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ABSTRACT

Type III CRISPR–Cas prokaryotic immune systems

provide anti-viral and anti-plasmid immunity via a

dual mechanism of RNA and DNA destruction. Upon

target RNA interaction, Type III crRNP effector com-

plexes become activated to cleave both target RNA

(via Cas7) and target DNA (via Cas10). Moreover,

trans-acting endoribonucleases, Csx1 or Csm6, can

promote the Type III immune response by destroying

both invader and host RNAs. Here, we characterize

how the RNase and DNase activities associated with

Type III-B immunity in Pyrococcus furiosus (Pfu) are

regulated by target RNA features and second mes-

senger signaling events. In vivo mutational analy-

ses reveal that either the DNase activity of Cas10

or the RNase activity of Csx1 can effectively direct

successful anti-plasmid immunity. Biochemical anal-

yses confirmed that the Cas10 Palm domains con-

vert ATP into cyclic oligoadenylate (cOA) compounds

that activate the ribonuclease activity of Pfu Csx1.

Furthermore, we show that the HEPN domain of the

adenosine-specific endoribonuclease, Pfu Csx1, de-

grades cOA signaling molecules to provide an auto-

inhibitory off-switch of Csx1 activation. Activation of

both the DNase and cOA generation activities require

target RNA binding and recognition of distinct target

RNA 3′ protospacer flanking sequences. Our results

highlight the complex regulatory mechanisms con-

trolling Type III CRISPR immunity.

INTRODUCTION

Prokaryotes often harbor powerful CRISPR–Cas
(clustered regularly interspaced short palindromic repeat-
CRISPR associated) adaptive immune systems to protect
against infections from invading viruses and plasmids (1,2).
CRISPR genomic arrays are composed of short DNA
sequences of foreign origin (called spacers), separated by
host repeat sequences. CRISPR arrays become transcribed
and the long, primary transcripts are processed into short,
mature crRNAs that assemble with Cas proteins to form
crRNP (CRISPR RNA-containing ribonucleoprotein)
effector complexes. These effector complexes detect and
destroy invading nucleic acids that are complementary
to their crRNAs. CRISPR–Cas systems are quite diverse
and fall into six distinct types (Types I-VI) and over 30
subtypes (3,4). Types I, II and V (and possibly IV) target
the destruction of DNA (5–7), while Type VI destroys
RNA (8). Type III systems are particularly noteworthy in
that they uniquely degrade both RNA and DNA of the
invaders (9–19). Type III systems are further categorized
into six subtypes (III-A through III-F) with the majority
belonging to either the Type III-A (Csm) or Type III-B
(Cmr) systems (3).
Types III-A (Csm) and III-B crRNP (Cmr) effector com-

plexes exhibit an overall similar subunit organization and
architecture (see Figure 1A for an example of the Cmr ef-
fector complex). Each complex is composed of a single cr-
RNA and �ve (Csm 1–5 for III-A) or six (Cmr 1–6 for III-B)
Cas proteins (15,20–25). The mature crRNAs within these
complexes contain eight nucleotides of repeat sequence at
the 5′ end called the 5′ tag, followed by a ∼30–40 nucleotide
guide sequence that base-pairs with the target RNA pro-
tospacer (26–28). Multiple catalytically active Cas7 super-
family proteins (Csm3 or Cmr4) that act as target RNA en-
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Figure 1. Csx1 is required for anti-plasmid immunity in theP. furiosus (Pfu) III-B CRISPR–Cas system. (A) Components of thePfuCmr defense response.
The Cmr effector complex is composed of Cmr1–6 and a mature crRNA (black & orange) containing a 5′ tag (black) eight nucleotides in length. Cyclic
oligoadenylate compounds (orange) produced by the Palm domain of Cmr2 bind to the CARF domain of Csx1. See Supplemental Figure S1 for a list of
the Cas gene family names that correspond to each of the six Cmr subunits. (B) Plasmid interference assay. Pfu strains were transformed with plasmids
that contain (target) or lack (no target) a transcribed target region complementary to the 7.01 crRNA (�rst spacer of the Pfu CRISPR 7 array). Both
plasmids contain the pyrF gene to facilitate growth in the absence of uracil. (C) Colonies produced by transforming 11 different Pfu strains. Strains were
transformed with the target plasmid (blue) or no target plasmid (gray). Mean colonies obtained per �g of plasmid DNA are plotted for two replicates.
Error bars indicate standard deviation of replicates.
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doribonucleases (16,29,30), interact along the length of the
crRNA guide region and these proteins also tightly asso-
ciate with Cas11 superfamily proteins (Csm2 or Cmr5). Ad-
ditional Cas7 superfamily Cas proteins directly contact the
5′ crRNA tag (Csm4 or Cmr3) or 3′ terminus of the guide
RNA segment (Csm5 or Cmr1 and Cmr6). Cas10 (Csm1 or
Cmr2) is the signature protein of Type III complexes (4).
This large, multiple domain-containing protein is situated
near the 5′ end of the crRNA and typically contains two
highly conserved motifs: the HD motif capable of destroy-
ing single-strandedDNA (9,10,13) and theGGDDmotif of
one of two Palm domains that can convert ATP into cyclic
oligoadenylate (cOA) second messenger molecules (31–33)
(Figure 1A).
Interestingly, Type III systems also include trans-acting

ribonucleases, Csm6 (III-A) or Csx1 (III-B), that are not
stably associated with the effector crRNP complexes (34–
37) and appear to be capable of degrading both invading
RNA (leading to immunity) as well as host RNAs (leading
to cell dormancy or cell death) when activated by cOA bind-
ing (32,35,38). Csm6 and Csx1 proteins share two highly
conserved domains: the HEPN (Higher Eukaryotes and
Prokaryotes Nucleotide binding) domain and the CARF
(CRISPR Associated Rossman Fold) domain (39,40) (Fig-
ure 1A). The ribonuclease activity of both Csx1 and Csm6
is facilitated by the HEPN motif (R-X4–6-H) within the
HEPN domain (34–37). Binding of cognate cOA to the
CARF domain allosterically stimulates the single-stranded
RNase activity of the HEPN domain of the Csm6/Csx1
proteins (31–33,41,42). CARFdomains, either withinCsm6
(43,44) or as part of unrelated proteins called ring nucleases
(45,46), have also recently been found to cleave and inacti-
vate cOA singling molecules to switch off the activity of the
Csm6 or Csx1 HEPN RNases (43–46).
Anti-virus or anti-plasmid immunity afforded byType III

crRNPs, is transcription-dependent as these systems specif-
ically recognize an RNA target having a crRNA interaction
region (i.e. the RNA protospacer) (9,10,14,19,47). Once
bound to the target RNA protospacer, the crRNP effec-
tor complex changes its conformation (24,25,48–50) and the
Type III defense response becomes activated to: (i) specif-
ically cleave the target RNA at regular six-nucleotide in-
tervals within the protospacer region using multiple copies
of the Csm3/Cmr4 integral ribonuclease via an active site
that relies on a key aspartate residue (16,29,30), (ii) non-
speci�cally degrade nearby invading single-stranded DNA
via the HD motif of Cas10 (Csm1/Cmr2) (9,10,13,14), (iii)
generate cyclic oligoadenylate (cOA) from ATP using the
GGDD motif of the conserved Palm domain of Cas10
(Csm1/Cmr2) and (iv) non-speci�cally degrade single-
stranded RNA via the cOA-activated and trans-acting
Csm6/Csx1 HEPN ribonuclease (31–33,41,42,51,52). Col-
lectively, these target-RNA and transcription-coupled reac-
tions provide robust Type III-mediated immunity.
Type III RNase and DNase activities must be tightly

regulated so that undesirable cellular toxicity or host cell
death can be prevented before or during an immune re-
sponse. The molecular details for how each of the RNases,
DNase and cOA signal generation activities of Type III sys-
tems become speci�cally activated by target RNA binding
is currently not fully understood. Several studies have re-

