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Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympath-
etic vasomotor activity by the hypothalamic paraventricular nucleus in normo-
tensive and hypertensive states. Am J Physiol Heart Circ Physiol 315: H1200 –
H1214, 2018. First published August 10, 2018; doi:10.1152/ajpheart.00216.
2018.—The hypothalamic paraventricular nucleus (PVN) is a unique and
important brain region involved in the control of cardiovascular, neuroendo-
crine, and other physiological functions pertinent to homeostasis. The PVN is
a major source of excitatory drive to the spinal sympathetic outflow via both
direct and indirect projections. In this review, we discuss the role of the PVN
in the regulation of sympathetic output in normal physiological conditions and
in hypertension. In normal healthy animals, the PVN presympathetic neurons do
not appear to have a major role in sustaining resting sympathetic vasomotor
activity or in regulating sympathetic responses to short-term homeostatic
challenges such as acute hypotension or hypoxia. Their role is, however, much
more significant during longer-term challenges, such as sustained water depri-
vation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to
have a major role in generating the increased sympathetic vasomotor activity
that is characteristic of multiple forms of hypertension. Recent studies in the
spontaneously hypertensive rat model have shown that impaired inhibitory and
enhanced excitatory synaptic inputs to PVN presympathetic neurons are the
basis for the heightened sympathetic outflow in hypertension. We discuss the
molecular mechanisms underlying the presynaptic and postsynaptic alterations
in GABAergic and glutamatergic inputs to PVN presympathetic neurons in
hypertension. In addition, we discuss the ability of exercise training to correct
sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing
angiotensin II availability, and decreasing oxidative stress and inflammation in
the PVN.
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INTRODUCTION

Up until the 1970s, the hypothalamic paraventricular

nucleus (PVN) was regarded mainly as the location of

neurons that synthesized the hormones vasopressin and

oxytocin, releasing them from the terminals in the pituitary

gland. With the advent of the method of tracing neuronal

connections using anterograde and retrograde transport,

however, Saper et al. (149) discovered that there are neurons

within the PVN that project directly to sympathetic pregan-

glionic nuclei in the spinal cord as well as to other key

autonomic nuclei, including the nucleus of the solitary tract

(NTS) and rostral ventrolateral medulla (RVLM; Fig. 1).
This landmark study led to many subsequent studies of the
role of the PVN in autonomic regulation. In this review, we
will focus on the role of the PVN in regulating the sympa-
thetic outflow to the heart and blood vessels. In the first
section of this review, we will describe our current under-
standing of the afferent and efferent connections of PVN
neurons that regulate the cardiovascular system followed by
a discussion of the role of PVN neurons in cardiovascular
regulation under normal nonpathological conditions. The
subsequent sections of the review will describe the changes
in the synaptic inputs to PVN presympathetic neurons and
the beneficial effects of exercise training on the autonomic
control in hypertension. For the involvement of the PVN in
the autonomic control in heart failure, readers are referred to
two relevant review articles on this topic (133, 138).
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OUTPUT PATHWAYS FROM PVN PRESYMPATHETIC

NEURONS REGULATING CARDIOVASCULAR FUNCTION

An important study by Strack et al. (165) using the method
of transneuronal retrograde labeling demonstrated that the
PVN is one of five brain regions that provide direct innervation
of the entire sympathetic outflow. The same study also showed,
however, that most presympathetic neurons within the PVN are
organized topographically, such that PVN neurons that regu-
late the sympathetic outflow to different target organs have
different locations within the nucleus. In agreement with this,
physiological studies have indicated that PVN neurons that
regulate the renal sympathetic outflow are a distinct group from
those that regulate the cardiac sympathetic outflow (31). Fur-
thermore, presympathetic neurons also differ in their neuro-
chemical properties; different groups contain oxytocin, vaso-
pressin, corticotrophin-releasing hormone, or various other

peptides (8, 56). There is also evidence that some PVN pre-
sympathetic neurons may act as “command neurons,” with
collateral projections to different sympathetic outflows, such as
those to the heart and adrenal medulla (69). In addition, there
are also PVN neurons with collateral projections to the RVLM
and spinal cord (139). Thus, these observations imply that
while many PVN presympathetic neurons specifically regulate
particular targets, some may regulate the sympathetic outflow
in a more global fashion.

Based on early studies of descending projections from the
PVN, reviews of the anatomic properties of PVN presympa-
thetic neurons have commonly emphasized that the main tar-
gets of these neurons are the spinal cord, NTS, dorsal motor
nucleus of the vagus (DMV), and RVLM (8, 35, 159). A more
recent study (52), however, using the anterograde tracer
Phaseolus vulgaris leucoagglutinin found that there are also
strong descending projections to the caudal pressor area in the
medulla, a region that is known to contain sympathoexcitatory
neurons but whose precise function remains unclear. In sum-
mary, there are multiple pathways by which PVN neurons can
influence the sympathetic outflow to the cardiovascular system,
although our knowledge of the specific functions of these
pathways remains incomplete.

AFFERENT INPUTS TO PVN PRESYMPATHETIC NEURONS

PVN presympathetic neurons receive information from vis-
ceral receptors relayed by the NTS and A1 and A2 noradren-
ergic cell groups as well as information about temperature,
osmolality, circulating angiotensin II, and other humoral fac-
tors from the median preoptic nucleus and two circumventricu-
lar organs: the subfornical organ (SFO) and organum vasculo-
sum lamina terminalis (Fig. 1) (31, 119, 156, 159, 161). In
addition, inputs to PVN presympathetic neurons from the
arcuate nucleus relay signals related to leptin and insulin levels
(Fig. 1) (20, 143). Thus, these neurons receive inputs signaling
a wide range of physiological variables. Further details about
the organization of inputs to PVN presympathetic neurons will
be provided in the following sections, which discuss the role of
these neurons in cardiovascular regulation.

