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Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role
in the regulation of plant growth, development, ripening, and defense responses. The role
of SA in the plant–pathogen relationship has been extensively investigated. In addition
to defense responses, SA plays an important role in the response to abiotic stresses,
including drought, low temperature, and salinity stresses. It has been suggested that SA
has great agronomic potential to improve the stress tolerance of agriculturally important
crops. However, the utility of SA is dependent on the concentration of the applied SA, the
mode of application, and the state of the plants (e.g., developmental stage and acclimation).
Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and
high concentrations of applied induce high levels of oxidative stress, leading to a decreased
tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses
and regulation of stomatal closure are reviewed.
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INTRODUCTION
Salicylic acid (SA) is involved in the regulation of pathogenesis-
related protein expression, leading to plant defense against
biotrophic pathogens (Dempsey et al., 2011). It also plays an
important role in the regulation of plant growth, development,
ripening, flowering, and responses to abiotic stresses (Rivas-San
Vicente and Plasencia, 2011; Hara et al., 2012). In general, low
concentrations of SA may enhance the antioxidant capacity in
plants, but high concentrations of SA may cause cell death or
susceptibility to abiotic stresses (Hara et al., 2012). Currently, lit-
tle information is available about the molecular mechanisms of
SA in response to abiotic stresses. The word “salicylic” is derived
from Salix, which is the Latin name for the willow tree (Salix
alba). Salicin, the glucoside of salicylic alcohol, was first isolated
in 1826 from willow bark, and a large amount of the substance
was successfully isolated in 1828. Salicin was then converted into a
sugar and an aromatic compound that, upon oxidation, becomes
SA. SA, a 2-hydroxybenzoic acid (Figure 1), has a colorless crys-
talline structure and is widely used in organic synthesis, including
the synthesis of aspirin, also known as acetylsalicylic acid. Plants
generally contain a few micrograms of SA or less per gram of
fresh weight (Raskin, 1992), either in a free state or in a glyco-
sylated, methylated, glucose–ester, or amino acid conjugate form
(Figure 1; Dempsey et al., 2011).

BIOSYNTHESIS AND SENSORY MECHANISMS OF SA
SA is synthesized via two distinct pathways, the isochorismate
(IC) pathway and the phenylalanine ammonia-lyase (PAL) path-
way (Figure 1). These pathways begin with chorismic acid, which
is the end product of the shikimate pathway and is synthe-
sized in the plastid. The major pathway is the IC pathway in
Arabidopsis thaliana, Nicotiana benthamiana, tomato, and other

plants (Wildermuth et al., 2001; Uppalapati et al., 2007; Catinot
et al., 2008). Chorismic acid is converted to IC by isochoris-
mate synthase (ICS). ICS homologs have been identified in a
wide variety of plant species, including tobacco, pepper, tomato,
rice, grapevine, soybean, and poplar. ICS1/SID2 is an impor-
tant gene in Arabidopsis because the mutant accumulates only
5–10% the level of SA compared with wild-type plants (Nawrath
and Métraux, 1999; Dewdney et al., 2000). ICS1/SID2 is up-
regulated by not only biotic stresses but also abiotic stresses,
including UV light (Kilian et al., 2007), ozone (Ogawa et al.,
2005), and drought (Wan et al., 2012). An Arabidopsis ics1/sid2
ics2 double mutant exhibited an even lower, but not null, level
of total SA (Garcion et al., 2008), suggesting the presence of an
IC-independent pathway.

Although ICS is conserved in various plant species, the mecha-
nism to convert IC to SA remains unclear. Isochorismate pyruvate
lyase (IPL) may catalyze the conversion of IC to SA, given that
some bacteria, such as Pseudomonas aeruginosa and Pseudomonas
fluorescens, contain IPL (Serino et al., 1995; Mercado-Blanco
et al., 2001). However, no plant gene encoding a protein with
IPL activity has been identified. Another pathway is the PAL
pathway (Figure 1). PAL, the first enzyme in this pathway, deami-
nates phenylalanine, leading to the production of trans-cinnamic
acid. Trans-cinnamic acid is a precursor for the biosynthe-
sis of diverse phenolic compounds, including lignin, lignans,
flavonoids, volatile benzenoid esters, and benzoyl glucosinolates
(Weng and Chapple, 2010; Dempsey et al., 2011). Thus, PAL plays
an important role as a regulator between primary and secondary
metabolism. Trans-cinnamic acid is converted to SA via two pos-
sible intermediates, ortho-coumaric acid and benzoic acid (BA;
el-Basyouni et al., 1964; Ellis and Amrhein, 1971; Chadha and
Brown, 1974; Yalpani et al., 1993).
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FIGURE 1 | Proposed pathways for SA biosynthesis and SA