vealed a key role for the short sequence that �anks the 3′

end of the RNA protospacer, termed the protospacer �ank-
ing sequences (PFS) in controlling Type III activities. When
PFS sequences are complementary to the 5′ crRNA tag (as
would be the case if the cell produced antisense crRNAs),
the DNase and cOA production activities fail to become ac-
tivated (9,13,14,53,54) while the transcripts themselves are
cleaved by the Csm3/Cmr4 integral RNases (16,27). Thus,
5′ tag/PFS pairing can negatively regulate some but not all
Type III activities. In some characterized systems, the par-
ticular identity of nucleotides within the PFS will dictate
if the effector complex is active or inactive independent of
their capacity to base-pair with the 5′ crRNA tag. In par-
ticular, three nucleotides immediately 3′ of the target RNA
protospacer (i.e. in positions +1, +2, +3 in the target RNA
5′-3′ direction) have been found to be important for acti-
vating the DNase and cOA production presumably due to
interactions of these PFS elements and subunits of the Type
III effector complex (likely Cas10 and/or Csm4/Cmr3)
(9,25,48,54). The DNase and cOA generation activities are
also switched off as a result of degradation of the trigger tar-
getRNA that occurswhenCsm3/Cmr4RNases of the com-
plex cleave the RNA protospacer (33,42,48). Finally, mech-
anisms have also recently been discovered that can reverse
the effects of cOA signaling on Csm6/Csx1 HEPN ribonu-
clease activity. Speci�cally, dedicated ‘ring nucleases’ have
been identi�ed that bind, cleave, and inactivate cOAs by
converting the compounds into short, bi-adenylate degra-
dation products with 2′-3′ cyclic phosphate termini (A2 > p)
in certain organisms (45,46). However, other organisms ap-
pear not to possess distinct ring nucleases and instead have
been found to rely on an intrinsic ability of the CARF do-
mains of Csm6/Csx1 to destroy the cOAmolecules (43,44).
Additional layers and molecular mechanisms for control-
ling the activity of each of the key nucleases of Type III ef-
fector crRNPs as well as the cOA signaling pathway likely
await discovery.
Pyrococcus furiosus (Pfu) is a hyperthermophilic ar-

chaeon that contains three distinct functional CRISPR–
Cas effector crRNPs: two DNA-targeting systems (Types I-
A (Csa) and I-B (formerly known as I-G) (Cst) (55–59)) and
a Type III-B (Cmr) system (Supplemental Figure S1) shown
to destroy both DNA and RNA targets in a transcription-
coupledmanner (9,11,17,27). Previous investigations on the
mechanism of action of PfuCmr crRNPs also revealed that
crRNA-mediated target RNA interaction was required for
both target RNA cleavage (by Cmr4) (11,17,29) and non-
speci�cDNase activity (byHDdomain of Cmr2) whichwas
shown to cleave single-stranded DNA substrates or both
strands of short double-stranded DNA substrates (9). The
target RNA PFS requirements for controlling immunity by
Pfu Cmr crRNPs have been thoroughly investigated. Simi-
lar to other studied Type III systems, PFS sequences capa-
ble of base-pairing with the 5′ tag sequence of the crRNA
prevented DNase activity but not target RNA destruction
(9,11). In contrast, the identity of three nucleotides within
the PFS immediately 3′ of the target RNA protospacer
(previously referred to as the rPAM [RNA protospacer-
adjacent motif] (9)), was critical for DNase activity in vitro
and anti-plasmid immunity in vivo, but not target RNA
cleavage (9). Whether or not Pfu crRNPs are capable of
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producing cOA second messenger compounds had not yet
been tested. Furthermore, deletion of the csx1 gene in Pfu
did not disrupt anti-plasmid immunity (9). These �ndings
raised the key question as to whether cOA-mediated acti-
vation of Csx1 RNase activity is important for conferring
immunity by the Pfu Cmr crRNP effector complex. In this
study, we expand our understanding of themolecularmech-
anisms of action of the well-characterized Type III-B (Cmr)
system of Pyrococcus furiosus (Pfu) and further de�ne how
the Csx1 RNase and Cmr2 DNase activities are regulated
by target RNA elements and second messenger signaling
events.

MATERIALS AND METHODS

P. furiosus strains and growth conditions

All P. furiosus strains utilized in this study are listed in Sup-
plemental Table S1. Strains were grown at 90◦C under strict
anaerobic conditions using de�ned medium as previously
detailed (60). Cultures were grown in 5 or 20 mL volumes
and inoculated with either 1% inoculum or a single isolated
colony. Cultures were incubated for 16–24 h and plates were
incubated for 64 h. Uracil (20 �M) and/or 5-�uoroorotic
acid (5-FOA, 2.75 mM) were supplemented in the media
for selection or counterselection for the pyrF marker gene.
P. furiosus strains were produced using homologous re-

combination of transformed SOE-PCR (splicing by over-
lap extension-polymerase chain reaction) constructs as pre-
viously reported (9). Complementation strains were gen-
erated by adding a modi�ed wildtype cmr2 or csx1 gene
back onto the P. furiosus genome that contained restriction
sites that enabled detection of the introduced genes from
wildtype genes and did not affect the protein coding po-
tential. A BclI-HF (5′-TGATAA-3′ → 5′-TGATCA-3′) re-
striction site was introduced into cmr2 and a NruI-HF (5′-
TCGGGA-3′ → 5′-TCGCGA-3′) restriction site was intro-
duced into csx1. Primers used to make the complementa-
tion strains can be found in Supplemental Table S3. All
strains underwent at least three rounds of strain puri�cation
using minus uracil selective media. Successful strain gener-
ation was con�rmed via PCR ampli�cation of the Pfu gene
of interest and DNA sequencing (Euro�ns Genomics).

Recombinant protein expression and puri�cation

The genes encoding P. furiosus Cmr1–6 and Csx1 pro-
teins were ampli�ed via PCR and cloned into modi�ed ver-
sions of pET24-D (Cmr4, Cmr5, Csx1), pET101-D (Cmr1–
1) and pET200-D (Cmr2, Cmr3, Cmr6) as previously de-
tailed (17,37). All constructs contain a 6x-histidine tag
on either the N-terminus (Cmr2–6, Csx1) or C-terminus
(Cmr1–1) of the corresponding protein. Recombinant pro-
tein expressions were performed in E. coli BL21-RIPL cells
(DE3, Novagen). Expression cultures for wildtype and mu-
tant proteins were grown in 1 l (Cmr1–1, Cmr4, Cmr5,
Csx1), 2 l (Cmr2, Cmr3) or 4 l (Cmr6) cultures at 37◦C.
Luria broth (Cmr1–1, Cmr2–Cmr5, Csx1; Research Prod-
ucts International (RPI)) or Terri�c broth (Cmr6; RPI)
medium was used for cultures and supplemented with ei-
ther 50 �g/ml kanamycin sulfate (Cmr2-Cmr6, Csx1) or
100 �g/ml ampicillin (Cmr1–1) for plasmid selection. Cul-
tures were grown to an OD600 of 0.7 at 37◦C then induced

with 0.5mM iso-propyl-β-D-thiogalactopyranoside (IPTG)
at 24◦C overnight. Cells were pelleted then resuspended in
lysis buffer (40 mM Tris–HCl (pH 7.5), 500 mM NaCl,
10 mM Imidazole) containing one protease inhibitor tablet
(Roche) and lysed via sonication. Cell lysates underwent a
thermal precipitation by incubating in a 75◦C bead bath
for 20 minutes. Insoluble material was removed by cen-
trifugation at 14,000 rpm for 20 minutes at 4◦C and �l-
tered through a 0.8 �M syringe �lter (Corning Incorpo-
rated). Proteins were puri�ed using gravity af�nity chro-
matography and either Ni-NTA resin (Cmr2, Cmr3, Cmr4,
Cmr5, Cmr6, Csx1; Thermo Scienti�c) or Talon Cobalt
resin (Cmr1–1; Clontech). Cell lysates were rotated with
pre-rinsed and equilibrated resin for 1 h at 4◦C. The pro-
teins were then washed with the lysis buffer and wash buffer
(40 mM Tris–HCl (pH 7.5), 500 mM NaCl, 20 mM Im-
idazole). The proteins were then eluted using four differ-
ent elution buffers containing increasing amounts of imida-
zole (50, 100, 200, 500 mM). Wildtype and HEPN mutant
Csx1 proteins were dialyzed and underwent a second round
of gravity af�nity chromatography. Buffer exchange was
performed using Slide-A-Lyzer Dialysis Cassettes (Thermo
Scienti�c) in elution buffer lacking Imidazole. Protein con-
centrationswere assessed usingQubit protein concentration
assays (Invitrogen) and purity was assessed via SDS-PAGE
and Coomassie blue staining analysis.

