal plant Tripterygium wilfordii, exerted potent

antimetastatic activity both in vitro and in vivo [195]

through p38 MAPK, suppression of β-1 integrin ligand

affinity, focal adhesion formation, reduced phosphorylation

of FAK, and inhibition of cell–extracellular matrix adhesion

of human lung cancer 95-D and mouse melanoma B16-F10

cells. Crocetin was shown to suppress ICAM-1 and MMPs

in bovine endothelial cells [196].

Curcumin exerted a dose- and time-dependent inhibitory

effect on the invasion and migration of mouse–rat hybrid

retina ganglion cells (N18) in vitro [197]. This inhibited

invasion was associated with downregulation of PKC,

FAK, NF-κB p65, Rho A, MMP-2, and MMP-9. In Hep2

human laryngeal cancer cells, curcumin inhibited tumor cell

invasion and metastasis that were associated with down-

regulated MMP-2 expression and reduced activity and

expression of integrin receptors, FAK, and membrane-type

1 MMP [198]. Diallyl disulfide inhibited the activation of

MMP-2 and MMP-9 in human umbilical vein endothelial

cells (HUVECs) in vitro [199].

The chemokine receptor CXCR4, with its unique ligand

CXC chemokine ligand 12 (CXCL12), is required for

metastasis of breast cancer cells [200, 201]. 3, 3′-Diindolyl-

methane showed antimetastatic ability in MCF-7 and

MDA-MB-231 breast cancer cells by lowering CXCR4

and CXCL12 levels [200, 201]. With the use of androgen-

insensitive prostate cancer (DU-145) cells, Vayalil and

Katiyar [202] showed that EGCG can inhibit fibroblast-

conditioned medium-induced production of pro and active

forms of MMP-2 and MMP-9. Nuclear localization of NF-

κB, as well as MMP-9 expression and invasion, was

suppressed in lung carcinoma cells treated with EGCG

[203].

Takada et al. [96] recently showed that evodiamine can

inhibit TNF-induced invasion in human lung adenocarci-

noma H1299 cells through inhibition in NF-κB activation

and downregulation in MMP-9. The antimetastatic potential

of fisetin was mediated through inhibition of phosphoryla-

tion of ERK-1/ERK-2 and downregulation in expression of

MMP-2 and u-PA in A549 cells [204].

c-erbB-2 is a key molecule for breast cancer metastasis,

and overexpression of c-erbB-2 has been correlated with

increased MMP secretion and metastatic potential in breast

cancer cells [205]. Flavopiridol was found to inhibit the

secretion of MMP-2 and MMP-9 in the breast cancer cells.

Inhibition in MMP secretion was associated with significant

downregulation of c-erbB-2 and inhibition of cell invasion

[206]. Ganoderic acids isolated from Ganoderma lucidum

suppressed invasive behavior of breast cancer cells by

inhibiting AP-1 and NF-κB activity, resulting in inhibition

of u-PA secretion [207]. Genistein inhibited cell adhesion to

vitronectin and cell migration of invasive breast cancer cells
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Table 4 Effect of nutraceuticals on tumor cell invasion

Nutraceuticals Effect

Allicin Inhibited TNF-α-induced ICAM-1 expression in HUVECs [182]

S-Allylcysteine, Suppressed the invasion of androgen-independent invasive PCa cells by restoration of E-cadherin expression [183]

AITC Downregulated MMP-2/9 activity in human hepatoma SK-Hep1 cells [184]

Apigenin Inhibited metastasis of lung melanoma cells by inhibiting VCAM-1 expression [186]

Berberine Suppressed in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through inhibition

of FAK, IKK, NF-κB, u-PA, and MMP-2/9 [59]

Butein Inhibited migration and invasion in human bladder cancer cells through the ERK-1/2 and NF-κB signaling

pathways [188]

Caffeic acid Inhibited MMP-9 activity in human hepatocellular carcinoma cell line [190]

Capsaicin Inhibited the migration of a highly metastatic B16-F10 melanoma cells through the inhibition of the PI3K/AKT/Rac1

signaling pathway [191]

