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T cells are critical in orchestrating protective immune responses to cancer and an array

of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen

presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation,

division, and clonal expansion in secondary lymphoid organs. T cells must also integrate

multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential

for the defense against invading microbes. In the case of T helper cell differentiation,

while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte

function, the contribution of TCR signaling strength to T helper cell differentiation is

less understood. In this review, we summarize the signaling cascades regulated by the

strength of TCR stimulation. Various mechanisms in which TCR signal strength controls

T helper cell expansion and differentiation are also discussed.

Keywords: TCR signal strength, TCR affinity, Antigen dose, CD4+ T Cell differentiation, T cell expansion, T cell

proliferation, Th1

INTRODUCTION

CD4+ T helper (Th) cells play a critical role in mediating protective immunity against bacterial,
viral, parasitic and fungal infections by regulating the responses of antibody-producing B cells,
cytotoxic CD8+ T lymphocytes, and macrophages. Naïve CD4+ T cells are activated when their
unique T cell Receptor (TCR) recognizes cognate peptides presented by Major Histocompatibility
Complex (MHC) class II molecules (pMHC-II) in the presence of costimulatory molecules on
antigen presenting cells (APCs). To ensure that there are sufficient numbers of antigen-specific
clones present to combat pathogens at infection sites, activated CD4+ T cells undergo clonal
expansion and acquire effector functions in secondary lymphoid organs (SLOs). Depending on
the type of pathogen, CD4+ T cells can be tailored to become one of several specialized Th subsets
defined by their functional attributes (1).

Two prevailingmodels explain howCD4+ T cells integrate different signals to determine lineage
commitment. The classic “qualitative” model suggests that Th cell responses are shaped dominantly
by the cytokines produced by pathogen-exposed innate cells. The second “quantitative” model
proposes that the strength of the signal delivered through the TCR regulates the differentiation
program of CD4+ T cells. Multiple T cell-associated factors influence the overall strength of TCR
signaling strength. These include the quality of the interactions betweenMHC and TCRmolecules,
the amount of antigen, and the degree of costimulation (2). This review will focus mainly on
how the potency of signals delivered through the TCR controls the activation, expansion, and
differentiation of CD4+ T cells.
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EXPERIMENTAL APPROACHES USED TO
MANIPULATE TCR SIGNAL STRENGTH

Different experimental approaches have been used to study the
role of TCR signal strength in controlling T cell responses. One of
the most frequently employed methods is to titrate the amount of
antigen thereby altering the number of peptide-occupied MHC
molecules that engage cognate TCRs (2). Another method is to
induce mutations in peptide sequences (Altered Peptide Ligands,
APLs), which allows investigators to change the potency of TCR
signals by altering antigen-binding affinity to MHC molecules
and TCR complexes (2, 3). In addition, by altering pathogen
or adjuvant doses, variations in the degree of inflammation
modulate the intensity of costimulatory signals delivered through
CD28, and hence the overall strength of TCR signals (4). It is
important to note that because the TCR itself is not modified,
the approachesmentioned above cannot analyze the contribution
of T cell-intrinsic variations in TCR signal strength to the T
cell response.

One T cell-intrinsic factor that affects the strength of the signal
delivered through the TCR is the number of TCR molecules
expressed, also known as TCR avidity (5). Manipulation of TCR
avidity achieves similar outcomes as changes in antigen dose or
increasing the number of peptide-loaded MHC molecules, and
is naturally achieved after initial T cell activation in a process
known as avidity maturation (6). Alternatively, by introducing
mutations into TCR sequences, investigators can change the
affinity of the TCR for pMHC complexes (7). This alters the
binding kinetics between TCR and pMHC complexes such
that high affinity TCRs bind with slower off/dissociation rates
(Kd) when measured using two-dimensional (2D) kinetic assays.
Hence at the level of an individual TCR, slower Kd’s lead to
prolonged pMHC:TCR interactions (2). Alterations in antigen
dose and the degree of costimulatory signaling also affect the
duration of contact between APCs and T cells (8, 9). Higher
antigen levels result in longer interaction or “dwell” times and
confer potent, prolonged TCR signals; whereas lower antigen
dose stimulation results in shorter interactions and impart
protracted, weaker signals (9). However, higher-affinity TCRs
do not always facilitate greater dwell times or signal strength
(10, 11). It is therefore unclear whether higher affinity TCRs
accelerate T cell activation by decreasing the antigen threshold
required for activation (12–14), or whether they promote longer
interactions to stabilize lineage commitment following T cell
activation (9).