modification. SA is synthesized through the isochorismate (ICS) or
phenylalanine ammonia-lyase (PAL) pathways. SA is also converted
into several forms. BA2H, benzoic acid-2-hydroxylase; IPL,

isochorismate pyruvate-lyase; MeSA, methyl salicylate; SA-Asp,
salicyloyl-L-aspartic acid; SAG, salicylic acid 2-O-β-glucoside; SGE,
salicyloyl glucose ester. The figure is adapted with permission from
Dempsey et al. (2011).
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SA induces systemic acquired resistance (SAR), which includes
global transcriptional reprogramming and immune responses to a
broad spectrum of pathogens (Durrant and Dong, 2004). Previous
studies identified some SA-binding proteins, such as catalase
(Sanchez-Casas and Klessig, 1994), ascorbate peroxidase (APX;
Du and Klessig, 1997), methyl SA esterase, and carbonic anhydrase
(Slaymaker et al., 2002; Forouhar et al., 2005). These SA-binding
proteins have been identified as important SA effector proteins,
but genetic evidence suggests that they are not likely to function
as bona fide SA receptors (Vlot et al., 2009). According to the
large number of studies on SA-insensitive mutants, researchers
thought that non-expressor of PR genes 1 (NPR1) could be an SA
receptor candidate because npr1 mutant plants exhibit a com-
plete lack of resistance against biotrophic and hemibiotrophic
pathogens (Delaney et al., 1995; Cao et al., 1997). Furthermore,
the transcriptome analysis of wild-type and npr1 plants follow-
ing treatment with BTH, a functional analog of SA, revealed that
almost all BTH-responsive genes are under NPR1 control (Wang
et al., 2006). NPR1 possesses a bric-a-brac/Pox virus, tramtrack,
broad-complex (BTB) domain, an ankyrin repeat and a nuclear
localization sequence, but it has no canonical DNA-binding
domain (Cao et al., 1997). Although NPR1 has no canonical DNA-
binding domain, NPR1 regulates almost all BTH-responsive genes,
suggesting that NPR1 functions as a transcription co-activator in
response to SA. However, the NPR1 protein does not show a bio-
logically significant affinity for SA or its derivatives; therefore,
another molecule needs to be identified as a receptor for SA.

Recently, the NPR1 paralogs NPR3 and NPR4 were identified
as SA receptors that bind specifically to SA with different affini-
ties (Fu et al., 2012). Both of the paralogs interact with the Cullin
3 (CUL3) ubiquitin E3 ligase to recruit NPR1 for proteasome-
mediated degradation in a SA concentration-dependent manner.
As described above, NPR1 acts as a positive regulator of the
SA-mediated defense signaling pathway. When the concentration
of SA is low, an NPR4-NPR1 interaction is formed, and NPR4
constitutively promotes the degradation of NPR1 through CUL3-
mediated ubiquitylation. Thus, no immune response is activated.
An increase in the SA concentration after pathogen attack leads to
the binding of SA to NPR4. SA-NPR4 interferes with the NPR4-
NPR1 interaction. Because NPR1 is released from NPR4-mediated
degradation, free NPR1 can now induce a hypersensitive response
(HR), which is a form of programmed cell death that retards
pathogenic growth. At very high concentrations, the SA levels
are sufficient to bind to NPR3. SA-NPR3 promotes its interaction
with NPR1. NPR3 is able to interact with CUL3, leading to ubiq-
uitylation of NPR1. Thus, SA-NPR3-NPR1 formation enhances
turnover of NPR1 mediated by proteasome (Fu et al., 2012).

STOMATAL CLOSURE IS REGULATED BY SA, INDEPENDENT
OF THE ABA PATHWAY
The regulation of stomatal guard cells is an adaptive mechanism
that helps plants withstand pathogenic infection and extreme
environmental conditions, including drought. Stomata play an
important role in the uptake of CO2 and transpiration. During
water deficits, the stomata are closed to slow transpiration and
conserve water in the plant, thereby decreasing the CO2 supply
and leading to a reduction in photosynthesis. Stomatal opening or

closure is achieved by the osmotic swelling or shrinking of guard
cells, respectively (Liu and Luan, 1998). Plants control the width
of the stomatal aperture in response to microorganism invasions
(Blatt et al., 1999; Lee et al., 1999; Melotto et al., 2006) and var-
ious environmental signals (Hetherington and Woodward, 2003;
Cominelli et al., 2005; Liang et al., 2005) as well as phytohormones.
Unambiguously, abscisic acid (ABA) plays a substantial role in the
regulation of stomatal closure under water stress (Aharoni et al.,
1977; Tardieu and Davies, 1992; Schwartz et al., 1995; Leckie et al.,
1998). Several studies have suggested that stomatal function is
also regulated by auxin (Irving et al., 1992; Lohse and Hedrich,
1992; Gehring et al., 1998), cytokinin (Jewer and Incoll, 1980;
Tanaka et al., 2006), ethylene (Desikan et al., 2006; Tanaka et al.,
2006), brassinosteroids (Rajasekaran and Blake, 1999; Haubrick
et al., 2006), jasmonate (Gehring et al., 1997; Suhita et al., 2004;
Munemasa et al., 2007), and SA.

