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Abstract

Regulation of the cerebral circulation relies on the complex interplay between cardiovascular, respiratory, and neural
physiology. In health, these physiologic systems act to maintain an adequate cerebral blood flow (CBF) through
modulation of hydrodynamic parameters; the resistance of cerebral vessels, and the arterial, intracranial, and venous
pressures. In critical illness, however, one or more of these parameters can be compromised, raising the possibility
of disturbed CBF regulation and its pathophysiologic sequelae. Rigorous assessment of the cerebral circulation
requires not only measuring CBF and its hydrodynamic determinants but also assessing the stability of CBF in
response to changes in arterial pressure (cerebral autoregulation), the reactivity of CBF to a vasodilator (carbon
dioxide reactivity, for example), and the dynamic regulation of arterial pressure (baroreceptor sensitivity). Ideally,
cerebral circulation monitors in critical care should be continuous, physically robust, allow for both regional and
global CBF assessment, and be conducive to application at the bedside. Regulation of the cerebral circulation is
impaired not only in primary neurologic conditions that affect the vasculature such as subarachnoid haemorrhage
and stroke, but also in conditions that affect the regulation of intracranial pressure (such as traumatic brain injury
and hydrocephalus) or arterial blood pressure (sepsis or cardiac dysfunction). Importantly, this impairment is often
associated with poor patient outcome. At present, assessment of the cerebral circulation is primarily used as a
research tool to elucidate pathophysiology or prognosis. However, when combined with other physiologic signals
and online analytical techniques, cerebral circulation monitoring has the appealing potential to not only prognosticate
patients, but also direct critical care management.

Background

To function, the brain requires adequate delivery of

nutrients and oxygen. A circulatory system is therefore

required to maintain an optimal cerebral blood flow

(CBF) for the brain’s diverse needs. Whilst oxygen and

nutrient delivery is in part dependent on the pump sup-

plying it—the heart—the circulatory system has also

evolved mechanisms to ensure the precise control of

CBF. The cerebral vessels have the remarkable ability to

rapidly adapt and react to the brain’s chemical environ-

ment, to neuronal signals, and to the pressure within the

cerebral vessels.

This review highlights clinically relevant aspects of

cerebrovascular physiology and cerebral circulation

monitoring techniques before outlining the state of

current knowledge of the cerebral circulation in selected

critical illnesses and highlighting promising areas for fu-

ture research.

Review

Regulation of cerebral blood flow

A haemodynamic model for the cerebral circulation has

been described that allows for interrogation of the regu-

lation of CBF [1, 2]. In such a model, CBF is dependent

on the pressure supplied in the cerebral arteries (arterial

blood pressure (ABP)), the back pressure in the cerebral

venous system (usually close to intracranial pressure

(ICP)), and the resistance related to the diameter of the
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small cerebral vessels (cerebrovascular resistance (CVR);

Fig. 1). This relationship can be simplified as:

CBF ¼
ABP− ICP

CVR

Thus, cardiovascular, ICP, and cerebrovascular compo-

nents are all important regulators of the cerebral circula-

tion. Applying this model can provide crucial insights

into the physiologic factors that regulate cerebral perfu-

sion in health and elucidate why CBF regulation is often

impaired in pathologic states.

The cardiovascular component

As early as 1890, Sherrington and Roy underlined

the importance of the ABP in the regulation of CBF:

‘One of the most evident of the facts observed by us

is that the blood-supply of the brain varies directly

with the blood pressure in the systemic arteries’ [3].

The pressure that supplies the cerebral vessels is

dependent on factors mostly outside the brain itself:

the heart provides the cardiac output while the per-

ipheral vessels provide the resistance, both of which

contribute to the ABP supplying the brain. In this

sense, the balance between the brain CVR and the

total peripheral resistance determines the proportion

of the cardiac output that reaches the brain. Thus,

any pathological or physiological event that affects

the heart or the vasculature as a whole has the po-

tential to alter the cerebral circulation. Cardiogenic

shock and arrhythmia may therefore impair CBF [4],

as do conditions that affect the systemic vasculature

such as sepsis [5].

Just as pathologies affecting ABP can affect CBF, ther-

apies to augment CBF often do so by modulating ABP.

Vasopressors act to buffer ABP by constricting periph-

eral vessels, while inotropes act to modulate cardiac out-

put (Fig. 1). An important consideration of such an

approach is that the relationship between changes in

ABP and CBF is typically non-linear due to active

changes in vascular tone occurring at the level of the

cerebral arterioles—a process known as cerebral auto-

regulation (see later). Furthermore, modulating ABP as a

therapeutic measure will not only increase blood flow to

the brain, but will also increase blood flow to any vascu-

lar beds with a low vascular resistance.

Fig. 1 Regulation of the cerebral circulation. CBF at the level of the microvasculature is directly proportional to CPP (difference between
ABP and ICP) and inversely proportional to CVR. ICP exerts its effect on CBF through changes in CPP; compression of the venous
vasculature where the bridging veins enter the sagittal sinus ensures that the bridging vein and post-capillary intravascular pressure is
always above ICP. CBF is modulated by the cardiovascular system in terms of the regulation of SV, HR, and TPR (red). Control of TPR with
vasopressors forms an integral part of many CBF protective strategies (even when TPR is not the primary cause of CBF disturbance). CVR
is regulated at the level of the arterioles (purple) by variations in vascular tone in response to metabolic, neural, or myogenic inputs. In
ischaemic stroke or vasospasm, CVR is dramatically increased, usually at the level of large intracranial arteries. ICP (blue) modulates CBF
through its coupling with cerebral venous pressure. ICP increases can be caused by increases in cerebral blood volume (arterial or
venous), increased CSF volume or increase in parenchyma (oedema), or abnormal material volume (mass lesion). All therapies that
modulate CBF do so via one (or more) of these pathways. There is typically significant interdependence between the therapies,
determinants, and influences of CBF. For example, a drop in ABP would be expected to result in a drop in CBF but this is short lived
due to the baroreflex (HR increase in response to drop in ABP) and cerebral autoregulation (decrease in vascular tone in response to
drop in ABP). ABP arterial blood pressure, CBF cerebral blood flow, CBV cerebral blood volume, CSF V cerebrospinal fluid volume, CVR
cerebrovascular resistance, EVD external ventricular drainage, HR heart rate, ICP intracranial pressure, IIH idiopathic intracranial hypertension, SV stroke
volume, TPR total peripheral resistance
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The intracranial pressure component

At the distal end of the microvasculature is the cerebral

venous pressure, which provides a back pressure that

may impede CBF. The venous pressure in turn will be

related to both the venous pressure in the larger cerebral

veins and the ICP. If the ICP is above the pressure in the

lateral lacunae that feed into the large venous sinuses

(which are exposed to the cerebrospinal fluid (CSF)

space; Fig. 1), then these vessels will be compressed lead-

ing to a post-capillary venous pressure just above the

ICP [6, 7].