TCR SIGNALING CASCADE

The TCR complex consists of a variable heterodimer (TCRαβ)
that binds to antigenic ligands and the invariant signaling
component, CD3, which is composed of gamma, delta, epsilon,
and zeta subunits. Whilst there is much debate on how TCR
signals are initially triggered [reviewed by (15)], it is generally
agreed that TCR ligation to agonistic pMHCs results in the
aggregation of TCR-CD3 complexes with costimulatory and
adhesion proteins such that an immunological synapse is
formed (16, 17). The physical force of pMHC:TCR binding

is thought to change the orientation of cytosolic signaling
components of the TCR-CD3 complex (18, 19). This change
results in the phosphorylation of Immunoreceptor Tyrosine-
based Activation Motifs (ITAMs) by Src family Protein
Tyrosine Kinase (PTK), such as Lymphocyte-specific protein
tyrosine Kinase (LCK) (20, 21). The concurrent exclusion
of constitutively active transmembrane tyrosine phosphatases,
such as CD45 (that oppose the activity of constitutively
active PTKs) away from phosphorylated ITAMs ensures that
TCR signals are maintained in a pMHC:TCR-dependent
manner (22–24).

Ligation of the TCR, also facilitates the recruitment and
docking of the CD4 co-receptor to the pMHC-II complex
(25). This positions CD4-associated LCK in locations favorable
for ITAM phosphorylation on cytosolic TCR/CD3 complexes
(Figure 1). Activated ITAMs serve as docking sites for the Src
Homology 2 (SH2) domains of Zeta chain of T cell receptor
Associated Protein kinase 70 (Zap70) (26, 27). Importantly, as
TCR-CD3 complexes continue to aggregate into microclusters
(15), Zap70 undergoes a conformational change associated with
enhanced binding affinity and recruitment to ITAMs (28, 29).
Zap70 is subsequently activated following its phosphorylation
by LCK. Given continued pMHC:TCR-CD3 interactions and
receptor clustering, activated Zap70 is released from ITAMs
(30) and subsequently phosphorylates signaling scaffold adaptor
proteins, such as Linker for Activated T cells (LAT) and SH2
domain containing Leukocyte Protein of 76 kDa (SLP-76)
(31). Activation of these adaptor proteins provide SH2- and
SH3-binding sites for the initiation of Phosphatidylinositol 3-
Kinases (PI3K), Protein Kinase B (AKT) (32), Inducible T cell
Kinase (ITK) and Protein Kinase C (PKC) dependent signaling
cascades (16, 33). PI3K signaling results in the Phosphoinositide-
dependent protein kinase-1 (PDK-1) dependent activation
of PKC-θ for the activation and nuclear translocation of
Nuclear Factor Kappa-light-chain-enhancer of activated B cells
(NF-κB) (34–36).

PI3K activity also results in the AKT-dependent activation
of Mechanistic Target Of Rapamycin (mTOR). Additionally,
activated ITK phosphorylates the lipase Phospholipase C
gamma (PLCγ), which ultimately cleaves Phosphatidylinositol-
4,5-bisphosphate (PIP2) in the plasma membrane to generate
the secondary messengers inositol-1,4,5-triphosphate (IP3)
and Diacylglycerol (DAG) (37). The accumulation of ITK
promotes the downstream release of calcium ions (Ca2+) from
endoplasmic reticulum (ER) Ca2+ stores (38). The release
of intracellular calcium, through the effects of calcineurin,
activates and promotes the nuclear translocation of Nuclear
Factor of Activated T cells (NFAT) (39). The ITK-dependent
generation of DAG results in the recruitment of Ras Guanyl-
Releasing Protein 1 (GRP1) and PKCθ for the activation of the
Mitogen Activated Protein Kinase (MAPK)/Extracellular signal
Regulated Kinase (ERK) and NF-κB pathways, respectively (40).
Activation of the MAPK/ERK signaling cascade triggers the
formation of the transcription factor Adaptor-related Protein
complex 1 (AP-1) (41). Together, the nuclear translocation and
transcriptional activity of AP-1, NFAT and NF-κB orchestrate T
cell activation.
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FIGURE 1 | TCR Signaling Cascade. The major signaling components and transcription factors responsible for the transduction of TCR signals following the

recognition of cognate pMHC-II. While AKT dependent activation of mTOR signaling regulates cell proliferation, survival, and growth pathways it has also been shown

to regulate the expression of Myc, IRF4, and BCL-xL by potentially regulating (indicated by dashed arrow) the activity of NF-κB. AP-1, Activator Protein 1; AKT, Protein

Kinase B; BCL-xL, B Cell Lymphoma-extra Large; DAG, Diacylglycerol; CRAC, Calcium Release Activated Channel; ERK, Extracellular signal-Regulated Kinase;

GRB2, Growth factor Receptor-Bound protein 2; IP3, Inositol-1,4,5-trisphosphate; ITAM, Immunoreceptor Tyrosine-based Activation Motif; IRF4, Interferon Regulatory

