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Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality

worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In

eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been

used clinically for thousands of years. Baicalin is one of the main active ingredients

extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has

established that baicalin improves chronic inflammation, immune imbalance,

disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers

beneficial roles against the initiation and progression of CVDs such as atherosclerosis,

hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we

summarize the pharmacological features and relevant mechanisms by which baicalin

regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
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INTRODUCTION

Cardiovascular diseases (CVDs) have become the leading cause of disability and death on a global
scale (Timmis et al., 2018; Virani et al., 2020). CVDs lead to nearly one in three deaths in developed
countries and one of every four deaths in developing countries according to epidemiological studies
(Heidenreich et al., 2011; Zhao D. et al., 2019). Given the unmet needs in CVD control from
Western medicine (Aggarwal et al., 2017), a complementary and alternative approach for treatment
of CVD is needed. Traditional Chinese medicine (TCM), owning a history of 2,000 years, has drawn
growing attention from the cardiovascular research community due to its their “multiple targets and
multiple channels”. Importantly, according to current guidelines, Chinese patients with coronary
heart disease tend to use less Western medicine while applying more types of TCM (Guo et al.,
2013). Moreover, TCM is increasingly welcomed in many developed countries, including the United
States and Australia.

Baicalin is a monomeric flavonoid compound extracted from the root of Scutellaria baicalensis

Georgi (SBG), a species of flowering plant in the Lamiaceae family (Chen et al., 1994). Baicalin is
found in the root (10.11%), which is the main medicinal part of SBG (Figure 1) (Shang et al., 2010;
Dinda et al., 2017). SBG is an important ingredient in Xiaochaihu preparations, Gegenqinlian
decocation and Sho-saiko-to preparations whose extracts include a key component of baicalin
(Zhang, 1974; Srinivas, 2010; Zhao et al., 2016). Previous studies have high-lighted the extensive
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pharmacological properties of baicalin for treating CVDs such as
atherosclerosis (AS), hypertension, and ischemic heart disease.
Considering its therapeutic mechanism may be associated with
hypolipidemic, anti-inflammatory, anti-oxidant, anti-apoptosis
properties (Chen et al., 2015; He et al., 2016; Dai et al., 2017) and
considering its pharmacological properties and therapeutic
potentials in the progression of CVDs, herein, we summarize
and generalize the regulatory mechanisms involving baicalin in
CVDs pathogenesis with a view to provide a reference for the
development of new drugs for the treatment of CVDs.

PHARMACOLOGICAL FEATURES OF

BAICALIN

Bioactive Components in SBG
Despite the popular clinical use of SBG, its active ingredients and
the molecular mechanisms have not been fully clarified in detail
to date. It has been reported that extracts of SBG and its major
chemical constituents possess anti-viral, anti-tumor, antioxidant,
anti-inflammatory, and neuroprotective activities (Wang Z. L.
et al., 2018). With the deepening of understanding, increasing
attention paid by the cardiovascular research community is
focused on the bioactive chemical monomers comprising SBG
that are responsible for its pharmacological activities. To date,
many chemical constituents such as flavonoids, volatile oils,
terpenoids, polysaccharides, steroids and amides in SBG have
been isolated and identified. Flavonoids and their glycosides are
considered to be characteristic components of SBG. According to
the literature research, the most representative ingredients are
baicalin, baicalein, wogonoside and wogonin (Li C. et al., 2011;

Zhao T. et al., 2019). Baicalin has poor solubility in water and
lipid. In terms of the involvement of these chemicals in the
development of agents for the treatment of CVDs, baicalin
(C21H18O11) is not only the first reported and the most
abundant component but it also the component with greatest
potential and value of those investigated (Figure 2) (Azimova
and Vinogradova, 2013; Zhao T. et al., 2019).

Pharmacokinetics of Baicalin
Based on some advanced detection methods, pharmacokinetic
investigations involving baicalin have been broadly carried out in
the past few years. Absorption studies indicate that baicalin is
poorly absorbed from the gastrointestinal tract in its native form
and must be transformed into its aglycon baicalein through the
hydrolysis by the intestinal bacteria, then baicalein can be
restored to baicalin by UDP-glucuronosyltransferase (UGT) in
the systemic circulation (Lu et al., 2007; Noh et al., 2016; Zhang
et al., 2017). Since baicalein is optimally absorbed in all segments
of the gastrointestinal tract, the key step in the absorption
process of baicalin is the conversion of baicalin to baicalein
(Huang et al., 2019). Furthermore, baicalin showed bimodal or
multiple peaks in its absorption profile (Huang et al., 2012; Zhao
et al., 2014; Zhang J. et al., 2016). The first peak was reported to
occur within 45 min of ingestion, which was probably due to
direct absorption, while the second peak occurred after 8–12 h
[intravenously (i.v.)] or 12–24 h [orally (p.o.)] and was probably
associated with the enterohepatic circulation (Lu et al., 2007;
Huang et al., 2019). Next in terms its distribution, the binding
rate of baicalin and plasma protein was found to range from 86–
92%, and the high plasma protein-binding rate allows baicalin to
be absorbed rapidly into the plasma (Tang et al., 2006). A tissue
distribution study showed that baicalin was found to accumulate

