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Abstract

Gene regulatory interactions are context–dependent, active in some cellular states but not others.

Stochastic fluctuations, or ‘noise,’ in gene expression propagate through active, but not inactive,

regulatory links [1,2]. Thus, correlations in gene expression noise could provide a non-invasive

means to probe the activity states of regulatory links. However, global, ‘extrinsic’, noise sources

generate correlations even without direct regulatory links. Here we show that single-cell time-lapse

microscopy, by revealing time lags due to regulation, can discriminate between active regulatory

connections and extrinsic noise. We demonstrate this principle mathematically, using stochastic

modeling, and experimentally, using simple synthetic gene circuits. We then use this approach to

analyze dynamic noise correlations in the galactose metabolism genes of E. coli. We find that the

CRP-GalS-GalE feed-forward loop is inactive in standard conditions, but can become active in a

GalR mutant. These results show how noise can help analyze the context-dependence of regulatory

interactions in endogenous gene circuits.

Cells use circuits composed of interacting genes and proteins to implement diverse cellular

and developmental programs. A major goal of systems biology is to connect the regulatory

architectures of these circuits to the dynamic behavior of individual cells. However, several

problems remain: Quantitative information about biochemical parameters is often minimal. In

some cases, it may even be unclear in which direction regulation occurs (who regulates whom).

And most critically here, regulatory links that are active in some cellular states may be inactive

in the cell type or context being investigated. This can occur for several reasons: In the simplest

case, the concentration of a regulatory factor may be outside its effective range (Fig. 1A).

Transcription factors may also be inactive due to post-translational modification or the absence

of necessary co-factors [3,4]. Identifying the subset of regulatory links that are active in a given

state would simplify analysis of the circuit as a whole [5].

Recent work has shown that gene expression is intrinsically ‘noisy’ – subject to stochastic

fluctuations – causing substantial cell-cell variability [1,2,6–8]. Fluctuations in the

concentration of a regulatory protein can cause corresponding fluctuations in the expression

of a target only when the regulatory link is active [1,2]. Thus, gene-gene correlations in

expression could provide information about the activity state of regulatory connections without

explicit perturbation of cellular components.
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Such analysis is complicated, however, by the fact that gene expression correlations arise not

only from regulation, but also from global variations, or ‘extrinsic noise,’ in the overall rate of

expression of all genes [2,6]. For example, fluctuating numbers of ribosomes, polymerase

components, and cell size can affect the expression of many genes in a cell, positively

correlating their expression. In practice, the definition of extrinsic noise depends on how the

regulatory system is defined [9]. Here we assume extrinsic noise is global to all measured genes

[2,9,10]. In addition, we assume that all genes also fluctuate independently due to ‘intrinsic

noise’, or stochasticity, in their own expression. Fig. 1B illustrates how these opposing effects

prevent discrimination between noise and regulation as a source of correlation in static

measurements.

Gene regulation occurs with a delay; it takes time for protein concentrations to build up

sufficiently to have a regulatory effect on the downstream genes they control (Fig. 1C) [11].

The sign of the delay between a fluctuation in regulator concentration and its effect on target

protein levels provides information about the causal direction of the link. Note that no such

delay occurs for global extrinsic noise, which affects all genes simultaneously. Thus, by

following the expression of multiple genes over time in an individual cell, one can decouple

extrinsic noise correlations from regulatory correlations. This effect can be analyzed using the

temporal cross correlation function, which describes how well two signals are correlated when

one of them is shifted in time relative to the other. Similar approaches have been used to infer

connectivity of in vitro metabolic networks [12,13]. Since experiments in these studies were

not conducted in living cells they used a prescribed time-varying input to perturb the system

and it was unnecessary to consider many of the details particular to actual cellular noise sources.