Carnosol Suppressed expression and activation of MMP-9 in mouse melanoma B16-F10 cells [192]

β-Carotene Inhibited the invasion of rat ascites hepatoma AH109A cells by acting as ROS quenchers [193]

Catechin gallate Inhibited the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells by reducing the expression

of MMP-2 and -9 [194]

Celastrol Inhibited metastasis in human lung cancer 95-D and mouse melanoma B16-F10 cells through mediation of p38 MAPK

and reduced phosphorylation of FAK [195]

Crocetin Suppressed glycation end-product-induced ICAM-1 expression in bovine ECs [196]

Curcumin Downregulated MMP-2 expression and activity and expression of integrin receptors, FAK, and MT1-MMP in Hep2

cells [198]

Diallyl disulfide Inhibited MMP-2 and MMP-9 activity in HUVECs [199]

3,3′-Diindolylmethane Inhibited metastasis of breast cancer (MDA-MB-231) and ovarian cancer (BG-1) cells by lowering the level of CXCR4

and CXCL12 [200, 201]

EGCG Suppressed invasion in lung carcinoma cells by preventing nuclear localization of NF-κB and downregulating MMP-9

expression [203]

Evodiamine Inhibited TNF-induced invasion in human lung adenocarcinoma H1299 cells associated with inhibition in NF-κB

activation and downregulation in MMP-9 expression [96]

Fisetin Inhibited metastasis in human lung adenocarcinoma A549 cells through inhibition of phosphorylation of ERK-1/2

and downregulation in the expressions of MMP-2 and u-PA [204]

Flavopiridol Inhibited cell invasion in MDA-MB-435 cells by inhibiting secretion of MMP-2/9 and downregulation

of c-erbB-2 [206]

Ganoderic acid Suppressed invasion of breast cancer cells by inhibiting AP-1 and NF-κB activity and u-PA secretion [207]

Genistein Inhibited cell adhesion to vitronectin and cell migration of invasive breast cancer cells by inhibiting the transcriptional

activity of AP-1 and NF-κB [208]

[6]-Gingerol Suppressed expression and enzymatic activity of MMP-2/9 in human breast cancer cells [209].

Indole-3-carbinol Inhibited 17-β-estradiol-stimulated migration and invasion in MCF-7 cells associated with an increase in E-cadherin

and α-, β-, and γ-catenin [210]

Kaempferol Inhibited TNF-α-induced ICAM-1 expression [270]

Lycopene Suppressed migration and invasion of hepatoma cell line, SK-Hep-1 by upregulating metastasis suppressor

gene nm23-H1 [211]

Myricetin Inhibited expression and activity of MMP-2 in colorectal cancer cells [212]

Piperine Inhibited the MMP production in B16-F10 melanoma cells [213]

Quercetin Decreased MMP-2 and MMP-9 expression in PC-3 cells [214]

Resveratrol Inhibited HO-1-mediated NF-κB activation and MMP-9 and MMP-2 expression in A549 cells [215]

Sanguinarine Inhibited invasiveness of human breast carcinoma MDA-MB-231 cells by decreasing activities of MMP-2

and MMP-9 [279]

Silibinin Inhibited invasion and motility of SCC-4 tongue cancer and A459 lung cancer cells by downregulating MMP-2

and u-PA and upregulating TIMP-2 expression [216]

Sulforaphane Inhibited the activation of MMPs and lung metastasis induced by melanoma cells in mice [219]

γ-Tocotrienol Inhibited metastasis in gastric adenocarcinoma SGC-7901 cells that correlated with a decrease in MMP-2/9

expression and upregulation of TIMP-1 and TIMP-2 [220]
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by inhibiting the transcriptional activity of AP-1 and NF-

κB, resulting in the suppression of u-PA secretion from

cancer cells [208]. [6]-Gingerol inhibited cell adhesion,

invasion, motility, and activities of MMP-2 and MMP-9 in

human breast cancer cell lines in vitro [209]. Indole-3-

carbinol suppressed the 17-β-estradiol-stimulated migration

and invasion in estrogen-responsive MCF-7 cells. The

suppressed invasion was associated with an increase in

invasion suppressor molecules, E-cadherin, and α-, β-, and

γ-catenin [210].

