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ABSTRACT

Motivation: Although transcription factors (TF) play a central
regulatory role, their detection from expression data is limited due
to their low, and often sparse, expression. In order to fill this gap, we
propose a regulatory impact factor (RIF) metric to identify critical TF
from gene expression data.
Results: To substantiate the generality of RIF, we explore a set of
experiments spanning a wide range of scenarios including breast
cancer survival, fat, gonads and sex differentiation. We show that
the strength of RIF lies in its ability to simultaneously integrate
three sources of information into a single measure: (i) the change in
correlation existing between the TF and the differentially expressed
(DE) genes; (ii) the amount of differential expression of DE genes;
and (iii) the abundance of DE genes. As a result, RIF analysis
assigns an extreme score to those TF that are consistently most
differentially co-expressed with the highly abundant and highly DE
genes (RIF1), and to those TF with the most altered ability to predict
the abundance of DE genes (RIF2). We show that RIF analysis alone
recovers well-known experimentally validated TF for the processes
studied. The TF identified confirm the importance of PPAR signaling
in adipose development and the importance of transduction of
estrogen signals in breast cancer survival and sexual differentiation.
We argue that RIF has universal applicability, and advocate its
use as a promising hypotheses generating tool for the systematic
identification of novel TF not yet documented as critical.
Contact: tony.reverter-gomez@csiro.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Transcription factors (TF) play a central regulatory role in
controlling gene expression. Previous studies demonstrate that
TF are important in both normal and disease states (Vaquerizas
et al., 2009). However, low TF expression make their detection
challenging and warrants alternative in-silico methods to facilitate
the identification of critical TF from gene expression data.

In an attempt to derive more information from expression
data, recent work has been devoted to inferring transcriptional
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regulation from expression data. By and large, these methods
invoke the well-documented guilt-by-association heuristic by which
groups of genes targeted by the same TF, and/or involved in
the same biological pathways, have an expression profile that is
more correlated than a randomly chosen group of genes (Wolfe
et al., 2005). Inspired by such heuristic, a rational approach
for exploiting this co-expression phenomena and deciphering
transcriptional regulation activity involves the reverse-engineering
of gene regulatory networks using network inference algorithms
such as (but not limited to) Bayesian networks (Friedman et al.,
2000), CLR (Faith et al., 2007); ARACNe (Margolin et al., 2008)
and PCIT (Reverter and Chan 2008; Watson-Haigh et al., 2010).
Ergün et al. (2007) exploited the connectivity structure of a
gene network to a test expression data and identified genetic
drivers of prostate cancer using the so-called MNI algorithm (di
Bernardo et al., 2005). Other authors have undertaken a promoter
sequence analysis of a correlated group of genes to identify
sequence motifs corresponding to TF binding sites (Cowley et al.,
2009; Kerhornou and Guigó, 2007; Nagaraj et al., 2008). An
equally commendable strategy relies on assigning regulators to
modules based on the co-expression between a candidate regulator
and each of the members of the module. Examples of the
latter approach include the learning module networks (LeMoNe)
algorithm of Joshi et al. (2009) which generates a number of
possible models explaining regulation activity and with every
single model containing many regulators. An alternative method,
initially introduced by Reverter et al. (2006a) and more recently
implemented in Hudson et al. (2009a), is based on ranking TF by
their absolute co-expression correlation averaged across all genes in
a given module.

We recently described a regulatory impact factor (RIF) algorithm
which correctly inferred myostatin as the gene containing the causal
mutation from gene expression data alone, even though myostatin
was not differentially expressed (DE) at any of ten developmental
time points under surveillance (Hudson et al., 2009b). This algorithm
addresses an important biological issue because it better accounts for
the functional activation of TF than does DE alone. For example, TF
are activated following reversible phosphorylation, ligand binding,
cellular localization, co-factor binding, missense mutations and
‘receptiveness’ of chromatin structure. Differential expression will
overlook these vital changes in regulatory information, yet, a full
interpretation of expression data clearly requires some means of
quantification.
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In this article, we attempt to determine whether application of
the RIF algorithm is generalizable. Is there a universal question
one can ask of appropriately designed gene expression experiments
to identify (i) causal regulators and (ii) the rewired transcriptional
circuits through which they exert their phenotypic impact? In order
to ascertain the generality of RIF, we explore the publicly available
expression data from four experiments that cover a wide range of
scenarios from in-vitro to in-vivo systems, from embryonic to adult
stages, from developmental time-series to discrete perturbations.

Our study is organized in the following manner: we first provide
an overview of how RIF operates. Next, we introduce the four
datasets and put emphasis, not only in the relevance of the biological
question each experiment addresses, but also in the design layout
and the number of genes and TF included in each experiment, and
where TF are obtained from the census provided by Vaquerizas
et al. (2009). We then describe the normalization method and how
DE genes are identified. Finally, we highlight the significance of
computing two alternative measures of RIF (RIF1 and RIF2) and
present the results in context of functional biology.