To further understand noise correlations, we implemented a stochastic model of gene regulation

[14], incorporating values for biochemical and noise parameters from a previous study [2]

(Methods). We simulated expression of a regulatory protein, A, which represses a target gene,

B, and an additional unregulated gene, C. With only extrinsic noise the three signals are

positively correlated, though A also represses B with a delay (Fig. 2A–C). With only intrinsic

noise, repression of B by A generates a delayed anti-correlation in the expression of these two

genes. To analyze these simulated time-series data, we computed their cross correlation

functions (Fig. 2D–F). In addition, we also developed a linearized model to calculate analytic

solutions that approximate the full system well (Supplementary Text). The cross correlations

show several features: (1) Repression appears as a dip at an effective regulation delay time,

denoted τreg. (2) The direction of regulation is given by the sign of τreg. (3) Extrinsic noise

causes a positive peak in the cross correlation function close to τ=0, both with and without

regulation. (4) The relative balance of intrinsic and extrinsic noise affects the magnitude of

τreg. We found that τreg is most sensitive to the protein degradation time, while the magnitude

of the dip is determined primarily by how switch-like the gene regulation function is

(Supplementary Text).

We tested this approach in vivo by measuring the cross-correlation functions of genes involved

in active and inactive regulatory links in a well-controlled genetic circuit. We built a synthetic

gene circuit, in which λ CI, fused to yellow fluorescent protein (YFP), termed CI-YFP,

represses production of red fluorescent protein (RFP), expressed under the control of a variant

of the λ PR promoter[15]. On the same plasmid, cyan fluorescent protein (CFP) is controlled

by a strong constitutive promoter, independent of CI-YFP (Methods). Thus, the circuit allows

comparison of correlations generated by active regulation (CI-YFP and RFP) and no regulation

(CI-YFP and CFP).

E. coli cells containing the circuit were grown and imaged in three colors using automated

time-lapse fluorescence microscopy, as shown in Fig. 3B (Methods). Here, strong anti-

correlation is visible between RFP and YFP, while CFP is expressed at a more homogeneous
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level across all cells. The appearance of spatially grouped sub-populations of cells that display

similar fluorescence states occurs because τreg exceeds the cell cycle time, consistent with

simulation predictions (Fig. 2) and previous measurements [10].

To analyze these data quantitatively, we used semi-automated image analysis software to

extract fluorescence intensities for individual cells (Methods). A typical time trace of

fluorescence data from a single cell lineage is shown in Fig. 4A. The same data shifted in time

reveal the temporal anti-correlation between the CI-YFP and RFP signals. To properly handle

the branching nature of the data, we introduced a modified formula for the cross correlation

function (Methods). Fig. 4C shows the resulting cross correlations for cases of active repression

(CI-YFP and RFP) and no regulation (CI-YFP and CFP). These functions displayed all features

predicted by the model, including a strong dip at a negative lag time due to repression, and

positive correlation at τ=0 due to global noise in the unregulated case.

We next asked how the relative amplitude of intrinsic and extrinsic noise affects cross-

correlations. We constructed a plasmid-based variant of the synthetic circuit using the low-

copy SC101 origin of replication (~10 copies per cell [16]). Copy number fluctuations on the

plasmid-borne circuit increase the effective extrinsic noise level for genes in the circuit and

reduce the relative importance of intrinsic noise, since gene expression fluctuations from each

plasmid copy average out.

As expected, the circuit was more variable in fluorescence intensity on the plasmid than in the

chromosome (Fig. 3C). Although anti-correlation is still visible between CI-YFP and RFP,

certain cells are brighter than others in all colors, and more variability is seen in the time courses

(Fig. 4B). Fig. 4D shows cross correlation functions calculated from this data. The amplitude

at τ=0 is increased relative to the chromosomal construct in both the regulated and unregulated

case, reflecting simultaneous correlations and confirming model predictions (Fig. 4C–D).

These results show that regulation can be discriminated even when extrinsic noise amplitudes

are large compared to intrinsic noise levels.

Do the methods demonstrated in the relatively well-controlled synthetic circuit apply to

endogenous gene circuits? To address this, we considered the feed-forward loop network motif,

which appears frequently in transcriptional gene circuits [17]. One fundamental question about

specific natural instances of the feed-forward loop motif is whether they actively regulate their

target genes in any given cellular state or context.