FIGURE 1 | The medicinal part of Scutellaria baicalensis Georgi and the main extraction source of baicalin.
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in various tissues and was highest in the kidneys after injection
(Wei et al., 2016). Lastly, the metabolism and excretion of
baicalin follows extensive metabolization by the liver and
kidneys and is excreted in bile in the form of glucuronides.
After oral administration of baicalin, the total cumulative
amount of its glucuronides was determined to be about 54% of
the dose (Abe et al., 1990). The major active metabolic sites are
the hydroxyl groups on the A ring and 8- and 4’-positions of
baicalin and several metabolic enzymes like b-glucuronidase,
UGT, sulfatase and catechol-O-methyltransferases are also
involved (Wang et al., 2012; Lu et al., 2012; Akao et al., 2013).
Data have shown that the elimination half-life of baicalin is 0.1
till 4 h post dose (i.v) and 12.1 h (oral administration) (Xing
et al., 2005). Therefore, its insolubility in water and lipid,
extensive metabolism and high biliary excretion may
contribute to the low bioavailability and short half-life of
baicalin. Moreover, pathological conditions may alter the
functions of many enzymes and transporters in vivo, thus
baicalin may exhibit different pharmacokinetic properties
under different pathological conditions (Xing et al., 2005;
Huang et al . , 2019). For instance, baical in plasma
concentration was higher in type 2 diabetic rats than normal
rats (Liu et al., 2010). In cerebral ischemia-reperfusion rats,
absorption of baicalin was enhanced, whereas it decreased in
febrile rats (Ma et al., 2012; Huo et al., 2017).

Drug Delivery Systems
As a result of the low bioavailability of baicalin, this seriously
affected its clinical development, although many new delivery
strategies have been designed and developed, including
nanonization technology, phospholipid complexes, solid
dispersion, inclusion complexes, and micelles (Li B. et al.,
2011; Li N. et al., 2011; Yue et al., 2013; Zhang H. et al., 2016;
Li et al., 2017). When compared to baicalin alone, modified

preparations can improve its dissolution and solubility, which in
turn further improve its targeting ability and therapeutic efficacy.
For example, the baicalin liposomes modified with folic acid and
polyethylene glycol (PEG) can improve the cellular uptake rate
and tumor targeting, as well as extend the retention time in the
body (Chen et al., 2016). Baicalin liposomes are also known to
strengthen oral bioavailability and tissue distribution (Wei et al.,
2014). Nonetheless, to date, limited information is available
relative to baicalin drug delivery systems for AS therapy. Given
the potential clinical applicability of baicalin in the future,
suitable vehicles loading baicalin for use in alleviating AS
progression deserve further evaluation.

MOLECULAR MECHANISMS AND

THERAPEUTIC POTENTIAL OF BAICALIN

IN AS, MYOCARDIAL ISCHEMIA–

REPERFUSION INJURY, HYPERTENSION,

AND HEART FAILURE

Atherosclerosis
AS is the primary pathological basis of CVDs, which could lead
to dramatic clinical events, such as unstable angina or
myocardial infarction (MI) (Reiner et al., 2011). The
underlying pathophysiological mechanisms of AS involve
endothelial dysfunction, lipid deposition, oxidative stress
damage, immune inflammatory response, and platelet
migration and aggregation (Packard et al., 2009; Weber and
Noels, 2011; Gargiulo et al., 2016; Negre-Salvayre et al., 2017;
Wolf and Ley, 2019). Accumulating studies indicate that baicalin
can exert protective effects against AS by targeting these
proatherogenic processes (Figure 3).

Hypolipidemic Effects and Inhibition of Foam Cell

Formation
AS is a lipid-driven inflammatory disease of the arterial intima
(Bäck et al., 2019). Lipid retention in the endothelium
exacerbates the permeability of the vascular wall to promote
the oxidation and deposition of lipoproteins which trigger the
atherosclerotic cascade (Olofsson and Borèn, 2005). Highly
effective lipid-lowing drugs are widely used in AS. A clinical
trial has shown that baicalin could improve the state of blood
lipid disorders and showed better improvements in patients with
coronary artery disease, which was associated with decreasing
the levels of serum total cholesterol (TC), triacylglycerol (TG),
low-density lipoprotein cholesterol (LDL-C) levels and
apolipoproteins. Furthermore, in ApoE models, baicalin
decreased the lipid profile of TC, TG and LDL-C and
ameliorated the progression of AS in a dose-dependent
manner (Lee et al., 2009; Hang et al., 2018). Several biological
processes associated with baicalin are involved in lipid regulation
activities. In terms of the molecular mechanisms involved in
baicalin-modulated lipid regulation activities, an vitro study of
3T3-L1 preadipocytes determined that baicalin downregulated
the expression levels of major transcription factors of

FIGURE 2 | The chemical structure of baicalin.
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adipogenesis including CCAAT/enhancer binding proteins
(C/EBPa) and peroxisome proliferator-activated receptor
(PPAR) g (Lee et al., 2009). b-Catenin, upstream of PPARg
and the C/EBPa regulator, has a negative relationship with
adipogenesis. Baicalin significantly attenuated b-catenin
expression in an in vitro study (Lee et al., 2010). Furthermore,
another study indicated that baicalin could lower TG levels by
favoring lipid oxidation by blocking the expression of sterol
regulatory element-binding protein 1c (SREBP-1c) and Acyl-
CoA synthase (ACS) apart from increasing the expression of
lipolysis-related proteins such including PPARa and carnitine
palmitoyltransferase 1 (CPT-1) (Wu et al., 2018).