ROLE OF THE PVN IN REGULATING RESTING MEAN

ARTERIAL PRESSURE AND SYMPATHETIC NERVE ACTIVITY

In anesthetized rats, acute inhibition of the PVN with microin-
jection of muscimol, a GABAA receptor agonist, has been re-
ported to result in decreases in the resting level of mean arterial
blood pressure (MAP), heart rate, and sympathetic nerve activity
(SNA) in some studies (2, 178, 181). In contrast, in other studies,
it has been reported that PVN inhibition with muscimol or the
ionotropic glutamate antagonist kynurenic acid has little effect on
these variables (64, 161, 162, 178). Similarly, in conscious sheep,
inhibition of the PVN with muscimol has little effect on resting
MAP or SNA (144). A possible explanation for the fact that
different investigators have reported different effects of muscimol
inhibition of the PVN on resting MAP or SNA is that these studies
were performed using different anesthetics (e.g., isoflurane, chlo-
ralose-urethane, pentobarbital sodium, or no anesthetic) and/or
different species (rats or sheep). PVN presympathetic neurons
receive both tonic excitatory and inhibitory inputs, the balance of
which may vary under different anesthetic conditions or in dif-
ferent species.
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Fig. 1. Top: sagittal section of the rat brain showing the location of the brain
nuclei that have a major role in the regulation of the sympathetic vasomotor
outflow by the hypothalamic paraventricular nucleus (PVN) under normal
conditions. Bottom: flow diagram showing the inputs to, and outputs from,
PVN presympathetic neurons that regulate the sympathetic vasomotor outflow
under normal conditions. Note that under pathological conditions (e.g., hyper-
tension, heart failure, or chronic intermittent hypoxia) or after sustained
behavioral changes (e.g., exercise training) the activity of PVN presympathetic
neurons may also be altered by other inputs. Arc, arcuate nucleus; MnPO,
median preoptic nucleus; NTS, nucleus of the solitary tract; RVLM, rostral
ventrolateral medulla; SFO, subfornical organ; OVLT, organum vasculosum
lamina terminalis.
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There is general agreement, however, that PVN presympa-
thetic neurons are tonically inhibited by GABAergic inputs,
because in both anesthetized rats and conscious sheep bicuc-
ulline injection into the PVN increases MAP and SNA (66, 80,
144, 181). Furthermore, the fact that SNA is increased after
blockade of GABA receptors in the PVN also implies that PVN
presympathetic neurons receive tonic excitatory inputs. As we
shall discuss below, the balance of tonic excitatory and inhib-
itory inputs to PVN presympathetic neurons is altered under
conditions such as water deprivation or pregnancy or in path-
ological conditions such as hypertension.

ROLE OF PVN PRESYMPATHETIC NEURONS IN THE REFLEX

REGULATION OF CARDIOVASCULAR FUNCTION

Blood Volume

It is well established that the PVN is a key component of the
central mechanisms that regulate blood volume. Changes in
blood volume are directly sensed by mechanoreceptors that are
located at the venous-atrial junctions in the heart (55). Signals
from these cardiac receptors are conveyed by vagal afferent
fibers to the NTS. An increase in blood volume or direct
stimulation of cardiac receptors triggers a reflex increase in
heart rate accompanied by a reflex decrease in renal SNA,
which, in turn, results in renal vasodilation, increased urine
flow, and Na� loss (79, 86, 140).

The PVN plays a critical role in this reflex, because lesions
of the PVN in anesthetized rats or inhibition of the PVN by
muscimol injection in conscious rabbits or sheep abolishes the
reflex decrease in renal SNA or renal vasodilation induced by
an acute increase in blood volume (58, 109, 144). Many of the
PVN neurons that control renal sympathetic outflow via the
spinal cord may use vasopressin as a neurotransmitter, based
on the finding that increases in renal SNA evoked from the
PVN can be blocked by intrathecal application of a vasopressin
receptor antagonist (174). Consistent with this, a substantial
proportion of PVN spinally projecting neurons contain vaso-
pressin (22), and vasopressin receptors are located in the
intermediolateral column of the spinal cord (155).

In electrophysiological studies in anesthetized rats, Lovick
and Coote (107, 108) showed that some spinally projecting
PVN neurons are inhibited by volume loading, leading to the
suggestion that these neurons may project to renal sympathetic
preganglionic neurons and be a component of the pathway by
which volume expansion causes a reflex inhibition of renal
SNA (31). According to this hypothesis, NTS neurons that
receive inputs from cardiac receptors activated by volume
loading project to the PVN and synapse with GABAergic
interneurons that in turn inhibit presympathetic neurons that
control the renal sympathetic outflow. Results from anatomic
studies support this view: there are direct projections from NTS
neurons to GABAergic neurons in the PVN (1) that in turn
project to PVN presympathetic neurons (173).

In the conscious rabbit with denervated arterial barorecep-
tors, an increase in blood volume results in increased activation
of PVN neurons (as indicated by c-Fos expression) (137). Very
few of the activated PVN neurons contain vasopressin (137),
consistent with the hypothesis (31) that the PVN neurons
activated by volume loading are GABAergic interneurons that
inhibit renal sympathoexcitatory responses. It has also been
proposed that the reflex increase in heart rate evoked by

volume loading is mediated by PVN presympathetic neurons
(31). In contrast to the renal component of the reflex, however,
lesions of the PVN do not significantly affect the cardiac
component (109). Thus, the reflex effects on heart rate induced
by volume loading are not dependent on the PVN.

Acute decreases in blood volume (e.g., as a result of hem-
orrhage) result in compensatory increases in SNA to blood
vessels, the heart, and adrenal medulla, together with increases
in the levels of circulating vasopressin and angiotensin II
(150). Both arterial baroreceptors and cardiac receptors con-
tribute to these reflex effects (110), but PVN presympathetic
neurons appear to make only a minor contribution to the reflex
increase in SNA. In the rat, a small proportion (~12%) of
spinally projecting PVN neurons express c-Fos after nonhypo-
tensive hemorrhage (6). A similar proportion of such neurons
expresses c-Fos after hypotensive hemorrhage (6), suggesting
that these neurons are activated by hypovolemia rather than
hypotension. Consistent with this, Polson et al. (136) found
that nitroprusside-induced hypotension activates very few PVN
spinally projecting neurons. Thus, activation of PVN spinally
projecting neurons by hypovolemia may be either due to inputs
arising from cardiac receptors or due to an increase in the level
of circulating angiotensin II, which activates PVN neurons via
the circumventricular organs (118, 119).