2 METHODS

2.1 An overview of RIF analysis
Figure 1 illustrates a schematic diagram of the process involved in RIF
analysis. A microarray gene expression dataset spanning two biological
conditions of interest (e.g. healthy and disease) is subjected to standard
normalization techniques and significance analysis to identify the target
genes whose expression is DE between the two conditions. Simultaneously,
the collection of regulators (e.g. TF genes) included in the microarray
data is mined from the literature (Vaquerizas et al., 2009). Next, the co-
expression correlation between each TF and the DE genes is computed
for each of the two conditions. This allows for the computation of the

Fig. 1. A schematic diagram of the RIF analysis. (A) Microarray data is
normalized and statistically assessed to identify differentially expressed (DE)
genes and differentially PIF genes (represented by circles) which together
are deemed as the Target genes; Simultaneously, (B) transcription factors
(TF, represented by triangles) included in the microarray are collected and
(C) their co-expression correlation with the target genes computed for each
of the two conditions of interest; Finally, (D) the way in which TF and target
genes are differentially co-expressed between the two conditions is used to
compute the relevance of each TF according to RIF1 and RIF2.

differential wiring (DW) from the difference in co-expression correlation
existing between a TF and a DE genes in the two conditions. As a result,
RIF analysis assigns an extreme score to those TF that are consistently most
differentially co-expressed with the highly abundant and highly DE genes
(case of RIF1 score), and to those TF with the most altered ability to act as
predictors of the abundance of DE genes (case of RIF2 score). Importantly,
and as illustrated by the bottom right panel of Figure 1, a given TF may
not show a change in expression profile between the two conditions to score
highly by RIF as long as it shows a big change in co-expression with the
DE genes. To this particular, the profile of the TF gene (triangle, solid line)
is identical in both conditions (slightly downwards). Instead, the DE gene
(circle, dashed line) is clearly over-expressed in condition B. Importantly,
the expression of the TF and the DE gene shows a strong positive correlation
in condition A, and a strong negative correlation in condition B.

2.2 Datasets
The first dataset is from the study of Timmons et al. (2007) who used
in-vitro

¯
cell cultures to explore the mechanisms underlying brown and white

adipocyte differentiation. A total of 24 hybridizations were performed using
the RNA from two cell types (brown versus white adipocytes), cultured at
two ages (4 and 7 days old), with five and six, and biological replicates
for the brown and white adipocyte cultures, respectively. Using the MAS5
detection call utility, probes yielding an absent signal in all 24 hybridizations
were removed. As a result, we retained 159 768 expression intensity readings
from 5665 unique genes including 552 TF.

The second dataset is from the study of Small et al. (2005) who profiled
gene expression during the differentiation and development of embryonic
gonads in mice. The authors used 60 microarray chips each with 12 000 probe
sets representing ∼8000 genes. The experimental design corresponds to a
time course of gene expression in embryonic gonads (testes versus ovaries)
at five time points post-coitum: 11.5 (indifferent gonads), 12.5, 14.5, 16.5 and
18.5 days (birth). Six biological replicates were available. After editing out
probes with absent signal in all hybridizations, a total of 282 360 expression
records from 9552 genes including 809 TF were used in the present study.

The third dataset is from Pérez-Enciso et al. (2009) who used 80 Porcine
Affymetrix chips (each representing ∼15 000 genes) to survey the gene
expression profile in a 4 (breeds) ×5 (tissues) ×2 (sexes) factorial design
and two biological replicates. Using identical data editing criteria as in the
previous datasets, the porcine dataset included 1 575 760 expression records
(half for each sex) on 11 266 genes of which 912 were TF. The sex contrast,
male versus female, was explored in the RIF analyses.

The last dataset belongs to the breast cancer survival study of Van’t Veer
et al. (2002) where 78 cDNA microarray chips were hybridized using the
RNA samples from 34 and 44 patients with <5 and >5 years survival time,
respectively. Log-ratios and associated p-values were downloaded from the
original source and, for filtering purposes, log-ratios with associated P-values

¯>0.9 were deemed as ‘absent’ and genes non-absent in more than eight
samples (i.e. >10% of samples) were retained. As a result, the present study
utilized 1 888 848 log-ratios on 22 635 genes including 892 TF.

2.3 Normalization and differential expression
As previously described (Reverter et al., 2006b), a combination of ANOVA
models and mixtures of distributions were employed to normalize expression
signals and to identify DE genes, respectively. In detail, for each of the
four datasets, data normalization was achieved by fitting a parsimonious
mixed-effect ANOVA model with the following components:

yijk =Hi +Gj +GCjk +eijk, (1)

where yijk is the vector of expression readings from the ith hybridization
chip, on the jth gene at the kth condition; Hiis the fixed effect of the
ith hybridization and the fitting of which aims at normalizing the data by
accounting for systematic non-genetic effects; Gj is the random effects of
the average level of the jth gene; GCjk is random interaction between the
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jth gene and the kth experimental condition and it captures differences from
overall averages that are attributable to specific gene-condition combination;
and eijk is the random residual error associated with yijk .

