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Abstract
The Janus-activated kinase-2 JAK2 is involved in the
signaling of leptin and erythropoietin receptors and
mediates neuroprotective effects of the hormones.
In theory, JAK2 could be effective through modulation
of the glutamate transporters, carriers accounting for
the clearance of glutamate released during
neurotransmission. The present study thus elucidated
the effect of JAK2 on the glutamate transporters
EAAT1, EAAT2, EAAT3 and EAAT4. To this end, cRNA
encoding the carriers was injected into Xenopus
oocytes with or without cRNA encoding JAK2 and
glutamate transport was estimated from glutamate
induced current (Iglu). Iglu was observed in Xenopus
oocytes expressing EAAT1 or EAAT2 or EAAT3 or
EAAT4, but not in water injected oocytes.
Coexpression of JAK2 resulted in an increase of Iglu
by 83% (EAAT1), 67% (EAAT2), 42% (EAAT3) and
126% (EAAT4). As shown for EAAT4 expressing
Xenopus oocytes, the effect of JAK2 was mimicked
by gain of function mutation V617FJAK2 but not by the

inactive mutant K882EJAK2. Incubation with JAK2
inhibitor AG490 (40 µM) resulted in a gradual
decrease of Iglu by 53%, 79% and 92% within 3, 6 and
24 hours. Confocal microscopy and
chemiluminescence analysis revealed that JAK2
coexpression increased EAAT4 protein abundance
in the cell membrane. Disruption of transcription did
not appreciably modify the up-regulation of Iglu in
EAAT4 expressing oocytes. The decay of Iglu following
inhibition of carrier insertion with brefeldin A was similar
in oocytes expressing EAAT4 + JAK2 and oocytes
expressing EAAT4 alone, indicating that JAK2 did not
appreciably affect carrier retrieval from the membrane.
In conclusion, JAK2 is a novel powerful regulator of
glutamate transporters and thus participates in the
protection against excitotoxicity.

Introduction

Janus-activated kinase-2 JAK2 is involved in the
signaling of the leptin receptor [1]. In the brain leptin
influences hypothalamic neurons and thus modifies
appetite and mechanisms governing energy expenditure
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[1]. Leptin is effective through stimulation of the leptin
receptor LEPRb, leading to activation of JAK2-dependent
and -independent pathways. Leptin has further been
shown to exert anticonvulsant activity, an effect
considered to involve JAK2 and to result in part from
modification of glutamate receptors [2, 3]. Excitotoxicity
is further counteracted by erythropoietin, a hormone again
signaling through JAK2 and interfering with glutamate
signaling [4-6].

Excitotoxicity may be modified by the efficiency of
glutamate clearance from synaptic clefts, which is a
function of glutamate transporters [7-11]. Deranged
function of the glutamate transporters has been implicated
in the pathophysiology of several neurodegenerative
disorders such as amyotrophic lateral sclerosis, epilepsy,
Huntington’s disease, Alzheimer’s disease and ischemic
stroke injury [9].

Little is known, however, about  an influence of JAK2
on glutamate transporters. In the placenta, Leptin
stimulates the system A amino acid transporter, an effect
presumably involving JAK2 [12]. The present study thus
explored, whether JAK2 influences the excitatory amino
acid transporters EAAT1-4.

Materials and Methods

Constructs
Constructs encoding wild type human EAAT1 [13],

EAAT2 [14, 15], EAAT3 [16, 17] and EAAT4 [18, 19] have been
described previously. The JAK2 construct was generated from
template human JAK2 cDNA provided by Imagenes (Berlin,
Germany). Further, an inactive K882EJAK2 mutant [20] and the
active V617FJAK2 mutant [21] were generated by site-directed
mutagenesis (QuikChange II XL Site-Directed Mutagenesis
Kit; Stratagene, Heidelberg, Germany) according to the
manufacturer’s instructions [22]. The following primers were
used:

V617FJAK2: 5'-AGC ATT TGG TTT TAA ATT ATG GAG
TAT GTT TCT GTG GAG ACG AGA-3';

V617FJAK2: 5'-TCT CGT CTC CAC AGA AAC ATA CTC
CAT AAT TTA AAA CCA AAT GCT-3';

K882EJAK2: 5'-GGG AGG TGG TCG CTG TAG AAA AGC
TTC AGC ATA GT-3';

and K882EJAK2: 5'-ACT ATG CTG AAG CTT TTC TAC
AGC GAC CAC CTC CC-3'.

Underlined bases indicate mutation sites. The mutants
were sequenced to verify the presence of the desired mutation.
The mutants were used for generation of cRNA as described
previously [23].