Any increase in ICP has the potential to decrease

the longitudinal pressure gradient across the vascular

bed—the cerebral perfusion pressure (CPP = ABP –

ICP)—and, provided there are no compensatory

changes in CVR, to decrease CBF. Thus, CBF is im-

paired by conditions that impede cerebral venous out-

flow (such as idiopathic intracranial hypertension or

neck position) and by conditions that increase ICP

(such as the oedema associated with traumatic brain

injury (TBI) or subarachnoid haemorrhage (SAH)).

Because the skull is rigid, any increase in volume of a

brain compartment can cause an increase in ICP.

Increases in volume of the intravascular compartment,

the CSF compartment, or the brain parenchymal com-

partment can all increase ICP and therefore decrease

CBF. These compartmental volume changes could be

caused by vascular dilation, hydrocephalus, or cerebral

oedema. Therapies that alter CBF via ICP changes in-

clude mild hyperventilation to decrease vascular volume,

CSF diversion through external ventricular drainage to

decrease CSF volume, osmotherapy to reduce the brain

tissue volume, or decompressive craniectomy to increase

the space available for the brain parenchyma (Fig. 1).

The cerebrovascular component

At the level of the brain vessels themselves, CBF can be

controlled by active changes in the diameter of the

‘regulating’ vessels, thus influencing the CVR.

The major site of active regulation of the cerebral cir-

culation is thought to be at the level of the arterioles

with their thick smooth muscle layer and ability for pro-

found dilation and constriction [1, 2]. However, larger

conduit arteries, capillaries, and venous structures may

also be important in certain situations [8–11]. For ex-

ample, during neuronal activation, relaxation of pericytes

surrounding capillaries has been considered to account

for a large proportion of the flow increase [9]. Cerebral

venules and veins are characterised by a low density of

smooth muscle cells and therefore have the ability to in-

crease volume with any increase in pressure; that is, they

exhibit a high compliance [11]. While probably not im-

portant in the active regulation of CBF, the compliant

nature of venous structures may play a passive role in

the regulation of CBF; for example, arteriolar dilation

leads to an increase in the volume of post-capillary ve-

nules that increases cerebral blood volume [12] and by

extension could increase ICP, decrease CPP, and there-

fore limit the increase in CBF.

In health, such changes in CVR or CBF are most

obvious during brain activation; an increase in neur-

onal activity elicits a prompt and significant increase

in CBF [13] mediated through vessel dilation. Alterna-

tively, during an ischaemic stroke, a portion of the

cerebral vasculature is mechanically occluded by a

thrombus causing a localised increase in CVR and a

decrease in CBF. During the vasospasm associated

with SAH, large cerebral arteries constrict, again

resulting in an increased local CVR and decreased

CBF [14].

Changes in vascular tone of the cerebral vessels are

caused by putative constricting and dilating substances.

Such vasoactive substances may be supplied to the ves-

sels via the bloodstream (e.g. arterial pressure of carbon

dioxide (PaCO2)), produced locally (see ‘Neurovascular

coupling’), or reach the smooth muscle fibres through

direct autonomic innervation. Not surprisingly, this het-

erogeneity in the possible sites of vasoactive substance

production can lead to difficulty in disentangling physio-

logical mechanisms. For example, modulation of ventila-

tion is commonly used to assess the function of the

cerebral vasculature (see ‘Carbon dioxide reactivity’);

however, such a stimulus can in principle alter cerebro-

vascular tone through three separate mechanisms:

changes in PaCO2 reaching the brain [15], changes in

autonomic activity [16], or direct changes in neuronal

activity [17].

Synaptic transmission with its resulting glutamate

release is the important stimulus for neurovascular

coupling through the production of vasoactive metabolites

such as arachidonic acid derivatives (20-hydroxy-eicosate-

traenoic acid, prostaglandins, epoxyeicosatrienoic acids),

lactate, adenosine and nitric oxide [8]. The site of

production of these metabolites includes the neuron,

the astrocyte, and the smooth muscle cells them-

selves. Both neurons and astrocytes are ideally placed

to mediate neurovascular coupling as they lie in close

proximity to both the neuronal synapse where the

signal is initiated and the smooth muscle cells of the

regulating microvasculature; however, the relative im-

portance of neurons versus astrocytes for neurovascu-

lar coupling is uncertain [8]. Regardless of the site of

production, the site of action is the smooth muscle fibres

surrounding the arterioles, or capillaries where the vaso-

active substances produce changes in intracellular calcium

concentration, which in turn alters the degree of smooth

muscle contraction, and vessel constriction. For further

review on neurovascular coupling, see [8, 18–22].
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The autonomic nervous system may also influence the

vascular tone of cerebral vessels. Despite animal studies

demonstrating a rich innervation of both the dilating

parasympathetic and constricting sympathetic fibres, the

autonomic control of CBF in humans remains contro-

versial [23, 24] with the divergence in opinions probably

owing to between-species variation in autonomic innerv-

ation, variations in brain metabolism between experi-

ments, and heterogeneous autonomic nerve distribution

in the different studies [25]. Nevertheless, stimulation of

the trigeminal ganglion in humans decreases the esti-

mated CBF [26] while blockade of the stellate ganglion

increases the estimated CBF [27], highlighting a role for

the sympathetic nervous system in the regulation of the

cerebral circulation in humans.