Dehydration

In contrast to their minor role in generating responses to
acute hypovolemia, PVN presympathetic neurons have a major
role in generating increased SNA in response to sustained
water deprivation. In anesthetized rats deprived of water for
48 h, inhibition of the PVN results in large decreases in arterial
pressure and renal, splanchnic, and lumbar SNA (47, 64, 161,
162). There is strong evidence that resting blood pressure is
maintained during water deprivation by the sustained activity
of a glutamatergic pathway from the PVN to RVLM presym-
pathetic neurons. First, blockade of excitatory amino acid
receptors in the RVLM reduces blood pressure in water-
deprived but not water-replete rats (14). Second, Stocker et al.
(163) showed that the large majority (94%) of PVN neurons
projecting to the RVLM that are activated by water deprivation
in conscious rats are glutamatergic. This study also showed
that a substantial proportion of RVLM-projecting neurons in
the PVN (16–40%, depending on the PVN subregion) are
activated by water deprivation.

Water deprivation results in increased levels of plasma
osmolarity as well as a reduction in blood volume. Scrogin et
al. (153, 154) found that restoration of normal levels of plasma
osmolarity, but not restoration of blood volume, normalizes the
elevated lumbar SNA in water-deprived rats. It thus appears
that increased osmolarity is an adequate stimulus for triggering
sympathetic responses to water deprivation via inputs to PVN
presympathetic neurons. Increased osmolarity is sensed by
osmoreceptors in neurons in the SFO and organum vasculosum
lamina terminalis, which then project to the PVN either di-
rectly or via the median preoptic nucleus, as described above.

Na� Balance

In normotensive animals and humans, a sustained increase in
salt intake causes a decrease in renal SNA, which, together
with inhibition of the renin-angiotensin-aldosterone system,
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increases salt excretion and thus maintains Na� balance (106,
123). Studies by Kapusta et al. (77, 78) have indicated that the
PVN plays an essential role in generating renal sympathoinhi-
bition in response to the increased salt intake. In particular,
they demonstrated that in normotensive rats a sustained in-
crease in salt intake resulted in a decrease in circulating
norepinephrine levels, indicative of a decreased SNA, which
was associated with an increase in G�i2 protein levels specif-
ically within the PVN. Furthermore, they demonstrated that
downregulation of brain G�i2 proteins prevented this effect
(77, 78).

An increase in salt intake leads to an increase in plasma
volume (91), which, as discussed above, will lead to renal
sympathoinhibition via a PVN-dependent mechanism. Thus, it
seems likely that salt loading leads to renal sympathoinibition
as a consequence of the increased plasma volume rather than
an increase in osmolarity. Consistent with this, Kapusta et al.
(78) found that downregulation of brain G�i2 proteins also
abolished the renal sympathoinhibitory response to isotonic
volume expansion. Furthermore, as pointed out above, in-
creased osmolarity results in sympathoexcitation rather than
sympathoinhibition.

Blood Pressure

Signals from arterial baroreceptors do reach the PVN and
can influence blood pressure via reflex effects on vasopressin
release. In particular, hypotension-induced activation of vaso-
pressin-synthesizing neurons in the PVN is dependent mainly
on inputs from arterial baroreceptors (36). With regard to the
role of the PVN in mediating baroreflex changes in SNA,
electrophysiological studies in anesthetized rats have identified
that PVN neurons projecting to the spinal cord or RVLM
appear to be barosensitive, as they are spontaneously active
and are inhibited by increases in blood pressure (7, 26, 27, 107,
108). Other studies have suggested, however, that PVN pre-
sympathetic neurons do not play a major role in the baroreflex
regulation of sympathetic activity. In anesthetized rats, lesions
of the PVN do not affect the baroreflex inhibition of SNA (58),
and studies in conscious rabbits or rats using c-Fos as a marker
of neuronal activation have shown that PVN neurons that
project to the spinal cord or the RVLM are not activated by
sustained hypotension (5, 6, 136).

Although the PVN may not be an essential component of the
baroreceptor-sympathetic reflex pathways, there is evidence
that PVN neurons that project to the NTS can modify the
cardiac component of the baroreflex under certain conditions,
such as exercise. Primary baroreceptor afferents terminate in
the NTS, which is also a major target of PVN neurons that
project to the brainstem (52). As summarized by Michelini
(120), NTS-projecting PVN neurons that contain vasopressin
or oxytocin modulate synaptic transmission within the NTS,
with the result that the baroreflex control of heart rate is reset,
so as to allow increases in heart rate and cardiac output during
exercise without loss of baroreflex sensitivity.

Hypoxia

There has been considerable debate regarding the role of
PVN presympathetic neurons in generating reflex changes in
SNA evoked by peripheral chemoreceptor input. With the use
of c-Fos as a marker of neuronal activation, sustained moderate

hypoxia (10% O2) in conscious rats was found to activate NTS
and A1 noradrenergic neurons that project to the PVN (82, 83)
as well as PVN neurons immunoreactive for vasopressin and
corticotrophin-releasing hormone (30, 160). This hypoxic
stimulus, however, does not result in the activation of presym-
pathetic PVN neurons that project to the RVLM or spinal cord
(30). Similarly, in conscious rabbits, a hypoxic stimulus of the
same magnitude does not activate PVN neurons projecting to
the RVLM but does activate RVLM-projecting neurons in the
NTS and Kölliker-Fuse nucleus (63).

Other studies, however, in which injection of KCN was used
to activate peripheral chemoreceptors, indicated that the PVN
does contribute to the sympathoexcitatory response evoked by
that stimulus. In particular, in anesthetized rats, lesions or
inhibition of the PVN reduce the sympathoexcitatory response
to KCN injections (129, 145). Consistent with these findings,
Cruz et al. (33) found that KCN injections in conscious rats
activate RVLM-projecting PVN neurons. In contrast to the
moderate hypoxia induced by breathing 10% O2, KCN injec-
tion may cause more intense stimulation of peripheral chemo-
receptors or cause secondary effects that in turn evoke sympa-
thoexcitation. In particular, KCN injection can cause a behav-
ioral defense reaction (124) that is well known to be associated
with sympathoexcitatory responses (34).

Thus, taking all the evidence together, acute systemic hyp-
oxia does not normally lead to reflex activation of PVN
presympathetic neurons except when the hypoxia is extreme or
is associated with secondary behavioral reactions. At the same
time, chronic intermittent hypoxia, such as occurs during sleep
apnea, can lead to sustained increases in SNA. As reviewed by
Mifflin et al. (122), studies in rats have indicated that chronic
intermittent hypoxia increases the transmission of chemorecep-
tor inputs to the NTS and increases SNA via a circuit that
includes the PVN and RVLM as essential components.