Csx1 mutagenesis

The wildtype gene encoding Csx1 was subcloned into a
modi�ed pET24D vector. The Csx1 HEPN mutant (Csx1-
HEPNm) contains a H436A mutation and was created as
previously described (37). CARF domainmutants were cre-
ated using the wildtype vector and either inverse PCR or
Quikchange site-directed mutagenesis (Stratagene). Muta-
genesis primers are provided in Supplemental Table S3.
Amino acid residues 121–127 were deleted from Csx1 us-
ing inverse PCR to create a mutant form of the protein pre-
dicted to not be able to organize a functional CARF motif
(Csx1-CARFm). Quikchange mutagenesis was used to cre-
ate site-speci�cmutations within the predicted cOA binding
pocket of the CARF domain of Pfu Csx1. Two cOA bind-
ingmutants were created: Csx1-INAA (I169A,N170A) and
Csx1-INQQ (I169Q, N170Q). Successful mutagenesis for
all mutant plasmids was con�rmed via DNA sequencing
(Euro�ns Genomics).
Puri�cation ofCsx1-HEPNm was performed as described

above. Puri�cation of wildtype, Csx1-CARFm, Csx1-INAA
and Csx1-INQQ proteins was performed using a batch
method. The batch method involved af�nity purifying the
proteins by incubating the soluble lysate with Ni-NTA resin
for 1 h at 4◦C then performing subsequent washes and elu-
tions in a 15ml centrifuge tube and spinning at 4000 rpm for
2mins in between each step. Protein concentrations were as-
sessed using Qubit assays and purity was assessed via SDS-
PAGE and Coomassie blue staining analysis.

Preparation of RNA and DNA substrates

Synthetic RNAs (7.01 crRNA and 7.01 Target RNA) were
purchased from Integrated DNA Technologies and DNAs
from Euro�ns Genomics. The RNA and DNA sequences
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can be found in Supplemental Table S3. Synthetic target
RNA was 5′-end labeled using � -32P-ATP, gel puri�ed,
eluted, extracted, and precipitated as previously described
(37). 7.01 crRNA was gel puri�ed, eluted, extracted, and
precipitated prior to using in assays. 5′-end labeled, double-
stranded DNA substrate was prepared by annealing com-
plementary DNA oligonucleotides as previously described
(37) and gel puri�cation.
Target RNAs with the indicated PFS sequences were cre-

ated by in vitro transcription using T7 RNA polymerase
and the MEGAshortscript T7 kit (Invitrogen) as described
(9). DNA templates with a T7 phage promoter sequence
were generated by amplifying a target plasmid listed in Sup-
plemental Table S2 with IVT primers listed in Supplemen-
tal Table S3 and gel puri�ed using the Zymoclean Gel Re-
covery Kit (Zymo Research). Following synthesis, target
RNAs were subsequently gel puri�ed from denaturing gels,
eluted, extracted, and precipitated prior to adding to the as-
says. TargetRNAconcentrationswere determined using the
Qubit RNA BR Assay Kit (Invitrogen) and quality was as-
sessed using 7M urea denaturing 15% polyacrylamide gels
and ethidium bromide staining (Supplemental Figure S2).

Plasmid interference assay

Plasmid transformation interference assays were performed
as previously described (9). Liquid cultures of P. furio-
sus strains were allowed to reach mid-to-late log phase
of growth. 100 �l of liquid culture was transformed with
1 ng of either Target plasmid (pJE65; containing a tran-
scribed protospacer matching the 7.01 crRNA) or No Tar-
get (pJE47) control plasmid. The transformations were in-
cubated for 15–45 min at room temperature prior to plat-
ing. Each transformation mixture was split between two
plates and spread onto solid de�ned media lacking uracil.
The plates were incubated at 90◦C in an anaerobic chamber.
Plates were observed for colony growth and counted after
64 h of incubation. Results shown represent two replicates.

Cmr crRNP in vitro activity assays

RNA and DNA nuclease activity assays were performed
similarly to methods previously described (9,17). Puri�ed
recombinant Cmr proteins were �rst incubated with 7.01
crRNA to form crRNPs. For RNase assays, Cmr crRNPs
were assembled by preincubating 500 nM of each Cmr pro-
tein (50 nM of Cmr2) with RNA assay buffer (20 mMTris–
HCl (pH 7.5), 250 mM NaCl, 1.5 mM MgCl2), and 12.5
nM of 7.01 crRNA for 25 min at 70◦C. After the prein-
cubation, 0.5–1.5 nM of radiolabeled synthetic 7.01 target
RNAwas added to the reaction and incubated for one hour
at 70◦C. One unit of Proteinase K (NEB) was then added
to each reaction and incubated for 30 min at 37◦C prior
to gel electrophoresis. For DNase assays, the Cmr crRNP
was assembled in DNA assay buffer (20 mM Tris–HCl (pH
7.5), 250 mM NaCl, 1.5 mM MgCl2, 200 �M NiCl2) and
50 nM of 7.01 crRNA for 25 min at 70◦C. After the prein-
cubation, 100 nM of 7.01 target RNA and 1 nM of radi-
olabeled dsDNA was added to the reaction and incubated
for one hour at 70◦C. Unless otherwise indicated, DNase
assays were completed with target RNA containing a 5′-
GGG-3′ PFS sequence. One unit of Proteinase K was then

added to each reaction and incubated for 30 min at 37◦C
prior to gel electrophoresis. Cyclic oligoadenylate produc-
tion assays were performed by assembling the Cmr crRNPs
as described above using RNA assay buffer and 50 nM of
7.01 crRNA. After assembly, 0.5 mM of ATP (NEB), 5 nM
of �-32P-ATP (3000 Ci/mmol; Perkin Elmer), and 100 nM
of target RNA was added to the reaction and incubated
for 1 h at 70◦C. Unless otherwise indicated, cOA produc-
tion assays were completed with target RNA containing a
5′-GGG-3′ PFS sequence. All Reactions were stopped by
adding Gel Loading Buffer II (Life Technologies) and vi-
sualized by using 7M urea denaturing 15% polyacrylamide
gels followed by autoradiography. Cyclic oligoadenylate re-
actions were also ran on 8M urea denaturing 20% poly-
acrylamide sequencing gels. Decade Markers (Life Tech-
nologies) and partial alkaline hydrolysis ladders (Ambion)
of poly A19 RNA were generated as previously described
(34,37).

Csx1 In vitro activation assays

Activation with the native Cmr produced cOA. Csx1RNase
activity assays were performed as previously reported (37).
Ribonuclease activity of Csx1 was assessed by incubating
500 nM of Csx1 with 0.5–1.5 nM of radiolabeled target
RNA in assay buffer (20 mM Tris–HCl (pH 7.5), 200 mM
NaCl) for 1 h at 70◦C. In order to assess activation of Csx1,
10 or 20 nM of Csx1 was incubated with radiolabeled target
RNA and assay buffer in the presence of unlabeled cOA for
1 h 70◦C. Unlabeled native cOA was generated as described
above by omitting �-32P-ATP. The unlabeled cOA was then
extracted similarly to published methods (61). Five reac-
tion volumes of phenol/chloroform/isoamyl alcohol (PCI,
125:24:1 at pH 4.5; Ambion) was added to the reaction and
vortexed for 30 seconds. The mixture was then centrifuged
at 20 000 rpm at 4◦C then the aqueous layer incubated with
�ve reaction volumes of chloroform (Fisher Scienti�c) vor-
texed and centrifuged. The aqueous layer was extracted,
aliquoted, and stored at −80◦C in single use aliquots. All
reactions were stopped by adding Gel Loading Buffer II
and visualized by using 7M urea denaturing 15% polyacry-
lamide gels followed by autoradiography.

Activation with synthetic cA4 and cA6. Csx1 ribonuclease
activation assays with cA4 and cA6 species was performed
as described above except synthetic cOAs from BIOLOG
Life Science Institute were used. Several concentrations of
cA4 and cA6 were tested as indicated in the �gure legend.