Using standard statistical assumptions in mixed model theory, the effects
of Gj , GCjk and eijkwere assumed to be independent realizations from a
normal distribution with zero mean and between-gene, between-gene within-
condition and within-gene components of variance, respectively. Restricted
maximum likelihood estimates of variance components and solutions to
model effects were obtained using the analytical gradients option of VCE6
software (ftp://ftp.tzv.fal.de/pub/vce6/). The solutions to the GCjkeffect were
used as the normalized mean expression of each gene in each of the
conditions under scrutiny. Finally, the difference between the normalized
mean expression of a gene in the two conditions was computed as the measure
of (possible) differential expression.

Following McLachlan et al. (2006), a two-component normal mixture
model was fitted to identify DE genes.

f
(
d; �

)=π0φ0

(
d;µ0, σ

2
0

)
+ π1φ1

(
d;µ1, σ

2
1

)
, (2)

where d denotes the vector of DE measures for all the genes, and the two
components in the mixtures correspond to: φ0(•) for the empirical null
normal density with mean µ0(not necessarily zero) and variance σ2

0 (not
necessarily one), encapsulating the non-DE genes; and φ1(•) for the non-
null distribution corresponding to DE genes. Finally, the mixing proportions
π0 and π1 are constrained to be non-negative and sum to unity.

Across the four datasets, parameters of the mixture model were estimated
using the EMMIX-GENE software (McLachlan et al., 2002) and an estimated
experiment-wise false discovery rate (FDR) of <1% used as the threshold
for determining which genes are DE.

2.4 Measures of RIF
RIF is a metric given to each TF that combines the change in co-expression
between the TF and the DE genes (i.e. the potential targets). Two alternative
measures of RIF are explored and computed as follows:

RIF1i = 1

nde

j=nde∑
j=1

âj × d̂j ×DW2
ij (3)

= 1

nde

j=nde∑
j=1

PIFj ×DW2
ij

and

RIF2i = 1

nde

j=nde∑
j=1

[(
e1j ×r1ij

)2 −(
e2j ×r2ij

)2
]
, (4)

where nde is the number of DE genes; âj is the estimated average expression

of the jth DE gene, averaged across the two conditions being contrasted; d̂j

is the estimated differential expression of the jth DE gene; and DW is the
differential wiring between the ith TF and the jth DE gene, and computed
from the difference between r1ij and r2ij , the co-expression correlation
between the ith TF and the jth DE gene in conditions 1 and 2, respectively
(Hudson et al., 2009b):

DWij =r1ij − r2ij . (5)

The expression for RIF1i in Equation (3) introduces the concept of
phenotype impact factor (PIF) defined for each DE gene and computed
from the product of its average expression and its differential expression.
Decomposing its terms, PIF can be expressed as follows:

PIFj = âj × d̂j = 1

2

(
e1j + e2j

)(
e1j − e2j

) = 1

2

(
e12

j − e22
j

)
(6)

where e1j and e2j represent the expression of the jth DE gene in conditions 1
and 2, respectively. The definition of PIFj in Equation (6) as the difference
of squared expression allows for the alternative parameterization of RIF

presented by RIF2i in Equation (4), and where the difference of squared
expression is weighted by the squared co-expression correlation between the
TF and the DE genes in each of the two conditions. Recall that the squared
correlation is equal to the coefficient of determination, a measure of goodness
of fit representing the proportion of the variation in the response variable (i.e.
the DE gene in our context) that is accounted for by the predictor (i.e. the
TF gene in our context). Hence, this new definition of RIF shares the spirit of
regression-based approaches to infer gene regulation [examples span from
the NIR algorithm (Gardner et al., 2003); to the very recent TILAR algorithm
of (Hecker et al., 2009)].As first noted by Hudson et al. (2009b), RIF2 has the
additional appeal of not being zeroed for self-regulated genes when a TF is
also a DE gene, in which case DW = 0. In essence, while RIF1 captures those
TF showing a large DW to those highly abundant highly DE genes (indeed
the original question that gave rise to the discovery of RIF), RIF2 focuses
on those TF showing evidence as predictors of the change in abundance of
DE genes.

In order to allow comparing both measures of RIF between themselves and
across datasets, RIF measures were transformed to a z-score by subtracting
the mean and dividing by the standard deviation (SD).

Finally, we note that while a strong correlation is expected between DE
and PIF, the latter places emphasis on the abundant genes that are not hugely
DE (on the grounds that a relatively small change in expression of a very
abundant transcript is predicted to have a relatively large impact on the
molecular phenotype). On the other hand, a non-abundant gene will have to
show a large DE in order to be differentially PIF. Similar to the way in which
DE genes were determined, we will apply a two-component mixture model
to identify genes that are differentially PIF at FDR <1%.

3 RESULTS

3.1 Mixture models, DE genes and differentially PIF
genes

Table 1 presents the parameter estimates of the two-component
mixture models in each dataset along with the number of DE genes
and differentially PIF genes. While both components in the mixture
have a mean close to zero, the larger variance estimated for the
second component allowed it to more likely capture the extreme
values of DE and PIF. Also, this second component was associated
with the smaller of the two mixing proportions.