The formation of foam cells occurs in the early phases of AS.
The scavenger receptors, such as CD36 and scavenger receptors
class A (SR-A) expressed in macrophages combines with
oxidized LDL (oxLDL), which is efficiently decomposed and
metabolized by lysosomes into free cholesterol and is stored in
the cytosol (Collot-Teixeira et al., 2007; Moore and Tabas, 2011;
Yu et al., 2013). The accelerated accumulation of cholesterol
induces the formation of foam cells. In contrast, cholesterol
efflux, by which cholesterol-loaded macrophages within the
vessel wall secrete cholesterol outside cells, is understood to be
a major process in repressing macrophage conversion (Ohashi
et al., 2005). The main transporters of cholesterol efflux include
the adenosine triphosphate binding cassette transporters
ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI)

(Yu et al., 2013). In the New Zealand rabbit AS model, baicalin
significantly enhances the expression of ABCA1 and ABCG1 (He
et al., 2016). PPARg is part of a metabolic cascade highly
expressed in macrophage that enhances cholesterol efflux, and
liver receptor X (LXRa) directly increases the expression of
ABCA1 (Chawla et al., 2001). One study found that baicalin
inhibited the accumulation of cholesterol and delayed the
transformation of macrophages into foam cells, which was the
result of the upregulation of the PPAR g-LXR a-ABCA1/ABCG1
pathway. However, the effects of baicalin on the expression of
SR-A and CD36 were not obvious (He et al., 2016). As the high-
density lipoprotein (HDL) receptor, SR-BI has been identified as
a critical role in promoting cholesterol efflux in macrophages (Gu
et al., 2000; Trigatti et al., 2004). In a THP-1 macrophage study,
researchers concluded that baicalin induced cholesterol efflux via
the PPARg-LXRa-SR-BI pathway (Yu et al., 2016). Furthermore,
HDL is reported to be responsible for the reverse transport of
cholesterol from the peripheral tissues to the liver for reuse or for
the final elimination via excretion into the bile. Baicalin is
capable of up-regulating the plasma levels of HDL, which
implies that increasing HDL might be a mechanism of action
for baicalin to expedite cholesterol ejection from macrophages
and weaken their conversion (Hovingh et al., 2003; Xi et al.,
2015). Taken together, it is rational to propose that baicalin
might attenuate AS partly by modulating lipid metabolism and
foam cells formation.

FIGURE 3 | The anti-atherosclerotic effects by which baicalin alleviates the development of AS. The role of baicalin in inhibiting atherosclerosis includes hypolipidemic effects

and inhibition of foam cell formation, inhibition of oxidative stress, mitigation of inflammatory response, immunomodulatory, suppression of VSMC proliferation and migration.

low density lipoprotein (LDL); oxidized LDL (oxLDL); oxygen reactive species (ROS); high-density lipoprotein (HDL); total cholestero (TC); triacylglycerol (TG); low-density

lipoprotein cholesterol (LDL-C); CCAAT/enhancer bindingproteins a (C/EBP a); peroxisome proliferator-activated receptor g (PPAR g); liver receptor X (LXR a); ATP binding

cassette (ABC) transporter A1/G1 (ABCA1/G1); scavenger receptor BI (SR-BI); sterol regulatory element-binding protein 1c (SREBP-1c); Acyl-CoA synthase (ACS); peroxisome
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Inhibition of Oxidative Stress
The imbalance between the overproduction of oxygen reactive
species (ROS) in cells and tissues and the ability of a biological
system to remove ROS products is called oxidative stress (Peluso
et al., 2012; Pizzino et al., 2017). Under pathological conditions,
oxidative stress exacerbates the AS. Plasma LDL maybe trapped
and accumulate in injured vascular endothelium and be oxidized
by ROS to ox-LDL. In addition, the recruited monocytes and
migrated lymphocytes can also release large amounts of ROS and
which favor the synergism of early atherosclerotic lesions.
Moreover, ROS can promote vascular smooth muscle cells
(VSMCs) proliferation and collagen deposition thereby leading
to the development of an atheromatous plaque in the final
(Tousoulis et al., 2015; Kattoor et al., 2017). Recently,
considerable data has revealed that baicalin could on one hand
attenuate AS by decreasing oxidative stress products and on the
other hand strengthen the anti-oxidative system.