Activation with Csx1-treated cOA. Cmr crRNP-generated
cOA was incubated with or without 600 nM of wildtype
Csx1 for 30 min at 70◦C. Reaction products were then ex-
tracted to deproteinize the samples (as described above) and
incubated with 20 nM of Csx1, 5′-end labeled target RNA,
and assay buffer for 1 h at 70◦C.

Mass spectrometry

Unlabeled cOA production assays were performed as de-
scribed above except the reactions were incubated for 2 h.
Liquid chromatography high resolution mass spectrometry
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(LC-HRMS) analysis was performed on a Thermo Scien-
ti�c Velos Pro instrument equipped with HESI source and
Dionex UltiMate 3000 chromatography system as previ-
ously described (41).

RESULTS

Effective anti-plasmid immunity is achieved by either Csx1
RNase or Cas10 DNase activity

Distinct Type III-A or III-B systems have shown consider-
able variability in the need for Cas10 (Csm1/Cmr2) DNase
and/or Csm6/Csx1 RNase activities for anti-plasmid and
anti-viral immunity (9,32,34,35,38,47,62). In our earlier in
vivo work with the Pfu Cmr (III-B) system, we found that
individual mutations of either the HD (H13A/D14A) or
Palm domain GGDD (D673A/D674A) motifs of Cmr2
(Cmr2-HDm or Cmr2-Palmm mutants) or a single dele-
tion of the csx1 gene (Csx1�), did not interfere with anti-
plasmid immunity but double mutations in the Cmr2 HD
and GGDD Palm motifs (Cmr2-HDm/Palmm) prevented
immunity (9) (see Figure 1A for overview of the crRNA
and Cas protein components). This early work was per-
formed prior to knowledge that the Palm domain of some
Cas10 superfamily proteins can catalyze conversion of ATP
to cOA signaling molecules that activate the ribonuclease
activity (HEPN domain) of Csm6/Csx1 HEPN ribonucle-
ases (31–33,41,42,51,52). This new information motivated
us to perform a more systematic in vivo mutational analy-
ses in which speci�c combinations of double mutants were
tested to more fully address if the Cmr2 DNase and Csx1
RNase activities were important for anti-plasmid immunity
(Figure 1).
Anti-plasmid immunity was assayed in vivo by transform-

ing a Pfu strain containing wildtype or mutant versions of
the Cmr system with a target plasmid that harbors a tran-
scribed protospacer matching an endogenous crRNA (7.01;
the �rst crRNA from CRISPR locus 7) or empty plasmid
control (Figure 1B). As we observed previously, the anti-
plasmid immunity observed with wildtype Cmr was unaf-
fected when Cmr effector complexes contained mutations
in either the Cmr2 DNase HD active site (Cmr2-HDm)
or Palm GGDD motif (Cmr2-Palmm), or if the csx1 gene
was deleted from the genome (Csx1�) (Figure 1C and (9)).
As expected, immunity was absent for a strain that lacked
the entire Cmr complex and Csx1 (null strain) or when
the Cmr2-HDm/Palmm double mutant was re-tested. Im-
munity was disrupted when the Pfu csx1 gene was deleted
or contained a mutation within the RNase catalytic mo-
tif of csx1 (Csx1-HEPNm; H436A) in conjunction with a
second mutation within the DNase catalytic site of Cmr2
(Cmr2-HD mutation) (Figure 1C and (9)). These same
csx1 mutations did not prevent immunity when combined
with a Cmr2-Palm mutation (GGDD; predicted to block
cOA generation). Cmr-mediated immunity was rescued by
restoring either wildtype cmr2 or csx1 genes in the Cmr2-
HDm/Csx1� double mutant strains (Cmr2c and Csx1c are
Cmr2-HDm/Csx1� strains complemented with wt cmr2 or
wt csx1, respectively. Figure 1C). Taken together, the results
show that both the DNase activity of the Cmr effector cr-
RNPs (viaHDdomain of Cmr2) as well as the RNase activ-

ity of Csx1 (via HEPN motif and activated by Cmr2-Palm
GGDD motif) are each suf�cient for conferring highly ef-
fective anti-plasmid immunity in Pfu.

P. furiosusCmr crRNPs produce cyclic oligoadenylate second
messengers

Next, we addressed whether thePfuCmr system functioned
through generating cOA signaling molecules as has been
observed for other bacterial and archaeal Type III systems
(31–33). In vitro reconstituted Cmr crRNPs were assayed
for their ability to generate cOA compounds as well as to
support previously observed RNase and DNase activities
(Figure 2) (9,17). Wildtype as well as four different func-
tional mutants of the Cmr crRNP complex (Cmr2-HDm,
Cmr2-Palmm, Cmr4-D26N and Cmr2-HDm/Palmm), were
assembled in vitro (Figure 2A) and tested. As expected, tar-
get RNAse activity was observed for all Cmr crRNP com-
plexes except those harboring a mutation in the Cmr4 sub-
unit (Cmr4-D26N) (Figure 2B). Moreover, DNase activity
was only observed for wildtype, Cmr2-Palmm, and Cmr4-
D26N complexes but not Cmr2 mutants in which the HD
motif was mutated (Figure 2C). To test for cOA produc-
tion, the same �ve complexes were incubated with �-32P-
ATP and the products of the reactions were separated by
denaturing polyacrylamide gel electrophoresis. Conversion
of the �-32P-ATP to slower migrating products indicative of
cOA compounds was only observed for complexes with an
intact Cmr2 PalmGGDDmotif. Additionally, the presence
of the target RNA was required for cOA production (Fig-
ure 2D). These �ndings reveal that the Pfu Type III-B Cmr
system possesses the highly conserved activity of cOA gen-
eration which is catalyzed by the Cmr2 Palm GGDDmotif
and is dependent upon interactions between crRNPs and
complementary target RNA.

Pfu Csx1 ribonuclease activity is activated by cyclic oligoad-
enylate produced by the Cmr complex

Next we sought to determine if the cyclic oligoadenylate
compounds produced by Pfu Cmr crRNPs, are capable of
stimulating the ribonuclease activity of Pfu Csx1 in vitro
(Figure 2E). Previously, we found that recombinant Pfu
Csx1 is capable of cleaving RNA substrates via the HEPN
motif but only when high concentrations (e.g. 500 nM) of
the Csx1 enzyme is used (37). Therefore, we used levels of
the Csx1 protein (20 nM) that showed no or low RNase ca-
pacity to test if cOA produced by Cmr crRNPs could stimu-
late the RNase activity of Csx1. ATP (unlabeled) was incu-
bated with wildtype andmutant Cmr crRNPs and the prod-
ucts of the reactions were added to reactions containing
Csx1 and radiolabeled substrate RNA (Figure 2E). Cleav-
age of the radiolabeled substrate RNA by Csx1 depended
upon Cmr crRNP complexes having an intact Cmr2-Palm
GGDD motif (Figure 2D and E). The results indicate that
Cmr2 Palm domain-mediated cOA production by the Cmr
crRNP complex is a potent activator of the RNA degrada-
tion capacity of Pfu Csx1.
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Figure 2. The ribonuclease activity of Pfu Csx1 is activated by cOA species produced by the Pfu effector complex in a Cmr2 Palm domain-dependent
manner. (A) Puri�cation of Pfu complex proteins. HD and Palm mutations are located within Cmr2. The D26N mutation is located within Cmr4. (B)
RNase activity of each Pfu Cmr complex. Radiolabeled 7.01 Target RNA was incubated with Cmr complexes and reaction products were visualized by
urea-PAGE. Radiolabeled RNA size standards (M) in nucleotides were used. The black arrow indicates the full-length substrate and the black asterisks
indicate cleavage products. (C) DNase activity of each Pfu Cmr complex. Each complex was incubated with dsDNA (label located on DNA Target 2)
and reactions were visualized as described in part B. (D) cOA production activity of the Pfu Cmr crRNP. The �ve Cmr complexes were tested for cOA
production in presence (+) and absence (–) of 7.01 Target RNA. Reaction products were run on a denaturing gel. A radiolabeled alkaline hydrolysis ladder
(M2) and size standard (M) were added to the urea-PAGE analysis. (E) Activation of wildtype Csx1 by Pfu cOAs. Csx1 was tested for ribonuclease activity
under activating (20 nM Csx1) conditions. Reactions were visualized as described in part B.
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Pfu Csx1 is activated by cA4 species produced by Cmr com-
plexes

The identity of the compounds generated after addition
of ATP to wildtype Cmr complexes (Figure 2D) was de-
termined by mass spectrometry using established meth-
ods (41). We found that the Pfu Cmr complex primarily
produces cyclic-triadenylate (cA3) and cyclic-tetraadenylate
(cA4) species (Figure 3A). The data reveal that cA4 is the
most abundant species and is approximately twice as abun-
dant as cA3; there were traces of cA5 and cA6 which made
up less than 5% of the total cOA species. To address which
form(s) of the generated cOA leads to the activation of Csx1
ribonuclease activity, varying concentrations of commer-
cially available synthetic cA4 and cA6 compounds were in-
cubated with Pfu Csx1 in the presence of 5′-end labeled
substrate RNA (cA3 and cA5 compounds were not com-
mercially available and so could not be tested). cA4 but not
cA6 stimulated the ribonuclease activity of Csx1 (Figure 3).
These results indicate that cA4 is both the dominant cA
species produced by Pfu Cmr effector complexes and a po-
tent activator of Pfu Csx1 RNA cleavage activity.