Mathematical modeling of the feed-forward loop (Fig. 5A) predicts that the cross correlation

between Y and Z should appear similar to the cross correlation function one obtains with simple

repression (Fig. 2), with an additional source of symmetric correlation due to X. Inducers that

inactivate Y cause a loss of the anti-correlated features (Fig. 5B). Thus, the cross-correlation

function between Y and Z appears qualitatively different when Y is actively repressing Z versus

when the regulation is inactive.

One of the best-studied feed-forward loops occurs in E. coli galactose metabolism (Fig. 5C)

[18,19]. The repressor GalS is activated by CRP in response to cyclic AMP. GalS in turn

represses the galE operon, as well as itself. Finally, CRP also activates the galE promoter.

Compared to the basic feed-forward loop model, this system is complicated by additional

regulatory inputs from the GalR repressor. Repression by GalS and GalR is inhibited by

galactose, or its non-metabolizable analog, fucose [20]. Glucose depletion was shown to

produce a pulse of galE expression due to CRP-GalS-GalE feed-forward loop [18]. If the feed-

forward loop is actively regulating expression of galE there should be a qualitative difference

between the cross correlation functions with and without fucose.
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We constructed strains in which the PgalE promoter controlled expression of cfp and the

PgalS promoter controlled expression of yfp. Both reporter genes were integrated in the

chromosome as transcriptional reporters (promoter fusions) rather than protein fusions. This

more general strategy reduces perturbation of endogenous circuit function, and allows for

signal amplification using strong ribosome-binding sites for reporter gene expression.

We used this strain to analyze gene expression noise in the wild type galactose metabolism

network (Fig. 5C). Unexpectedly, we found that the cross correlation functions were similar

both with and without fucose (Fig. 5D), showing a symmetric peak at τ=0. These results suggest

that GalS does not play an active role in regulating GalE in this cellular context. However, the

galE operon is also regulated by, GalR, which inhibits transcription through loop formation in

the promoter [20]. We reasoned that dominant repression by GalR could explain the lack of

feed-forward loop behavior. To test this hypothesis, we deleted galR (Methods) and repeated

the measurements (Fig. 5E). In this strain, the cross correlation function without fucose showed

a signature of repression with a dip at τ<0 and peak near τ=0 (Fig. 5F). Addition of fucose to

the ΔgalR strain caused the cross correlation function to become symmetric, with a postive

peak at τ=0, consistent with inhibition of GalS by the inducer. Together, these results reveal

that the activity of the GalS-mediated feed-forward loop is cell state-dependent: inactive under

the standard media conditions used here, but capable of functioning when GalR is disrupted.

It may also be active under other environmental conditions, including transient stimuli (like

glucose depletion, as in [18]).

An interesting aspect of gene expression in individual cells is the combination of correlated

(extrinsic) and uncorrelated (intrinsic) noise sources. As described above, active regulatory

links introduce characteristic features in the cross correlation function between genes.

However, the converse is not true: the presence of time lags can in principle occur without

direct regulation in complex gene networks. Certain network architectures can produce

qualitatively similar cross correlation functions (Supplementary Material) [21]. As shown in

the galactose feed-forward loop example, the use of dynamic noise correlations to measure

potential regulatory links provides a powerful clue to the effective activity states of regulatory

links.

The conflicting effects of intrinsic and extrinsic noise analyzed above constrain the design of

cellular regulatory systems that suppress or exploit variability. Recent work has shown that

noise provides an essential source of variation in differentiation [22,23] and phenotypic

switching [24,25]. Our results now suggest that noise can be used to analyze context- or cell

state-dependent regulatory interactions without explicit perturbations. This approach requires

monitoring multiple gene expression levels over time in individual cells, something that has

become increasingly feasible in diverse biological systems [26]. Our results underscore a basic

principle of genetic circuit operation: not all regulatory interactions are active all of the time.

More importantly, they provide a general framework for inferring regulatory activity states in

natural genetic circuits with minimal perturbations.