As expected, strong correlations were observed between DE and
PIF. These equated to 0.89, 0.92, 0.91 and 0.94 for datasets 1–4,

Table 1. Parameter estimates for the 2-component mixture model and
number (N) of DE and differentially PIF genes at FDR <1% in each of
the four datasets under study

Dataa Parameters of the mixture N

π0 µ0 σ2
0 π1 µ1 σ2

1

1 DE 0.87 −0.05 0.37 0.13 −0.60 4.52 219
PIF 0.81 0.41 15.83 0.19 −1.99 141.9 226

2 DE 0.82 −0.05 0.21 0.18 0.30 2.91 545
PIF 0.81 −0.34 11.56 0.19 1.96 105.5 393

3 DE 0.84 0.01 0.04 0.16 −0.01 0.50 517
PIF 0.87 0.09 2.12 0.13 −0.23 21.16 306

4 DE 0.72 0.12 0.03 0.28 −0.01 0.07 328
PIF 0.88 0.58 0.96 0.12 −0.73 5.73 439

a Data 1 = Brown vs White adipocytes; Data 2 = Testes vs Ovaries embryogeneis;
Data 3 = Males vs Females pigs; Data 5 = more than 5 years vs less than 5 years
survival to breast cancer.
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Fig. 2. Scatter of differential expression (y-axis) against the average
expression (x-axis) for the four datasets: (A) Brown versus white adipocytes;
(B) Testes versus ovaries differentiation; (C) Male versus female pigs; (D)
>5 years versus <5 years survival to breast cancer. Color codes correspond
to red, green and blue for DE genes only, differentially PIF genes only and
DE and differentially PIF genes, respectively.

respectively. In consequence, we found a substantial number of
genes overlapping by showing both DE and differential PIF. To
this end, Figure 2 shows the scatter of DE (y-axis) over the
average expression (x-axis). We use color codes in order to enhance
distinguishing among genes that are DE only, differentially PIF only,
and overlapping genes. As expected, application of PIF increases
the representation of highly expressed genes among the key genes
(Fig. 2). We use the same scales across the four panels to better
appreciate the varying heterogeneity existing in the four datasets.

3.2 RIF analysis
Listed in Table 2 are the RIF1 and RIF2 z-scores for critical TF
in each dataset along with their average and differential expression,
while the same set of statistics for all TF and across the four datasets
is given in the Supplementary Table.

Figure 3 shows the relationship between RIF1 and RIF2 for
the four datasets, while the comparison of RIF with DE values is
illustrated in Figure 4.

Contrary to our previous findings comparing two breeds of
cattle (Hudson et al., 2009b), no particular relationship was found
between the two alternative measures of RIF in these datasets. The
correlation coefficient (r) between RIF1 and RIF2 was estimated at
approximately zero for datasets 1, 2 and 3, and moderately positive
for dataset 4 (r =0.33). These results suggest that both measures
of RIF capture different, potentially equally valuable features when
ranking TF (see ‘RIF1 versus RIF2’section, later in this manuscript).
In the remainder of this section, we will discuss the biological
relevance of the predicted key TF.

3.3 Brown versus white adipocyte differentiation
Compared to white fat, brown fat contains a much higher number of
mitochondria, more capillaries and is densely innervated (Nechad
et al., 1994).

Table 2. Average (A) and differential expression (DE) for critical TF
identified by either RIF1 or RIF2 in each of the four datasets under study

TF A DE RIF1 RIF2

(1) Brown versus white adipocyte differentiation
CREBBP 3.22 −2.47 −3.93 −0.43
CUTL1 7.72 −0.80 −0.86 −2.30
MYOG 5.28 2.32 −0.25 2.31
PPARBP 3.95 −0.59 −3.14 −0.22
RBL1 5.06 1.28 −0.16 2.31

(2) Testes versus ovaries embryonic differentiation
CBX5 8.10 0.22 2.34 −0.25
FIG1A 3.33 −3.02 −0.91 2.72
HOXC10 5.74 −0.06 −0.80 2.54
HOXD9 8.06 0.83 2.26 −0.49
NCOA3 6.74 −0.09 −0.94 2.26
POU4F1 3.73 −1.38 2.36 −0.36

(3) Male versus female pre-pubertal pigs
CHD9 12.12 −0.02 3.90 1.92
IRX3 5.47 −0.06 2.17 3.93
RNF14 9.72 0.36 4.40 1.89
SOX5 7.81 −0.37 3.10 1.20
TAF7L 5.34 1.60 −0.37 3.42
ZNF281 7.97 0.14 −1.99 2.94