Lycopene, a dietary constituent present in tomatoes, red

fruits, and vegetables, was recently shown to suppress

migration and invasion of hepatoma cell line SK-Hep-1,

which was associated with upregulation of a metastasis

suppressor gene, nm23-H1 [211]. Myricetin inhibited

MMP-2 expression and enzyme activity in colorectal

carcinoma cells in vitro [212]. Piperine inhibited MMP

production in melanoma cells in vitro, preventing collagen

matrix invasion in a dose-dependent manner [213]. Quer-

cetin decreased expression of MMP-2 and MMP-9 in a

dose-dependent manner in PC-3 prostate cancer cells in

vitro [214]. Resveratrol reduced the migratory and invasive

abilities of A549 lung cancer cells and was associated with

inhibition of NF-κB activation and expression of MMP-2

and MMP-9 [215]. Sanguinarine inhibited invasiveness of

MDA-MB-231 human breast carcinoma cells by decreasing

the activities of MMP-2 and MMP-9 [67]. Silibinin, a

flavonolignan, inhibited invasion and motility of SCC-4

tongue cancer and A459 lung cancer cells by down-

regulating MMP-2 and u-PA and upregulating tissue

inhibitor of metalloproteinase (TIMP)-2 and PAI-1 expres-

sion [216, 217]. Recently, Lee et al. [218] reported that

silibinin reduced PMA-induced invasion of MCF-7 cells

through specific inhibition of AP-1-dependent MMP-9

expression. Sulforaphane inhibited the activation of MMPs,

thereby inhibiting lung metastasis induced by melanoma

cells in mice [219].

The invasion and metastatic capacities of SGC-7901

gastric adenocarcinoma cells and their correlation with

antimetastatic mechanisms induced by γ-tocotrienol were

explored. Cell attachment was decreased by the γ-

tocotrienol, which was associated with decreased MMP-2

and MMP-9 expression and upregulation of TIMP-1 and

TIMP-2 [220]. Ursolic acid has been reported to reduce IL-

1β- or TNF-α-induced rat C6 glioma cell invasion through

downregulation of NF-κB activation and MMP-9 expres-

sion [221]. Zerumbone downregulated expression of

CXCR4 on HER2-overexpressing breast cancer cells in a

dose- and time-dependent manner. Suppression of CXCR4

expression by zerumbone correlated with the inhibition of

CXCL12-induced invasion of both breast and pancreatic

cancer cells [222]. In another study, zerumbone suppressed

TNF-induced NF-κB activation and NF-κB-mediated

MMP-9 expression that correlated with inhibition in tumor

cell invasion [223].

3.4 Regulation of tumor cell angiogenesis by nutraceuticals

Angiogenesis, the process during which new blood vessels

are formed from preexisting ones, can be classified as either

physiological or pathological. Physiological angiogenesis

provides a driving force for organ development in ontog-

eny, is necessary for ovulation, and is a prerequisite for

wound healing; pathological angiogenesis occurs during

tumor growth at primary and metastatic sites [224]. The

angiogenic cascade during tumor development consists of

the release of angiogenic factors, binding of angiogenic

factors to receptors on ECs, EC activation, degradation of

the basement membrane by proteases, and migration and

proliferation of ECs. Adhesion molecules then help to pull

the sprouting blood vessels forward, and ECs are finally

organized into a network of new blood vessels [225]. The

signaling pathway governing tumor angiogenesis is exceed-

ingly complex, involving various angiogenic mediators.