Psychological Stress

It is well known that psychological or emotional stress
evokes cardiovascular responses, including increases in SNA,
blood pressure, and heart rate (34). The PVN does not play a
major role in generating sympathoexcitatory responses to acute
psychological stress, because inhibition of the PVN does not
significantly affect the increases in blood pressure and heart
rate evoked by air jet stress, although it does block the
neuroendocrine response to this stress (164). Nevertheless,
PVN presympathetic neurons may make some contribution to
the increase in SNA associated with some types of psycholog-
ical stress, because Carrive and Gorissen (19) found that ~10%
of spinally projecting PVN neurons are activated during con-
ditioned fear. In addition, Furlong et al. (49) found that a small
proportion (~7%) of PVN neurons projecting to the NTS are
activated by air puff stress. Such NTS-projecting neurons may
contribute to the resetting of the baroreflex that occurs during
psychological stress (76).

It is well established that chronic stress, even when sustained
over several weeks, is associated with sustained increases in
sympathoadrenal activity, as indicated by increased levels of
urinary norepinephrine excretion (48, 87). In addition, there is
also a sustained increase in cortisol levels, indicating sustained
activation of neuroendocrine neurons within the PVN (87).
This has led to the suggestion that, in contrast to acute psy-
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chological stress, in chronic stress the PVN plays an important
role in generating sustained increases in SNA (35, 113). There
is, however, not yet direct evidence to support this hypothesis.

Pregnancy

Fluid balance and arterial pressure regulation are profoundly
altered in pregnancy. Blood volume and cardiac output in-
crease, but total resistance decreases, mainly as a consequence
of hormonal changes (147). There is an overall increase in
SNA in late pregnancy, which helps to sustain blood pressure
in both humans (54, 70) and animals (15, 29, 89). The increases
in SNA, however, appear to be nonuniform. In pregnant rats,
lumbar, splanchnic, and cardiac SNA are markedly elevated
(29, 157). In contrast, some (62, 128, 157) but not all (115)
studies have reported that renal SNA is not increased in
pregnancy. PVN presympathetic neurons contribute to the
maintenance of this increased SNA in pregnancy because
inhibition of the PVN in pregnant rats, but not nonpregnant
rats, results in significant decreases in blood pressure, heart
rate, and lumbar SNA (157).

A major factor responsible for the increased activity of PVN
presympathetic neurons in pregnant rats is that, compared with
nonpregnant rats, there is a reduction in tonic GABAergic
inhibition of these neurons (90). The mechanisms responsible
for the reduced tonic GABAergic inhibition have not been
established, but several possibilities have been proposed. First,
the level of circulating angiotensin II is increased in pregnancy
(16, 57), and it has been shown that chronic intravenous
infusion of angiotensin II results in decreased GABAergic
inhibition of PVN neurons (92) and thus increased activation of
these neurons (39). These observations led Kvochina et al. (90)
to suggest that the increased levels of circulating angiotensin II
in pregnancy may activate angiotensin II type 1 (AT1) recep-
tors on neurons in the SFO that project to the PVN, ultimately
causing a reduction in GABAergic inhibition of presympa-
thetic neurons. In addition, pregnancy is also associated with
decreased expression of nitric oxide synthase activity and
expression (59). It has been shown that decreased levels of
nitric oxide in the PVN results in decreased GABAergic
inhibition of PVN presympathetic neurons (181). Thus, as
occurs in heart failure (179), decreased nitric oxide synthase
activity in the PVN may lead to disinhibition of PVN
neurons and increased SNA. The molecular mechanisms by
which inputs from the SFO or decreased levels of nitric
oxide synthase activity cause decreased GABAergic inhibi-
tion in the PVN are unknown, but one factor that may be
involved is a decrease in the expression of the GABAA

receptor �5-subunit (32).
Inhibition of neurons in the arcuate nucleus decreases arte-

rial pressure, heart rate, and lumbar SNA in pregnant but not
nonpregnant rats (157). The arcuate nucleus is a major source
of inputs to the PVN that release either neuropeptide Y (NPY)
or �-melanocyte-stimulating hormone (MSH) (71, 127). Ex-
pression of NPY in the PVN is reduced in pregnant rats, and
blockade of NPY receptors in the PVN increased arterial
pressure, heart rate, and lumbar SNA in nonpregnant but not
pregnant rats (157). Conversely, inhibition of melanocortin 3/4
receptors (normally activated by MSH) in the PVN decreased
arterial pressure, heart rate, and lumbar SNA in pregnant but
not nonpregnant rats (157). Taken together, these observations

suggest that in pregnancy there is reduced NPY-mediated
inhibition and increased MSH-mediated excitation of PVN
presympathetic neurons from inputs arising from the arcuate
nucleus.

In addition to effects on the resting levels of arterial pres-
sure, heart rate, and SNA, pregnancy is associated with a
marked reduction in the gain of the arterial baroreflex (for
a review, see Ref. 13). There is evidence that the PVN plays a
role in this effect during pregnancy. In particular, there is a
high density of insulin receptors in the PVN (152), and acti-
vation of these receptors increases baroreflex gain (13). There-
fore, during pregnancy, when the level of brain insulin is
reduced (38), this may contribute to the reduction in baroreflex
gain.

In summary, PVN presympathetic neurons do not appear to
have a major role in regulating sympathetic responses to
short-term homeostatic challenges. Their role is, however,
much more significant during longer term challenges, such as
sustained water deprivation, chronic intermittent hypoxia, and
pregnancy. The following sections will consider the role of
these neurons under the pathological state of hypertension.

SYNAPTIC PLASTICITY IN THE PVN IN HYPERTENSION

In contrast to normotensive animals, in the spontaneously
hypertensive rat (SHR), the excitability of PVN presympa-
thetic neurons is profoundly increased and is a major source of
excitatory drive to maintain heightened sympathetic outflow
(3, 94, 100, 176). Glutamate and GABA are the predominant
excitatory and inhibitory neurotransmitters, respectively, in the
brain, and the firing activity of PVN output neurons is finely
tuned by these synaptic inputs (99, 100). The inhibitory actions
of GABA are mediated primarily through ionotropic GABAA

receptors and metabotropic GABAB receptors. Glutamate re-
ceptors are divided into ionotropic glutamate receptors, includ-
ing N-methyl-D-aspartate (NMDA) receptors (NMDARs),
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid re-
ceptors (AMPARs), kainite receptors, and metabotropic gluta-
mate receptors (mGluRs). In the following section, we review
synaptic plasticity in the PVN from recent studies performed
mainly using SHRs, a commonly used animal model of pri-
mary hypertension.