(4) Breast cancer: >5 years versus <5 years survival
ABL1 7.22 0.20 −3.28 0.78
CARM1 10.20 −0.01 −4.28 −0.31
MAZ 13.17 −0.57 −1.27 −2.68
NFATC4 8.58 −0.28 −6.37 −1.48
NR2F1 8.58 0.09 −3.32 −0.19
PITX3 10.76 −0.40 −2.45 −2.99
RELA 9.14 0.11 −3.67 0.07
SMARCA2 8.65 −0.04 0.41 2.97
SMARCA4 11.42 −0.23 0.67 3.22

A number of TF were identified that positively or negatively
regulate brown adipocyte development (Fig. 5), however, an
equivalent list is not available for white adipocytes. RBL1 (p107) is
awarded the third most positive RIF2 out of its 552 TF competitors
(Table 2). In transgenic KO mice experiments, loss of this TF has
been shown to culminate in a uniform replacement of white fat with
brown fat (Scime et al., 2005). However, RBL1 is not DE between
the two tissues and therefore its central regulatory role cannot be
inferred through conventional expression statistics. Rather, it is its
huge change in network connectivity, in the absence of DE, which
helps RIF analysis infer a major role for RBL1 in the brown and
white adipocyte lineages.

Other TF of relevance captured by RIF analysis include CREBBP
and PPARBP which have been show to play an important role in
regulating adiposity and insulin resistance (Tsuchida et al., 2005).
CREBBP was found to be up-regulated in white adipocytes and
interacts with CUTL1 which was identified in our analysis. CUTL1
interacts with RB1, which in turn regulates the expression of RBL1.
PPARBP, which is firmly involved in PPAR signalling, was not DE
and showed a very low average expression. Similarly, MYOG, the
subject of the striking discovery in the original article of Timmons
et al. (2007) was also found to be DE in the present analysis (2.32 in
the log2-scale, or 5-fold increase in brown fat; Table 2), and given
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Fig. 3. Relationship between RIF1 and RIF2 for the TF included in each
datasets: (A) Brown versus white fat; (B) Testes versus ovaries; (C) Male
versus female pigs; (D) >5 years versus <5 years breast cancer survival.

Fig. 4. Relationship between differential expression (DE; y-axis) and the
two alternative measures of RIF (x-axis) for each of the four datasets.

Fig. 5. Protein–protein and gene expression regulatory network involved in
the specification of brown adipose tissue. Proteins with published roles are in
white on black background. Proteins encoded by genes identified by the RIF
analysis are in black on white background. Rectangles and ellipses indicate
published and unpublished roles, respectively.

the fifth most extreme ranking according to RIF2. Overall, three
of the TF identified by the RIF analysis point to a major role of
the broader PPAR pathway in the differences between brown and
white fat.

3.4 Testes versus ovaries embryonic differentiation
The gonads differentiation is better viewed as a number of transiently
(i.e. often of relevance at one time point only) important TF
operating in a successive regulatory cascade—first set in motion
by the master regulator SRY (Wilhelm et al., 2007). These various
downstream TF may be awarded similar RIF rankings in our
analysis, even though those that are highly DW at the earlier time
points might be considered more fundamental or ‘causal’ from a
biological perspective. For this reason the gonads data set is arguably
the least amenable to RIF analysis. In spite of this limitation,
RIF uncovered a number of well-documented TF involved in sex
differentiation and gonad embryogenesis (Table 2): Figure 1A, a
sex-specific marker gene (Scholz et al., 2003); POU4F1 plays an
important role during germ cell development (Budhram-Mahadeo
et al., 2001); CBX5 is involved in de novo methylation and its role in
gonad development in mouse embryos has recently been established
(Takada et al., 2009); and NCOA3, a member of the steroid receptor
co-activator family, contributes to the genetic control of androgenic
hormone levels (Sheu et al., 2006).

Finally, we note the ability of RIF analysis to identify two
members of the homeobox family (HOXC10 and HOXD9). HOX
genes encode evolutionarily conserved TFs which are important
regulators of embryonic morphogenesis and tissue differentiation
(Dessain et al., 1992).

3.5 Male versus female pre-pubertal pigs
RNF14 showed the most extreme score according to RIF1 (4.40
SD units) and is known to interact with androgen receptor (AR)
acting as a coactivator that induces AR-target gene transcription in
prostate (Lan et al., 2008). Similarly, IRX3 had the most extreme
score according to RIF2 (3.93 SD units) and is a known candidate
gene for sex determination (García-Ortiz et al., 2009; Jorgensen and
Gao 2005).

Two additional TF (CHD9 and ZNF281) were found to have
an extreme score according to both RIF1 and RIF2 even though

900

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/7/896/212064 by U
.S. D

epartm
ent of Justice user on 16 August 2022



[10:38 5/3/2010 Bioinformatics-btq051.tex] Page: 901 896–904

Unraveling the transcriptional regulation of complex traits

none of them was found to be DE (Table 2). While not much is
known about CHD9, it has been implicated in the transcriptional
regulation of osteoblast maturation (Shur et al., 2006) and the
gender-specificity behind the molecular mechanisms underlying the
regulation of ossification has long been established (Hong et al.,
2009; and references therein). Also, very little literature exists on
ZNF281, but it has very recently been shown to be itself regulated
by SOX4, which is responsible for the precise differentiation and
proliferation in multiple tissues (Scharer et al., 2009).