In addition to the cerebrovascular, mean arterial pres-

sure, and ICP components, cardiac output has recently

been suggested to be an independent regulator of CBF

[28]. Evidence for such a view comes from studies dem-

onstrating a change in CBF after interventions that

change cardiac output but have no effect on mean arter-

ial pressure [28, 29]. An additional measure of CBF

regulation could thus be assessing CBF as a fraction of

the cardiac output. Although continuous and accurate

measures of cardiac output are less practical than ABP,

such an approach may provide additional insight into re-

gional blood flow regulation in health and disease.

According to the conventional model (Fig. 1), for an

increase in cardiac output to produce an increase in

CBF without a change in ABP, both total peripheral

resistance and CVR must decrease. As such, the auto-

nomic nervous system has been speculated as the mech-

anism by which changes in cardiac output may alter

CBF without changes in ABP [28]; however, a metro-

logical issue should also be considered. The ABP mea-

sured in the examined studies (and the majority of

vascular regulation investigations) is not the ABP in the

large cerebral arteries, but the pressure in a small per-

ipheral vessel or that estimated non-invasively at the fin-

ger or arm. Thus, in situations where an increase in

cardiac output causes an increased CBF and seemingly

unchanged ABP (estimated at the arm), it is possible that

cerebral arterial pressure actually increases. This issue

needs to be verified, probably in an animal model.

Finally, the simple schema provided in Fig. 1 must be

interpreted with the knowledge of the interdependence

of variables. The cerebral circulation appears to have

several cerebroprotective mechanisms; for example, if

ABP decreases, aortic and carotid baroreceptors will

alter autonomic outflow to increase HR and therefore

buffer ABP and CBF [30]. Similarly, as proposed by

Lassen and elaborated upon by others, in response to

a decrease in ABP, vessels will dilate in attempt to

buffer CBF [31, 32]. These important cerebroprotective

processes are known as baroreceptor sensitivity and cere-

bral autoregulation.

How to assess the regulation of cerebral blood flow

Given the importance of CBF regulation in many patho-

logical states, the availability of accurate and practical

assessment methodologies is crucial. Often the choice of

an appropriate measurement technique depends upon

the clinical need; a balance between availability, accur-

acy, and practicality must be reached.

Non-invasive monitoring techniques include trans-

cranial Doppler (TCD) and near-infrared spectroscopy

(NIRS) (for a recent review, see [33, 34]). Such mo-

dalities have several important advantages making

them suitable for interrogating CBF regulation in the

clinical setting (Table 1). First, both TCD and NIRS

systems are portable and non-invasive, making assess-

ment feasible in the emergency room, the critical care

unit, or the operating theatre. Moreover, they capture

high-frequency and continuous data that can be com-

bined with other modalities (such as ABP or end-tidal

carbon dioxide (CO2)) to give information on cerebral

autoregulation and CO2 reactivity (see ‘Carbon dioxide

reactivity’).

Invasive cerebral perfusion methods include brain

tissue oxygen monitoring, laser Doppler flowmetry,

and thermal diffusion (for review of methodology

principles, see [35–37]). Whilst obviously only suit-

able for critically ill patients because of their inva-

sive nature, these methods have the advantage of

being relatively robust for long-term monitoring of

the cerebral circulation. Brain imaging techniques

(computerised tomography (CT), positron emission

tomography, and magnetic resonance imaging) have

the advantage of offering a high spatial resolution of

CBF data and the ability to asses absolute CBF, but

are at present not suitable for bedside monitoring

because of size, temporal resolution, and radiation

exposure [38].

Extended assessment of cerebral blood flow regulation

Because of the interdependence of the factors con-

trolling CBF, it is important to measure these factors

(ABP and ICP) in addition to CBF. Further, one can

assess the regulation of the system by assessing the

efficiency of the cardiac maintenance of ABP through

the baroreflex sensitivity and assessing the brain vas-

cular reactivity using the CBF reactivity to a vasodila-

tor stimulus (CO2 reactivity), to a perfusion pressure

challenge (cerebral autoregulation), or to a burst of

neuronal activity (neurovascular coupling). Such ex-

tended assessment allows for a comprehensive under-

standing of the vulnerability of a patient’s cerebral

circulation.
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Carbon dioxide reactivity

The cerebral vasculature is exquisitely sensitive to

changes in the PaCO2: with a decrease in pressure of

carbon dioxide (PCO2), cerebral resistance vessels

constrict; and with an increase in PaCO2, cerebral

vessels dilate [15]. These alterations in vascular tone

are probably mediated by changes in extracellular

hydrogen ion concentration resulting from diffusion

of PCO2 from inside the vessels. Several lines of evi-

dence indicate that cerebrovascular reactivity may be

a non-invasive and practical marker of cerebrovascu-

lar health (see ‘Clinical applications of bedside assess-

ment of CBF regulation’).

The CO2 reactivity of cerebral vessels can be con-

veniently assessed at the bedside by measuring the

CBF response to a decrease in PaCO2 produced by

hyperventilation or to an increase in PaCO2 from

hypoventilating or adding inspired CO2 (hypercapnia).

Typically, CO2 reactivity is measured as the change in

CBF as a fraction of the change in PaCO2:

Cerebrovascular CO2 ¼
ΔCBF %ð Þ

ΔPaCO2 mmHgð Þ

An important consideration is that changes in

PaCO2 may also affect ABP or ICP and therefore

changes in PaCO2 may alter CPP in addition to CVR.

In the ideal monitoring scenario, therefore, one would

monitor CBF (perhaps using TCD), ABP (using an

invasive arterial line or non-invasive photoplethysmo-

graphy device), PaCO2 (or end-tidal CO2 as a surro-

gate), and in some situations ICP.

Figure 2 demonstrates a CO2 reactivity test in a TBI

patient. In this case, the TCD-based flow velocity (Fv)

was measured during moderate hyperventilation aimed

to make the patient mildly hypocapnic. An important

consideration easily appreciated from Fig. 1 is that

during a CO2 reactivity test, any CO2 influence on ABP

or ICP may confound interpretation.