Firstly, baicalin may directly or indirectly reduce oxidative
stress products. Malondialdehyde (MDA) is a decomposition
product of lipid hydroperoxides and can be used as an indicator
of oxidative damage to cells and tissues (Bonnes-Taourel et al.,
1992). Baicalin was shown to effectively relieved the oxidative
stress by abrogating the upregulation of MDA in ApoE-/- mice
(Wu et al., 2018). Secondly, in terms of the effects of baicalin on
the antioxidative system, the antioxidant enzymes in the vascular
wall are not only important radical superoxide scavengers that
protect cells from oxidative damage, but are also important parts
of the endogenous antioxidant defense system (Olsvik et al.,
2005; Ku et al., 2009; Hassan et al., 2014; Wu et al., 2018). The
experiment designed by Wu suggested that baicalin treatment
significantly relieved the oxidative stress by up-regulating the
activities of superoxide dismutase (SOD), catalase (CAT) and
glutathione peroxidase (GSH-Px) in a dose-dependent manner
compared to the AS model group (Wu et al., 2018). This suggests
that baicalin can increase antioxidant enzyme activity and thus
improve AS. Further, Nuclear factor E2-associated factor 2
(Nrf2), a basic leucine zipper transcription factor, regulates
antioxidant proteins to prevent oxidative damage. As the
“master regulator” of the antioxidant response, Nrf2 can
modulate the expression of antioxidant enzymes such as heme
oxygenase-1 (HO-1) (Loboda et al., 2016). It has been reported
that Nrf2/HO-1 pathway exhibits protective roles in many
ischemic disorders. Hypoxia stimulates the Nrf2/HO-1
pathway activation in cardiomyocytes (Zeng et al., 2015).
Baicalin treatment may enhance the Nrf2 and HO-1
expression and further activate the Nrf2/HO-1 pathway (Yu
et al., 2019). Taken together, the potent abilities in elevating
antioxidant enzymes by baicalin might lead to the elimination of
ROS and subsequently ameliorate oxidative stress-induced
atheromatous plaque formation.

Mitigation of the Inflammatory Response
AS related inflammation mediated by chemokines, adhesion
molecules, proinflammatory cytokines and inflammatory
signaling pathways plays an important role in all stages of the
atherosclerotic progression (Ross, 1999; Libby et al., 2011; Zhu

et al., 2018). Injured endothelial cells activated by inflammatory
factors stimulate the biosynthesis of monocyte chemoattractant
protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1),
vascular adhesion molecule 1 (VCAM-1), and pro-inflammatory
cytokines that recruits circulating monocytes to the intima.
Migrated monocytes differentiate into macrophages that
contribute to inflammation and plaque development
(Chistiakov et al., 2018). In an in vitro study, baicalin was
found to decrease monocyte adhesion via reducing the
expression of MCP-1, ICAM-1, and VCAM-1 in the presence
of high glucose-induced human umbilical vein endothelial cells
(HUVECs). Similarly, baicalin had been confirmed to markedly
decrease the release of MCP-1, VCAM-1 and IL-6 in the kidney
of apolipoprotein E (ApoE)’ knockout (KO) mice (Liu et al.,
2015). Further, baicalin inhibited the synthesis of neutrophil
chemokines and blocked the biological activity of receptors by
selectively binding chemokine receptors, thereby inhibiting the
migration and aggregation of inflammatory cells and reducing
the degree of AS (Li et al., 2000). Furthermore, in the
development of AS-induced inflammation, inflammatory
signaling pathways like nuclear factor kappa B (NF-kB) and
Wnt1/DKK1 also have a proatherogenetic impact from fatty
streak formation to luminal occlusion. It has been reported that
the activation of the NF-kB increases the production of
inflammatory cytokines and chemokines that promote the
progression of AS (Kutuk and Basaga, 2003). Thus, the
inhibition of NF-kB signaling has been shown to reduce
the incidence of AS. Baicalin also suppressed the activation of
NF-kB in human umbilical vein endothelial cells in previous
studies (Kim et al., 2006; Ku and Bae, 2015). Another important
mechanism of baicalin is mediated by the Wnt1/DKK1 signaling
pathway. The Wnt1 signaling pathway is a highly conserved
cellular communication system (Peifer and Polakis, 2000).
Recent evidence suggests that Wnt signaling participates in
inflammatory regulation and the pathogenesis of AS (Sen and
Ghosh, 2008). Specifically, Wnt1 plays an anti-atherosclerotic
role (Gherghe et al., 2011). Dickkopf-related protein-1 (DKK1),
which interacts with Wnt, has recently been considered as a
biomarker for AS (Niehrs, 2006; Ueland et al., 2009; Kim et al.,
2011). Therefore, the intervention of the Wnt1/DKK1 pathway
may represent a feedback approach to resist the progression of
AS. A basic study designed by Wang et al. confirmed that
baicalin exerted a regulatory effect on inflammation and
prevented AS by promoting Wnt1 signally and inhibiting the
expression of DKK1 through an elevated Wnt1/DKK1 ratio
(Wang et al., 2016).