SOX5, which ranked highly according to RIF1 (3.10 SD units),
is the co-activator of SOX9 (sex-determining region Y-type high
mobility group box 9) and has recently been shown to play a role
in sex reversal of the hermaphrodite red-spotted grouper (Huang
et al., 2009). Arguably, the most sex-determining gene is SRY (see
Wilhelm et al., 2007; and references therein) which in our analysis
was not found to be either DE or to have an extreme RIF. This
is most likely because SRY sets in motion the regulatory cascade
earlier than the time period assayed in this experiment. We would
predict SRY to be highly differentially wired to the highly DE genes
at those earlier time points. However, the DE gene with the highest
DW with SRY was parathyroid hormone-like hormone (PTHLH).
Interestingly, an association has been reported between PTHLH and
the number of functional and inverted teats in pigs (Tetzlaff et al.,
2009).

A final examination of the highly-ranked TF revealed that, with
the exception of TAFL7 which was over-expressed in the gonads
relative to the other tissues, none of the remaining TF were DE in
the original across-tissues analysis of Pérez-Enciso et al. (2009).

3.6 Breast cancer
A brief mining of the literature for our highly ranked TF (Table 2)
revealed that a number of them are implicated in breast cancer either
as oncogenes, tumor suppressors or as biomarkers. For instance,
NFATC4 is a transcriptional coactivator of estrogen receptors in
breast cancer cells (Zhang et al., 2007). Proto-oncogene ABL1,
also with a significant RIF1 score, has long been established to be
associated with breast cancer (Uhlen et al., 2005). In addition, PITX3
is a prognostic and diagnostic epigenetic biomarker for breast cancer
(Dietrich et al., 2009).

Furthermore, we observed a number of TF with indirect
association with breast cancer including: (i) CARM1, an essential
co-activator for estrogen-induced breast cancer (Frietze et al.,
2008); (ii) the role of chromatic remodelers (e.g. SMARCA2 and
SMARCA4 in our case) has been well described [(see for instance
the recent review by Reisman et al. (2009)], and in particular,
SMARCA4 has been shown to interact with BRCA1 providing
links between chromatin remodeling and breast cancer (Bochar
et al., 2000); (iii) MYC-associated zing finger protein (MAZ) is
responsible for the high expression of PPARG in breast cancer
(Wang et al., 2008); (iv) the nuclear receptor NR2F1 interacts
with estrogen receptor and regulates the expression of estradiol
influencing the proliferation of breast cancer cells (Le Dily et al.,
2008); and (v) RELA (nuclear factor kappa enhancer binding
protein) regulates immunity, inflammation and apoptosis (see Skaug
et al., 2009, for a review) and its association with breast cancer has
long been documented (Neil et al., 2009).

We also compared our list of TF with a similar study using the
same dataset from Cheng et al. (2009) in which gene expression

data was integrated with transcription factor binding site (TFBS)
information to identify potential TF associated with specific cancer
type. Cheng et al. (2009) identified 26 TF at the 0.01 significance
level (Q<0.01) (six with positive correlationand 20 with negative
correlation to DE genes) whereas our analyses revealed 71 TF with
significant RIF scores. We also found some overlap in the TF family
by comparing the two lists (PAX and GATA), but the majority of
the TF that RIF identified was not identified by the position weight
matrix approach of Cheng et al. (2009). However, whilst they did
not find a strong signal associated with estrogen, the set of the top
20 TF identified by RIF (Table 2) contained six genes that interact
with ESR1 (BAZ1B, NFATC4, NR2F1, PRDM2, SMARCA2 and
SMARCA4). In fact, among the 892 TF included in the analyses, 71
had a RIF z-scores <−2 or >2. Of these, 12 are known to interact
with ESR1 resulting in an over-representation hypergeometric test
P-value of 8.73E−04. This is consistent with the demonstrated
association between ESR1 status and prognosis for breast cancer.

3.7 Promoter sequence analyses
In order to obtain an independent evidence of the optimality of RIF,
the results from applying the RIF algorithm to the breast cancer data
were subjected to promoter sequence analysis to identify TF with
TFBS in the promoter region of our target genes (i.e. DE and/or
differentially PIF genes).

The MatInspector tool (Cartharius et al., 2005) within Genomatix
suite (www.genomatix.de) was used to extract genome-wide TFBS
for human (including 93 342 promoters in 31 883 loci). When cross-
referencing our list of 561 targets against the human promoterome,
we identified 12 TF with RIF z-scores <−2 or >2 and with TFBS
in the promoter region of 242 target genes. These included MAZ
and PITX3 already discussed (Table 2) with 191 and 5 TFBS,
respectively. From the remaining 10 TF (GATA3, GFI1, HHEX,
HOXC10, HOXC11, IRX4, LHX3, MSX1, PAX8 and RFX1), we
highlight the following three for which their relevance in the context
of breast cancer has been documented only recently: GATA3 with
160 TFBS and a RIF2 score of 3.28 inhibits breast cancer growth
and metastasis (Dydensborg et al., 2009); LHX3 with 130 TFBS
and a RIF1 score of −2.43 is an epigenetic biomarker for breast
cancer (Dietrich et al., 2009); and PAX8 with 134 TFBS and a RIF1
score of −2.49 is a useful marker in distinguishing ovarian from
mammary carcinomas (Nonaka et al., 2008).