The CARF domain of Pfu Csx1 is needed for cOA ribonucle-
ase activation

TheX-ray structure ofPfuCsx1 has been solved (63) and re-
veals two major domains that are conserved amongst Type
III-af�liated Csx1 or Csm6 RNases: the HEPN (RNase ac-
tive site) and CARF domains (shown in other systems to
selectively bind cOA for allosteric activation of the HEPN
RNase activity) (Figure 4A). Previously, we found that mu-
tation to the HEPN motif (Csx1-HEPNm; H436A) dis-
rupted the ribonuclease activity ofPfuCsx1 (37). To investi-
gate if theCARFdomain is required for the cOA-stimulated
RNase activity of Pfu Csx1, we examined the effects of
Csx1 mutants predicted to disrupt CARF function and
cOA binding (Figure 4A and B). Csx1-CARFm contains
a deletion of residues 121–127 predicted to be critical for
CARFdomain assembly. TheCsx1-INAAandCsx1-INQQ
mutants are predicted to prevent speci�c binding of cOA
and contain a double mutation of residues Isoleucine169
and Asparagine170 to alanine or glutamine (Figure 4A
and Supplemental Figure S3). We previously showed that
high (500 nM) concentrations of wildtype Csx1 cleave RNA
without cOA activation (37). We further analyzed Pfu Csx1
activity and determined that lowering the concentration to
10–20 nM resulted in a loss of detectable RNase activity
by Csx1 in the absence of cOA (Figure 4). All three Csx1
CARF mutants disrupted the ability of low levels of Csx1
(10 nM) to support RNA cleavage activity in response to
cOA (Figure 4C andD) as is observed for the wildtype Csx1
enzyme (Figure 4C). None of the CARF mutants impaired
the ability of Csx1 to cleave RNAs when high amounts of
enzyme (500 nM) were assayed showing that the mutations
per se did not negatively impact HEPN functionality (Fig-
ure 4C andD). In contrast, the Csx1-HEPNm mutant failed
to ef�ciently cleave RNA at either low (10 nM) or high (500
nM) concentrations andwith orwithout cOAaddition (Fig-
ure 4E).
The impact of CARF domain mutations was further

tested in vivo on anti-plasmid immunity (Figure 4F).We ob-

served that, when paired with a Cmr2-HDm mutation that
disrupts DNA cleavage, the Csx1-CARFm and Csx1-INQQ
mutants both led to a loss of anti-plasmid immunity (Figure
4F). As expected, wild type Csx1 but not the Csx1-HEPNm

supported anti-plasmid immunity. Collectively, the in vitro
and in vivo results support a key role for the CARF domain
of Pfu Csx1 in triggering cOA-stimulated RNase activity
and reveal important CARF domain residues responsible
for mediating cOA-triggered, Pfu Csx1 RNase activation.

Pfu Csx1 cleaves and inactivates cOA using its adenosine-
speci�c HEPN RNase active site

Once cOAs are produced by Type III crRNPs, it is not well
understood how cOA levels are controlled to prevent un-
necessary destruction of vital cellular RNAs by trans-acting
Csx1 (or related Csm6) that could lead to host cell toxicity
or death during the immune response. Recently, a new class
of CARF-domain containing proteins called ring nucleases,
were discovered in Sulfolobus solfataricus and found to ex-
hibit cOA nuclease activity that halts cOA-triggered Csx1
activity (45). S. solfataricus Csx1 itself was not able to de-
grade cOA molecules (45). In contrast, Csm6 of Thermo-
coccus onnurineus exhibited an intrinsic ability to utilize its
CARF domain to both bind and cleave cOA4 which gen-
erates inactive, linear di-adenylate products with 2′,3′ cyclic
phosphate termini (A2>p) (44). Previous characterization
of Pfu Csx1 revealed an adenosine speci�city for endori-
bonuclease activity conferred by the HEPN ribonuclease
motif (37). That knowledge combined with the lack of a
CARF domain-containing ring nuclease homologs in P. fu-
riosus, led us determine if Pfu Csx1 was capable of control-
ling its own ribonuclease activity by recognizing and de-
grading cOA (Figure 5). Indeed, we found that wildtype
Csx1 protein ef�ciently converted native cOA substrates
into products with relative mobilities consistent with inac-
tive linear di-adenylate (A2 > p) products (Figure 5A and
(43,45)). The conversion of cOA into the presumed A2>p
products was abolished by mutations in the HEPN do-
main but not mutations in the CARF domain (Figure 5A).
Moreover, we found that the Csx1-mediated cOA cleav-
age products failed to activate Csx1 ribonuclease activity
(Figure 5B). The results indicate the adenosine-speci�c Pfu
Csx1 endoribonuclease responsible for target RNAdestruc-
tion (37), also utilizes its HEPN active site to recognize,
cleave and inactivate cOA molecules providing an autoreg-
ulation negative feedback control mechanism that limits
Csx1 RNase activity.

Activation of Cmr2-mediated DNA nuclease activity and
cOA production is dependent upon distinct target PFS ele-
ments

Prior investigation into regulatory mechanisms controlling
the function of Pfu Cmr complexes revealed the important
role of three nucleotides within the PFS immediately ad-
jacent to the crRNA/target RNA protospacer interaction
(see Figure 6A) (9). Successful anti-plasmid immunity in
vivo and Cmr2-mediated DNA cleavage (via the HD do-
main) in vitro required a PFS with a NGN, NNG, or NAA
sequence (9) and Table 1. In contrast, target RNA cleav-
age by Pfu crRNPs (via Cmr4 backbone subunit) occurs
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Figure 3. cA4 is the relevant activator for Pfu Csx1. (A) UV chromatogram (258 nm) and MS chromatogram (extracted ion chromatogram for m/z 494.6,
659.1, 823.6, 988.2) for cA samples from Pfu Cmr wildtype complexes. (B) Pfu Csx1 activation assays with synthetic cOA. Wildtype Csx1 (20 nM) was
incubated with increasing concentrations of synthetic cA4 and cA6. For each activator, 1.85, 18.5 and 185 pM concentrations were used. A radiolabeled
alkaline RNA size marker (M) was added to the urea-PAGE analysis. The black arrow indicates the full-length RNA substrate and the black asterisks
indicate cleavage products. Dotted lines are indicative of noncontiguous data being omitted from the gel.

independent of the PFS (9,11). Given the newly observed
cOA generation activity for Pfu Cmr complexes revealed in
this study (Figure 2D), we examined whether the �rst three
positions of the PFS were important for cOA production.
Speci�cally, we addressed whether a large panel of target
RNAs that differed only in having distinct PFS elements
could activate DNA cleavage (Figure 6B) or cOA produc-
tion (Figure 6C) in vitro in parallel reactions. As expected,
only target RNAs containing a NGN, NNG, or NAA pro-
tospacer �anking sequence activatedDNA cleavage (Figure
6B). In contrast, a much smaller subset of the same target
RNAs activated cOA production (Figure 6C). The target
RNAs eliciting strong cOA production activity contain a
PFS consensus ofNGRsequence.Weak cOAgeneration ac-
tivity was observed for target RNAs containing a GGC or
UAG sequence within the �rst three positions of the PFS. A
summary of the results for all PFS elements tested on either
DNase or cOA generation activities are provided in Table 1.
The results reveal a difference in speci�city for PFS elements
needed for activating cOA generation vs. DNase activity for
the Pfu Cmr crRNP.