Factor 4; ITK, Interleukin-2-inducible T cell kinase; mTORc1. Mechanistic Target Of Rapamycin complex 1; NFAT, Nuclear Factor of Activated T cells; NF-κB, Nuclear

Factor kappa-light-chain-enhancer of activated B cells; PLC-γ, Phospholipase C-gamma; PDK-1, Phosphoinositide dependent kinase-1; PKC-θ, Protein Kinase C

theta; PIP2, Phosphatidylinositol-4,5-bisphosphate; RASgrp1, RAS guanyl-releasing protein 1; TCR, T cell Receptor; SOS, Son of Sevenless; Zap70 ζ-chain

associated protein kinase of 70 kDa).

TCR SIGNAL STRENGTH REGULATES THE
ACTIVITY OF TCR SIGNALING
COMPONENTS

The strength of the input delivered through the TCR is translated
into digital/“all or nothing,” or analog/“scaled” alterations to the
TCR signaling cascade (42, 43). In this way potent TCR signals
regulate the activity of important transcription factors critical in
determining the fate of T cells.

Potent TCR Signals Scale the Activity of
Zap70 and PI3K
Strong TCR signals delivered through pMHC:TCR interactions
are amplified in accordance to the duration of time ITAMs
remain phosphorylated for the subsequent recruitment and
activation of Zap70 (9). When compared to lower affinity
counterparts, high affinity TCRs bind cognate pMHCs with
distinct docking geometries (44) that ultimately result in the

clustering of receptors (29), as well as a mechanical “push” or
“pull” of the TCR (19). Whilst the exact mechanism is unclear,
the magnitude of this interaction is dependent on TCR/antigen
affinity and dictates the type of bond formed between T cells
and APCs (45). While low affinity TCRs confer weaker pulling
forces that result in the formation of slip-bonds, high TCR affinity
induces the formation of catch-bonds (19, 46). Catch-bonds
extend the duration of pMHC:TCR interactions and promote
the exclusion of CD45 and its intracellular inhibitory phosphates
from the immunological synapse (10, 19, 47). Additionally, high
affinity pMHC:TCR binding events have recently been shown to
enhance the recruitment and retention of CD4 co-receptors in
the pMHC:TCR cluster (48) such that CD4-assoicated LCK can
further sustain ITAM activation on cytosolic TCR/CD3 chains.
Hence, by tipping the balance of activating PTKs to inhibitory
phosphatases in close proximity to TCR/CD3 complexes in favor
of activating PTKs, strong TCR signals extend the duration
in which ITAMs on TCR/CD3 chains remain phosphorylated.
As such, longer pMHC:TCR interactions have been shown to
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enhance the recruitment and activation of Zap70 in bulk (49–51)
and single (29, 52) cell analyses.

In addition, strong TCR signals enhance the activity of
phosphorylated Zap70 (28). Importantly, when low potency TCR
signals are delivered, in addition to phosphorylating ITAMs,
LCK phosphorylates Src Homology region 2 domain-containing
Phosphatase-1 (SHP-1). During low potency TCR stimulation,
phosphorylated SHP-1 inactivates the kinase activity of LCK
(53) and Zap70 (54) which results in the attenuation of TCR
signals. In contrast to this, strong TCR signals result in a greater
proportion of cells expressing phosphorylated ERK which itself
phosphorylates LCK and prevents the binding of SHP-1 (53).
These results suggest that strong TCR signals resulting from
longer pMHC:TCR interactions augment the quantity, quality
and duration of Zap70s catalytic action, extending the duration
in which downstream signaling cascades remain active.

Through its ability to scale the activity of Zap70, sustained
interactions between pMHC:TCR complexes promote the
recruitment of PI3K to the adaptor protein LAT (32, 55).
Activated PI3K phosphorylates PIP2 for the generation
of the secondary messenger Phosphatidylinositol (3,4,5)
triphosphate (PIP3). Scaled increases in PIP3 concentrations
regulate both the recruitment of AKT and the activation
of its serine/threonine kinase activity (56). AKT indirectly
activates mTOR, whose kinase activity is critical for preparing
activated T cells for the bioenergetic demands of clonal
expansion. Whilst it is well-established that TCR signaling
can activate mTOR in a PI3K/AKT-dependent manner (57),
TCR-dependent activation of mTOR is considered weak and
transient (58). Nevertheless, initial mTOR expression is scaled
in an antigen dose-dependent manner (58, 59), suggesting
that whilst transient, TCR signals can directly scale the
expression of mTOR. In addition, CD28 ligation leads to the
phosphorylation of its cytoplasmic tail and the subsequent
recruitment of PI3K (60, 61) for the activation of AKT (62)
and mTOR (57, 63). As such, PI3K/AKT can be posited as a
rheostat that modulates the amplitude of mTOR expression
in accordance to the strength of signals delivered through
costimulatory molecules.