3.8 RIF1 versus RIF2
As briefly mentioned earlier, we found no particular relationship
between the two alternative measures of RIF in these datasets
(Fig. 3), and this feature was attributed to both measures of RIF
capturing different yet equally valuable features when ranking TF.

Numerically, the relationship between RIF1 and RIF2 can
be explored from their expressions in Equations (3) and (4),
respectively. Conditional on a given TF, the identity, abundance
and differential expression of DE genes are fixed quantities. Hence,
it suffices to explore RIF in the dynamic range of DW. Notably,
DW2 ranges from zero (case of identical co-expression correlation
between the ith TF and the jth DE gene in both states; that is: r1ij =
r2ij = rij) to four (case of extreme ±1 and opposite r1ij and r2ij). At

DW2 =0, then RIF1i =0, while RIF2i =2×r2
ij× PIFj .

On the other extreme, at DW2 =4, it follows that RIF1i =
2×RIF2i =4×PIFj . Hence, the expectation is that RIF1 and RIF2
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will produce similar ranking for a given TF when the selected set
of DE genes are indeed targets of that TF and their expression is
activated and/or inhibited in each experimental state by the TF under
scrutiny. This also implies that, in situations where a TF is also a DE
gene, RIF1 is unable to capture its relevance, while RIF2 assigns it
a relevance in accordance to its own PIF.

In order to further explore this dichotomy, we selected two TF
from the RIF analysis of the breast cancer data as representatives of
extremely opposed RIF scores (Table 2): CARM1 (scoring highly
negative according to RIF1, yet average according to RIF2) and
SMARCA2 (highly positive by RIF2, yet average according to
RIF1). Importantly, both TF are known to play a significant role
in breast cancer (as discussed earlier) and have a moderate to high
expression level, but neither is DE (i.e. while both could be easily
detected they would not appear as relevant in an analysis based on
expression only). Figure 6 shows the scatter plot of the co-expression
relationship between CARM1 and SMARCA2 with the 561 target
genes. Most co-expression correlations between CARM1 and the
561 target genes are above the diagonal, while most co-expression
correlations involving SMARCA2 are below the diagonal. Notably,
the target genes with an extreme DW (i.e. and hence away from
the diagonal) with CARM1 have a near-zero DW with SMARCA2,
and vice versa. This scenario was found for DE genes MSI1 and
JAG2. Hence, it is DW driving the possible re-ranking between
RIF1 and RIF2.

In an attempt to further illustrate how RIF1 captures those TF
showing a large DW to those highly abundant highly DE genes,
while RIF2 focuses on those TF showing evidence for a large
change as predictors of the abundance of the DE genes in each
condition, we selected four TF: the above-mentioned CARM1 and
SMARCA2, as well as BAZ1B (very negative for RIF2 only) and

Fig. 6. Scatter plot of the co-expression relationships of CARM1 (open
circles) and SMARCA2 (filled circles) with the 561 target genes (DE and/or
differentially PIF genes) from the breast cancer dataset. These two TFs scored
differently by either measure of RIF (Table 5). Also, the coordinates of two
target genes (MSI1 and JAG2) with distinct and extreme differential wiring
(DW) with either TF is highlighted by grey arrows.

Fig. 7. For four key TF in the breast cancer dataset (top to bottom: CARM1,
SMARCA2, BAZ1B and NEUROG3) with varying RIF scores according to
RIF1 or RIF2 (Table 2), scatter plots showing the relationship between the
PIF (x-axes) of each of the 561 target genes against DW2 (left panels) and
also against the change in predictive ability of the TF (right panels).

NEUROG3 (very negative for both RIF1 and RIF2). For these
four TF, Figure 7 illustrates the relationship between the PIF of
each of the 561 target genes (either DE or differentially PIF genes)
against DW2 (left panels) and also against the change in predictive
ability of the TF as measured by (e1j ×r1ij)2 – (e1j ×r1ij)2 (right
panels). From the comparison of plots in Figure 7 with the RIF scores
in Table 2, it becomes immediately apparent that while PIF drives
the sign of RIF1, the sign of RIF2 is driven by the change, either
positive or negative, in predictive ability of the TF. With most DE
genes being down-regulated in our breast cancer contrast (Fig. 2D),
all extreme RIF1 values are also negative. The magnitude of DW2

dictates how extreme RIF1 values are likely to results. Using a
nominal DW2 >0.7 (i.e. the average of the y-axis in Fig. 7, left
panels) it becomes apparent that, in terms of |RIF1|, the ranking
order is CARM1 > NEUROG3 > SMARCA2 > BAZ1B. On the
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other hand, deviations from zero in predictive ability (i.e. zero being
the average in the y-axis in Fig. 7, right panels) dictates both the
sign and the magnitude of RIF2. CARM1, with most of the mass
centered at zero, ranks poorly according to RIF2. SMARCA2, with
most of the mass above zero, ranks highly positive; while BAZ1B
and NEUROG3, with most of the mass below zero, rank highly
negative.