DISCUSSION

The Pyrococcus furious Type III-B (Cmr) effector crRNP
was the �rst example of a CRISPR system that identi�es
and pairs with RNA transcripts rather than DNA strands
of invaders (17). A decade of subsequent in vivo and in vitro
research has revealed the detailed structure and organiza-
tion of the Pfu Cmr effector crRNPs (20,21,30,64,65) and
determined that the system employs highly versatile strate-
gies to combat invading mobile genetic elements (Figure
7). Previous work showed that immunity provided by the

Table 1. Summary of PFS requirements for Pfu Cmr activities

Target RNA PFS (5′-3′)
CRISPR defense

(in vivo)
DNase
(in vitro)

cOA
(in vitro)

NNN GGG + + +
AAA + + −

CCC − − −

UUU − − −

NGG GGG + + +
AGG + + +
CGG + + +
UGG + + +

GGN GGG + + +
GGA + + +
GGC + + (+)
GGU + + −

UNG UGG + + +
UAG + + (+)
UCG + + −

UUG + + −

NUG GUG + + −

AUG + + −

CUG + + −

UUG + + −

NGU GGU + + −

AGU + + −

CGU + + −

UGU + + −

UNU UGU + + −

UAU − − −

UCU − − −

UUU − − −

YUY CUU − − −

UUC − − −

Recap of PFS dependent CRISPR defense, DNase activity, and cOA pro-
duction activity results observed for target RNAs used in this study and
previously reported (9). + indicates the activity was observed, – denotes
the activity was not observed, and (+) indicates the activity was weakly
observed.
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Figure 4. Activation of PfuCsx1 is CARF domain dependent. (A) Ribbon structure of PfuCsx1 (PDB: 4EOG) indicating the CARF and HEPN domains.
Residue H436 was mutated in the HEPN domain (green). Residues 121–127 were deleted from the CARF domain (blue), and residues I169 and N170
were mutated within the CARF domain (red). (B) SDS-PAGE analysis of Pfu Csx1 protein puri�cations. WTcolumn refers to protein puri�ed using a
column method and WTbatch refers to protein puri�ed using a batch method. (C–E) In vitro activation of Csx1 mutants. Wildtype Csx1 along with four
Csx1 mutants (CARFm, INAA, INQQ, HEPNm) was tested for ribonuclease activity under high (500 nM Csx1) and low (10 nM Csx1) concentration
conditions. A radiolabeled alkaline RNA size marker (M) was added to the urea-PAGE analysis. The black arrow indicates the full length RNA substrate
and the black asterisks indicate cleavage products. (F) In vivo plasmid silencing assay results for CARF domain mutants. Strains were transformed with
the target plasmid (blue) or no target plasmid (gray). Mean colonies obtained per �g of plasmid DNA are plotted for two replicates. Error bars indicate
standard deviation of replicates.
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Figure 5. Degradation of cOAs byPfuCsx1 inactivates the cOA activators.
(A) Sequencing gel reactions of Csx1 proteins incubated with Pfu cOAs.
Five different Pfu Csx1 proteins were incubated with radiolabeled cOAs
for two timepoints-5 and 20 mins. Urea-page analysis on sequencing gels
was performed. Radiolabeled RNA size marker (M) and alkaline hydroly-
sis ladder (M) and were included in the analysis. (B) Effect of Csx1 treat-
ment on cOA activation activity. Unlabeled Pfu cOAs were treated with
600 nM of wildtype Csx1 or no protein for 30 min. The plus extraction set
of reactions were tested for activation of wildtype Csx1 by incubating 20
nMofwildtypeCsx1with decreasing concentrations ofA2>P� or cOA4––
roughly 1.25, 0.6, 0.6 × 10−1, 0.6 × 10−2, and 0.6 × 10−4 uM. � indicates
a putative designation for this reaction product. Native cOA without the
30 min incubation or extraction was utilized as a control (N).

Pfu Cmr crRNP effector complexes, requires that the in-
vasive DNA undergo transcription to produce the target
RNA required for triggering destruction of both the target
RNA transcript and invading genome by intrinsic Cmr cr-
RNPRNase (Cmr4) andDNase (Cmr2HDdomain) activi-
ties, respectively (9,11,17,27). Here we demonstrate thatPfu
Cmr effector crRNP complexes also produce cyclic oligoad-
enylate second messenger compounds that amplify the im-

mune response by activating the trans-acting Csx1 ribonu-
clease via their CARF domains (Figures 2-4). Furthermore,
the Csx1 HEPN RNase active site, responsible for target
RNA destruction via cleaving after adenosine residues (37),
also degrades its cognate cyclic-tetra-AMP (cA4) activator
to switch off the signaling pathway and to limit the activ-
ity of Csx1 through autoregulation (Figures 5 and 7). Our
in vivo mutational analyses show that either the DNase ac-
tivity (via HD domain of Cmr2) or RNase activity (via
HEPN motif of Csx1 and triggered by cOA generation by
the GGDD motif of Cmr2 Palm domain using ATP pre-
cursors) leads to robust anti-plasmid immunity. Our �nding
that the DNase and cOA generation capacities are activated
by distinct 3′ protospacer �anking sequences (PFS) of the
target RNA highlight that the two target-RNA stimulated
enzymatic processes are differentially regulated by distinct
allosteric control mechanisms. Taken together with results
obtained from other investigated bacterial or archaeal Type
III-B (Cmr) and III-A (Csm) systems, our results contribute
to making a compelling case for Type III systems as the
most complex and highly regulated CRISPR systems dis-
covered thus far.

Role of trans-acting Csx1 endoribonuclease in conferring
anti-plasmid immunity

Our previous investigation into the requirement ofPfuCsx1
in anti-plasmid immunity through single csx1 gene muta-
tional analysis, failed to uncover its role (9). The more com-
prehensive gene mutational analysis performed here reveals
that the Csx1 RNase activity or the Cmr2 DNase activity
each can independently provide robust anti-plasmid immu-
nity (Figure 1). We show that immunity remains unchanged
by disrupting either the DNase activity of the Pfu crRNP
(via mutation of the HD motif of Cmr2), the RNase ac-
tivity of Csx1 (via mutation of the HEPN motif or csx1
gene deletion), or the ability to generate cOA second mes-
sengers (via the Palm domain of Cmr2) needed to acti-
vate Csx1 RNase activity (Figure 1). In contrast, double
mutations that block both DNase and Csx1 RNase activ-
ity (either directly or through interfering with cOA signal-
ing), are required to prevent immunity (Figures 1 and 4).
The results reveal that Cmr2 DNase and Csx1 RNase ac-
tivities serve a redundant function in conferring highly ef-
fective anti-plasmid immunity by the Type III-B Pfu Cmr
system. In comparison, other studied Type III-A or III-
B systems have shown a dominant role for Csm6/Csx1
activity (32,34,41,47,62) or Cmr2/Csm1 DNase activity
(14,35,38,50,62) to execute effective immunity against plas-
mids (14,34,38,47,62) or phages (32,35). Type III-C, D, E
and F systems are predicted to contain Cmr2 or Csm1 (i.e.
Cas10) subunits that lack functional DNase or cOA gen-
erating capacities and further work on these systems is re-
quired to understand if and how they execute immunity
against mobile genetic elements (3,4).