Table 4 (continued)

Nutraceuticals Effect

Ursolic acid Downregulated MMP-9 in HT1080 human fibrosarcoma cells [280]; inhibited IL-1β or TNF-α-induced rat C6

glioma cell invasion through downregulation of NF-κB activation and MMP-9 expression [221]

Vanillin Inhibited invasion and migration of cancer cells that correlated with an inhibition in MMP-9 activity [260]

Zerumbone Suppressed TNF-induced tumor cell invasion associated with an inhibition in NF-κB activation and MMP-9 expression

[223]

AITC allyl isothiocyanate, AKT AKT8 virus oncogene cellular homolog, AP-1 activator protein 1, CXCL12 CXC chemokine ligand 12, CXCR4

CXC chemokine receptor 4, ECs endothelial cells, EGCG epigallocatechin-3-gallate, ERK extracellular signal-regulated kinase, FAK focal

adhesion kinase, HO-1 heme oxygenase 1, HUVECs human umbilical vein endothelial cells, ICAM-1 intercellular adhesion molecule 1, IKK IκB

kinase, IL-1β interleukin 1β, MAPK mitogen-activated protein kinase, MMP matrix metalloproteinase, MT1-MMP membrane-type 1 matrix

metalloproteinase, NF-κB nuclear factor kappa B, PCa prostate cancer, PI3K phosphoinositide 3 kinase, ROS reactive oxygen species, TIMP-2

tissue inhibitor of metalloproteinase 2, TNF-α tumor necrosis factor α, u-PA urokinase-type plasminogen activator, VCAM-1 vascular cell

adhesion molecule 1
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The major signaling mediators include VEGF, platelet-

derived growth factor, fibroblast growth factors (FGFs),

epidermal growth factor, ephrins, angiopoietins, endothe-

lins, integrins, cadherins, and notch [226].

Since the role of angiogenesis in tumor development was

first revealed [227], a number of antiangiogenic compounds

have been developed, including bevacizumab (Avastin),

sunitinib (SUTENT), sorafenib (Nexavar), cediranib male-

ate (Recentin), and pazopanib [226]. Many nutraceuticals

have shown angiogenesis-modulating properties by target-

ing one or more steps in the signaling pathway (Table 5).

Alliin showed potential to inhibit FGF-2-induced human

EC tube formation and angiogenesis in a chick chorioal-

lantoic membrane (CAM) model. Alliin also inhibited

VEGF-induced angiogenesis in the CAM model [228]. In

a C57BL/6 mouse model bearing B16-F10 melanoma cells,

AITC inhibited NO synthesis and TNF-α production,

which correlated with inhibited angiogenesis [229]. Re-

cently, the antiangiogenic effect of AITC was investigated

in Swiss albino mice into which Ehrlich ascites tumor cells

were transplanted [230]. AITC significantly reduced vessel

sprouting and exhibited potent antiangiogenic activity that

was associated with significant reduction in VEGF

expression.

Fang et al. [231] showed that apigenin can inhibit

expression of hypoxia-inducible factor 1 (HIF-1) and

VEGF in various types of cancer cells under normoxic

and hypoxic conditions; this inhibition was associated with

significant inhibition in tumor angiogenesis. In another

study, caffeic acid suppressed STAT-3-mediated HIF-1 and

VEGF expression, which correlated with inhibited vascu-

larization and angiogenesis in mice bearing Caki-I human

renal carcinoma cells [232].

Capsaicin has been shown to inhibit in vitro and in vivo

angiogenesis. In vitro, capsaicin inhibited VEGF-induced

capillary-like tube formation of primary cultured human

ECs. It also inhibited VEGF-induced vessel sprouting in a

rat aortic ring assay, VEGF-induced vessel formation in a

mouse Matrigel plug assay, and VEGF-induced p38

MAPK, p125 (FAK), and AKT activation [233].

Curcumin was found to completely prevent induction of

VEGF synthesis in microvascular ECs stimulated with

glycation end products, which was mediated by down-

regulation of NF-κB and AP-1 activity [234]. Curcumin

also inhibited angiogenesis through mediation of angio-

poietins 1 and 2, HIF-1, and heme oxygenase 1 in cancer

cells [235].