Because stomata are pores in the epidermis, pathogens can
enter unchallenged. After an attack by a pathogen, the endoge-
nous SA levels are increased to induce SAR. An increase in
endogenous SA levels promotes stomatal closure. This closure is
likely caused by the generation of reactive oxygen species (ROS),
which is induced by SA (Melotto et al., 2006). The exogenous
application of SA also induces ROS, H2O2, and Ca2+ accumu-
lation, leading to stomatal closure (Dong et al., 2001; Liu et al.,
2003; He et al., 2007). Two major mechanisms have been pro-
posed for the generation of ROS during oxidative burst. One is
mediated by plasma membrane NAD(P)H oxidases (Kwak et al.,
2003), and another is mediated by cell wall peroxidases (Mori
et al., 2001; Khokon et al., 2011). In addition to these enzymes,
apoplast amine oxidases (Allan and Fluhr, 1997) and oxalate
oxidases are able to generate ROS (Lane et al., 1993). Genetic
and pharmacological studies suggest that ABA and methyl jas-
monate stimulate NAD(P)H oxidase-mediated ROS production
in guard cells (Munemasa et al., 2007; Saito et al., 2008). However,
SA induces stomatal closure accompanied by extracellular ROS
production that is mediated by salicylhydroxamic acid (SHAM)-
sensitive guaiacol peroxidases, intracellular ROS accumulation in
guard cells, and K+in channel inactivation (Mori et al., 2001;
Khokon et al., 2011).

After the contact of pathogenic bacteria with Arabidopsis leaves,
stomatal closure is induced within 1 h (Melotto et al., 2006).
Furthermore, the application of 0.4 mM SA induces rapid stom-
atal closure within 2 h and a fourfold reduction of stomatal gas
exchange in Arabidopsis (Melotto et al., 2006). This closure is
compromised in the SA-deficient nahG and eds16-2 genotypes,
suggesting that SA is required for stomatal defense (Melotto et al.,
2006). The SA-accumulating mutants siz1 (Miura et al., 2005; Lee
et al., 2007), acd6 (Rate et al., 1999), and cpr5 (Bowling et al.,
1997) exhibit stomatal closure without any treatment (Miura
et al., 2013). The stomatal closure of the siz1 mutant is com-
promised by the application of SHAM or azide, inhibitors of
peroxidases, and not by diphenyliodonium (DPI) chloride, an
inhibitor of NAD(P)H oxidase (Miura et al., 2013), suggesting
that SA plays a role in the regulation of stomatal closure. Neither
the ABA-insensitive mutant ost1 nor the ABA-deficient mutant
abi3-1 exhibit stomatal closure in response to flg22, a pathogen-
associated molecular pattern (PAMP) elicitor or to the bacterial
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pathogen Pseudomonas syringae pv. tomato DC3000, respectively
(Melotto et al., 2006). It is possible that positive cross-talk between
SA and ABA is required to promote stomatal closure in response
to pathogen invasion.

EFFECTS OF SA ON DROUGHT RESPONSES
Drought is the most common adverse environmental stress that
seriously reduces crop productivity. The mechanism for drought
avoidance is the maintenance of an adequate supply of water
within the plant by growing long roots to reach deep soil moisture
(Xiong et al., 2006) or the reduction of transpirational water loss
to conserve water (Ackerson and Krieg, 1977). Thus, the stomata
play a major role in plant adaptation to drought stress. Drought
tolerance refers to the ability of a plant to withstand the loss of
water content and regrow when moist conditions return. Resur-
rection plants have a mechanism to withstand approximately 90%
water loss, whereas most other plants can withstand a moderate
dehydration of approximately 30% water loss. One characteris-
tic symptom of water deficiency is the mobilization of the starch
that is stored in the chloroplasts (Liu et al., 2004). During drought
stress, the translocation of carbohydrates decreases, leading to
a change in source–sink relationships (Liu et al., 2004). Water
deficiency also causes a reduction of nutrient uptake due to the
reductions in water migration and the quantity of ions trans-
ported by the water and to the retardation of root growth in dry soil
(Rahman et al., 1971; Tanguilig et al., 1987). Plants have developed
drought avoidance and/or dehydration tolerance to resist drought
stresses.