Methods

Plasmids and Cells

The plasmid pNS2-σVL (Fig. S1) was constructed by synthesizing a region starting with the

kanamycin promoter and ending just before CI-YFP (synthesis by Blue Heron). The sequences

for CFP and the red fluorescent protein mCherry were codon-optimized for E. coli. The

synthesized construct was cloned into the plasmid pZS21-cIYFP [2], replacing its TetR-

regulated promoter. The resulting plasmid was transformed into MG1655Z1, a derivative of

MG1655 that over-expresses LacI, for experiments.
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To integrate the construct onto the chromosome, the region from the kanamycin resistance

marker through the end of CI-YFP was amplified by PCR and integrated into the galK region

of MG1655Z1, using recombineering techniques [27]. Insertion was verified with colony PCR

and sequencing.

Promoter regions for galS and galE were taken from the reporter library in [28]. Promoter-

fluorescent protein reporters were made with fusion PCR and verified with sequencing. The

fusion PCR product was cloned into a vector with the kanamycin resistance marker and SC101

origin of replication. A region including kanamycin and both promoter-reporter fusions was

amplified using PCR with homology arms for intC and integrated into the chromosome of

MG1655 by recombineering, as described [27]. Integration was verified by colony PCR and

sequencing.

galR was deleted from the MG1655 strain with chromosomally integrated PgalS-YFP/PgalE-

CFP. The chloramphenicol resistance gene from pKD3 was amplified using the PCR primers

described in [29] with the homology arms for GalR deletion from [30].

Time-Lapse Microscopy

Synthetic Circuit—Single colonies were inoculated in selective LB media and grown

overnight. This culture was diluted back 1:100 into 1:4 dilution of LB containing 30 μg/ml

kanamycin and 10–15 μM IPTG (varies for different movies). IPTG concentration was adjusted

to maintain the mean CI-YFP concentration in the active regulatory range. The cells were then

grown to OD 0.1–0.2 and diluted back 1:100 in M9 minimal media containing 0.2% glycerol,

0.01% Casamino Acids, 0.15 μg/ml biotin, and 1.5 μM thiamine (we denote this media MGC).

Cells were placed on 1.5% MGC low melting temperature agarose pads containing 10–15 μM

IPTG and grown at 37°C for 3 hours to equilibrate to the inducer conditions on the pad. The

pad was then placed in 200 μl of MGC and shaken to release the cells. These equilibrated cells

were placed on a fresh pad for time-lapse imaging. The temperature of the microscope chamber

was kept at 32°C for the duration of the movie. Images were acquired every 10 minutes in

phase and each of the three fluorescent color channels.

Galactose Network—Reporter strains were grown overnight in MO (M9 salts supplemented

with 1 mM MgS04, 0.1 mM MgCl2, and 30 μg/ml kanamycin) supplemented with 0.4% (w/v)

glucose, 0.5% (v/v) glycerol, and 0.1% (w/v) Casamino acids (MON in [18]). Cultures were

diluted back 1:50 in MO + 0.8% mannose (and 10 mM D-fucose, where applicable). After

reaching OD 0.1–0.2, cells were further diluted and placed on a pad made of the same MO +

mannose (and fucose) media as the original dilution. Cells were grown and imaged at 37°C.

Fluorescence analysis of cell lineages was done with custom MATLAB software, which has

three stages: First, images are segmented to select all individual cells. Next, cells are tracked

between frames to establish the cell lineage tree. Finally, fluorescence intensities for each cell

lineage are compiled.

Stochastic Simulations

The circuit shown in Fig. 2A (right) was modeled as modeled as follows, with A, B, and C

representing the three indicated protein concentrations:

(1)
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These equations include terms for protein production (αi), protein degradation and dilution

(β), and the contributions of extrinsic and intrinsic noise sources (E and Ii, respectively). All

noise and biochemical parameters are based on [2], or values measured directly from the present

experimental data; all are listed below for completeness. E(t) represents extrinsic noise and is

the same for the three proteins; Ii(t) for i={A,B,C} models intrinsic noise, which is distinct for

each protein. Noise sources are modeled as zero-mean signals with finite correlation times

using an Ornstein-Uhlenbeck process [14]. This extrinsic noise signal has a standard deviation

of σext=0.35, and a correlation time proportional to the cell cycle length: Tcc/log(2). Intrinsic

noise has a standard deviation σint,i=(αi)
1/2, and a correlation time of Tint/log(2). The cell cycle

time is Tcc=60 mins and Tint=5 mins. The following parameters are used, unless otherwise

indicated: n = 1.7, K = 120 nM, αA = αC = 1.39 mol/cell/min (chosen so that αA/β = K), αB =

4.5 mol/cell/min, and β = log(2)/Tcc.