IMPAIRED GABAERGIC SYNAPTIC INPUTS TO THE PVN IN

HYPERTENSION

GABAA Receptors

Normal GABAergic inhibition of PVN presympathetic neu-
rons is impaired in hypertension (Fig. 2). In this regard,
blockade of GABAA receptors with bicuculline or gabazine
typically increases the excitability of presympathetic PVN
neurons in normotensive Wistar-Kyoto (WKY) rats. However,
bicuculline or gabazine either increases or has no effect on the
firing activity of these neurons in adult SHRs (97, 175). The
frequency of GABAergic inhibitory postsynaptic currents (IP-
SCs) of PVN presympathetic neurons is reduced in SHRs (97,
175). Also, GABAA receptor-binding sites are reduced in the
PVN in SHRs (88). The diminished GABAergic inhibition of
PVN presympathetic neurons may result from reduced presyn-
aptic GABA release, decreased GABAA receptor number or
function, or the loss of GABAergic neurons in hypertension.
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Notably, in rats with congestive heart failure, GABA-mediated
neuronal inhibition in the PVN is also reduced and contributes
to increased sympathetic outflow (18, 180).

GABAB Receptors

In contrast, GABAB receptor activity in the PVN is in-
creased in SHRs, as evidenced by microinjection of the
GABAB receptor agonist baclofen into the PVN inducing a
greater inhibitory effect on sympathetic outflow in SHRs than
in WKY rats (98). Also, blockade of GABAB receptors with
CGP-55845 increases the firing activity of PVN presympa-
thetic neurons in SHRs but has no effect in WKY rats (97). In
addition, activation of GABAB receptors induces larger mem-
brane hyperpolarization and larger outward currents in PVN
presympathetic neurons in SHRs than in WKY rats (99). These
findings suggest that the GABAB receptor is tonically activated
and involved in the regulation of the excitability of PVN
presympathetic neurons in SHRs (97). GABAB receptors are
expressed presynaptically and can regulate both glutamate and
GABA release. The GABAB receptor control of synaptic
glutamate release to PVN presympathetic neurons is enhanced,
whereas presynaptic GABAB receptor control of GABAergic
synaptic inputs is attenuated, in SHRs compared with normo-
tensive control rats (99).

Cation-Cl� Cotransporter

GABAA receptors are ligand-gated anion channels with a
predominant permeability to Cl� and a limited permeability to

HCO3
� (74, 75). When the intracellular Cl� concentration is

high, GABAA receptor activation induces Cl� outflow to
depolarize the cell membrane. On the other hand, GABAA

receptor activation induces hyperpolarization when the intra-
cellular Cl� concentration is low (74, 75). Both Na�-K�-Cl�

cotransporter-1 (NKCC1) and K�-Cl� cotransporter-2 (KCC2)
are involved in maintaining Cl� homeostasis and the GABA
reversal potential (EGABA) (134, 146). mRNA and protein
levels of NKCC1, but not KCC2, in the PVN are markedly
increased in SHRs. The upregulation of NKCC1 induces an
increase in the intracellular Cl� concentration, which leads to

a depolarizing shift of EGABA in PVN presympathetic neurons
and diminishes GABAergic inhibition in SHRs. This shift in
EGABA corresponds to an elevation of intracellular Cl� con-
centration in PVN presympathetic neurons in SHRs (175).
Furthermore, NKCC1 proteins on the plasma membrane in the
PVN of SHRs are highly glycosylated, and inhibition of
NKCC1 N-glycosylation normalizes EGABA and restores
GABA inhibition of PVN presympathetic neurons in SHRs
(175). In addition, intracerebroventricular administration of the
NKCC1 inhibitor bumetanide decreases sympathetic vasomo-
tor activity and restores sympathoinhibitory responses to the
GABAA receptor agonist in the PVN in SHRs. Interestingly, a
depolarizing shift of EGABA in PVN vasopressin neurons is
also observed in deoxycorticosterone acetate-salt-treated hy-
pertensive rats (81). This depolarizing shift of EGABA is asso-
ciated with increased NKCC1 protein levels in the PVN.
Intracerebroventricular injection of bumetanide delays the de-
velopment of hypertension induced by deoxycorticosterone
acetate-salt treatment (81). Together, these findings suggest
that increased NKCC1 activity in the PVN may account for
diminished GABAergic input to PVN presympathetic neurons
in hypertension.

ENHANCED GLUTAMATERGIC SYNAPTIC INPUTS TO THE

PVN IN HYPERTENSION

Synaptic NMDARs

Blockade of inotropic glutamate receptors in the PVN has
little effect on vasomotor tone in normotensive rats, but it
profoundly reduces sympathetic nerve discharges and MAP in
SHRs (95). This augmented glutamatergic synaptic input in the
PVN in hypertensive conditions has been reported in SHRs
(142, 176), salt-sensitive hypertension (50), and angiotensin
II-induced hypertension (53, 141). In brain slices, the basal
frequency of miniature excitatory postsynaptic currents (mEP-
SCs; a measure of presynaptic quantal release of glutamate) of
PVN presympathetic neurons is substantially increased in
SHRs compared with normotensive controls (142, 176, 177).
This increased presynaptic glutamate release is mediated by
NMDARs because blockade of NMDARs abolishes the in-
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• 

• 

• 
• 
• 

• 
• 

• 
• 

 Excitability

Fig. 2. Imbalance of excitatory and inhibitory synaptic
inputs to paraventricular nucleus (PVN) presympathetic
neurons in the spontaneously hypertensive rat model.
Impaired inhibitory GABAergic synaptic inputs include
a depolarizing shift of GABA reversal potential due to
Na�-K�-Cl� cotransporter-1 (NKCC1) upregulation
and reduced GABAB receptor activity. Enhanced excit-
atory glutamatergic synaptic inputs include increased
N-methyl-D-aspartate receptors (NMDAR)-mediated
presynaptic glutamate release, increased activity of post-
synaptic NMDARs and metabotropic glutamate receptor
5 (mGluR5), and a switch to Ca2�-permeable �-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tors (AMPARs). The impaired GABAergic and en-
hanced glutamatergic inputs lead to hyperactivity of
PVN presympathetic neurons and heightened sympa-
thetic vasomotor tone in hypertension. CK, casein ki-
nase; CaMKII, Ca2�/calmodulin-dependent protein ki-
nase II.
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creased frequency of mEPSCs of PVN presympathetic neurons
in SHRs (102, 142). However, blockade of NMDARs does not
alter the frequency of mEPSCs of PVN neurons in normoten-
sive rats. Thus, NMDAR-mediated presynaptic glutamate re-
lease in the PVN is latent under the normotensive condition but
becomes tonically activated in SHRs (142, 176). GluN2A-
containing NMDARs predominantly mediate enhanced synap-
tic glutamate release to PVN presympathetic neurons in hyper-
tension (177).