Voltage clamp in Xenopus oocytes
For determination of electrogenic transport, Xenopus

laevis oocytes were prepared as previously described [24].

Ten ng of wild type JAK2 cRNA were injected on the first day
and 10 ng EAAT1-4 cRNA on the same day after preparation of
the oocytes. All experiments were performed at room
temperature 3-4 days after injections. Two-electrode voltage-
clamp recordings were performed at a holding potential of -60
mV. The data were filtered at 10 Hz, and recorded with a
GeneClamp 500 amplifier, a DigiData 1300 A/D-D/A converter
and the pClamp 9.0 software package for data acquisition and
analysis (Axon Instruments, USA) [25]. The control solution
(superfusate/ND96) contained 96 mM NaCl, 2 mM KCl, 1.8 mM
CaCl2, 1 mM MgCl2 and 5 mM HEPES, pH 7.4 [26]. Fifty mg/l
gentamycin and, where indicated, AG490 (40 µM), actinomycin
D (10 µM) or brefeldin A (5 µM) were added to the solution.
Glutamate was added to the solutions at the indicated
concentrations. The final solutions were titrated to pH 7.4 using
NaOH. The flow rate of the superfusion was 20 ml/min and a
complete exchange of the bath solution was reached within
about 10 s.

Immunohistochemistry and confocal microscopy
To determine EAAT4 cell surface expression by

immunohistochemistry and chemiluminescence, defolliculated
oocytes were first injected with 10 ng cRNA encoding either
wild type JAK2 or JAK2-mutant (V617FJAK2 or K882EJAK2) or
with water and at the same day with 10 ng cRNA encoding
EAAT4-HA which contains an HA epitope inserted
extracellularly. After 3-4 days of injection, occytes were fixed
with 4% paraformaldehyde for at least 12 h, oocytes were
cryoprotected in 30% sucrose, frozen in mounting medium,
and placed on a cryostat. Sections were collected at a thickness
of 8 µm on coated slides and stored at -20°C. For
immunostainings, sections were dehydrated at room
temperature, fixated in acetone/methanol (1:1) for 15 min at room
temperature, washed in PBS and pre-incubated for 1 h in 5%
bovine serum albumin in PBS. The sections were incubated
with primary rat anti-HA antibody for detection of EAAT4,
(diluted 1:100, clone 3F10, Roche, Germany) for overnight in a
moist chamber at 4°C. After washing with PBS a secondary
antibody goat anti-rat FITC was used (diluted 1:1000, Cell
Signaling Technology, MA, USA). The sections were mounted
in prolong-gold antifad (Invitrogen). Oocytes were analyzed
by a fluorescence laser scanning microscope (LSM 510, Carl
Zeiss MicroImaging GmbH, Germany) with A-Plan 20x/0.48 Ph2.
Brightness and contrast settings were kept constant during
imaging of all oocytes in each injection series. Due to
autofluorescence of the oocyte yolk, unspecific
immunofluorescence was observed inside the oocyte.

Detection of EAAT4 cell surface expression by
chemiluminescence
The oocytes were incubated with 0.5 µg/mL primary rat

monoclonal anti-HA antibody (clone 3 F10, Roche, Mannheim,
Germany) and subsequently with secondary, HRP-conjugated
goat anti-rat IgG (H&L) antibody (1:1000, Cell Signaling
Technology, MA, USA). Individual oocytes were placed in 96
well plates with 20 µl of SuperSignal ELISA Femto Maximum
Sensitivity Substrate (Pierce, Rockford, IL, USA) and
chemiluminescence of single oocytes was quantified in a
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luminometer (Walter Wallac 2 plate reader, Perkin Elmer,
Juegesheim, Germany) by integrating the signal over a period
of 1 s. Results display normalized relative light units [27].

Statistical analysis
Data are provided as means ± SEM, n represents the

number of oocytes investigated. All experiments were repeated
with at least 3 batches of oocytes; in all repetitions qualitatively
similar data were obtained. Data were tested for significance
using ANOVA, and results with P < 0.05 were considered
statistically significant.

Results

Electrogenic glutamate transport was minimal in
non-injected or water injected Xenopus laevis oocytes
(Fig. 1). In oocytes expressing EAAT1, however,
glutamate (2 mM) induced an inward current (Iglu)
reflecting electrogenic entry of Na+ and glutamate. Iglu
was significantly increased by additional injection of
cRNA encoding Janus-activated kinase-2 JAK2 (Fig. 1).
The injection of JAK2 alone was not followed by the
appearance of glutamate induced currents (Fig. 1), ruling
out the theoretical possibility that the observed increase
of Iglu in EAAT1 expressing oocytes following additional
coexpression of JAK2 was due to up-regulation of an
endogenous electrogenic glutamate carrier. Thus, JAK2
enhanced EAAT1 activity.