Immunomodulatory Activity
AS is a chronic, low-grade inflammatory response that attracts
cells of the innate and adaptive immune systems to the
atherosclerotic plaque (Libby, 2002). Experimental and clinical
evidence has revealed that both innate and adaptive immunity
play important roles in the onset and progression of AS (Wolf
and Ley, 2019). The complex network of interactions among
vascular components and immune cells regulate the balance
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between proatherogenic inflammatory and atheroprotective
anti-inflammatory responses (Herrero-Fernandez et al., 2019).

The natural immune cells involved in AS mainly include
mononuclear-macrophages and dendritic cells (DCs) (Shimada,
2009; Hansson and Hermansson, 2011; Ammirati et al., 2015).
Circulating monocytes and resident macrophages are the earliest
recruited to atherosclerotic plaques and the most abundant
immune cells. Baicalin may prevent the proliferation of
mononuclear cells and inhibit macrophage activation (Liu
et al., 2008). Macrophages can be divided into classically
activated pro-inflammatory (M1) and alternatively activated
anti-inflammatory (M2) phenotypes (Tan et al., 2016). M2C is
one subtype of M2 macrophages and is mainly responsible for
the phagocytosis of apoptotic cells (Zizzo et al., 2012).
RAW264.7 macrophages in the M1 phenotype induced by
lipopolysaccharide (LPS) could easily be switched to M2
phenotype after baicalin induction. Thus, baicalin may
promote M2C macrophages polarization and increase the
atherosclerotic plagues clearance (Lai et al., 2018). Previous
study showed that baicalin could significantly increase the
serum levels of interleukin (IL)-10 and transforming growth
factor-b1 (TGF-b1) (Liao et al., 2014). Meanwhile, the up-
regulated expression of IL-10 might be involved in reducing
tissue migration of neutrophils, boosting the formation of
regulatory T cells and promoting phagocytic activity of M2c
(Van den Akker et al., 2013; Lai et al., 2018). Other studies had
also shown that baicalin promoted M2 macrophage polarization
in vitro by increasing interferon regulatory factor 4 (IRF4)
protein expression and by decreasing M1 markers such as
tumor necrosis factor a (TNF-a), IL23, and IRF5 (Zhu W.
et al., 2016). In an LPS-induced rat model, baicalin could also
repress the toll-like receptor (TLR)4 signaling pathway of the
peripheral blood mononuclear cells (Ye et al., 2015).
Furthermore, DCs, presenting oxLDL-derived antigens in
atherosclerotic plaques and secondary lymphoid organs, could
treat oxLDL in plaques and stimulate adaptive immune
responses (Steinman et al., 1975; Steinman and Hemmi, 2006).
Liu et al.’s research pointed out that baicalin inhibited the
expression of the CD11c marker on DCs in aorta tissue and
CD11C, CD83, CD80, and CD86 markers on DCs in the bone
marrow. Thus, baicalin may have exert immune-regulatory
effects and prevent the formation of atherosclerotic lesions by
decreasing the DC numbers, and inhibiting DC maturation in
bone marrow and infiltration into lesions (Liu et al., 2014).
Baicalin can also affect DC-related inflammatory mediators,
especially the expression of IL-12.

The adaptive immune system is also involved in AS
progression. CD4+ T cells are the key regulatory cells for
adaptive immune response and have the ability to differentiate
into different T helper subtypes including atherosclerotic T cells
(TH1 and TH17 cells) and protective cells (TH2 and regulatory T
[Treg] cells) Among these, TH17 secretes signature cytokine IL-
17A and has a role in triggering immune inflammation and
promoting AS. Natural Treg cells (nTreg cells) express factor
forkhead box protein P3 (Foxp3) and can negatively control
immune responses (Foks et al., 2011; Tse et al., 2013; Song and

Yang, 2017; Gisterå and Hansson, 2017). Ample literature has
documented there is a Th17/Treg imbalance in patients with
coronary artery AS, accompaned by a significant increase in
Th17 and a decrease in Treg cells (Li et al., 2014; Potekhina et al.,
2015). There is an increasing effort to identify immune-
modulating therapies targeting immune cells with a potential
anti-atherosclerotic impact. Convincing evidence indicates that
baicalin could exert its anti-arteriosclerosis effects mainly by
balancing Th17/Treg cells. As mentioned before, Foxp3 could
release anti-inflammatory cytokines such as IL-10 and TGF-b1,
which plays a crucial role in the differentiation of Treg cells
(Marson et al., 2007; Ait-Oufella et al., 2009). There is an
investigation indicating that baicalin could markedly induce
Foxp3 expression and increase Treg cells, as well as increase
the levels of two relational serum cytokines (TGF-b1 and IL-10)
in animal models (Liao et al., 2014). Similarly, Yang et al. found
that baicalin up-regulated both exogenous and endogenous
Foxp3 expression and promoted Treg cell differentiation in
vitro using HEK 293T cells as a cell model (Yang et al., 2012).
In their previous studies, the same authors also confirmed that
baicalin could inhibit the differentiation of Th17 cells in vivo and
in vitro. The mechanismmight be closely associated with baicalin
inhibition the IL-6 and RORctg expression (Yang et al., 2011).
Baicalin works by regulating the immune balance of Th17/Treg
cells. The above evidences support the concept that baicalin can
improve AS through immunomodulation, which may represent
an important mechanism underlying the anti-atherosclerosis
effects of baicalin. Apart from influencing adaptive immune
cells, baicalin had been reported to also inhibit the production
of red blood cell immunity, especially IgG production, by
regulating the Treg/Th17 axis, but the correlation between red
blood cell immunity with AS is unclear (Jiang et al., 2019). In
short, the therapeutic utility of baicalin in AS at least partly
ascribed to the regulation of immunomodulatory effects.