Postsynaptic NMDAR activity in PVN presympathetic neu-
rons is also enhanced in hypertension. For example, the
NMDAR currents induced by puff NMDA application are
much larger in spinally projecting PVN neurons in SHRs
compared withWKY rats (100, 102, 142, 176). Blockade of
NMDARs significantly decreases the firing activity of PVN
presympathetic neurons in brain slices (100, 102, 176) and
reduces sympathetic vasomotor activity in SHRs (94, 100, 103,
176). Also, angiotensin II-induced hypertension is associated
with increased NMDAR activity of spinally projecting PVN
neurons (170). Deletion of the NMDAR subunit GluN1 in the
PVN attenuates systemic angiotensin II administration-induced
increases in blood pressure in mice (53), demonstrating an
important role of NMDARs in the PVN in hypertension caused
by angiotensin II. In addition, upregulation of NMDARs and
increased NMDAR activity in the PVN has been shown in rats
with congestive heart failure (84, 85, 104).

NMDAR Regulation by Kinases/Phosphatases and �2�-1

Many protein kinases are involved in the regulation of
NMDAR activity through direct or indirect phosphorylation of
NMDARs and/or NMDAR-interacting proteins. The kinases
involved in NMDAR regulation of PVN presympathetic neu-
rons in hypertension include casein kinase II (CK2) (176),
casein kinase I (CK1) (101), Src kinases (142), and Ca2�/
calmodulin-dependent protein kinase II (CaMKII) (102). CaM-
KII, a synapse-enriched serine/threonine protein kinase, binds
to and modulates NMDAR activity in PVN presympathetic
neurons in hypertension. CaMKII inhibition decreases both
presynaptic and postsynaptic NMDAR activity in PVN pre-
sympathetic neurons in SHRs (102). Furthermore, the CaM-
KII-mediated phosphorylation level of GluN2B at Ser1303 in
the PVN is much higher in SHRs than in WKY rats (102).

The CK2� protein level on the cell membrane in the PVN is
substantially higher in SHRs compared with WKY rats (176).
Inhibition of CK2 activity profoundly decreases NMDAR-
mediated EPSCs, puff NMDAR currents, and NMDAR-medi-
ated mEPSCs in spinally projecting PVN neurons in SHRs
(176). In addition, intracerebroventricular administration of a
CK2 inhibitor decreases SNA and MAP in SHRs but not in
WKY rats (176). Src kinases are also crucially involved in the
control of pre- and postsynaptic NMDAR activity of RVLM-
projecting PVN neurons in SHRs (142). CK2 phosphorylates
the Ser1480 residue of the GluN2B subunit (148), whereas Src
kinase phosphorylates Tyr1325 of the GluN2A subunit (166).
Thus, CK2 and Src kinases may increase the phosphorylation
of different amino acid residues of NMDARs in SHRs. Also,
Src kinases may interact with CK2 via phosphorylation of
tyrosine residues in CK2 catalytic subunits to increase CK2
activity (41).

The net activity and phosphorylation level of NMDARs in
the PVN in SHRs are tightly regulated by protein kinases and
phosphatases as well as their reciprocal interactions (Fig. 2). In
contrast to the increased NMDAR phosphorylation level by
CK2, Src, and CaMKII kinases in the PVN, the CK1 (partic-
ularly CK1ε) protein level in the PVN is significantly de-
creased in SHRs (101). CK1 inhibition increases NMDAR-
mediated EPSCs, puff NMDA-elicited currents, and the firing
activity of spinally projecting PVN neurons in WKY rats but
not in SHRs (101), suggesting that CK1 activity is attenuated
in the PVN in SHRs. Because CK1 is a serine/threonine kinase
that does not directly phosphorylate NMDARs (168), it may
inhibit NMDAR activity indirectly by increasing the activity of
protein phosphatases such as protein phosphatase (PP)1/2A
(172) and/or PP2B (calcineurin) (105, 167). Interestingly, in-
hibition of PP1/2A or PP2B can mimic the effect of the CK1
inhibitor on NMDAR activity, and CK1 inhibitor does not
further increase NMDAR activity of PVN presympathetic
neurons after inhibition of PP1/2A and PP2B (101). Thus,
decreased CK1 activity in the PVN may lead to reduced
dephosphorylation of NMDARs by protein phosphatases in
SHRs.

�2�-1, previously considered a subunit of voltage-activated
Ca2� channels, can directly interact with NMDARs and po-
tentiate presynaptic and postsynaptic NMDAR activity by
promoting synaptic trafficking of NMDARs (25). A recent
study has shown that �2�-1-bound NMDARs in the PVN are
essential for the angiotensin II-induced increase in NMDAR
activity of PVN presympathetic neurons and augmented sym-
pathetic outflow (111). Furthermore, the prevalence of synaptic
�2�-1-bound NMDARs in the PVN is increased and accounts
for potentiated NMDAR activity of PVN presympathetic neu-
rons sympathetic vasomotor activity in SHRs (112). The po-
tential link between �2�-1-bound NMDARs and various pro-
tein kinases in regulating NMDAR activity in hypertension is
currently unknown. Because increased protein phosphorylation
can strengthen protein-protein binding complexes (125), it is
possible that certain protein kinases potentiate the phosphory-
lation of �2�-1 and/or NMDAR proteins to promote their
physical interactions by changing their physicochemical prop-
erties, stability, and dynamics.