The glutamate transporter EAAT2 similarly mediated
electrogenic glutamate transport (Fig. 2). In oocytes
expressing EAAT2, glutamate (2 mM) induced an inward
current (Iglu), which was again significantly enhanced by
coexpression of JAK2.

Jak2 in the Regulation of EAAT1-4

Fig. 1. Coexpression of JAK2 increased electrogenic glutamate
transport in EAAT1 expressing Xenopus laevis oocytes. A.
Representative original tracings of glutamate (2 mM)-induced
currents (Iglu) in Xenopus oocytes injected with water (a),
injected with JAK2 alone (b), or expressing EAAT1 without (c)
or with (d) additional co-expression of JAK2. B. Arithmetic
means ± SEM of glutamate (2 mM) induced normalized currents
(Iglu) in oocytes injected with water (perpendicularly striped
bar, n = 23), injected with JAK2 alone (horizontally striped bar,
n = 5), expressing EAAT1 without (white bar, n = 23) or with
(black bar, n = 20) additional coexpression of JAK2. ***p <
0.001 indicates statistically significant difference from the
absence of JAK2.

Fig. 2. JAK2 coexpression increased electrogenic glutamate
transport in EAAT2 expressing Xenopus laevis oocytes. A.
Representative original tracings of glutamate (2 mM)-induced
currents (Iglu) in Xenopus oocytes injected with water (a),
expressing EAAT2 without (b) or with (c) additional co-
expression of JAK2. B. Arithmetic means ± SEM of glutamate
(2 mM) induced currents (Iglu) in oocytes injected with water
(striped bar, n = 19), expressing EAAT2 without (white bar, n =
18) or with (black bar, n = 19) additional coexpression of JAK2.
*p < 0.05 indicates statistically significant difference to currents
in oocytes expressing EAAT2 alone.

Cell Physiol Biochem 2011;28:693-702
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Electrogenic glutamate transport was further
observed in oocytes expressing EAAT3 (Fig. 3). In those
oocytes glutamate (2 mM) induced an inward current
(Iglu), which was again increased by coexpression of
JAK2.

Glutamate further induced an inward current (Iglu)
in oocytes expressing EAAT4 (Fig. 4). Iglu was in EAAT4
expressing Xenopus laevis oocytes again significantly
enhanced by coexpression of JAK2. The effect of JAK2
was mimicked by the gain of function mutation V617FJAK2
but not by the inactive mutant K882EJAK2 (Fig. 4 A, B).
The effect of V617FJAK2 tended to be higher than the
effect of wild type JAK2, an effect, however, not reaching
statistical significance. Possibly, wild type JAK2 is not

Fig. 3. Coexpression of JAK2 increased electrogenic glutamate
transport in EAAT3 expressing Xenopus laevis oocytes. A.
Representative original tracings of glutamate (2 mM)-induced
currents (Iglu) in Xenopus oocytes injected with water (a),
expressing EAAT3 without (b) or with (c) additional co-
expression of JAK2. B. Arithmetic means ± SEM of glutamate
(2 mM) induced normalized currents (Iglu) in oocytes injected
with water (striped bar, n = 14), expressing EAAT3 without
(white bar, n = 15) or with (black bar, n = 14) additional
coexpression of JAK2. *p < 0.05 indicates statistically
significant difference from the absence of JAK2.

Fig. 4. JAK2 coexpression increased electrogenic glutamate
transport in EAAT4 expressing Xenopus laevis oocytes. A.
Representative original tracings of glutamate (2 mM)-induced
currents (Iglu) in Xenopus oocytes expressing EAAT4 without
(a) or with (b) additional co-expression of JAK2 or of (c)
V617FJAK2 or (d) K882EJAK2. B. Arithmetic means ± SEM of
glutamate (2 mM) induced currents (Iglu) in oocytes injected
with water (striped bar, n = 15), or expressing EAAT4 without
(white bar, n = 16) or with (black bar, n = 16) additional
coexpression of JAK2 or V617FJAK2 (dark grey bar, n = 15) or
K882EJAK2 (light grey bar, n = 16) *p<0.05, ***p < 0.001 indicates
statistically significant difference to current in oocytes
expressing EAAT4 alone. C. Arithmetic means ± SEM (n = 3) of
glutamate induced currents (Iglu) as a function of glutamate
concentration in Xenopus laevis oocytes expressing EAAT4
without or with JAK2. The values are significantly (p<0.05)
different between the presence and absence of JAK2 at all
concentrations tested except at 0.1 and 1 µM.