Suppression of VSMC Proliferation and Migration
Abnormal proliferation and migration of vascular smooth
muscle cells (VSMCs) lead to intimal focal fibrous thickening
and atherosclerotic plaque formation, while it is worth noting
that VSMCs in advanced plaques are entirely beneficial. For
example, VSMCs preventing rupture of the fibrous cap. Smooth
muscle (SM)22, a differentiated VSMCmarker, is a cytoskeleton-
associated protein and is important for maintaining the
differentiated phenotype of VSMCs (Fu et al., 2000; Han et al.,
2009; Dong et al., 2012). Disruption of SM22a is known to
increase atherosclerotic lesions and enhance arterial pro-
inflammation (Shen et al., 2010; Shu et al., 2015). Baicalin
has been reported to up-regulate the SM22a which may
represent a safe and effective approach to prevent vascular
disease (Lv et al., 2016). Moreover, baicalin is able to inhibit
the proliferation of VSMCs by repressing cell cycle progression
and arresting the human aorta VSMCs cycle at the G0/G1 phase.
The molecular mechanism of this effect was associated with
activating the expression of maternally expressed gene 3
(MEG3), which is a long-chain non-coding RNA, whose
transcriptional deficiency increases cell cycle-associated protein
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expression (Liu et al., 2019). Furthermore, baicalin could activate
the p53 signaling pathway and promoted the expression and
transport of p53 leading to apoptosis of VSMCs. Overall, based
on an in vitro model of AS, baicalin inhibited proliferation and
promoted apoptosis in ox-LDL-treated HA-VSMCs by activating
the expression of MEG3/p53 (Liu et al., 2019). Furthermore,
baicalin has also been reported to suppress the proliferation and
migration of ox-LDL-VSMCs by upregulating a family of
endogenous, small and non-coding RNAs called miR-126-5p
by targeting high-mobility group box 1 (HMGB1) (Chen et al.,
2019). Thus, it is apparent that blockade of VSMC proliferation
and migration are important constituents of the atheroprotective
effects of baicalin.

Myocardial Ischemia–Reperfusion Injury
(MIRI)
Ischemic heart disease is primarily caused by coronary AS and its
complications. MI is the most common cause of ischemic heart
disease (Pasupathy et al., 2015). Reperfusion is mandatory to
salvage the ischemic myocardium from infarction, but
reperfusion per se contributes to injury and ultimate infarct
size (Reimer et al., 1993; Vandervelde et al., 2006; Fernández-
Jiménez et al., 2015). Therefore, cardioprotection beyond that by
timely reperfusion is needed to reduce infarct size and to
improve the prognosis of patients with acute myocardial
infarction. Numerous studies have confirmed that baicalin has
a protective effect on the infarcted myocardium involved in
myocardial infarction and myocardial ischemia-reperfusion,
and its main mechanism of action includes inflammation
regulation, inhibition of oxidative stress and reduction of
apoptosis (Lin et al., 2010; Kong et al., 2014).

Mitigation of Inflammatory Response
MI initiates an intense inflammatory response, while inflammation
is an important process in the pathophysiological myocardial I/R
injury (Frangogiannis, 2014; Ma et al., 2014; Yang et al., 2016).
Under inflammatory conditions, signaling pathways like mitogen-
activated protein kinases (MAPKs) and NF-kB are activated,
aggravating large amounts of pro-inflammatory markers such as
TNF-a, IL-1b, IL-6, and IL-18, and anti-inflammatory cytokines
such as IL-10 which protect cardiac function (Chandrasekar et al.,
2000; Hall et al., 2006). MAPK cascades, especially extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase/stress-
activated protein kinase (JNK/SAPK) and p38, are expresses in
the myocardium and play a pivotal role in the amelioration of
ischemic insults (Yue et al., 2000; Petrich andWang, 2004). Current
work has shown that the phosphorylated (p)-ERK was reduced
while the p-JNK and p-p38 were elevated in the rat model of acute
MI (Liu et al., 2013). Therefore, targeting the inflammatory cascade
and related inflammatory cytokines is crucial in improving
myocardial ischemia and reperfusion.