Dynamic Regulation of NF-κB, NFAT, and
ERK by TCR Signal Strength
The activation and nuclear translocation of NF-κB in CD4+ T
lymphocytes regulates cell survival by controlling the expression
of Interleukin (IL) 2 (IL-2) and anti-apoptotic proteins (64–67).
TCR/ITK and CD28/PI3K signaling pathways can independently
activate PKC-θ for the downstream activation and nuclear
translocation of NF-κB (35) (Figure 1). Once a threshold TCR
signal has been achieved, TCR and CD28 signaling results
in the digital activation and nuclear translocation of NF-κB
(68). Despite this, TCR signal strength has been shown to
scale the expression of NF-κB-dependent targets, such as pro-
survival molecule B-Cell Lymphoma-extra large (BCL-xL) (69)
and the transcription factor IRF4 (70, 71). This suggests that
whilst TCR signal strength does not regulate the amplitude of

NF-κB expression, it may control its transcriptional activity.
Alternatively, there is evidence to suggest that the TCR signal
strength-sensitive PI3K/AKT/mTOR pathway can modulate NF-
κB activity (Figure 1). AKT is proposed to regulate the duration
of NF-κB nuclear translocation (72, 73), as well as the range
of genes it targets for transcription (74). Albeit in a cancer cell
line, the ability of AKT to control NF-κB activation was shown
to be reliant on mTOR (75). As mTOR is known to regulate
the antigen affinity-driven expression of IRF4 in CD8+ T cells
(76), these findings further suggest that the PI3K/AKT/mTOR
signaling cascade may translate analog TCR inputs into analog
NK-κB transcriptional outputs.

Strong TCR signals have historically been shown to amplify
the accumulation of intracellular calcium (14, 77, 78). It is
believed that strong TCR signals increase the number activated
ITKs recruited to facilitate the IP3-dependent accumulation
of intracellular Ca2+ (38, 79, 80). The magnitude of Ca2+

release into the cytosol has traditionally been associated with
increased levels of activated, nuclear NFATc (81, 82). Despite
this, single cell analyses have revealed analog increases in
intercellular calcium translate into digital, “all or nothing”
NFATc1 or NFATc2 expression patterns in the nuclei of CD4+ T
cells (83–88).

Similarly, the MAPK/ERK signaling cascade exhibits a digital
signal response and hence is not scaled by TCR signaling (42,
89, 90). The digital expression of NFAT and ERK in response
to analog TCR/ITK input is thought to be a result of positive
feedback circuits that reinforce NFAT (91, 92) and ERK (89)
expression once a threshold of activation has been reached.
NFAT and ERK/AP-1 predominantly drive the expression of
surface markers associated with CD4+ T cell activation, such
as CD25 (93, 94) and CD69, respectively (89, 95). Importantly,
recent single cell analyses indicates that TCR signal strength
scales their expression (84, 85, 96). How then does the digital
expression of NFAT/ERK translate into analog downstream
gene/protein expression? In the case of NFAT, the extent of
initial pMHC:TCR interactions has been shown to modulate the
duration of its activity in the nucleus, even after TCR signals
have ceased (97). Therefore, similar to the regulation of NF-κB
activity discussed above, whilst TCR signal strength may not
directly control the magnitude of NFAT or ERK expression, it
may extend the duration in which these transcription factors
remain active, which subsequently leads to greater expression
of target genes and their functional outputs (Figure 2A). Future
studies need to delineate how TCR signal strength influences
the magnitude or duration of downstream signals to achieve
functional differences.

THE POTENCY OF TCR SIGNALS DICTATE
THE MAGNITUDE OF T CELL EXPANSION

Control of microbial infection requires the rapid generation
of large numbers of effector Th cells. While naïve CD4+ T
cells acquire the ability to produce IL-2 following activation
by a single agonistic pMHC-II complex (52, 98), enduring Th
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FIGURE 2 | Proposed role of TCR signal strength in T cell function and expansion. (A) TCR signals initiate the “all or nothing” digital induction of transcription

components, such as ERK, NF-κB, and NFAT. The amplitude of their expression is independent of the strength of input signals. Instead, TCR signal strength

determines the duration of transcription factor activity (left panel), translating the digital expression pattern of transcription factors into the analog expression of some

downstream targets like CD69, CD25, Myc, and IRF4 (right panel). Red and green lines/bars denote strong and weak TCR signals and the associated responses.