In addition to ABA, SA is involved in the regulation of drought
responses. Endogenous SA levels are increased up to fivefold
in the evergreen shrub Phillyrea angustifolia (Munne-Bosch and
Penuelas, 2003). The SA content in barley roots is increased
approximately twofold by water deficit (Bandurska and Stroiński,
2005). Furthermore, the SA-inducible genes PR1 and PR2 are
induced by drought stress (Miura et al., 2013). The induction of
SA accumulation may play a role in a protective mechanism during
water stress.

However, the effect of SA on drought tolerance remains to be
determined because some investigators have reported enhance-
ment of drought tolerance by SA application whereas others have
reported a reduction of drought tolerance. Generally, low con-
centrations of applied SA increase drought tolerance, and high
concentrations decrease drought tolerance. As described above,
SA induces ROS production in photosynthetic tissues (Borsani
et al., 2001). Thus, the application of a high concentration of SA
may cause high levels of oxidative stress, leading to decreased abi-
otic stress tolerance. Both drought tolerance and plant growth are
suppressed when a high concentration (2–3 mM) of SA is applied
to wheat seedlings, whereas plant growth is enhanced by the appli-
cation of a low concentration (0.5 mM) of SA (Kang et al., 2012).
When wheat seeds were soaked in 100 ppm acetyl SA, the wheat
exhibited resistance to drought stress (Hamada, 2001). The appli-
cation of acetyl SA in the range of 0.1–1 mM also enhanced the
drought tolerance of muskmelon seedlings (Korkmaz et al., 2007).
The imbibition of tomato and bean seeds in 0.1–0.5 mM SA or
acetyl SA increased plant tolerance to heat, chilling, and drought
stresses (Senaratna et al., 2000). The treatment of barley with SA

decreased the damaging effect of water deficits on the cell mem-
branes in the leaves (Bandurska and Stroiński, 2005). Interestingly,
SA treatment increased the ABA content and proline levels in the
leaves of barley (Bandurska and Stroiński, 2005). The endoge-
nous SA-accumulating Arabidopsis mutants adr1, myb96-1d, siz1,
acd6, and cpr5 exhibit both SA-dependent disease resistance and
drought tolerance (Bowling et al., 1997; Rate et al., 1999; Grant
et al., 2003; Chini et al., 2004; Lee et al., 2007; Seo et al., 2009;
Seo and Park, 2010; Miura et al., 2013). The introduction of the
pepper pathogen-induced gene CAPIP2 confers upon Arabidopsis
resistance to disease and tolerance to drought (Lee et al., 2006).
The pretreatment with 0.5 mM SA alleviates substantial water loss
from wheat seedlings, leading to an enhancement of drought toler-
ance (Kang et al., 2012) by influencing the ascorbate–glutathione
cycle (Kang et al., 2013).

Proteomics has revealed 37 protein spots that are up-regulated
by pretreatment with SA under drought stress. Several stress
defense proteins, such as glutathione S-transferases, APX, and
2-cysteine peroxiredoxin, are included (Kang et al., 2012), sug-
gesting that SA pretreatment enhances the antioxidant defense
system to protect against the oxidative damage caused by drought
stress. Proteins involved in ATP synthesis are also up-regulated
by SA and drought, most likely due to an increase in growth
and to coping with drought stress. In contrast, 21 protein spots,
including Rubisco and related enzymes, are down-regulated by
SA but up-regulated by treatment with both SA and drought
(Kang et al., 2012). Pretreatment with SA enhances photosynthe-
sis under abiotic stress conditions (Singh and Usha, 2003; Syeed
et al., 2011). A comparison of microarray data for SA, drought,
and H2O2 treatments and SA-accumulating (siz1 and cpr5) or
SA-deficient (sid2) mutants revealed that 27 genes in two clus-
ters are up-regulated by SA, drought, and the SA-accumulating
mutants siz1 and cpr5. Among these genes, 9 are highly expressed in
guard cells (Miura et al., 2013), including LTI30. The overexpres-
sion of LTI29 and LTI30 enhances the accumulation of dehydrins
and improves the tolerance to freezing stress (Puhakainen et al.,
2004). Because dehydrins play an important role in the tol-
erance to salt and drought stresses (Brini et al., 2007), LTI29
and LTI30 may be involved in the enhancement of drought
tolerance.