Cerebral autoregulation

While cerebrovascular CO2 reactivity assessment at-

tempts to gain insight into vascular function from the

response of cerebral vessels to changes in PaCO2, cere-

bral autoregulation assessment attempts to gain insight

into vascular function from the response of cerebral ves-

sels to changes in ABP (or in some cases CPP). In some

cases, where ABP or CPP is highly variable, the cerebral

Table 1 Clinical assessment methodologies for the cerebral circulation

Method Principle Global or local
CBF assessment

Robustness Invasive Bedside Continuous Advantage Disadvantage

TCD [33] Doppler principle Global (vascular
territory)

Fair No Yes Yes High-frequency
signal

Signal easily lost.
Flow velocity
assessment only

NIRS [34] Absorbance of
oxygenated and
deoxygenated
haemoglobin

Local Good No Yes Yes Easy application Uncertain intracranial
contribution to signal

PBTO2 [37] Clark electrode Local Excellent Yes Yes Yes Robust Local

LDF [36] Doppler principle Local Excellent Yes Yes Yes Assessment of
microcirculation

Unknown biological
zero

Thermal
diffusion [35]

Thermal diffusion Local Excellent Yes Yes Yes Absolute CBF Frequent calibrations

Duplex neck
US [106]

Doppler principle Global Poor No Potentially No Absolute and
global CBF

Semi-continuous

CT [107] Time-dependent
attenuation of
iodine IV contrast
bolus (perfusion CT)
or Xe gas

Global and
local

Excellent No Potentially No Global and
regional CBF

Bulky and
intermittent

PET [108] Radioactive tracers
emit positrons
dependent on
perfusion

Global and
local

Excellent Minimal (venous
access)

No No Regional CBF
and metabolism

Radiation, requires a
cyclotron

MRI [109] Perfusion-dependent
decrease in T2 signal
with gadolinium

Global and
local

Excellent Minimal (IV access)
or no for arterial
spin labelling
technique

No No Absolute,
regional and
global CBF

Time-consuming,
expensive, difficult
to assess critically
ill patients

CBF cerebral blood flow, CT computerised tomography, IV intravenous, LDF laser Doppler flowmetry, MRI magnetic resonance imaging, NIRS near-infrared

spectroscopy, PBTO2 pressure of brain tissue oxygen, PET positron emission tomography, TCD transcranial Doppler, US ultrasound
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autoregulation phenomenon can be observed by plotting

CBF averaged in groups of ABP or CPP (see Fig. 3). Such

dramatic swings in ABP or CPP are not always observed,

however, and therefore a typical assessment of cerebral

autoregulation involves inducing an ABP stimulus and

measuring the response of CBF. In clinical scenarios,

CBF is measured before and after a vasopressor is used

to augment ABP to give a point estimate of cerebral

autoregulation.

An alternative approach is to monitor continuously

the CBF response to natural slow variations in ABP [39].

Such an approach has some important caveats: the

natural ABP variations may not be strong enough to

challenge CBF, and changes in CBF could be caused by

factors other than ABP. However, the monitoring poses

no risk to the patients and has the distinct advantage

that it can assess long-term trends in cerebral autoregu-

lation within a patient.

The simplest methods of monitoring cerebral autoreg-

ulation assess how the slow changes of ABP occurring in

time compare with the slow changes in CBF (for review,

see [32]). An example of this is the mean flow index

(Mx), which measures the correlation between 30 con-

secutive 10-s averages of TCD mean CBF velocity and

CPP [40]. Methods using the frequency spectrum of the

signals are also available. By assuming that the cerebral

circulation acts as a high-pass filter (high-frequency

fluctuations in ABP pass through to Fv unimpeded

whilst lower frequencies are dampened), transfer function

methods assess cerebral autoregulation using the phase

(shift in degrees required to align slow waves of ABP and

CBF velocity), gain (dampening factor), and coherence

(degree of association between ABP and Fv) [41]. NIRS

can also be used for assessment of cerebral autoregulation

in the time and frequency domain and is easier to apply in

many situations (less operator dependency compared with

TCD). NIRS-based autoregulation indices assess the rela-

tionship between CPP (or ABP) and NIRS-based cerebral

oxygenation.

The transient hyperaemic response test is an alterna-

tive form of cerebral autoregulation testing which in-

volves assessing the increase in TCD blood flow velocity

after release of a short (5–10 s) compression of the com-

mon carotid artery [42]. The degree of increase in blood

flow velocity in the seconds following release is thought

to be a reflection of the extent of cerebral vasodilation

in response to the reduced CPP during occlusion. An ex-

ample of a transient hyperaemic response test is shown

in Fig. 4.

In some cases, cerebral autoregulation can be esti-

mated using ICP as a surrogate for cerebral blood

volume. In this method, similarly to Mx, 30 consecutive

10-s averages of ABP are correlated with ICP to yield

the pressure reactivity index (PRx) [40]. A positive

correlation indicates passive transmission of ABP waves

to cerebral blood volume and hence ICP, while a negative

Fig. 2 CO2 reactivity after TBI. CO2 reactivity is a measure indicating how well vascular responses in the brain are preserved. Mild hyperventilation
(PaCO2 challenge from 35 to 31.5 mmHg) is applied temporarily (1 h) in the patient after TBI. Right CBF velocity (FVR) in the middle cerebral
artery decreased from 120 to 100 cm/s. CO2 reactivity is calculated as ∆CBF velocity (%)/∆ PaCO2 and in this case reactivity is ~ 5 %/mmHg—very
good. However, at the same time ICP decreased from 32 to 27 mmHg and blood pressure (ABP) increased from 120 to 125 mmHg. Therefore,
CPP increased from 88 to 98 mmHg. The formula for cerebrovascular CO2 reactivity does not take into account the possible interaction between
chemoregulation and autoregulation. ABP arterial blood pressure, ICP intracranial pressure
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correlation indicates active counter-regulatory adjustments

of the cerebrovasculature and intact vasoreactivity.

PRx has the advantage that it can be easily measured

continuously in any patient with a parenchymal ICP

monitor, an arterial pressure line, and the appropriate

analysis software.

From a critical care perspective, the assessment of

cerebral autoregulation can be more practical than mon-

itoring CO2 reactivity because we can utilise the natural

fluctuations of ABP and therefore monitor cerebral auto-

regulation continuously. From a practical point of view,

to monitor cerebral autoregulation requires a continuous

estimate of CBF (NIRS or TCD are ideal), ABP (from an

arterial line or photoplethysmography), and in some

cases ICP.