(B) T cell activation and expansion are regulated by the interplay between T cell-intrinsic factors (e.g., TCR affinity) and extrinsic factors (e.g., the levels of antigen and

costimulation associated with different disease stages). In the case of a persistent infection, the relative abundance of clones with high vs. low affinity TCRs may vary

depending on the stage of infection. Early stages of infection, when low levels of antigen/costimulation are present, favor the expansion of clones with high affinity

TCRs. As pathogen levels rise, lower affinity clones are able to undergo activation and equivalent expansion. As a potential strategy to prevent immunopathology

during persistent stages of infection, clones with high affinity TCRs may be removed or silenced from the effector T cell pool. Therefore, low affinity clones may

become the major population of effector T cells during chronic infection. Red and green cells denote T cells with high and low affinity TCRs, respectively.

cell proliferation appears to require stronger TCR stimulation
(99) with an estimated 50–400 pMHC-IIs being required (100,
101). The ability for strong TCR signals to promote the
expansion of cytotoxic and Th cells is well-established (102).
For example, CD8+ T cells primed by high affinity antigens
in vivo underwent greater expansion when compared to those
stimulated by low affinity antigens (103–105). Moreover, CD4+

T lymphocytes with high affinity/avidity TCRs (106–113) or
those that were stimulated with high affinity antigens or doses
(71, 114–118) generally underwent greater expansion in vivo.
In general, TCR signaling can scale the magnitude of T cell
expansion by coordinating the tightly linked metabolic and
cell cycle pathways. These programs determine the extent of
T cell expansion by regulating the time taken for individual
cells to enter and then progress through the cell cycle, the
rate of subsequent proliferation and the cells proliferative
capacity (119).

Stimulation with high concentrations of antigen or enhanced
cross-linking of CD3 accelerates the progression of naïve Th
cells from senescence (G0) into the Gap phase 1 (G1) of the
cell cycle (120), reducing the time it takes for CD4+ T cells to
start dividing in vitro (121, 122). Whilst not studied in CD4+ T
cells, high antigen affinity and doses have been shown to reduce
the time to first division in CD8+ T cells (123). In addition to
reducing the time taken for Th cells to undergo their first division
(124), potent CD28 ligation enhances the subsequent rate of
proliferation in CD4+ (120) and CD8+ T cells (125) in vitro.
Although IL-2 signaling is proposed to regulate the subsequent
rate of cell division in CD8+ T cells, the contribution of IL-
2 to the rate of Th cell proliferation is unclear, with negligible
(126) and supportive (121) roles being reported. Hence, the
mechanism by which strong TCR signals accelerate Th cell
progression through the first and subsequent cell cycles remains
incompletely understood.

One potential mechanism by which TCR signal strength
controls Th cell proliferation is by scaling the activity of
mTOR. It is well-established that progression from G0

is the result of the PI3K/mTOR complex 1 (mTORc1)
dependent expression of cyclins and cyclin dependent
kinases (CDKs) (127–130). Additionally, mTORc1-dependent
upregulation of the Large neutral Amino acid Transporter
(LAT1, CD98) and Glucose Transporter 1 (GLUT-1)
facilitates nutrient uptake and sustains T cell growth
during the G1 phase (57). Interestingly, although reduced,
continuous T cell proliferation can occur when mTORc1
signaling is low or absent (63, 130–132). As activated T
cells continuously proliferate by entering the cycle from
the G1 phase (133), these findings suggest that a major
function of mTOR may be to initiate cell cycle entry and
regulate the timing of initial T cell division in a TCR signal
strength-dependent manner.

The number of times a T cell divides before it senesces is also
known as the proliferative capacity or Division Destiny (DD)
(125). Potent CD28 stimulation, antigen affinity or antigen doses
have separately been shown to enhance the proliferative capacity
of CD8+ T cells (123, 125). Recent findings have suggested
that the amplitude of Myc expression prior to a T cell entering
their first division enables them to undergo a greater number
of divisions (134, 135). Given the short half-life of Myc, the
greater the nuclear concentration of Myc, the longer it takes
for Myc levels to fall below a threshold that can promote cell
division. In this way, Myc acts as a timer for the DD of a
cell. Interestingly, changes in the strength of CD28 signaling,
but not antigen affinity or dose, scale the amplitude of Myc
expression in CD8+ T cells (134, 135). As both PI3K and
NF-κB have both been shown to regulate the expression of
Myc (136, 137), these data may suggest that TCR and CD28
signals differentially scale the expression of cell division related
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transcription programs. Supporting this are observations that
increased antigen affinity and dose enhance the amplitude and
the transcriptional specificity of IRF4 in CD4+ T cells (71, 138),
whereas increases in CD28 stimulation have a minor impact
on IRF4 expression (139). The amplitude of IRF4 expression
is known to control the magnitude and duration of CD8+ T
cell expansion by regulating aerobic glycolysis (140), inhibiting
repressors of the cell cycle and by preventing the expression
of the pro-apoptotic protein Bim (76). As TCR signals also
promote IRF4 expression in an mTOR- and NF-κB-dependent
manner (70, 76), these data suggest that whilst the TCR and
CD28 signal through overlapping pathways (i.e., PI3K, NF-κB),
they differentially regulate the cumulative strength of this signal
and the resulting proliferative capacity of T cells, possibly by
controlling distinct sets of transcription factors (such as Myc
and IRF4).