SA AND COLD STRESS TOLERANCE
Temperature is also a major factor of abiotic stresses, and it is a
key determinant of agricultural yield and crop productivity. The
amount and rate of the uptake of water and nutrients are decreased
by cold stresses, leading to cell desiccation and starvation. Extreme
forms of cold stresses are called freezing stresses and cause ice
formation in cell liquids, leading to dehydration and plant death.
Cold temperatures promote the accumulation of endogenous free
SA and glucosyl SA in Arabidopsis shoots, wheat, and grape berry
(Scott et al., 2004; Wan et al., 2009; Kosova et al., 2012), suggesting
that SA is involved in the regulation of cold responses.

The application of 0.5 mM SA improved the cold tolerance of
maize, cucumber, and rice (Kang and Saltveit, 2002). Exogenous
SA also decreased freezing injury in the leaves of winter wheat
grown under low temperature conditions (Taşgín et al., 2003).
Chilling injury in freshly harvested green bell pepper (Capsicum
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annuum) was alleviated by methyl SA and methyl jasmonate (JA)
vapors (Fung et al., 2004). This reduction of chilling injury in the
green bell pepper was correlated with an increase in the expres-
sion of the alternative oxidase (AOX) gene induced by methyl
SA and methyl JA vapors (Fung et al., 2004). The expression of
AOX increased in response to low temperature stresses in rice
(Ito et al., 1997), and the capacity of the alternative respiratory
pathway and the expression of AOX were enhanced under chill-
ing stress (Feng et al., 2008). These observations suggest that an
alternative respiratory pathway is involved in the plant response
to cold stresses. Lower concentrations of acetyl SA (0.1 mM) or
methyl JA (3 μM) significantly improved the seed germination
and emergence of sweet pepper (Korkmaz, 2005). Potatoes treated
with 0.1 mM SA exhibited freezing tolerance (Mora-Herrera et al.,
2005). The application of a 0.5-mM SA solution by spraying
the leaves or irrigating the roots of banana seedlings for 1 day
improved the chilling tolerance (Kang et al., 2003). When tomato
and bean seeds are soaked in aspirin or SA solution (0.1–0.5 mM)
before sowing, the cold tolerance of these plants is improved
(Senaratna et al., 2000). The hydroponic application of SA or
aspirin also increased the chilling tolerance and alleviated the
accumulation of both H2O2 and superoxide radials in the roots
and leaves under chilling stress (Wang et al., 2012). SA treat-
ment is effective at alleviating chilling injury, which is one of
the most severe postharvest losses of peach fruits. Interestingly,
the combination of SA and ultrasound treatment greatly inhib-
ited the chilling injury of peach fruits compared to SA treatment
alone (Yang et al., 2012). The application of low concentrations of
methyl JA and methyl SA to tomato fruits alleviated the chilling
injury and the incidence of decay during low-temperature storage
(Ding et al., 2002).

Additionally, high concentrations and the continual applica-
tion of SA cause severe growth damage and a decrease in the
cold tolerance capacity. The Arabidopsis SA over-accumulating
mutants, such as acd6, cpr5, and siz1 (Bowling et al., 1997; Rate
et al., 1999; Lee et al., 2007), are dwarf-like plants due to the
reduction of cell elongation and cell proliferation (Rate et al.,
1999; Kirik et al., 2001; Miura et al., 2010). Plants from seeds
imbibed in a high concentration of SA (1 mM) did not show
any alteration of chilling tolerance, whereas low concentrations of
SA (0.1–0.5 mM) promoted tolerance to chilling stress in bean
and tomato (Senaratna et al., 2000). Winter and spring wheat
to which a hydroponic solution of SA was continually applied
were severely damaged by freezing temperatures (Horváth et al.,
2007), even though the (not continual) application of SA with
a foliar spray enhanced the freezing tolerance of winter wheat
(Taşgín et al., 2003). The endogenous accumulation of SA by a
mutation may cause effects that are similar to those observed after
the continual application of SA. The Arabidopsis SA-accumulating
mutant cpr1 exhibited a very high accumulation of SA and a strong
growth retardation under chilling stress, whereas the growth of
nahG and eds5, in which the accumulation of SA is very low,
was greater than that of wild-type plants under low temperature
conditions (Scott et al., 2004). The Arabidopsis cpr1 mutant was
damaged by oxidative stress (Scott et al., 2004). It is likely that
endogenous SA accumulation triggers production of ROS, which
causes cold sensitivity. The other SA-accumulating mutants, acd6