The exact mechanism of action of Pfu Csx1 for anti-
plasmid immunity remains to be determined. For example,
it is unclear if Pfu Csx1 functions through selectively de-
stroying the invading target RNA (to provide speci�c im-
munity) and/or by destroying host RNA transcripts (lead-
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Figure 6. Pfu Cmr DNase and cOA production activities are PFS dependent. (A) Composition of the Pfu Cmr crRNP. The Cmr effector complex is
composed of Cmr1–6 and a mature crRNA (black & orange) containing a 5′ tag (black). The Pfu Cmr complex is activated by binding of complementary
target RNA (purple) to the crRNA. The target RNA contains a PFS (red) within it that is located adjacent (3′) to the target sequence. (B) Target RNA
dependent activation ofDNase activity by thePfu complex. Cmr crRNP complexes were incubatedwith radiolabeled double-strandedDNA in the presence
of 23 different target RNAs. Each target RNA contains a different three nucleotide sequence in the PFS region of the target RNA. Urea-page analysis on
sequencing gels was performed. Radiolabeled RNA size markers (M) were included in the analysis. The black arrow indicates the full-length RNA substrate
and the black asterisks indicate cleavage products. (C) Target RNA dependent activation of cOA production activity by the Pfu complex using the same
target RNAs mentioned in part B. Products were analyzed as described in part B. An alkaline hydrolysis ladder (M2) was included in the urea-PAGE
analysis.

ing to cellular dormancy or death) (Figure 7). We are un-
able to distinguish these two different scenarios given that
inducible gene expression systems have yet to be established
for Pfu that would enable testing which RNAs are being de-
stroyed as a function of activation of the Cmr crRNP activi-
ties over time. Given that PfuCsx1 was shown to cleave var-
ious RNAs without speci�city in vitro (except that it cleaves
after adenosine residues (37)) and that Csx1 or relatedCsm6
are not normally stably associated with Type III effector cr-
RNPs (15,17,21–23,34), to be selective for the target RNA
would involve conditional recruitment of Csx1 to the cr-
RNP when the complex is engaged in interaction with the
target RNA protospacer. The related Csm6 RNase from

the Type III-B system of S. epidermidis was found to ei-
ther selectively cleave target RNA (including at regions out-
side of the RNA protospacer segment) while sparing cel-
lular RNAs (35), or to destroy both target RNA and cel-
lular RNAs (38). It is conceivable that low levels of target
RNA and second messenger signaling may limit Csx1 and
Csm6 RNase activity to target RNA destruction, while el-
evated target RNA concentrations and high cOA signaling
may lead to more indiscriminate RNA degradation. Selec-
tive targeting of invader RNAs would promote immunity
and maintain viable host cells. In contrast, indiscriminate
RNA destruction would prevent the growth or kill infected
host cells, which would effectively prevent the spread of the
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Figure 7. Model for regulation of the RNAse, DNase, and cOA synthetase activities of the Pfu Type III-B effector crRNP in providing anti-viral immunity.
Inactive Type III-B crRNPs become activated upon interaction with expressed viral RNA. crRNA-guided base-pairing to the viral RNA and Cas protein
recognition of the PFS results in conformational changes that trigger three important activities: viral RNA cleavage by Cmr4, viral DNA cleavage by
the HD domain of Cmr2 (a member of the Cas10 superfamily), and ATP dependent production of cyclic oligoadenylates (cOA) by the Palm domain of
Cmr2. The cOA second messengers allosterically regulate the trans-acting Csx1 enzyme by binding to the CARF domain to trigger HEPNRNase activity.
Clearance of the viral DNAs and RNAs provides immunity and restores the crRNPs back to the inactive state. Under conditions of controlled immunity,
Csx1 degrades and inactivates cOA signaling molecules using the HEPN domain, to provide an auto-inhibitory off-switch of Csx1 RNase activation.
Inef�cient degradation of cOA molecules by the Csx1 or failure to ef�ciently destroy the viral RNAs or viral genome may cause Csx1 to destroy both viral
and cellular RNA molecules, leading to cellular dormancy or death.

invader to other host cells in the local environment (Figure
7).

Second messenger signaling pathway leading to Csx1 RNase
activation and deactivation

We show for the �rst time that the Pfu Cmr complex gen-
erates primarily cA4 signaling molecules (Figure 3A) that
signi�cantly stimulate the RNase activity of Csx1 (Figures
2-4). Either cA4 or cA6 have been found to be the rele-
vant activators for various characterized bacterial or ar-
chaeal Csx1 and Csm6 enzymes (31–33,41,42,44,51). Inter-
estingly, the HEPN RNase active site of Pfu Csx1 (which
is adenosine-speci�c) cleaves and inactivates cOA signaling
molecules (Figure 5) in addition to executing the destruc-
tion of adenosine-containing, target RNA transcripts (Fig-
ures 2–5 and (37)). Previous studies have shown that the
CARF domain is the cOA sensor domain (31,32,44,46,51)
and accordingly, mutation of the CARF domain of Pfu
Csx1 blocks activation of Csx1 RNase activity. However,
Pfu Csx1 CARF domain inactivation did not abolish cleav-
age and inactivation of cOA second messengers (Figure 5).
Our �nding that the HEPN RNase motif, rather than

CARF domain of Pfu Csx1, can cleave and inactivate cOA
signaling molecules expands the number of mechanisms ca-
pable of down-regulating Type III-induced cOA signaling
pathways. For example, Sulfolobus islandicus Csx1 appears
to lack the ability to itself degrade cOA4 molecules and in-
stead utilizes extrinsic CARF domain-containing factors
(called ring nucleases) to switch off Csx1 RNase activa-
tion (45). Similar to our �nding with Pfu Csx1, Csm6
from another hyperthermophlic archaeon, Thermococcus

onnurineus (Ton), was found to be capable of autoregulat-
ing RNase activity through binding and cleaving cA4 (44).
However, unlike Pfu Csx1, Ton cA4 cleavage of cA4 into in-
active linearized adenosine dinucleotide products (A2>P)
depended upon the CARF rather than HEPN domain de-
spite evidence from high resolution structural studies show-
ing that cOA4 binds to both CARF and HEPN domains of
Ton Csm6 (44). Interestingly, the HEPN domains of Ton
Csm6 and Pfu Csx1 each cleave RNA with a strict adeno-
sine speci�city (37,44). Furthermore, Thermus thermophilus
Csm6 exhibits an intrinsic ability to degrade its cognate cA4

using its CARF domain but not its HEPN domain (43).
Studies examining RNA cleavage patterns of various

Csx1 and Csm6 HEPN endoribonucleases revealed that
many are either speci�c for cleaving after adenosines (37,44)
or purines (adenosines and guanosines) (31,34). These cat-
alytic properties indicate that other Csx1 or Csm6 enzymes
may utilize their HEPN RNase active site to degrade cOA
molecules. Thus, Pfu Csx1 HEPN domain-mediated de-
struction of its cognate cOA activator reveals a novel and
distinct auto-catalytic control mechanism that limits Csx1
RNase activity that may be common to other Type III sys-
tems.

In�uence of target RNA interactions in controlling DNase
and RNase activities of Pfu effector crRNPs

All characterized Type III CRISPR–Cas systems are specif-
ically activated through identifying and interacting with
target RNA. Base-pairing interactions between crRNAs
within crRNP effector complexes and matching target
RNA protospacer elements, has been shown to trigger
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major conformational changes within Type III complexes
(25,49,50). In turn, less understood, minor target RNA-
induced conformational changes lead to activation of sev-
eral enzymatic activities of the complexes including RNase,
DNase and cOA generation needed for downstream ac-
tivation of Csx1 and Csm6 HEPN endoribonucleases
(25,49,50,52).
Some but not all of these enzymatic activities are further

regulated by a ∼eight base-pair PFS region of the target
RNA that is located just 3′ of the target RNA protospacer
region. For all Type III systems evaluated thus far, includ-
ing Pfu (9), if the target RNA PFS is complementary to the
5′ tag of the crRNA (as is the case if anti-sense transcrip-
tion of the CRISPR locus occurs (27,66)) then base-paring
between residues of the crRNA tag and the PFS of the tar-
get RNA apparently prevents the ability of the crRNPs to
allosterically activateDNase and cOAproduction (9,10,12–
14,54,67,68). In contrast, cleavage of the target RNA (at
regular 6 nucleotide intervals throughout target RNA pro-
tospacer region) by Cmr4 (III-B) or Csm4 (III-A) crRNP
backbone RNases is unaffected by crRNA 5′ tag/target
RNA PFS interactions (9,11) (Figure 7).
There are apparent differences in PFS requirements for

activation of DNase and cOA generation activities for dis-
tinct Type III systems. For example, a simple lack of base-
pairing between 5′ crRNA tag and target RNA PFS, ap-
pears to be suf�cient for activating these enzymatic activ-
ities for the Staphylococcus epidermidis Type III-A system
(69). In contrast, the identity of PFS sequences, especially
within the +1, +2 and/or +3 positions have been found to be
important for conferring immunity for Type III systems of
Pyrococcus furiosus (9), Streptococcus thermophilus (25,48)
and Thermotoga maritima (54). For most studied Type III
systems, the PFS requirements have not been thoroughly in-
vestigated.
Based on recent Type III crRNP structural studies, the