fully activated in Xenopus oocytes. Kinetic analysis of
the glutamate-induced currents in EAAT4-expressing
Xenopus oocytes (Fig. 4C) yielded a maximal current of
31.8 ± 1.3 nA (n = 3). Coexpression of JAK2 significantly
enhanced the maximal current to 39.6 ± 0.8 nA (n = 3).
Calculation of the glucose concentration required for
halfmaximal current (KM) yielded values of 35.6 ± 0.1
µM (n = 3) in the absence and of 22.5 ± 2.9 µM (n = 3) in
the presence of JAK2, values significantly different
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Fig. 5. Effect of JAK2 inhibitor AG490 on the activity of EAAT4
in oocytes coexpressing JAK2. A. Representative original
tracings showing glutamate (2 mM)-induced currents (Iglu) in
Xenopus oocytes injected with EAAT4 alone (a), or expressing
EAAT4 together with JAK2 incubated in the absence (b) or
presence of the JAK2 inhibitor AG490 (40 µM) for 3 hours (c),
6 hours (d) or 24 hours (e). B. Arithmetic means ± SEM of
glutamate (2 mM) induced currents (Iglu) in oocytes injected
with water (striped bar, n = 14), expressing EAAT4 without
(white bar, n = 15) or with JAK2 (black and grey bars, n = 15) in
the absence (black bar) or presence (light grey bars) of the
JAK2 inhibitor AG490 (40 µM) for the indicated time periods.
***p < 0.001 indicates statistically significant difference to
current in oocytes expressing EAAT4 alone, #p<0.01, ##p<0.001
from the absence of AG490 i. e. EAAT4+JAK2 (0h AG490).

Fig. 6. Coexpression of JAK2 increased the EAAT4 abundance
within the plasma membrane of oocytes. A. Confocal microscopy
of Xenopus oocytes expressing EAAT4 alone (left) or with
additional coexpression of gain of function mutation V617FJAK2
(middle) or of kinase dead mutant K882EJAK2 (right). Two different
preparations of oocytes were analzyed. B. Chemiluminescence
analysis of surface EAAT4 expression assessed by
chemiluminescence in oocytes injected with water (striped bar,
n = 40) or expressing EAAT4 alone (white bar, n = 42), together
with wild type JAK2 (black bar, n = 36), with gain of function
mutation V617FJAK2 (dark grey bar, n = 31) or with inactive
K882EJAK2 (light grey bar, n = 20 ). Cell surface expression was
normalized to the mean relative light units value obtained in
oocytes injected with water. *indicates statistically significant
(p<0.05) difference to Xenopus oocytes expressing EAAT4
alone.

(p <0.05). The observation suggested that coexpression
of JAK2 enhanced EAAT4 activity by increasing both,
the maximal current and the affinity of the carrier.

As shown for EAAT4 expressing Xenopus oocytes,
JAK2 inhibitor AG490 (40 µM) decreased the glutamate
induced current. Pre-incubation of the oocytes with the
JAK2 inhibitor AG490 (40 µM) reversed the stimulating
effect of JAK2 expression (Fig. 5A, B). The effect of
the inhibitor was slow and reached statistical significance
within 3 hours of pre-incubation with AG490.

The up-regulation of the glutamate transporters by
JAK2 could have resulted in part from an increase of
carrier protein abundance in the cell membrane.
Immunohistochemistry and confocal microscopy together
with chemiluminescence analysis was thus applied to test
for altered carrier protein abundance at the cell surface.

As illustrated in Fig. 6A and Fig. 6B, JAK2 indeed
significantly increased the EAAT protein abundance in
the cell membrane.

At least in theory, JAK2 could enhance EAAT4
protein abundance by influencing transcription of EAAT4
or a regulator thereof. To estimate the potential
contribution of altered transcription, further experiments
were performed with and without actinomycin D (10 µM),
an inhibitor of transcription. As a result, actinomycin D
failed to significantly modify the effect of JAK2 on
EAAT4 (Fig. 7A).

The enhanced EAAT4 protein abundance in the cell
membrane of JAK2 co-expressing oocytes could have
resulted from accelerated insertion of new carriers into
or delayed clearance of carriers from the cell membrane.
To discriminate between those two possibilities the

Cell Physiol Biochem 2011;28:693-702
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Fig. 7. Effect of actinomycin D and brefeldin A on EAAT4
activity in presence and absence of JAK2. A: Arithmetic means
± SEM (n = 4-8) of glutamate (2 mM)-induced currents (Iglu) in
Xenopus oocytes injected with EAAT4 without (white bars) or
with (black bars) JAK2 in the absence (left) and presence (right)
of 10 µM actinomycin D 1-2 days prior to the measurement. B:
Arithmetic means ± SEM (n = 15-19) of glutamate (2 mM)-
induced current (Iglu) in Xenopus oocytes injected with EAAT4
without (white bars) and with (black bars) JAK2 in the absence
(left) and presence (right) of 5 µM brefeldin for 0-6 hours prior
to the measurement. ***indicates statistically significant
(p<0.001) difference from the absence of JAK2. ##, ###indicates
significant difference from the absence of brefeldin (p<0.01,
p<0.001).