The presence of Th cells with high affinity TCRs may be
critical in mobilizing T cell responses to invading pathogens
during early stages of infection when pMHC-II and tissue
inflammation levels are low. As Th cells with high affinity TCRs
possess a lower antigen activation threshold, they may enter the
cell cycle quicker than their low affinity counterparts, such that
they are preferentially recruited into the activated T cell pool.
This accelerated response provides an early burst of effectors
that may be critical for preventing the dissemination of infection
(Figure 2B). However, if antigen levels rise or persist, as is
the case with persistent infections, T cell clones with lower
affinity TCRs may come to dominate the effector cell pool.
Given greater antigenic and inflammatory signals, high affinity
effectors may succumb to Activation-Induced Cell Death (AICD)
or exhaustion (141–143). Moreover, high affinity effectors may
be functionally silenced from the immune response to prevent
potential immunopathology through the downregulation of the
TCR (144). Therefore, during the persistent phase of an infection,
lower affinity clones are less likely to be out-competed by
their high affinity counterparts (145, 146) and are able to
undergo activation and expansion (Figure 2B). This dynamic
may account for recent observations that lower affinity/avidity
clones make up a large and underappreciated fraction of
responding Th cell populations during late stages of infection
(144, 146–152).

Given that the overall strength of the TCR signal is a sum
of TCR affinity, pMHC-II densities and costimulatory signals,
which are in part dictated by the intensity of infection, TCR
signaling can be highly dynamic as pathogen loads vary during
different stages of infection. This allows T cells with a spectrum
of affinities to be effectively stimulated and sufficient numbers
of effector T cells to be generated to contain invading pathogens
regardless of the stage of infection. Taken together, it is likely that
TCR affinity, antigen potency, and antigen dose play dynamic
and potentially distinct distinct roles in the regulation of Th
cell expansion. This has been proposed by other studies, albeit
in models lacking inflammation (153, 154). Future studies will
need to formally investigate these hypotheses by dissecting the
interplay between changes in TCR affinity, the timing of clonal
contraction and by examining how changes in pathogen levels
affect this dynamic across different tissues.

TCR SIGNALING STRENGTH AND CD4+

T CELL DIFFERENTIATION

The role of TCR signal strength in CD4+ T cell differentiation
has traditionally been determined by investigating the ability
of naïve Th cells to commit to one effector lineage over the
other in response to stimulation with different model antigens.
Early in vitro investigations into the role of TCR signal strength
have generally reported that stimulation with high antigen doses
favored IFN-γ over IL-4 production in TCR transgenic T cell
cultures (155–160). However, high dose antigen stimulation has
also been shown to promote IL-4 production in vitro (161–165).
This discrepancy might be explained by variations in mouse
strains used between studies. For example, TCR transgenic cells
with a B10.A genetic background favored IFN-γ production
(155, 159), whereas those on a BALB/c background skewed to IL-
4 production (161, 163). Intriguingly, the same TCR transgenic
T cells from the BALB/c mice that predominantly produced IL-
4 in response to high dose antigen stimulation (161, 163–165)
have been shown to favor IFN-γ production in other studies
(156, 157), suggesting that the outcome of T cell differentiation
is influenced by in vitro culture conditions.

Since strong TCR signals as a result of high antigen dose
stimulation promote IL-4 over IFN-γ expression under some
circumstances (161, 163–165), a bi-phasic Th2 differentiation
model has been proposed by Nakayama and Yamashita (166).
Thismodel hypothesizes that naïve CD4+ T cells can differentiate
into IL-4-expressing cells in the presence of both very low-
and high-levels of cognate antigen. Although activation of ERK
by strong TCR signals reduces IL-4 expression in peptide-
activated Th cells (159, 167), ERK signaling has been shown
to promote IL-4 expression in CD4+ T cells stimulated with
TCR cross-linking antibodies (166). These findings suggest that
ERK could play a dual role in TCR signal strength-dependent
Th2 differentiation.