Baicalin plays a protective role in ischemia/reperfusion (I/R)
myocardial injury and protects against hypoxia/reoxygenation
(H/R) damage. A previous report confirmed that baicalin
protected against I/R injury in cultured chick cardiomyocytes
(Chang et al., 2006). In terms of the baicalin on the anti-

inflammatory mechanisms, on one hand, baical in ’s
cardioprotection was associated with mediation of MAPKs
cascades. In the acute MI (AMI) model of rats, which
following treatment with baicalin treatment, Liu and colleagues
found that the cardioprotective effect of baicalin might be
achieved via the activation of ERK and suppression of JNK
and p38 activity. They also showed that baicalin played a
favorable role against AMI impairment by decreasing
myocardial injury marker such as the creatine kinase (CK),
creatine kinase MB (CK-MB), lactate dehydrogenase (LDH)
and serum cardial troponinT (cTnT) as well as reducing the
infarction size (Liu et al., 2013). Similarly, results from the MI
rats model induced by isoproterenol, not only did baicalin
ameliorated infarct size and CK, CK-MB, LDH and cTnT
levels, but it also suppressed p-38 protein expressions
significantly (Sun et al., 2015). Conversely, baicalin treatment
effectively inhibited the NF-kB pathway and exerted
cardioprotective effects in the cultured rat cardiomyocytes
exposed to H/R (Lin et al., 2010). The phosphatidylinositol 3-
kinase (PI3K)/Akt signaling pathways also participates in the
regulation of NF-kB in the inflammatory response. In the male
rats I/R model, intragastric administration of baicalin could
attenuate I/R-induced myocardial damage via activating PI3K/
Akt signaling and suppressing NF-kB signaling (Luan et al.,
2019). In addition, among these studies, regulation of the levels
of inflammatory cytokines was almost consistent. With the
treatment of baicalin, pro-inflammatory markers such as TNF-
a, IL-6, IL-1b and IL-8 in myocardial tissues were down-
regulated, and the anti-inflammatory cytokine, IL-10, was up-
regulated. Thus, according to the above findings, it is apparent
that baicalin may directly suppress the inflammatory response
and may then improve inflammatory-elicited myocardial injury.

Inhibition of Oxidative Stress
At least half of myocardial damage resulting from MI is
associated with myocardial reperfusion injury. Once the blood
supply to an organ is interrupted (ischemia) and re-established
(reperfusion), this kind of situation leads to a “burst” of ROS
generation from mitochondria including uncoupled SOD and
MDA (Cadenas et al., 2010; Hausenloy and Yellon, 2013). There
is evidence indicating that baicalin can improve ventricular
function on I/R injury in isolated rat hearts, the mechanisms
of which may be associated with increasing SOD and decreasing
MDA activity (Kong et al., 2014). Furthermore, in a rat model of
MI, a decrease in MDA and an increase in of SOD were observed
in the baicalin treatment group (Wang L. et al., 2018). Therefore,
baicalin supplementation should be considered as an effective
approach for attenuating reperfusion-exerted microvascular
damage. In addition, Nrf2, a redox-sensitive transcription
factor, is crucial to inhibit oxidative stress in cells (Gallorini
et al., 2015). Once activated, Nrf2 can transactivate genes driven
by antioxidant response elements (ARE), especially HO-1 (Tong
and Zhou, 2017). Herein, it has been reported that the Nrf2/HO-1
pathway exhibits protective roles in ischemic disorders,
including MI (Zeng et al., 2015). One in vitro study
demonstrated that baicalin treatment activated the Nrf2/HO-1
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pathway in H9c2 cells under hypoxic condition via further
enhancing Nrf2 and HO-1 expression (Yu et al., 2019). Taken
together, baicalin may be a potential preventive and therapeutic
compound for improving MI.

Anti-Apoptosis Activity
Apoptosis, is involved in MI evolution, prognosis and outcome,
constitutes an important form of cardiac cell death after MI
(Akasaka et al., 2006; Chen et al., 2014). Inhibition of myocardial
cell apoptosis can reduce the I/R injury, which is one of the
clinical significance for the treatment of MI (Luan et al., 2019).
Baicalin pretreatment protects against myocardial I/R injury by
inhibiting mitochondrial damage-mediated apoptosis. Baicalin
also exerts cardioprotective effects via regulating several
signaling pathways and apoptosis regulators. The Wnt/b-
catenin signaling pathway is associated with ischemic heart
disease. Knockdown of b-catenin expression inhibited H2O2-
induced cardiomyocyte apoptosis. Baicalin could significantly
downregulate the expression of b-catenin in H2O2-treated H9c2
cells. It was speculated that baicalin might inhibit the Wnt/b-
catenin signaling pathway and thus inhibit cell apoptosis,
allowing it to exert a cardioprotective role. However, whether
it is directly related to MI and reperfusion remains to be verified
(Zhang et al., 2009; Gessert and Kühl, 2010; Dohn and Waxman,
2012; Qiu et al., 2017). The PI3K/Akt may also be regulated by
baicalin to inhibit I/R-induced cardiomyocyte apoptosis thereby
reduction of myocardial damage. Caspase-3 is an important
apoptosis executors in the caspase family, and up-regulating
the expression of caspase-3 gene promotes AMI myocardial
apoptosis (Zidar et al., 2007; Prech et al., 2010; Chen et al.,
2014). Cell-based research indicated that baicalin could inhibit
caspase-3 activity and protein expression to effectively protect
the heart from MI damage. The specific mechanism involved
might be related to the activation of survival kinases including
ERK and the inhibition of apoptotic kinases such as JNK and p38
(Sun et al., 2015). Bax and Bcl-2 belong to the same apoptosis
gene family, but they have opposite effects. Bcl-2 inhibits cell
apoptosis, while Bax promotes it (Karsan et al., 1997). Baicalin
could improve MI by up-regulating the expression of Bcl-2 and
down-regulating Bax (Wang L. et al., 2018). Similarly, the results
of another in vitro experiments also implied that pretreatment
with baicalin significantly reduced cytochrome c, Bax and
increased Bcl-2 expression in H/R-induced cardiomyocytes
(Jiang et al., 2018).