and siz1, were also sensitive to freezing temperatures, whereas the
introduction of nahG into acd6 and siz1 recovered the sensitivity
(Miura and Ohta, 2010). The ice1 mutant, which was originally
isolated as a cold-sensitive mutant (Chinnusamy et al., 2003),
exhibited an up-regulation of SA-inducible genes (Miura and
Ohta, 2010) and enhanced resistance to bacterial pathogens (Zhu
et al., 2011). The overexpression of DEAR1 (DREB and EAR motif
protein) enhanced the accumulation of SA and the freezing sen-
sitivity (Tsutsui et al., 2009). OsWRKY13 enhanced the disease
resistance and decreased the salt and cold tolerance in rice (Qiu
et al., 2008). These data suggest that temporal application of SA
may enhance the cold tolerance but that continual application
may decrease this tolerance. Furthermore, CAMTA3/AtSR1, which
encodes a calmodulin-binding transcription activator, recognizes
the CBF2/DREB1C promoter to positively regulate the expression
of CBF2/DREB1C to enhance cold tolerance (Doherty et al., 2009),
contributes to the up-regulation of 15% of the cold-inducible
genes (Kim et al., 2013). Furthermore, CAMTA3/AtSR1 binds to
the promoter of EDS1 to repress its expression and disease resis-
tance (Du et al., 2009). These results suggest that cold signaling and
SA signaling may be interrelated and that the effect of SA on cold
tolerance may be tissue-specific and dependent on the organism,
concentration, and period of application.

SALINITY AND OSMOTIC STRESS TOLERANCES REGULATED
BY SA
Salinity stress causes not only cellular sodium toxicity, which
destroys the ionic homeostasis and ionic distribution, but also
osmotic stress. Salinity stress usually copes with water stress
imposed by the low external water potential. More than 20% of
irrigated lands are affected by high salt concentrations, and salinity
is a common feature of arid and semiarid lands. The endogenous
SA level and the activity of the SA biosynthesis enzyme ben-
zoic acid 2-hydroxylase were induced by salinity in rice seedlings
(Sawada et al., 2006). The results suggest that SA plays a role in the
response to salinity.

The salt-induced decrease in photosynthetic activity and the
concentrations of leaf Na+, Cl−, and H2O2 were alleviated by the
application of SA (0.1 or 0.5 mM) to mung bean (Khan et al., 2010;
Nazar et al., 2011). However, high concentrations of SA (1.0 mM)
caused growth retardation (Nazar et al., 2011). The exogenous
application of SA also improves tolerance to salt stress in several
species. The salt tolerance, profitable yield production, and oil con-
tent were improved by the application of SA to sunflower plants
(Noreen and Ashraf, 2010). Strawberry plants treated with SA
exhibited greater growth, as did higher chlorophyll concentrations
under salt stress (Karlidag et al., 2009). Tomato plants treated with
0.01 mM SA via root drenching improved the plants’ growth and
increased the accumulation of photosynthetic pigments, the K+
concentration, and the soluble sugar concentration (Wasti et al.,
2012). Pretreatment of tomato with SA in hydroponic culture
triggered the accumulation of ABA, leading to an improved accli-
mation to salt stress (Szepesi et al., 2009). The application of SA
improved barley plant growth by promoting protective reactions
involving the photosynthetic pigments and maintaining mem-
brane integrity (El-Tayeb, 2005). SA improved wheat plant growth
and promoted the accumulation of ABA and proline (Shakirova
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et al., 2003). The lipid peroxidation and membrane permeability
were decreased by SA in maize under salinity stress, leading to the
enhancement of plant growth (Gunes et al., 2007). The exogenous
application of SA to common bean plants improved plant growth,
and the endogenous SA content decreased the growth (Palma et al.,
2009). The inhibition of the salt-induced plant growth and photo-
synthetic capacity of the Medicago sativa–Sinorhizobium meliloti
symbiosis were alleviated by pretreatment with 0.1 and 0.5 mM
SA (Palma et al., 2013). The nodule biomass was not affected by
salinity in SA-pretreated Medicago sativa plants, leading to the
maintenance of the nitrogen fixation capacity under salt stress
(Palma et al., 2013). The ameliorative effects of SA on salinity
stress included a decrease in the Na+ content and an increase in
the K+ concentration in chamomile (Kovacik et al., 2009). The
NaCl-induced K+ efflux from the roots was prevented by the
pretreatment of Arabidopsis with 0.01–0.5 mM SA, resulting in
enhanced K+ retention and improved shoot growth (Jayakannan
et al., 2013). High salinity inhibited the germination of Arabidop-
sis seeds. Lower concentrations of SA (<50 μM) reduced the
inhibitory effect of high salinity, while higher concentrations of SA
(>100 μM) enhanced this effect (Lee et al., 2010). Another report
demonstrated that necrotic lesions induced by NaCl treatment
were ameliorated in SA-deficient Arabidopsis nahG plants (Borsani
et al., 2001), in which the glutathione/oxidized glutathione ratio
and the ascorbate/dehydroascorbate ratio were greater during salt
stress (Cao et al., 2009).