EAAT4-expressing Xenopus oocytes were treated with
5 µM Brefeldin A, which blocks the insertion of new
carrier protein into the cell membrane. As shown in Fig.
7B, the glutamate induced current in the presence of
Brefeldin A declined at a similar rate in oocytes expressing
EAAT4 alone and in oocytes expressing EAAT4 together

with JAK2. Twenty-four hours after Brefeldin A
treatment EAAT4 activity was similarly low in oocytes
expressing EAAT4 together with JAK2 as in oocytes
expressing EAAT4 alone. This observation argues against
a role of JAK2 in the carrier clearance from the cell
membrane and suggests that JAK2 increases EAAT4
activity by stimulating carrier insertion into the cell
membrane.

Discussion

The present observations unravel a novel regulator
of glutamate transporters. The Janus-activated kinase-2
JAK2 up-regulates the activity of the four excitatory
amino acid transporter isoforms EAAT1, EAAT2, EAAT3,
EAAT4. The effect is at least partially due to an increase
of carrier protein abundance in the cell membrane.

The effect of JAK2 could impact on the function of
glutamatergic neurons and thus affect cerebral function.
EAAT1 accomplishes glutamate uptake into glial cells [9].
Together with EAAT2 it is the most important carrier
accounting for the clearance of glutamate released during
neurotransmission [28]. The carrier is expressed mainly
in astrocytes [29-32]. Expression has further been
reported in oligodendrocytes [33], neurons [34, 35], retina
[36, 37], taste buds [38], cochlea [39, 40], vestibular organ
[41], circumventricular organ [29], adrenal and pineal
glands [42, 43] as well as bone cells [44, 45].

EAAT2 is similarly expressed in astrocytes [46] and
similarly contributes to glutamate reuptake from the
synaptic cleft [47]. Upregulation of EAAT2 activity
provides neuroprotection [48] and impaired expression
or activity of EAAT2 leads to extracellular glutamate
accumulation and neuroexcitotoxicity [49, 50].

EAAT3 is not only expressed in neurons [28, 51-
57], retinal ganglion cells [58] and glial cells [59, 60] but
is expressed in a wide variety of nonexcitable cells and
non-neuronal tissues including blood platelets [61, 62],
heart [63], renal podocytes [64], epididymis [65], placenta
[66, 67] and blood-brain barrier [68].

EAAT4 is specifically expressed in cerebellar
Purkinje cells and clears glutamate from the synapses
connecting the climbing fibers with the Purkinje cells [54].

Deranged function of glutamate transporters affects
mainly the function of the brain. Deranged EAAT2
function has been implicated in several neurological
disorders including amyotrophic lateral sclerosis (ALS)
[49, 69], Alzheimer disease [70, 71], schizophrenia [72],
HIV associated dementia [73], multiple sclerosis [74, 75],

Hosseinzadeh/Bhavsar/Sopjani/Alesutan/Saxena/Dërmaku-Sopjani/
Lang

Cell Physiol Biochem 2011;28:693-702



699Jak2 in the Regulation of EAAT1-4

leukomalacia [76], epilepsy [77, 78], brain trauma [79],
hypoxia and stroke [80, 81]. Moreover, gene variants in
EAAT2 influence reward dependence [82]. Dysfunction
of EAAT3 may result in dicarboxylic aminoaciduria, which
can be associated with mental retardation [83] and has
been implicated in obsessive-compulsive disorder [83],
schizophrenia [72, 84, 85], epilepsy [78] and hepatic
encephalopathy [86]. EAAT4 has been associated with
schizophrenia [72, 84].

Beyond its putative role in glutamatergic
transmission, JAK2 may affect glutamate transport in
extracerebral tissues. JAK2 has previously been shown
to participate in the regulation of cell proliferation [87,
88]. Accordingly, mutations in the gene encoding JAK2
underlie some myeloproliferative disorders [89] and JAK2
inhibitors are considered potential pharmacological
candidates for the management of myelofibrosis [90, 91].

JAK2 dependent regulation of glutamate transporters
may contribute to the cerebral effects of leptin, which
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