On the other hand, strong TCR signaling as a result of
stimulation with high affinity APLs has generally favored the
generation of IFN-γ over IL-4 producing effectors in vitro
(81, 158, 167–170) and in vivo (171). Furthermore, when two
TCR transgenic T cell lines recognizing the same antigen were
compared in vitro, CD4+ T cells with weak TCR signaling due
to a mutation in the TCR alpha chain were shown to favor
IL-4 induction (172). Studies that have attempted to uncover
the mechanism that results in enhanced Th1 differentiation in
vitro have suggested that strong TCR signals prevent default
Th2 programs rather than actively driving Th1 polarization.
Here, strong TCR signals are believed to prevent the early
expression of IL-4, and its autocrine signaling that results in
the expression of GATA Binding Protein 3 (GATA3) for Th2
differentiation (1, 159), by enhancing the nuclear translocation
of NFATp (81) and altering the DNA binding activity of AP-1
(167). Some studies have demonstrated that potent costimulation
or stimulation with high antigen doses can actively promote
the generation of IFN-γ-expressing effectors by regulating the
ability of CD4+ T cells to respond to the Th1 polarizing cytokine
IL-12 (4, 173). IL-12 is known to promote Th1 differentiation
and IFN-γ expression by promoting the expression of T-box
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binding transcription factor (T-bet), the master regulator of Th1
polarization (1). While these studies associated high antigen dose
stimulation with enhanced IL-12 Receptor Beta 2 (IL-12Rβ2)
chain expression, the mechanism linking the two events remains
to be identified.

There is also evidence to suggest that strong TCR signaling
may indirectly promote Th1 differentiation by altering the
function of APCs. Here, stimulation of CD4+ T cells with high
affinity antigens has been shown to enhance the production
of IL-12 from co-cultured APCs by enhancing the expression
of CD40L on developing Th cells in vitro (157, 174, 175). In
summary, when comparing Th1 and Th2 differentiation in vitro,
the majority of studies indicate that strong TCR signals seem to
favor the generation of Th1 effectors by directly preventing the
early expression of IL-4 and GATA3, as well as by promoting
the expression of the IL-12Rβ2. Importantly, T-bet is known
to drive IFN-γ expression and prevent Th2 differentiation by
sequestering GATA3 (176–178). Hence it is likely that strong
TCR signals further favor the generation of Th1 over Th2
cells by promoting IL-12-dependent T-bet expression for the
subsequent sequestration of GATA3. Future studies will need
to formally investigate how potent TCR signals regulate the
crosstalk between T-bet and GATA3 for the generation of Th1
and Th2 effectors, respectively.

Interestingly, early in vivo studies have demonstrated that
high antigen dose stimulation promotes the generation of IL-4
producing effectors (179–182). Whilst this appears to support
the in vitro findings underlying the signal strength model
proposed by Nakayama and Yamashita (166), the apparent Th2
phenotype was also accompanied with greater levels of class-
switched antibodies, which are now recognized to be a result of
IL-4 producing follicular T helper cells (Tfh) that are difficult to
stably generate in vitro (183–185). Hence these studies provided
the initial indication that high antigen doses promoted the
generation of Tfh cells in vivo and may help build on findings
that indicate that medium-strong TCR signaling can promote the
generation of IL-4 expressing effectors in vitro. This has since
been confirmed in recent in vivo studies where high antigen
dose stimulation resulted in longer dwell times, and favored the
generation of Tfh cells over Th1 effectors (11, 115, 186–188). As
IL-2 signaling is known to suppress the expression of BCL-6,
the master regulator of Tfh differentiation (189), it was proposed
that high antigen dose stimulation favored Tfh cell generation by
reducing IL-2 signaling (188).

Intriguingly, when the responses of two TCR transgenic
populations that recognize the same antigen with different
binding affinities were recently compared in vivo, a greater
proportion of high affinity TCR-bearing Th cells were found
to undergo Th1 commitment (108). Moreover, stimulation
with high affinity antigens have also been shown to favor
the generation of Th1 effectors (115, 190). It is thought
that high affinity TCR interactions drive STAT5-dependent
Th1 differentiation (191) by upregulating and maintaining the
expression of the high affinity IL-2 receptor, CD25 (108, 192).
Although high affinity TCR interactions generally favor Th1
differentiation, high affinity TCRs have been shown to promote
the generation of Tfh cells (107) or play a more capricious role

(11). As has been suggested previously (115), these data again
suggest that antigen dose and TCR affinity play distinct roles in
determining the fate of Th cells. Therefore, while high antigen
dose stimulation favors the generation of Tfh cells in vivo; the
function of TCR affinity in determining Th differentiation may
be secondary to T cell-extrinsic factors such as innate cytokines.
Hence, the role of TCR affinity in lineage differentiationmay vary
depending on the experimental model employed.