Drought, salinity, and low temperature stress induce osmotic
stress, leading to turgor loss. Several reports demonstrate that the
application of SA also affects osmotic stress responses. The addi-
tion of SA (0.05 mM) to hydroponic solutions containing media
and polyethylene glycol (PEG) alleviated the harmful effects of
osmotic stress on wheat seedlings (Marcińska et al., 2013). Exoge-
nous SA application positively impacted the colonization of the
endophyte Penicillium resedanum and relieved the adverse effects
of osmotic stress by decreasing losses in C. annuum biomass
(Khan et al., 2013). The Arabidopsis wrky54wrky70 mutant, which
accumulates high levels of endogenous SA, exhibited tolerance to
PEG-induced osmotic stress, which was correlated with improved
water retention and enhanced stomatal closure (Li et al., 2013).

RELATIONSHIP BETWEEN SA AND ROS IN RESPONSE TO
ABIOTIC STRESSES, INCLUDING WATER, SALINITY, AND
COLD STRESSES
The effects of SA on plant tolerance to abiotic stresses appear to
be contradictory. The same SA concentration can enhance the tol-
erance to one type of stress but decrease the resistance to another
type of stress (Németh et al., 2002). Generally, a deficiency or very
high level of SA decreases plant tolerance to abiotic stresses. In
most low-level SA plants, such as Arabidopsis and tobacco, treat-
ment with 0.1–0.5 mM SA is optimal for eliciting the highest level
of stress tolerance (Németh et al., 2002; He et al., 2005; Shi et al.,
2006). The basal level of total SA containing free SA (active) and
SAG (inactive) in Arabidopsis or tobacco is 0.25–1 μg/g or less than
0.1 μg/g fresh weight, respectively (Yalpani et al., 1991; Malamy
et al., 1992; Nawrath and Métraux, 1999; Wildermuth et al., 2001).
The free SA level in Arabidopsis is less than 50 ng/g fresh weight
(Kiefer and Slusarenko, 2003). Additionally, rice contains higher

levels of endogenous SA (5–30 μg/g fresh weight; Yang et al.,
2004). Pretreatment with SA at this concentration (0.1–0.5 mM)
causes low levels of ROS accumulation (Harfouche et al., 2008). As
described above, ROS production mediated by SHAM-sensitive
guaiacol peroxidases was induced by SA in guard cells (Mori et al.,
2001; Khokon et al., 2011). In addition to peroxidases, other SA
effectors are involved in the generation of ROS. APX, catalase, and
carbonic anhydrase, which are SA effectors and are involved in
scavenging ROS, were inhibited by SA (Chen et al., 1993; Con-
rath et al., 1995; Durner and Klessig, 1995; Slaymaker et al., 2002).
The inhibition of these enzymes by SA induces an increase in the
ROS levels. Low ROS levels act as secondary signal molecules to
enhance the activities of cellular protective enzymes, including
APX, catalase, superoxide dismutase (SOD), guaiacol peroxidase
(GPX),glutathione reductase (GR),alternative oxidase (AOX),and
heat shock protein (HSP; Janda et al.,1999; Kang and Saltveit,2002;
Taşgín et al., 2003; He et al., 2005; Shi et al., 2006). Non-enzymatic
antioxidants such as glutathione, ascorbic acid, carotenoids, and
tocopherols can contribute to scavenging ROS (Miyake and Asada,
1994; Telfer et al., 1994, 2003; Shimaoka et al., 2003; Kanwischer
et al., 2005; Krieger-Liszkay and Trebst, 2006; Ramel et al., 2012).

The application of high concentrations of SA (usually more
than 1 mM) induces high levels of ROS accumulation, leading to a
decrease in the capacity to scavenge ROS (Mittler, 2002). The over-
accumulation of ROS causes oxidative burst, cell death, and a high
level of oxidative stress (Leon et al., 1995; Mateo et al., 2006), lead-
ing to a decrease in abiotic stress tolerance. Lesion formation due
to the accumulation of H2O2 in the cat2 mutant, which is impaired
in catalase 2 (Queval et al., 2007), is alleviated by the introduction
of sid2, which is defective in ICS1 (Chaouch et al., 2010). This
result indicates that the effect of oxidative stress relies on the IC
pathway of SA synthesis. SA and ROS, mainly H2O2, have been
proposed to form a self-amplifying feedback loop in response to
abiotic and biotic stresses (Vlot et al., 2009). Stress-induced redox
regulation is accompanied by the accumulation of ethylene and
nitric oxide (NO), and these molecules participate in the SA-ROS
self-amplifying loop (Figure 2; Steffens et al., 2013). The reaction
of the free radical superoxide with NO results in the generation of
the cytotoxic compound peroxynitrite (ONOO−), which induces
oxidative burst and cell death (Yoshioka et al., 2011). Under abi-
otic stresses, treatment with an ethylene precursor increases ROS
production, and SA-induced cell death is activated by ethylene
signaling (Poor et al., 2013). High concentrations of both H2O2