Synaptic AMPARs

AMPARs containing the GluR2 subunit are impermeable to
Ca2� (65, 67), whereas AMPARs lacking the GluR2 subunit
are permeable to Ca2� and are blocked by intracellular poly-
amines in a voltage-dependent manner (11, 42, 67). AMPARs
in the PVN presympathetic neurons in SHRs undergo a switch
to Ca2�-permeable AMPARs. Specifically, AMPAR-mediated
EPSCs display an inward rectification at positive holding
potentials in spinally projecting PVN neurons in SHRs (93).
Furthermore, a selective Ca2�-permeable AMPAR blocker,
1-naphthyl acetyl spermine, substantially reduces the ampli-
tude of AMPAR-mediated EPSCs and excitability of spinally
projecting PVN neurons in SHRs but not in WKY rats (93).
These findings suggest that Ca2�-permeable AMPAR activity
is increased and contributes to the hyperactivity of PVN
presympathetic neurons in SHRs (93). Together with aug-
mented NMDAR activity, a switch to Ca2�-permeable AM-
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PARs can lead to an increased intracellular Ca2� level of PVN
presympathetic neurons in SHRs.

Group I mGluRs

mGluRs are typically activated by the excessive glutamate
release in the PVN in SHRs and involved in regulating sym-
pathetic outflow in hypertension (96). Group I mGluRs
(mGluR1 and mGluR5) are coupled to Gq/11 proteins, and their
activation triggers several signaling pathways, including PKC,
to increase neuronal excitability and synaptic neurotransmitter
release. Microinjection of a mGluR5 receptor antagonist into
the PVN produces a greater inhibitory effect on SNA and MAP
than that caused by a mGluR1 receptor antagonist in SHRs,
suggesting that mGluR5 receptors play a dominant role in
maintaining elevated sympathetic vasomotor activity in SHRs
(96). In addition, mRNA and protein expression levels of
mGluR5 in the PVN are markedly increased in SHRs com-
pared with WKY rats (103). The NMDAR antagonist largely
attenuates the sympathoexcitatory response to microinjection
of a general group I mGluR agonist into the PVN (103). Hence,
stimulation of group I mGluRs may excite PVN presympa-
thetic neurons via NMDARs.

Together, recent findings from brain slice studies have
revealed the signaling mechanisms of synaptic plasticity in the
PVN in animal models of hypertension. The augmented glu-
tamatergic input and diminished GABAergic input serve as the
cellular and molecular basis of increased excitability of PVN
presympathetic neurons, leading to heightened sympathetic
outflow in hypertension. In addition to the synaptic plasticity
described above, mineralocorticoid receptors and AT1 recep-
tors in the PVN play a major role in the development of
hypertension induced by aldosterone-salt or angiotensin II
administration in rats (24, 51, 171). Also, brain-derived neu-
rotrophic factor (BDNF) and its receptor TrkB in the PVN play
a role in angiotensin II-induced hypertensions in rats (43, 151).
However, it remains uncertain how BDNF-TrkB signaling and
mineralocorticoid receptors contribute to synaptic plasticity of
PVN presympathetic neurons in hypertension (111).

EFFECTS OF EXERCISE TRAINING ON THE PVN AND

AUTONOMIC CONTROL IN HYPERTENSION

Apart from increased sympathetic vasomotor activity, hy-
pertension is accompanied by increased expression of the
vasoconstrictor, trophic, and proinflammatory axis of the renin-
angiotensin system (RAS) and decreased expression of the
contraregulatory vasodilator, antitrophic, and anti-inflamma-
tory axis in the PVN and other brain regions that regulate the
autonomic nervous system (4, 37, 46). Indeed, an imbalance
between RAS axes, with the predominance of angiotensin II
over angiotensin-(1-7)-mediated effects, occurs in hyperten-
sive and old rodents (4, 126). In SHRs, augmented angio-
tensinogen and AT1 receptor expression levels are also accom-
panied by a high level of oxidative stress and increased
synthesis of proinflammatory cytokines in the PVN, NTS, and
RVLM (116, 158, 182). These changes are associated with
impaired baroreceptor reflex control, increased blood pressure
fluctuation, and reduced heart rate variability (73, 130), result-
ing in increased sympathetic outflow to the heart and blood
vessels and reduced parasympathetic modulation of the heart in
SHRs (10, 117). Increased blood-brain barrier (BBB) perme-

ability may be another mechanism contributing to autonomic
dysfunction in hypertension (9). BBB dysfunction allows cir-
culating angiotensin II to enter the brain parenchyma to cause
further increases in proinflammatory cytokines, oxidative
stress, and sympathoexcitatory responses.

Low to moderate aerobic training can reduce or counterbal-
ance the deleterious effects of hypertension on the autonomic
control (45, 116, 117). Aerobic training in SHRs reduces
angiotensinogen and angiotensin II levels within the PVN (Fig.
3A) and sympathetic vasomotor activity. It also normalizes
sympathovagal balance to the heart and baroreceptor sensitiv-
ity (Fig. 4) (23, 116). In SHRs, exercise training also produces
a transient, but not maintained, increase in Mas receptor
expression and a reduction in AT1 receptor levels in the PVN
in SHRs. Interestingly, the reduction in AT1 receptor expres-
sion is observed after downregulation of the brain RAS and
improvement of the autonomic control in SHRs after exercise
training (23). Similar effects of exercise training on the auto-
nomic control by the PVN, including enhancing the inhibitory
neuronal activity by nitric oxide and GABA and normalizing
the excitatory glutamatergic and angiotensinergic input, have
been shown in rats with heart failure (132, 133).

A 2-wk period of aerobic training effectively restores BBB
integrity within the PVN in SHRs (Fig. 3B). BBB dysfunction,
characterized by the intense FITC (10 kDa) extravasation into
the brain parenchyma present in sedentary SHRs, is markedly
reduced by exercise training (17). Similar effects of exercise
training on the attenuation of BBB leakage also occur in the
NTS and RVLM in SHRs (17). A 2-wk exercise training period
also reduces sympathetic vasomotor activity and the sympa-
thovagal balance to the heart, and both changes are positively
correlated with a decrease in BBB leakage within the PVN
(17). Intracerebroventricular injection of a subpressor dose of
angiotensin II blocks the beneficial effect of training on BBB
leakage (Fig. 3C) (17). Angiotensin II infusion also abrogates
the effect of training on reducing microglial activation in the
PVN in SHRs (Fig. 3D) (17).