4 CONCLUSIONS
In the last decade, the uptake of high-throughput gene expression
microarray technology has been coupled with a substantial body
of research devoted to the quantitative analysis of the resulting
data, including issues of sequence annotation, platform sensitivity,
transcriptome coverage, background correction, and normalization.
As a result, large lists of DE genes have been reported and co-
expression networks have been reversed-engineered. However, our
understanding of the biological processes involved has not increased
as much as might have been expected, especially in systems not
studied in great detail by reductionist approaches.

The RIF algorithm was developed on a system where a single
known mutation was largely responsible for a change in the
phenotype and using data across a long-time course from 60 days
post conception to 30 months of age. The dataset was derived
from the same muscle type in the two breeds compared. In most
respects, the differences between the expression of genes in the two
datasets was very small. In this article, we have investigated the
utility of the RIF algorithm from a range of differently structured
datasets with increasing levels of diversity in origin and gene
expression of the samples being compared. Importantly, the datasets
ranged from a set of samples from the same tissue with different
disease prognosis, through to a very complex comparison involving
multiple tissues, from multiple breeds and both sexes. Although no
single analysis can identify all the key TF involved in a process,
it is clear that the combination of RIF1 and RIF2 identifies TF
that are involved in key processes. In addition, the analysis also
identifies the higher order drivers of the differences, although the
success of this is likely to be dependent on some relevant a prior
knowledge.

The three different analytical approaches (differential expression
of TF, TF associated with DE genes, and TF that are differentially
wired between the two datasets) can potentially identify distinct sets
of genes with limited overlap. Since we do not know the true extent
of the TF involved in the regulation of a complex trait under study,
the observed differences cannot necessarily be attributed to high
false positive or negative rates. Instead, the different approaches are
identifying different sets of genes that may be involved in different
parts of the process. One explanation for the lack of overlap between
the first and the last two approaches is that DE analyses cannot by
definition identify TF with activity modified in ways that do not
involve a change in gene expression.

In this study, we have limited RIF analysis to identify key TF
in two conditions or states only. In order to implement RIF to
multi-condition arrangements, we could devise two possibilities:
(i) compute RIF for every pair-wise condition and then apply
a comparison of rankings for each TF (similar to meta-analysis
strategies); and (ii) incorporate all pair-wise condition contrasts
in the computation of RIF. However, we anticipate that this
implementation to multi-condition experiments could result in

the identification of TF that are minimally essential in each
condition contrast and hence their use for understanding, and
potentially manipulating, the design of complex phenotypes could
be limited.

With the exception of the breast cancer dataset, we have applied
RIF to experiments in which the number of replicates was balanced
in each condition. In highly unbalanced designs, the co-expression
correlations computed in each of the two conditions would have a
vastly different standard errors associated with them. The condition
with low replicates (or time points) would suffer from a large
number of spurious correlations. In these cases, one should consider
employing a significance analysis to only include those correlations
that are deemed to be non-zero. This could be achieve by either
using higher hard thresholds for the condition with the lower number
of replicates, or soft weighted information-theory based threshold
methods such as ARACNe (Margolin et al., 2008) or PCIT (Reverter
and Chan, 2008).

It should also be noted that RIF is a function of expression data
only. While this could be an advantage, one should not overlook that
the quality of any expression-based metric is ultimately dependable
on the quality of the original data, the processing algorithm to
normalize it, and its effectiveness to account for systematic effects
that can cause bias. Similarly, the analytical methods used here
to detect DE and differentially PIF genes, while well-documented,
assume a common residual variance for all genes. Because violations
to this assumption could impact the outcome of RIF analyses, the
relative advantage of joint versus gene-specific models should be
considered a priori.

Finally, we note that the RIF algorithm is different to the MNI
algorithm of di Bernardo et al. (2005), and recently applied by Ergün
et al. (2007) to identify the mediator of prostate cancer, in that the
MNI algorithm requires, as an initial phase, the re-construction of a
gene regulatory network prior to applying its connectivity properties
to a second (testing) dataset to identify the key regulators. Instead,
RIF operates directly on the data at hand without having to rely in the
availability, and subsequent processing, of existing data of similar,
or preferably more comprehensive, biological characteristics than
the one under scrutiny.

In conclusion, the RIF analysis appears to be a robust and valuable
methodology to identify the regulators with the highest evidence of
contributing to differential expression in two biological conditions,
it shows potential to be applied to a wide range of gene expression
data sets, and to significantly increase the biological knowledge that
can be derived from such experiments.
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