and SA were involved in the disruption of normal mitochondrial

FIGURE 2 | Schematic model of a self-amplifying feedback loop

between SA and ROS in response to stress.
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FIGURE 3 | Simplified model of the MAP kinase cascade, mainly

focusing on MPK3/4/6. The different cascades are distinguished by
different colors in the scheme. Solid lines indicate established signaling
pathways; dashed lines indicate putative signaling pathways.

function, leading to decreased electron transport rates and cellular
ATP levels (Norman et al., 2004). Intracellular stresses may be rec-
ognized by mitochondria, which transduce signals to the nucleus
for gene expression alteration.

A MAP kinase (MPK) cascade may be involved in the trans-
mission of the SA/ROS signal to regulate downstream genes
(Rodriguez et al., 2010). Several abiotic stresses primarily acti-
vate MPK3, MPK4, and MPK6 in Arabidopsis (Figure 3; Ichimura
et al., 2000; Moon et al., 2003; Ahlfors et al., 2004; Droillard et al.,
2004; Teige et al., 2004; Gudesblat et al., 2007). These MPKs are
also activated by SA, PAMPs, and ROS (Figure 3; Petersen et al.,
2000; Asai et al., 2002; Droillard et al., 2004). MAPK cascades are
conserved signaling modules in eukaryotes. In a general model,
MAP kinase kinase kinases (MEKKs) are activated, and phos-
phorylate MAP kinase kinases (MKKs), which activate MPKs.
MPK6 and MPK3, are the Arabidopsis homologs of SA-induced
protein kinase (Zhang and Klessig, 1997) and wound-induced
protein kinase (Yap et al., 2005), respectively, and are activated
by MKK4 and MKK5. The phosphorylation of MPK6 is associ-
ated with the application of SA to Arabidopsis roots (Mockaitis
and Howell, 2000).

Genetically, the MEKK1-MKK1/2-MPK4 cascade plays a neg-
ative role in the regulation of defense responses because the loss
of function of either MEKK1 or MPK4 prompts the accumula-
tion of SA (Ichimura et al., 2006; Suarez-Rodriguez et al., 2007).
Similarly, ROS activate these MAP kinase cascades. ANP1, an
Arabidopsis NPK1-like protein kinase 1, is activated by H2O2, lead-
ing to the phosphorylation of MPK3/MPK6 in Arabidopsis plants

(Kovtun et al., 2000). The MEKK1-MPK4 cascade also plays an
essential role in ROS metabolism (Nakagami et al., 2006). H2O2

accumulates in mekk1 and mpk4 mutants and activates MEKK1
in protoplasts. Because the MEKK1 protein level is also increased
by H2O2 (Nakagami et al., 2006), the MEKK1-MPK4 cascade may
be part of a feedback loop that regulates and responds to ROS
levels. These MAPK cascades are controlled by both SA and ROS.
Because oxidative stress is a common response to biotic and abi-
otic stresses, ROS homeostasis is a convergence point to evaluate
the plant stress status.

CONCLUDING REMARKS
Salicylic acid plays an important role in the regulation of the
abiotic stress responses described above. Application of the appro-
priate concentration of SA enhances tolerance to abiotic stresses,
thereby not only mitigating the damaging effects of abiotic stress
tolerance but also enhancing biotic stress tolerance. The important
characteristic of SA application is the concentration of applied SA
and the method of application, such as foliar spray and hydroponic
culture. These methods depend on the plant species; therefore,
contradictory results can be reported. Generally, low concentra-
tions or the transient application of SA promotes plant tolerance
to abiotic stresses, and high concentrations or the continual appli-
cation of SA induce inhibitory effects on plant growth and reduce
tolerance. It is clear that SA is a very promising compound for
the reduction of the abiotic stress sensitivity of numerous plant
species.

It remains unclear how SA plays a specific role in abiotic stresses.
The accumulation of endogenous SA is induced by several abiotic
and biotic stresses. However, how the accumulation of SA is dis-
tinguished by each stress is not understood. If the mechanism of
how plants distinguish the induction of SA by each stress is under-
stood, this knowledge would contribute to the clarification of the
specificity of plant responses to abiotic stresses.
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