Given the heterogeneity of CBF monitoring tech-

niques and the versatility of signal processing tech-

niques, a multitude of ‘indices’ or metrics of cerebral

autoregulation have been proposed. Table 2 highlights

the rationale of such indices and gives an opinion as

to their usefulness.

Neurovascular coupling

The increase in CBF accompanying cerebral cortical ac-

tivation represents a further way of assessing the reactiv-

ity of vessels. Neurovascular coupling can be assessed

with either TCD or NIRS to detect increases in CBF in

response to cognitive, emotional, sensory, and motor

tasks (for a recent review, see [18]). Although less stud-

ied than pressure or CO2 reactivity in the critical care

population, neurovascular coupling assessment has great

potential because it can be assessed non-invasively and

repeatedly, and it reflects a physiologically distinct as-

pect of CBF regulation compared with CO2 or pressure

reactivity.

Clinical applications of bedside assessment of CBF

regulation

Using the methodologies described, the cerebral circula-

tion can be assessed in the critically ill patient. In this

particular setting, techniques such as TCD, NIRS, ICP,

and ABP monitoring are desirable as they can provide a

continuous assessment of cerebral circulation without

Fig. 3 Long-term invasive CBF and CPP monitoring. Example of the ‘Lassen curve’ depicting the relationship between CPP and CBF. It is derived
from a long-term plot of thermal-dilution CBF and CPP monitored in a patient after severe brain injury. The curve shows lower (LLA) and upper
(ULA) limits of autoregulation, outside which CBF is pressure passive. Notably, within the autoregulation range, CBF is not ideally stable but shows
an increase in CBF around the LLA, which is commonly observed in patients under mild hyperventilation (in this case PaCO2 was on average
32 mmHg). CBF cerebral blood flow, CPP cerebral perfusion pressure, ICP intracranial pressure
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Cerebral perfusion monitoring in SAH. On day 3 after ictus (top 4 panels), this patient with SAH from an aneurysm of the middle cerebral
artery displays a normal middle cerebral artery Fv (~60 cm/s) and intact autoregulation (TOxa and Mxa ~0 (suffix ‘a’ indicates that ABP is used
instead of CPP)). On day 7 (bottom 4 panels) a marked increase in Fv (to 120 cm/s) can be seen, which is accompanied by an impairment in
autoregulation (TOxa and Mxa close to 0). The transient hyperaemic response test also failed to show an increase in Fv after the release of
occlusion, an indicator of impaired cerebral autoregulation. ABP arterial blood pressure, Fv flow velocity, Mxa mean flow index (with ABP), TOxa
total oxygenation reactivity index (with ABP)

Table 2 Summary of autoregulation indices

Autoregulation metric Input signals Calculation Interpretation Comment

Autoregulation index (ARI) ABP, Fv Compares the CBF response
to changes in ABP with those
predicted from a parametric
model with 10 different
‘strengths’ of autoregulation [110]

ARI = 0 absent
autoregulation, ARI = 9
perfect autoregulation

Moderately complex signal
processing required

Flow index (Mx, Sx, Dx) ABP (CPP), Fv Pearson correlation between
CPP and mean Fv (300-s
window of 10-s averages). Sx
and Dx calculated with systolic
and diastolic flow velocity,
respectively

Impaired autoregulation =
higher Mx, Dx, and Sx

Simplistic yet prognostically
relevant

Transfer function (phase,
gain, coherence)

ABP, Fv Derived from the transfer function
of fast Fourier transform of ABP
and Fv signals. Phase is the shift
required to align Fv and ABP
signals, gain the transmission
from ABP to Fv, and coherence
the statistical association between
ABP and Fv

Impaired autoregulation =
low phase, high gain, high
coherence

Moderately complex signal
processing. Some prognostic
relevance

TOx, COx, THx, HVx ABP (CPP), NIRS
oxygenation

Pearson correlation between 30
consecutive 10-s means of ABP
and tissue oxygenation (or total
haemoglobin for THx and HVx)

Impaired autoregulation =
higher TOx, COx, THx, HVx

Correlated with TCD methods
but allows for longer term
monitoring

TOIHRx HR, NIRS oxygenation Correlation between 30 consecutive
10-s means of HR and NIRS
oxygenation

?Higher TOIHRx = impaired
autoregulation

Used in preterm infants.
Further comparisons with
standard autoregulation
indices required

Transfer function (phase,
gain, coherence)

ABP, NIRS oxygenation Derived from the transfer function
of fast Fourier transform of ABP
and oxygenation signals. Phase is
the shift required to align
oxygenation and ABP signals,
gain the transmission from ABP to
NIRS oxygenation, and coherence
the statistical association between
ABP and NIRS oxygenation

Impaired autoregulation =
low phase, high gain, high
coherence

Moderately complex signal
processing

PRx ABP, ICP Correlation between 30 consecutive
10-s means of ABP and ICP

Higher PRx = impaired
autoregulation

Robust measure for long
monitoring periods. Simplistic
and prognostically relevant

PAx ABP, amplitude of ICP Correlation between 30 consecutive
10-s means of ABP and ICP

Higher PAx = impaired
autoregulation

Similar to PRx, may allow
better estimate of pressure
reactivity when the
“pressure–volume”
compensatory curve is
flat, i.e. at low ICP

ORx CPP (ABP), PBTO2 Correlation between 30 consecutive
10-s means of ABP and PBTO2

High ORx = impaired
autoregulation

Further validation required

ABP arterial blood pressure, ARI autoregulatory index, CBF cerebral blood flow, COx cerebral oximetry index, CPP cerebral perfusion pressure, Dx diastolic flow

index, Fv flow velocity, HR heart rate, HVx haemoglobin volume reactivity index, ICP intracranial pressure, Mx mean flow index, ORx oxygen reactivity index,

PAx pressure amplitude index, PBTO2 pressure of brain tissue oxygen, PRx pressure reactivity index, Sx systolic flow index, NIRS near-infrared spectroscopy,

TCD transcranial Doppler, THx total haemoglobin reactivity index, TOIHRx total oxygenation heart rate index, TOx total oxygenation reactivity index
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the need for transporting the patient. Unfortunately, val-

idated ‘normal’ reference ranges are seldom available for

the cerebral circulation and interpretation must there-

fore take into account relevant patient comorbidities and

the underlying physiologic milieu. In the following sec-

tion we summarise the role of the cerebral circulation in

TBI, SAH, stroke, sepsis, and prematurity.