Diallyl sulfide reduced the serum level of VEGF in

C57BL/6 mice bearing B16-F10 melanoma cells [199].

EGCG inhibited production of VEGF and IL-8 from normal

human keratinocytes [236–238]. In human colon cancer

cells, EGCG attenuated VEGF production through inhibi-

tion of ERK-1 and ERK-2 kinases [239]. Recently, EGCG

inhibited ephrin-A1-mediated EC migration as well as

tumor angiogenesis through inhibition in ERK-1/ERK-2

activation [240].

Flavopiridol decreased hypoxia-mediated HIF-1α ex-

pression, VEGF secretion, and tumor cell migration in

human U87MG and T98G glioma cell lines [241]. These in

vitro data were correlated with reduced vascularity of

intracranial syngeneic GL261 gliomas in animals treated

with flavopiridol. Gambogic acid inhibited activation of

VEGF receptor 2 and of downstream kinases such as c-Src,

FAK, and AKT and inhibited angiogenesis in HUVECs and

human prostate cancer cells (PC3) [242]. Genistein sup-

pressed VEGF and FGF-2 expression and inhibited tyrosine

kinase phosphorylation and activation of AKT and NF-κB,

resulting in inhibition of angiogenesis in renal cell

carcinoma [243–246]. [6]-Gingerol, in response to VEGF,

blocked capillary-like tube formation and strongly inhibited

both sprouting of ECs in rat aorta and formation of new

blood vessels in mouse cornea [247].

Luteolin inhibited VEGF-induced survival and prolifer-

ation of HUVECs through PI3K/AKT-dependent pathways

[248]. Perillyl alcohol decreased the release of VEGF from

cancer cells and stimulated expression of Ang2 by ECs,

indicating that it might suppress neovascularization and

induce vessel regression [249]. In another study, quercetin

inhibited hypoxia-induced VEGF expression in NCI-H157

cells, which correlated with suppression in STAT-3 tyrosine

phosphorylation, suggesting that inhibition of STAT-3

function may play a role in angiogenesis inhibition [250].

Resveratrol is able to suppress the growth of new blood

vessels in animals. It directly inhibits capillary endothelial cell

growth and blocks both VEGF- and FGF-receptor-mediated

angiogenic responses through inhibition of phosphorylation of

MAPK in ECs [251]. Rosmarinic acid (RA), a water-soluble

polyphenolic compound, reduced the intracellular ROS level,

H2O2-dependent VEGF expression, and IL-8 release of ECs.

These activities were related to the antiangiogenic potential of

RA [252]. Sanguinarine exhibited antiangiogenic activity by

directly suppressing the proliferative effect of VEGF on ECs;

this effect was mediated through downregulation of VEGF-

induced AKT activation [253].

The in vivo efficacy of silibinin against human colorectal

carcinoma HT29 xenograft growth in mice was investigated

recently. Silibinin administration was associated with

antiangiogenic activities in nude mice, resulting in down-

regulation of nitric oxide synthase, COX, HIF-1α, and

VEGF expression [254]. In human prostate cancer cells,

sulforaphane inhibited NF-κB-regulated VEGF expression

in vitro [255]. In HUVECs, sulforaphane inhibited angio-

genesis through activation of forkhead homeobox type O

transcription factors and inhibition of MEK/ERK and PI3K/

AKT pathways [256]. In human leukemic cell lines, taxol,

obtained from the bark of Taxus brevifolia, showed

Cancer Metastasis Rev



antiangiogenic activity by inhibiting VEGF production and

HIF-α expression [257]. In a human gastric adenocarcino-

ma SGC-7901 cell line, γ-tocotrienol inhibited cobalt(II)

chloride-induced accumulation of HIF-1α and paracrine

secretion of VEGF. A decrease in VEGF secretion was

associated with decreased activation of ERK-1/ERK-2

[258]. The antiangiogenic activity of ursolic acid was

shown recently; ursolic acid inhibited capillary formation

in C57BL/6 mice bearing B16-F10 melanoma cells. Levels

of serum VEGF, NO, and proinflammatory cytokines were

significantly reduced in ursolic-acid-treated animals com-

pared with those in control animals [259]. Vanillin, a food

flavoring agent, suppressed hepatocyte-growth-factor-in-

duced tumor cell angiogenesis in a mouse model that was

mediated through inhibition of PI3K/AKT signaling and

VEGF expression [260].