PFS sequences in the +1, +2, +3 positions are predicted to
interact with Csm1/Cmr2 (Cas10) and Csm4/Cmr3 (5′ tag
interacting) subunits (25,48,49). We propose that in systems
where the identity of protospacer �anking sequences mat-
ter for activating function such as Pfu, PFS RNA/protein
contacts play a key role in initiating the conformational
changes that ultimately trigger activation of the Cas10 HD
domains to cleave invader DNA and the Cas10 Palm do-
mainGGGDDmotif to convert ATP into cOA secondmes-
sengers. Interestingly, our systematic analyses of the impact
of varying the PFS elements in the +1, +2 and +3 positions
of the target RNA, revealed that a given PFS can activate
DNase activity, cOA production, both activities or neither
activity (independent of the ability of these PFS nucleotides
to base-pair with the 5′ crRNA tag element) (Figure 6 and
Table 1). Furthermore, we found a direct correlation be-
tween PFS elements that were previously found to support
anti-plasmid immunity in vivo (9) and those found to also
be required for in DNase activity in vitro (Figure 6 and Ta-
ble 1). In contrast, only a subset of PFS elements required
in vivo, resulted in cOA production in vitro (Figure 6 and
Table 1).

All Pfu PFS elements that triggered activity, shared a
purine-rich character within position +2 and +3 of the tar-
get RNA PFS appears to responsible for differentially acti-

vating the DNase or cOA synthesis. These results have pro-
vided insight that the two important activities for immunity
are differentially controlled by distinct molecular mecha-
nisms. Additional evidence supporting the notion that dis-
tinct conformational changes triggered by PFS/protein in-
teractions separately in�uence either DNase or cOA pro-
duction were observed with S. thermophilus Type III-A sys-
tem where Csm1 mutations at residues thought to transmit
allosteric effects of the PFS were found to impair DNase
activity only, cOA synthesis only, or both activities (25). Of
note, the Pfu spacer acquisition machinery responsible for
addition of new spacers intoCRISPRarrays, recognized the
invading DNAs having a 5′-NGG-3′ consensus PAM (pro-
tospacer adjacent motif) (70,71). In turn, our results pre-
dict that the resultant 5′-NGG-3′ RNAPFS of expressed in-
vader genomes would trigger both DNA cleavage and cOA
activities of Pfu Cmr effector crRNPs (Figure 6 and Table
1). A functional coupling between PAM recognition during
CRISPR spacer acquisition and Type III interference acti-
vation may boost the speci�city of certain Type III systems
to compensate for an observed high degree of tolerance to
mismatches in the rest of the target RNA (69).

Role for the RNAse activity of Cmr4 subunit?

We were unable to determine the possible in vivo role of the
RNase activity of Cmr4 on anti-plasmid immunity. Cmr4
is the backbone subunit of the III-B crRNP (see Figure 1)
that cleaves the bound target RNA at regular six nucleotide
intervals (27). Despite repeated attempts, we failed to gen-
erate a strain in which the RNase activity of Cmr4 was inac-
tivated (via D26N mutation that blocks target RNA cleav-
age in vitro (Figure 2)). Given that we were able to read-
ily create the catalytically inactive Cmr4 mutant in a strain
in which both the DNase and Csx1 RNase activities were
also inactivated (i.e. the Cmr2-HDm/Csx1� strain that can-
not execute anti-plasmid immunity (Figure 1)), we suspect
that preventing Cmr4 RNase activity results in host cell
lethality brought about host cell DNAase activity and/or
cOA signaling and Csx1 RNase activation as the result of
generation of constitutively active Type III-B crRNPs. This
would occur if there was recognition of endogenous P. fu-
riousus RNA(s) exhibiting complementarity to any of the
200 known crRNAs that are assembled into P. furious type
III-B crRNPs (55,56). Consistent with this possibility, it has
been shown that cleavage of the crRNA-bound target RNA
by Cmr4 (and related Csm3 protein of III-A crRNPs) stim-
ulates rapid release of the target RNA into solution to tem-
porally control (switch off) the DNase and cOA produc-
tion activities of the complex (9,10,13). Failure to cleave
the target RNA that is required for triggering the activi-
ties of the complex, is expected to drive the effector crRNPs
into a long-lasting nuclease-active state. The scenario is fur-
ther supported by �ndings with the S. epidermidis III-A
complex that exhibits a hyperactive immunity phenotype in
vivo when target RNA cleavage was disrupted through in-
ducible expression of the comparable catalytically inactive
Csm3 mutant (14). Taken together, we view it likely that the
RNase activity of P. furiousus Cmr4 normally contributes
to both the destruction and turnover of the target RNA and
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plays an important role in immunity and regulation of type
III-B crRNP activity.

Contribution of DNase vs. RNase activities to type III immu-
nity

The ability of type III CRISPR–Cas systems to act both at
the level of DNase and RNase degradation for invader im-
munity, sets them apart from all know other CRISPR types.
Moreover, it is clear that there is great variation in the rel-
ative importance of these two distinct nuclease activities in
conferring immunity between different type III systems as
well as within a system for targeting speci�c invaders. Here,
we �nd that anti-plasmid immunity for the P. furiosus III-B
system is robust when only employing DNase activity (me-
diated by the HD domain of Cmr2) or RNAse activity (me-
diated by the cOA-regulated, HEPN domain of Csx1) (Fig-
ure 1). This is in contrast to in vivo results obtained for sev-
eral other type III systems including Sulfolobus islandicus
(47), S. epidermidis (62,72), S. thermophilus (72), Lactococ-
cus lactis (72) shown to rely primarily on Csx1 RNase ac-
tivity given that plasmid immunity was abolished by single
deletion ormutational inactivation of the csx1 or csm6 gene.
Yet other systems appear to solely utilize theDNase activity
as exempli�ed by the recently characterized Lactobacillus
delbrueckii found to confer anti-plasmid immunity despite
lacking a Csm6 gene and not being capable of producing
cOA (73). Anti-plasmid immunity for the S. aureus III-B
system, like P. furious, appears to depend on both DNase
and RNase targeting but a partial interference phenotype
is observed with csx1 gene knockout, indicating relatively
weak DNase activity (74). Finally, when anti-viral immu-
nity was examined, the DNAse activity alone was found be
protective except under conditions of excess viral genome
copy numbers where Csm6 RNase activity becomes neces-
sary to provide robust immunity (75). The natural high de-
gree of functional variation amongst type III systems is also
highlighted by the prediction that type III-C through III-
F systems are predicted to encode Cas10 (Cmr2 or Csm1)
proteins that lack the ability to cut DNA or generate cOA
signalling molecules (3).

In addition to these functional differences, the regulatory
mechanism that govern spatiotemporal control of the activ-
ities of type III systems have also shown to be quite differ-
ent. For example, we show here clear evidence that the P.
furiousus III-B system utilizes bipartite recognition of tar-
get RNA (through crRNA base-pairing and likely protein-
mediated PFS interaction) in stimulating the DNase and
RNase activities of the crRNP (Figure 6). In contrast, cr-
RNA pairing alone with the target RNA appears to trig-
ger activity for the S. epidermidis III-A system (69). Collec-
tively, the high degree of functional variability argues that
diverse type III systemsmust be extensively characterized to
understand the full spectrum of modes of action and regu-
latory mechanisms operating in type III immunity.
In summary, our �ndings signi�cantly contribute to our

understanding of the multiple mechanisms that ensure that
Type III CRISPR systems become appropriately activated
and then rapidly deactivated to achieve maximum bene�t
to host cells experiencing infection from invading mobile
genetic elements. In future studies, a detailed biochemical

and structural analyses of Pfu Type III-B crRNPs in the
presence and absence of substrate target RNAs and DNAs
and with and without Csx1, would provide important in-
sight into speci�c molecular mechanisms that control the
timing and speci�city of Type III crRNP-mediated immu-
nity.
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