Traumatic brain injury

The pathophysiology of TBI is classically split into

two phases, with the primary injury occurring at the

time of ictus and secondary injury occurring in the

following minutes, days, or even weeks. A cascade of

pathophysiologic events leads to altered cerebral and

systemic physiology that adds insult to injury; de-

rangements in glucose metabolism, thermoregulation,

respiration, and cerebral blood circulation all contrib-

ute to neuronal injury [43].

The characterisation of the cerebral circulation after

severe TBI is not straightforward partly because the dis-

ease entity itself is heterogeneous. Despite this diversity,

it is clear that maintaining close attention to cerebral

perfusion is essential in all patients. The cerebral circula-

tion is universally compromised after severe TBI; CBF,

CO2 reactivity, and cerebral pressure autoregulation can

all be impaired at various stages after TBI (Table 3). Low

CBF, high CBF [44–46], and impaired autoregulation

[47, 48] have all been associated with worse outcome (an

example of temporal variations in CBF regulation in a

TBI patient is shown in Fig. 5). However, while impaired

CO2 reactivity has been shown to be related to un-

favourable outcome in some studies [49, 50], this is not

universal. Carmona Suazo et al. [51] used parenchymal

brain tissue oxygen monitors to assess CBF in 90 TBI

patients and found that, while all patients seemed to

have a low CO2 reactivity on day 1, this gradually im-

proved over the first 5 days of monitoring. Interestingly,

CO2 reactivity on day 5 was higher in those with an

unfavourable outcome. Unfortunately, a low sample size

(n = 10 by day 5 of monitoring) and the potential for

confounding changes in CPP make the generalisability of

this surprising result uncertain.

Given that CBF seems to show a distinct time evolu-

tion after TBI [46, 52], defining an optimal CBF is clearly

problematic because it is likely to vary with the patients’

individual physiologic milieu, as well as the temporal

evolution of disease. Furthermore, continuous measure-

ments of CBF, although possible, are seldom feasible

(Table 1) and therefore ICU therapies dictate not CBF

per se but a target range of CPP. In this regard, individu-

ally optimising CPP to a continuously calculated meas-

ure of vascular reactivity such as PRx seems promising.

The CPP dependence of PRx can be used to assess at

which CPP the autoregulation is most efficient (i.e. the

CPP at which the PRx is most negative). This is potentially

important because CPP is a variable (unlike CBF or indices

of autoregulation) that can be titrated precisely at the bed-

side. Importantly, the difference between CPP and the opti-

mal CPP has been shown to be related to outcome [53].

Figure 6 demonstrates long-term continuous monitor-

ing of cerebral autoregulation using PRx in a TBI

patient. In this case, ICP was initially above 20 mmHg

and then subsided. The CPP varied between 60 and

100 mmHg, and when this CPP was plotted against PRx

a U-shaped, parabolic curve is observed with a mini-

mum at ~90 mmHg.

Subarachnoid haemorrhage

Spontaneous SAH most commonly results from rupture

of an intracranial aneurysm. Following SAH, severe

Table 3 Cerebral haemodynamics in critical illness

Critical illness Effect of disease on cerebral haemodynamics Does the cerebral haemodynamic parameter relate to
prognosis?

Flow Cerebral
autoregulation

CO2 reactivity Flow Cerebral
autoregulation

CO2 reactivity

TBI Decreased [45, 46, 111]
then increased [46, 112]

Decreased [44, 113] Decreased [44, 49, 114, 115] Yes: decreased
[44–46, 111] and
increased [44, 112]
CBF related to poor
outcome

Yes [44, 47] Most studies find
yes [44, 49], while
some find no [51]

SAH Decreased (vasospasm)
[14, 55]

Decreased [54, 56] Decreased [55] Yes [62] Yes [60, 62, 116] Yes [117]

Stroke Decreased [66, 67, 118] Decreased [70, 71] Decreased [68, 69] Yes [66, 67] Yes [71] Yes [69]

Sepsis Unchanged [78, 81],
or decreased [5]

Unchanged [82],
decreased [78, 79],
or increased [83, 84]

Unchanged [82]
or decreased [77]

Unknown Unknown Unknown

Preterm infants Decreased [87, 89, 119] Unchanged [93] or
decreased [87, 88]

Decreased [88, 90] Yes [119] Yes [88, 95, 120] Yes [88, 90]

CBF cerebral blood flow, CO2 carbon dioxide, SAH, subarachnoid haemorrhage; TBI, traumatic brain injury
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disturbances of CBF as well as CBF regulation can occur.

These are frequently related to large vessel spasm, but

may also be a sequelae of CBF dysregulation and a host

of other pathological processes, such as cortical spread-

ing depolarisations, acute inflammation, and loss of

blood–brain barrier—all of which have been implicated

in patient prognosis.

Early studies of experimental SAH in baboons revealed

impaired CBF, CO2 reactivity, and cerebral autoregula-

tion [54, 55]. However, like TBI, the clinical course of

Fig. 5 Continuous cerebral autoregulation monitoring during refractory intracranial hypertension. Continuous monitoring of cerebral autoregulation
using PRx in a patient after severe TBI, who died after 6 days because of refractory intracranial hypertension. During the first 3 days ICP was stable,
around 20 mmHg. However, PRx showed good autoregulation only during the first day (PRx <0.3). Later PRx was consistently above 0.5 even if ICP,
CPP, and brain tissue oxygenation (PbtiO2) were satisfactory. After day 4, PRx was persistently elevated to >0.7. On day 6, ICP increased abruptly to
70 mmHg, CPP fell to 20 mmHg, and oxygen tension fell below 5 mmHg. The patient died in a scenario of brain-stem herniation. The only parameter
which deteriorated early in this case was the index of cerebral autoregulation PRx. ABP arterial blood pressure, CPP cerebral perfusion pressure, ICP
intracranial pressure, PRx pressure reactivity index