Table 5 Effect of nutraceuticals on tumor cell angiogenesis

Nutraceuticals Effect

Alliin Inhibited FGF2 and VEGF secretion from human fibrosarcoma cells. Inhibited FGF2-induced EC tube formation and

angiogenesis in a CAM model [228]

AITC Exhibited potent antiangiogenic activity associated with a significant reduction in VEGF expression in a mice model

bearing EAT cells [230]

Apigenin Inhibited expression of HIF-1 and VEGF in cancer cells associated with a significant inhibition in tumor angiogenesis [225]

Caffeic acid Suppressed STAT-3-mediated expression of HIF-1 and VEGF, inhibited vascularization and angiogenesis in mice bearing

Caki-I human renal carcinoma cell line [232]

Capsaicin Inhibited VEGF-induced p38 MAPK, p125 (FAK), and AKT activation, and capillary-like tube formation in human ECs [233]

Curcumin Inhibited induction of VEGF synthesis in microvascular ECs through downregulation of NF-κB and AP-1 activity [234]

Diallyl sulfide Reduced serum level of VEGF in B16-F10 melanoma bearing C57BL/6 mice [199]

EGCG Inhibited VEGF production through inhibition of ERK-1 and ERK-2 kinases in human colon cancer cells [239]

Flavopiridol Inhibited hypoxia-mediated HIF-1α expression, VEGF secretion, and tumor cell migration in human U87MG and T98G

glioma cell lines [241]

Gambogic acid Inhibited activation of VEGFR2, c-Src, FAK, and AKT and angiogenesis in HUVEC and human prostate cancer cells

(PC3) [242]

Genistein Suppressed VEGF and FGF-2 expression; inhibited tyrosine kinase and activation of NF-κB and AKT; inhibited angiogenesis

in renal cell carcinoma [245]

[6]-Gingerol Inhibited VEGF-induced capillary-like tube formation and sprouting in ECs in the rat aorta and new blood vessel formation

in the mouse cornea [247]

Luteolin Inhibited VEGF-induced survival and proliferation of HUVECs through PI3K/AKT-dependent pathways [248]

Perillyl alcohol Decreased VEGF release from cancer cells and stimulated the expression of Ang2 by ECs [249]

Quercetin Inhibited hypoxia-induced VEGF expression in NCI-H157 cells through suppression of STAT-3 tyrosine phosphorylation [250]

Resveratrol Blocks VEGF- and FGF-receptor-mediated angiogenic responses through inhibition of MAPK phosphorylation in ECs [251]

Rosmarinic acid Inhibited angiogenesis, VEGF expression, and IL-8 release in ECs [252]

Sanguinarine Exhibited antiangiogenic activity through suppression of VEGF-induced proliferation and AKT activation in EC [253]

Silibinin Exhibited antiangiogenic activities against human CRC HT29 xenograft growth in mice associated with downregulation

of NOS, COX, HIF-1α, and VEGF expression [254]

Sulforaphane Inhibited angiogenesis through activation of FOXO transcription factors and inhibition of MEK/ERK and PI3K/AKT

pathways in HUVECs [256]

Taxol Inhibited VEGF production in human leukemic cell lines [257].