Exercise training also normalizes the increased expression of
both the p47phox and gp91phox subunits of NADPH oxidase, an
important downstream target of angiotensin II, and reduces the
increased concentration of superoxide anion and hydrogen
peroxide in the PVN (Fig. 4) (116). Exercise training does not
change the expression level of p38 kinase, but it reduces
ERK1/2 phosphorylation in the PVN in SHRs (Fig. 4). Fur-
thermore, training reduces NF-�B translocation to the nucleus,
therefore decreasing protein synthesis stimulated by angioten-
sin II and reactive oxygen species (116). In addition, both
mRNA and protein levels of TNF-� and IL-6 in the PVN in
trained SHRs are normalized to levels seen in age-matched
normotensive rats (116). A 2-wk training period completely
normalizes baroreceptor reflex sensitivity in SHRs (Fig. 4), an
effect that precedes the reduction in resting arterial blood
pressure (116).

Reactive oxygen species can alter ion channel properties and
change neuronal excitability, and high concentrations of reac-
tive oxygen radicals compromise neuronal excitability and the
capability of generating action potentials (131, 135). Inflam-
matory cytokines such as TNF-�, IL-6, and IL-1� exhibit
neuromodulatory properties on neuronal excitability (169).
IL-10, an anti-inflammatory cytokine, acts on PVN neurons to
offset the neuronal excitatory actions of angiotensin II (72). By
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reducing both oxidative stress and the proinflammatory profile
in the PVN of SHRs, exercise training may change the redox
balance toward an antioxidative/anti-inflammatory profile to
improve neuronal function. These changes in the brain paren-
chyma may affect the neuronal circuitry involved in the control
of the autonomic nervous system.

Oxytocinergic (OTergic) PVN neurons may also be involved
in the beneficial effects produced by exercise training. Exercise
training can increase mRNA and protein levels of oxytocin in
both SHRs and normotensive control rats and increases the
density of dorsal brain stem-projecting OTergic neurons in the
PVN (21, 114, 121). Training augments the excitability of

PVN OTergic neurons projecting to the brain stem (68), and
exercise-induced OTergic drive to the NTS/DMV complex
facilitates the appearance of resting bradycardia and the reduc-
tion in tachycardia associated with exercise (12, 60). Both
exercise training and oxytocin administration into the NTS/
DMV of sedentary rats equally improve the baroreceptor reflex
control of heart rate (61). These effects are mediated by the
oxytocin-induced increase in vagal outflow to the heart (61,
120). In addition, sinoaortic denervation abrogates the exer-
cise-induced increase in the density of PVN OTergic neurons
and simultaneously blocks the beneficial effects of training on
the cardiovascular control (21).
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angiotensin system, paraventricular nucleus intracel-
lular signaling pathways, and neuronal activity-
driven changes on baroreflex sensitivity (BrS). The
baroreceptor function curve of sedentary normoten-
sive rats (WKY-S) is shown for comparison. HR,
heart rate [in beats/min (bpm)]; MAP, mean arterial
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These findings together indicate that hypertension impairs
and exercise training improves the autonomic control of the
circulation by affecting BBB function, the angiotensin II con-
tent, and the downstream signaling in the PVN. Exercise
training can restore normal neuronal activity in the PVN,
which is a critical region for the autonomic control of the
circulation in hypertension. Although the mechanisms mediat-
ing the effect of excise training on BBB function are not clear,
the similar temporal changes, such as the reduction in RAS,
oxidative stress, proinflammatory mediators, and microglia
activation, have been observed in the PVN. Thus, these factors
may be involved in improving BBB function by exercise
training.

Summary and Perspectives

As discussed in the first part of this review, the primary
function of PVN presympathetic neurons in normal animals is
to regulate sympathetic responses to longer-term challenges,
such as sustained water deprivation, chronic intermittent hyp-
oxia, and pregnancy. In normotensive animals, PVN presym-
pathetic neurons do not make a significant contribution to the
maintenance of resting SNA and blood pressure. In contrast,
these neurons do make a major contribution to the increased
sympathetic vasomotor activity that is responsible for hyper-
tension.

Recent studies in the SHR have provided considerable evi-
dence showing that the hyperactivity of PVN presympathetic
neurons in hypertension is due to an imbalance of excitatory
and inhibitory synaptic inputs to these neurons, resulting in
heightened sympathetic vasomotor tone in hypertension. How-
ever, our understanding of the molecular or signaling mecha-
nisms responsible for the increased NMDAR and Ca2�-per-
meable AMPAR activity in the PVN in hypertension remains
incomplete. Also, the epigenetic mechanism responsible for the
increased expression level of NKCC1 and mGluR5 in the PVN
in hypertension warrants further studies. Because glutamate
and GABA receptors are important for many physiological
functions, directly targeting these receptors often produces
intolerable adverse effects. NKCC1 and specific protein ki-
nases or �2�-1-bound NMDARs responsible for aberrant
NMDAR activity in the PVN may be opportune targets for
treating neurogenic hypertension. For example, gabapentinoids
(gabapentin and pregabalin), commonly used for treating pa-
tients with neuropathic pain, act predominantly on �2�-1-
bound NMDARs (25). Because gabapentinoids do not affect
basal �2�-1-free NMDARs, targeting �2�-1-bound NMDARs
with these drugs could circumvent the adverse effects caused
by blocking physiological NMDARs with nonselective
NMDAR antagonists. It has been previously reported that
gabapentinoids reduce tracheal intubation-elicited pressor re-
sponse and brain injury caused paroxysmal sympathetic hyper-
activity in patients (28, 40, 44). Thus, gabapentinoids may be
considered for treating neurogenic hypertension.

Exercise training has emerged as an effective intervention
for the management of hypertension. Regular physical activity
is beneficial for treating hypertension without the side effects
associated with pharmacological agents. Accumulating exper-
imental evidence indicates that exercise training reverses sev-
eral deficits induced by neurogenic hypertension. Exercise
training can correct BBB dysfunction, downregulate the brain

RAS, and reduce oxidative stress and the inflammatory profile
in the PVN, thereby improving autonomic modulation and
baroreflex control of the circulatory system. Further studies are
needed to delineate precisely how exercise training differen-
tially affects sympathetic and parasympathetic outflows in
hypertension.
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