Fig. 6 Long-term monitoring of PRx in a patient after TBI. ICP was first elevated to 20 mmHg and then decreased, showing some fluctuations
over 7 days of monitoring. PRx had parabolic distribution along the recorded range of CPP (from 60 to 100 mmHg). The minimum of this
parabola indicates ‘optimal CPP’ from the whole 7-day period (90 mmHg in this case—as compared with above 65–70 mmHg, advised by
guidelines—which illustrates well that CPP-oriented management must be individualised; it is not true that one shoe size is good for everybody).
Moreover, such a fitting of an ‘optimal curve’ may be repeated in time, based on data from the past 4 h. This enables prospective detection and
tracing of ‘optimal CPP’ and targeting current CPP at its current optimal value, which may change in a course of intensive care. CPP cerebral
perfusion pressure, ICP intracranial pressure, PRx pressure reactivity index
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SAH is heterogeneous, especially with respect to CBF.

Approximately 60 % of SAH cases develop vasospasm

on TCD, which may be accompanied by impaired CBF

and cerebral autoregulation [14, 56], and 15–30 %

develop delayed ischaemic deficits [57–59]. While the

relationship between vasospasm, delayed cerebral ischae-

mia, and outcome can be capricious, various aspects of

cerebral haemodynamics can be useful in predicting the

future clinical course: early impaired CO2 reactivity pre-

dicts vasospasm, and impaired cerebral autoregulation

predicts delayed ischaemic deficits and poor clinical out-

come [60, 61].

While CBF is typically within normal limits early after

ictus, it is possible to see impaired cerebral autoregula-

tion within the first 3–5 days after SAH [58, 60, 62].

Furthermore, Jaeger et al. [60] demonstrated that auto-

regulation can recover following the initial deterioration,

a response that indicates a good prognosis. Figure 4

demonstrates the time course of CBF regulation changes

in a patient after SAH.

Management strategies hinge on the early identifica-

tion of delayed cerebral ischaemia, followed by the insti-

tution of hypertension to maintain CBF. Currently,

nimodipine remains the only medication approved for

prevention of delayed cerebral ischaemia. In this respect,

optimisation of ABP according to cerebral autoregula-

tion may be a promising avenue of research [63].

Ischaemic stroke

Ischaemic stroke is characterised by luminal obstruction

by a blood clot. Thus, a region of the brain has abnor-

mally high resistance and decreased flow (Fig. 1). In

these patients, utmost importance is placed on prompt

dissolution of the clot either by thrombolysis or intravas-

cular clot removal [64]. Around the central core of

infarct is a zone of tissue with depleted, but not absent,

blood flow—the ischaemic penumbra. Prompt dissol-

ution of the clot can salvage this at-risk tissue.

Unlike TBI, or SAH, a predisposition for ischaemic

stroke can be determined by examination of cerebrovas-

cular regulation; those patients with impaired CO2 re-

activity are more likely to develop an ischaemic stroke

[65]. However, like TBI and SAH, ischaemic stroke is a

state where careful consideration of cerebrovascular

regulation in the acute phase is imperative (Table 3).

In the acute phase of ischaemic stroke, those patients

with the lowest global CBF tend to have worse prognosis

[66], as do those with a greater proportion of penumbral

to ischaemic tissue [67]. CO2 reactivity is depressed

compared with healthy controls [68, 69] and those with

lower CO2 reactivity have worse outcome [69]. Cerebral

autoregulation also appears to be impaired initially,

followed by further impairment over the ensuing several

days before again improving (reviewed in [70]). In 45

ischaemic stroke patients, cerebral autoregulation im-

pairment was related to both the size of infarct and

functional outcome [71].

Ongoing controversy exists regarding how best to sup-

port the cerebral circulation after efforts to break down

the intramural obstruction. While the prevention of

hypotension after ischaemic stroke seems logical, know-

ledge of cerebral autoregulation has potential to help

guide the management of blood pressure. Studies of

continuous vascular reactivity are limited after ischaemic

stroke because these patients are often managed outside

the critical care environment without the insertion of in-

vasive ABP or cerebral perfusion monitors that allow for

continuous estimation of cerebral autoregulation. In this

regard, non-invasive perfusion assessment with NIRS and

ABP with finger photoplethysmography are promising.

Common to large ischaemic stroke, TBI, and SAH is

the occurrence of spreading cortical depolarisations.

These waves of near-complete depolarisation propagate

slowly through the cortex (over a time scale of about

1 min) and are followed by several minutes of markedly

depressed electrical activity [72, 73]. Their occurrence in

an injured brain may decrease CBF, resulting in areas of

ischaemia, and seem to lead to worse outcomes [74].

Whether they are a cause or a consequence (or both) of

altered cerebrovascular regulation needs further investi-

gation with simultaneous CBF circulation and electro-

cortical monitoring.

Sepsis

The host response to infection—sepsis—is charac-

terised by dysfunction of multiple organ systems, in-

cluding the brain. This host response can have

implications for CBF: CPP is often low, pyrexia can

alter CBF, and inflammatory mediators can alter vas-

cular resistance [75, 76]. Compared with the afore-

mentioned diseases, the cerebral circulation in sepsis

is less completely characterised.

Some studies have found impaired CO2 reactivity [77],

impaired autoregulation [78–80], and decreased CBF [5]

during sepsis, whilst other studies have found no signifi-

cant changes in CO2 reactivity, cerebral autoregulation,

or CBF [81, 82]. Interestingly, two groups have even

found that, in the early phases of experimental sepsis in

healthy volunteers, dynamic cerebral autoregulation is

actually enhanced [83, 84]. Pfister et al. [78] found that

autoregulation was impaired in those with sepsis and de-

lirium, but not in those with sepsis only. These seem-

ingly conflicting findings may be partially explained by

the heterogeneity of the sepsis process itself. Some septic

patients develop a hyperdynamic circulation with in-

creased cardiac output and decreased ABP, while others

have both decreased cardiac output and ABP. Moreover,

the physiological changes in the cerebral circulation
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during sepsis probably evolve over time, thus making

comparisons between different studies difficult.