Cross Correlations

The cross correlation between two discrete signals f(t) and g(t) is defined as

Here,  and N is the number of time points. This function is normalized to

. This function is also known as cross covariance.

We adapted this standard formula to accommodate tree-structured (branching) data. First, we

take each cell lineage, identified by a cell on the final frame of the movie, separately, and

calculate the Rf,g(τ). However, because all cell lineages originate from a single cell, many pairs

of points are counted multiple times. Therefore, we subtract off the extra contribution of such

point pairs, so that each pair is counted only once in the overall sum. The following modified

formula incorporates this correction:

Here Ncells is the number of cells at the end of the movie and ki is the branching point between

fi and fi+1. Note that the first term is the original cross correlation function averaged over

Ncells. The second term removes over-counted data.

As in the non-branched case, the function is normalized by
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Experimental cross correlation curves have been cropped at the ends to remove points that are

generated by very small amounts of data.

Model Fits

Optimization software (MATLAB) was used to minimize the difference between experimental

and simulated data, taking into account standard errors for experimental data points. Three

parameters were fit: g, the derivative of the gene regulation function evaluated at the steady

state repressor concentration (see Supplementary Text); WE/WI, the ratio of extrinsic to

intrinsic noise; and αB, the rate of protein production in steady-state. For the model fit to the

chromosomal construct, local sensitivity g=−0.01, ratio of extrinsic to intrinsic noise WE/

WI=4.5, and strength of target promoter, αB=1.7 (Fig. 4C). All other parameters are listed in

the stochastic modeling section above. For the plasmid-based construct g=−0.01, WE/WI=1.7,

αB=0.5 (Fig. 4D).

Feed Forward Loop Simulations

The cross correlation functions were calculated analytically using the methods described in the

Supplementary Material. The following linearized equations were used to describe the system:

where the parameter values used in these calculations are gxy = g, , gyz = −g, where g =

0.01, and the white noise power constants are Wx = Wy = Wz = 1 and We = 0.064

(Supplementary Note). Addition of fucose is modeled by setting gyz = 0. Here, for simplicity,

we model intrinsic noise as white noise. Extrinsic noise is modeled using an Ornstein-

Uhlenbeck process, as described in the Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Using noise to analyze the activity of gene regulatory interactions. (A) Target gene expression

versus repressor concentration (schematic). Regions where changes in repressor concentration

cause changes in target gene expression are active. When repressor levels saturate (right) or

are insufficient to repress (left), then the link is inactive. Regulatory links may be inactive for

other reasons as well. (B) Noise can produce different types of static correlations between

transcription factor (x-axis) and target gene expression (y-axis). In each plot, dots represent

individual cells from a hypothetical population. Top plots show correlations without an active

regulatory link, while the bottom shows correlations with active repression. The mean gene

regulation function is shown as a black line [2]. We consider noise regimes in which either

intrinsic (uncorrelated) or extrinsic (correlated) noise dominates. Active repression causes anti-

correlation between the transcription factor and its target. Intrinsic noise decorrelates the two,

and extrinsic noise causes positive correlations even without active regulation. Thus,

correlations derived from static snapshots are ambiguous because high levels of extrinsic noise

can conceal the anti-correlation expected from repression. (C) Temporal gene expression

patterns (schematic) for a repressor, A, (green line) and its target, B, (magenta line), showing

anti-correlations at a delay time denoted τreg.
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Figure 2.