The strength of TCR signaling has also been suggested to
regulate Th17 differentiation. Under Th17-polarizing conditions
in vitro, high antigen dose and persistent TCR stimulation
has been shown to promote IL-17 expression (193, 194).
Furthermore, when TCR signals are attenuated through the
deletion of ITK, CD4+ T lymphocytes were more prone to
differentiate into Forkhead box P3 (Foxp3) expressing regulatory
Th cells (Tregs) over IL-17 producing cells (195). However,
low levels of CD28 costimulation or antigen stimulation, as
well as exposure to low potency antigens, have each been
shown to favor the generation of IL-17 over IFN-γ (196, 197)
or IL-4 expressing effector CD4+ T cells (198). Therefore,
the role of TCR signal strength in Th17 differentiation
remains unclear.

Distinct mechanisms for how TCR signal strength modulates
Th17 polarization were proposed in these studies. TCR
dependent AKT signaling was shown to be associated with
both enhanced (195) and reduced (197) Th17 differentiation.
Moreover, antigen dose dependent scaling of CD40L expression
on activated Th cells was shown to promote IL-6 production
by APCs for the enhanced generation of Th17 cells in vitro
(193). Regardless, the generation of IL-17 expressing effectors
was shown to be dependent on exposure to the correct
cytokine milieu (193–198). This suggests that when compared to
polarizing cytokines, TCR signal strength may play a secondary,
context-dependent role in directing Th17 differentiation. In
addition to studying the role of TCR signal strength in relevant
Th17-mediated disease models, future studies will need to
investigate how TCR signal strength regulates the expression of
the Th17 master regulator of transcription, RAR-related Orphan
Receptor gamma t (RORγt).

A growing number of studies indicate that TCR signal
strength does not dictate T cell effector function at the individual
T cell level (11, 98, 199–202). Rather, potent TCR signals are
proposed to regulate the number of T cells recruited into the
effector cell pool and the ratio of effector phenotypes throughout
the T cell response. Therefore, TCR signal strength may regulate
the overall magnitude and function of T cell responses at a
population level. It is possible that antigen doses and TCR
affinity promote different “selection” or “survival” strategies to
shape Th cell responses at a population level. For example,
high antigen dose stimulation generally seems to favor Tfh
over Th1 populations in vivo. As Th1 cells are susceptible
to AICD following high antigen dose stimulation (142, 143),
the induction of BCL-6 in these conditions might confer a
selection-advantage by promoting Th cell survival (203) and
resistance to AICD, as has been proposed by Keck et al. (115).
In support of this, BCL-6 has been reported to regulate the
survival of multiple cell types (204, 205), and is known to be
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predictive of the long-term survival of T cells into the memory
phase (191, 206, 207).

High TCR affinity generally seems to promote commitment
to Th1 over Tfh and Th17 lineages. As IL-12 has long-been
proposed as a polarizing agent for the selective survival and
expansion of Th1 populations (208, 209), it is possible that TCR
affinity regulates the ratio of Th cell effectors at the population
level by controlling the receptivity to IL-12. In this way the
selective expansion of high affinity Th1 populations may mask
the the generation of lower affinity Th2 populations (210).
Discrepancies regarding the role for TCR signal strength in
CD4+ T cell differentiation may result from differences in how
T cell responses are analyzed between different studies (at the
population vs. individual cell level). Furthermore, analyses of Th
cell responses at a single time-point or in a single location is likely
to lead to confounding observations. Future studies need to take
an unbiased approach to studying the role of TCR signal strength
by tracking the T cell response across multiple time-points,
tissues and at both the individual and population levels.

CONCLUDING REMARKS

T cells must integrate distinct signals to coordinate their
proliferation and differentiation. A deeper understanding of the
molecular mechanisms underpinning various signaling pathways
not only sheds new insights into the biology of TCR signal
transduction, but also paves the way for manipulating T
cell function for immunotherapy. Future studies will need to
delineate the model-dependent, relative contribution of TCR
signaling strength and polarizing cytokines to CD4+ T cell
differentiation. As is the case with the regulation of the IL-12R

and commitment to Th1 differentiation, van Panhuys et al. (9)
has proposed that TCR signal strength may dominantly control
Th cell polarization by regulating the expression of cytokine
receptors important for the polarization of other Th subsets.
Whilst this is an attractive hypothesis, it may only apply to the
generation of some but not all Th cell subsets. For example,
strong TCR signaling has been shown to both enhance and
suppress the expression of the IL-4 receptor or its transcript
(165, 211–213). Furthermore, it would be critical to investigate
how TCR signal strength spatiotemporally regulates the T helper
cell response. Different lymphoid and non-lymphoid sites vary in
their cellular composition and environmental factors. Therefore,
it is likely that T cell turnover and differentiation vary across
different stages of infection and in different locations.
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