Nevertheless, brain dysfunction is one of the earliest

forms of organ dysfunction in sepsis and sepsis-induced

delirium occurs in up to 70 % of patients [76]. Charac-

terising the involvement of the cerebral circulation in

the pathogenesis of sepsis-induced delirium will prob-

ably require detailed haemodynamic studies with large

numbers of patients.

Preterm infants

Premature infants do not have fully functioning cerebral

vessels or cardiovascular systems and therefore vital

organ perfusion is vulnerable. Using NIRS and umbilical

artery ABP, continuous measures of cerebral autoregula-

tion can be obtained.

Animal studies indicate that cerebral autoregulation

starts to develop from around halfway through the ges-

tational period [85]. Furthermore, even when static auto-

regulation is developed, the preterm newborn probably

sits close to the lower limit of autoregulation [86]. Early

human investigations using Xe CT and NIRS indicated

that CBF, CO2 reactivity, and cerebral autoregulation

may be impaired in preterm infants [87–91] (Table 3).

Further, more recent human data using TCD indicated

that cerebral autoregulation is more impaired if the baby

is more premature [92]. Still other studies have indicated

that perhaps the premature brain is able to adapt to sus-

tained [93] but not dynamic [94] changes in ABP; that

is, ‘static’ autoregulation is intact, while ‘dynamic’ auto-

regulation may be impaired [91].

Analogous to TBI, determination of an optimal

ABP has been attempted in these preterm infants

with the finding that those who did not survive had

an ABP below their calculated optimal, whereas

those who developed periventricular haemorrhage

had an ABP above their optimal [95]. An important

consideration when interpreting studies on cerebral

haemodynamics in infants is that, in addition to the

influences of ABP and CO2 on CBF, arterial oxygen

saturation can be highly variable, and can have pro-

found influence on premature babies’ cerebral circu-

lation [96].

Future directions

With the increasing availability of bedside physiology

monitors and sophisticated online analysis software,

large-scale integrated interrogations of CBF regulation

are now possible. One important research theme is

developing robust prediction tools based on cerebral

physiologic monitoring for critically ill patients.

Accurate prognosis is of obvious importance for

patients, families, and clinicians alike, but current

methodologies have some limitations. For example,

prognostic tools in TBI use clinical, laboratory, and

radiographic features on admission to predict patient

outcome [97]. However, some of the input variables

are open to interpretation (e.g. the grading of a CT

scan), and prognosis should ideally be updated based

on clinical and physiological developments. In this

sense, prognostic tools that update risk estimates

based on online monitoring of CBF regulation could

facilitate clinical decision-making.

In addition to predicting outcome, incorporating

knowledge of CBF regulation into management proto-

cols seems promising. Hopeful examples in TBI include

strategies that incorporate knowledge of cerebrovascular

reactivity into either ICP [98] or CPP [53] management.

Although still requiring further development and pro-

spective assessment, similar techniques could conceiv-

ably be applied to any condition where ABP or CBF

regulation is impaired.

Extending cerebral haemodynamic monitoring con-

cepts to other critical care pathologies is important.

For example, in cardiopulmonary bypass patients,

NIRS-based autoregulation has been shown to be a

significant predictor of outcome, and furthermore,

as in TBI, an autoregulation-based optimal ABP

seems to be prognostically important [99, 100]. An

example of autoregulation-based optimal ABP dur-

ing cardiopulmonary bypass is shown in Fig. 7. Car-

diac arrest, acute shunt blockage, acute liver failure,

pre-eclampsia, and malignant hypertension are all

conditions that could perturb the cerebral circula-

tion, and further investigation may reveal diagnostic,

prognostic, or therapeutic insight.

Understanding the factors that modify CBF and

vascular reactivity is also an important evolving area

of research. Although a large part of the variation in

cerebral autoregulation is accounted for by the level

of ABP (or CPP) itself, other systemic and local

factors may also be important. Preliminary investiga-

tions indicate that common occurrences in the crit-

ical care unit such as hyperglycaemia, altered renal

clearance, erythrocyte transfusion, or rewarming after

hypothermia are all associated with altered cerebral

pressure reactivity, underscoring the need for an in-

tegrative approach to neuromonitoring [101–104].

Finally, investigating and integrating additional aspects

of CBF regulation into prognostic and therapeutic

approaches is imperative. In particular, the compu-

terised assessment of neurovascular coupling [18]

and autonomic function (e.g. with baroreceptor sen-

sitivity or heart rate variability) are non-invasive,

provide unique information on the regulation of

CBF, and can be coupled with conventional measures

of CBF regulation such as cerebral autoregulation

and cerebrovascular CO2 reactivity.

Donnelly et al. Critical Care 2016, 18: Page 13 of 17

http://ccforum.com/content/18/6/



Conclusions

To date, there is no randomised trial showing that moni-

toring the cerebral circulation improves care of neuro-

logical patients. The link between autoregulation status

and possible treatment is not firmly established, but

great hope is linked to the idea of treating patients with

an ‘optimal CPP’ (TBI or SAH) or ‘optimal ABP’ regime

(cardiac surgery, preterm infants, or conceivably sepsis).

However, these methodologies still await prospective

clinical studies.

With such a research focus on characterising

brain function in health, it is a sad fact that in

most cases our ability to monitor brain function

and the cerebral circulation in the critically ill

patient is rudimentary. Recent Neurocritical Care

Society guidelines attempt to correct this situation

[105]. With the maxim ‘time is brain’, a renewed

focus on high-fidelity cerebrovascular monitoring is

required—irreversible cerebral ischaemia can occur

in a matter of minutes.

Progress in the neurocritical care of vascular

diseases will probably also depend on moving away

from broad assumptions or ‘one size fits all’ physio-

logical targets; each patient brings a different

physiology which should be catered for. Using con-

tinuous markers of vascular function has the poten-

tial to optimise therapy to the individual patient’s

need. With the sophistication of signal processing

and bioinformatic tools increasing exponentially, the

challenge lies in successful integration of cerebral

circulation monitoring paradigms at the bedside.

Note

This article is part of a series on Neurocritical care,

edited by Fabio Taccone. Other articles in this series can

be found at http://www.biomedcentral.com/collections/

NCRC.
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