Dynamic cross correlations in simulated regulatory interactions. (A–C) Protein A (green line)

represses production of protein B (magenta line). Protein C (cyan line) is expressed

constitutively. Data are normalized by mean concentration. Extrinsic noise positively

correlates the time traces, while fluctuations in A (green curve) produce opposite fluctuations

in B (magenta) at a delay (τreg). (A–C) Simulated time traces are shown for three noise regimes,

as indicated. Note that the intrinsic noise time scale is much faster than that due to extrinsic

noise. See Methods for detailed model and numerical parameters. (D–F) Mean cross correlation

functions RA,B(τ) and RA,C(τ) are shown in red and blue, respectively. Dots represent simulated

data, while solid lines plot analytic solutions for the linearized model. Note that active

repression causes a dip at τreg, while extrinsic noise results in positive correlation near τ=0.

See Methods for definition of cross correlation function.
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Figure 3.

Time-lapse movies of gene expression fluctuations in a synthetic genetic circuit. (A) Synthetic

regulation system. LacI, produced constitutively from a chromosomal gene, regulates

production of a YFP fusion to the λ CI repressor, which in turn represses production of RFP.

cfp is expressed from a strong constitutive promoter. All three genes experience the same

extrinsic noise, while intrinsic noise is different for each. (B) Filmstrip of cells with

chromosomally integrated circuit. Cells are imaged in three colors; each filmstrip shows two

colors at a time for clarity. Note strong anti-correlation between RFP (red) and YFP (green),

and the reduced correlation between CFP (blue) and YFP. Scale bar, 5 μm. Supplementary

Movies 1 and 2 show additional detail. Right panel shows individual colors and phase images

at t = 330 mins. Note anti-correlation between RFP and YFP and the uniform expression of

CFP. (C) Filmstrip of the same circuit on a low-copy plasmid reveals increased variability in

all colors. The right panel shows the increased variability of CFP relative to the chromosomal

case. Note that yellow pixels indicate equal levels of red and green.
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Figure 4.

Experimental data and cross correlation analysis of regulated and unregulated target genes. (A)

Typical lineage traces for the chromosomally integrated construct. RFP is shown unshifted

(left) and shifted by τreg ≈ 100 mins (right) to reveal the delayed anti-correlation. Data are

normalized by mean intensity. (B) The plasmid-based construct also shows delayed anti-

correlation with τreg ≈ 120 mins. (C–D) Cross correlation functions RCI-YFP,CFP(τ) (blue

circles) and RCI-YFP,RFP(τ) (red circles) and model fits (dashed black line) for the

chromosomally integrated (C) and plasmid (D) construct. Data are averaged over n=5

independent movies (with 100–200 cells per microcolony upon movie completion) in the

chromosomal circuit, and n=6 movies for plasmid circuit. Error bars show standard error of

the mean. See methods for fit parameters.

Dunlop et al. Page 12

Nat Genet. Author manuscript; available in PMC 2010 February 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.

Regulatory interactions in the endogenous gal feed-forward loop are cell state-dependent. (A–

B) In a model feed-forward loop, the cross correlation between Y and Z exhibits a positive

peak at τ=0 due to their shared regulator, X, and due to extrinsic noise. In addition, repression

of Z by Y produces a negative dip in the cross correlation function at τreg < 0. When repression

by Y is inhibited by inducer (A, orange), the cross correlation function exhibits only the positive

correlations at τ=0 (B, orange line). (C–D) The galactose metabolism operon galETKM is

controlled by a feed-forward loop similar to that in (A), and through additional regulation by

GalR, which is not regulated by CRP [20]. (D) Cross correlation functions between PgalS-YFP

and PgalE-CFP, with and without fucose, show similar features (n=15 movies without fucose,

n=8 movies with fucose). In particular, only positive correlations without a time delay are

observed. (E) When galR is deleted, galE is only controlled by a feed-forward loop. (F) As a

result, cross correlation functions between PgalS-YFP and PgalE-CFP without fucose show

delayed anti-correlation between galS and galE, consistent with the model (A–B). When fucose

is added, this anti-correlation is eliminated, as expected. These results are based on n=9 movies

with and without fucose. Note that the peak of the cross correlation function is reduced from

the galR deletion strain, suggesting that noise in GalR positively correlates GalS and GalE.
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