γ-Tocotrienol Inhibited cobalt(II) chloride-induced accumulation of HIF-1α and the paracrine secretion of VEGF in human gastric

adenocarcinoma SGC-7901 cell line through downregulation of ERK-1/2 pathway [258]

Ursolic acid Inhibited capillary formation, reduced serum level of VEGF, NO, and proinflammatory cytokines in C57BL/6 mice bearing

B16-F10 melanoma cells [259]

Vanillin Suppressed HGF-induced tumor cell angiogenesis in a mouse model through inhibition of PI3K/AKT signaling and VEGF

expression [260]

AITC allyl isothiocyanate, AKT AKT8 virus oncogene cellular homolog, Ang2 angiopoietin 2, AP-1 activator protein 1, CAM chorioallantoic

membrane, COX cyclooxygenase, CRC colorectal carcinoma, c-Src cellular Rous sarcoma oncogene cellular homolog, EAT Ehrlich ascites tumor,

EC endothelial cell, EGCG epigallocatechin-3-gallate, ERK extracellular signal-regulated kinase, FAK focal adhesion kinase, FGF2 fibroblast

growth factor 2, FOXO forkhead homeobox type O, HGF hepatocyte growth factor, HIF-1 hypoxia-inducible factor 1, HUVEC human umbilical

vein endothelial cell, IL-8 interleukin 8, MAPK mitogen-activated protein kinase, MEK MAPK/ERK kinase, NF-κB nuclear factor kappa B, NO

nitric oxide, NOS nitric oxide synthase, PI3K phosphoinositide 3 kinase, STAT signal transducer and activator of transcription, VEGF vascular

endothelial growth factor, VEGFR2 VEGF receptor 2
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4 Summary, conclusions, and future perspective

Tumorigenesis is a multistep process regulated by multiple

signaling pathways and is the target of numerous anticancer

therapies. Many of the cellular pathways overlap, showing

a high degree of redundancy within the system. Therefore,

targeting a single molecule might ultimately have little or

no effect, resulting in the need for either combination

therapy or multitargeted therapy. Nutraceuticals are inex-

pensive, safe, and readily available and have multitargeted

potential and have thus drawn considerable attention during

the past decade. As this review has shown, the future of

nutraceuticals as a cancer-fighting weapon seems promis-

ing. Some nutraceuticals have already progressed from the

bench to the bedside either alone or in combination with

existing therapy. However, greater attention is needed to

clarify the following important issues.

First, several agents can inhibit as well as potentiate

tumorigenesis. Numerous articles and commentaries have

been published on this topic [261–266]. The fact that a

given molecular component may act in opposite ways

further complicates the interpretation of data. For example,

although NF-κB has a negative effect on apoptosis in most

situations, it may induce apoptosis under special circum-

stances, depending on the stimulus, cell type, and NF-κB

subunit involved [261, 267, 268]. Second, although most

studies have suggested that nutraceuticals kill cancer cells

selectively, several studies have reported that nutraceuticals

kill normal cells as well. Third, the efficacy of most

nutraceuticals has been tested only in preclinical conditions,

either in vitro or in vivo. Whether beneficial effects will be

seen in humans is largely unknown. To date, success has

been limited to a few cancers and to a few molecules.

Fourth, resistance to chemoprevention is emerging, and

thus a better understanding of the pathways involved in

mediating tumor progression in various circumstances is

necessary. Fifth, in some cases, disruption of a particular

pathway can lead to pathological changes. For example, the

antiangiogenic feature in resveratrol is not only limited to

pathological angiogenesis but also affects physiological

angiogenesis [251]. Sixth, in various cases, it is possible that

the observations obtained in experimental settings were not

due to the nutraceutical itself but were instead due to the

intermediate formed during the process. Finally, low potency

and poor bioavailability of nutraceuticals pose further

challenges to scientists. Introducing synthetic analogs of

nutraceuticals could be a solution for these potency and

bioavailability limitations. For example, the potency of

synthetic curcumin analog EF24 was shown to be approx-

imately 10-fold greater than that of natural curcumin [269].

In light of the above facts, it is clear that we need a much

better understanding of the efficacy of nutraceuticals in

cancer prevention. Future studies should focus on careful

and accurate characterization of nutraceuticals, better

elucidation of the molecular mechanisms involved in their

actions, determination of their efficacy by in vivo studies

using proper animal models of cancer, and demonstration of

their safety and effectiveness in clinical trials.
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