Furthermore, mitochondrial injury-mediated apoptosis is
also an important baicalin mechanism potentially able to
protect against myocardial I/R injury. It is well known that
cardiomyocyte apoptosis, resulting from mitochondrial
dysfunction, is considered to be a major contributor to I/R
injury (Wang et al., 2013). The most representative is
mitochondrial aldehyde dehydrogenase 2 (ALDH2), which is
widely expressed in the heart, is an anti-apoptotic enzyme that
participates in oxidative stress-induced cell apoptosis (Zhang
et al., 2011; Sun et al., 2014). ALDH2 maintains mitochondrial
function and inhibits ROS generation (Vander Heide and
Steenbergen, 2013). Emerging evidence has revealed that
ALDH2 has a cardioprotective role in myocardial IR injury

(Pang et al., 2015). The study by Jiang et al. demonstrated that
baicalin could reduce the apoptosis and oxidative stress by
enhancing the expression and activity of ALDH2 to protect
against the cardioprotective effect of H/R-induced H9c2 cell
damage (Jiang et al., 2018). Taken together, understanding the
effects of baicalin in mediating functions of anti-apoptotic
activity would supply newly insights into the understanding for
the treatment of MIRI.

Hypertension
Hypertension is a complex disease that involves an interaction
between environmental factors, genetic influences and
abnormalities in regulatory mechanisms of the cardiovascular
system (Parati, 2015; Hoffmann et al., 2017; Calvillo et al., 2019).
Cumulative findings support the notion that inflammation,
oxidative stress and endothelial dysfunction leads to the
development of hypertension (Dinh et al., 2014). Targeting
these pathogenesis processes is indicated to be a critical
mechanisms underlying the baicalin hypotensive effect and
subsequent cardiovascular events (Ding et al., 2019).

Recently, the immune system and inflammatory response
have been shown to play an essential role in the pathogenesis of
hypertension. Many inflammatory markers such as C-reactive
protein (CRP), cytokines, and adhesion molecules have been
found to be elevated in hypertensive patients supporting the role
of inflammation in the pathogenesis of hypertension. CRP could
stimulate monocytes to release proinflammatory cytokines such
as IL-6, IL-1b, and TNF-a which will further promote
inflammation (Crowley, 2014). In vivo, experimental data
confirmed that baicalin forcefully lowered the blood pressure
partly via decreasing the serum levels of high-sensitivity CRP, IL-6
and IL-1b in spontaneously hypertensive rats (SHRs) (Wu et al.,
2019). Similarly, another vitro study showed that baicalin
extenuated contents of TNF-a by altering miR-145 expression
and significantly ameliorating TNF-a inflammatory injuries in
human aortic endothelial cells (HAECs) (Li et al., 2020). With
the popularization of the Holistic concept, numerous
studies have revealed that a damage in the intestinal barrier,
is considered as a critical role in the pathogenesis of
hypertension primarily by exacerbating the development of
chronic low-grade inflammation (Santisteban et al., 2017;
Jaworska et al., 2017). The increment of intestinal permeability
caused by intestinal barrier dysfunction allows leakage of
bacterial metabolites into the circulation. One such metabolite
is bacterial lipopolysaccharide, a TLR4 ligand, which is increased
in the circulation of patients with hypertension (Kim et al., 2018).
One of an important consequence of TLR signaling is the
priming of inflammasomes. Various inflammasome-derived
cytokine IL-1b or/and IL-6 is augmented in several blood
pressure-regulating sites during hypertension, including medial
and adventitial layers of arteries (Krishnan et al., 2016; Zhu Q.
et al., 2016). Existing study proves that baicalin take the
protective effects on the intestinal integrity in the SHRs. One
molecular evidence is that baicalin could decreases the serum
levels of inflammatory indicators such as high-sensitivity C-
reactive protein (hs-CRP), IL-1b, and IL-6. Another one is that
baicalin increases the expression of tight junction proteins such
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as zonules occludin-1 (ZO-1), cingulin and occluding. Besides,
short-chain fatty acids (SCFAs), as the metabolites of intestinal
microbes, also play an important role in the integrity of the
intestines, and their pathway of action may be related to
enhancing the expression tight junction proteins (Wu et al.,
2019). A pivotal study shows that baicalin treatment blunts the
development of experimental hypertension partly by promoting
the production of fecal SCFAs and the abundance of SCFA-
producing bacterial in the SHRs. Thus, all these studies support
the protective effects of baicalin on the intestinal integrity in the
treatment of hypertension. According to previous studies,
sustained inflammation contributes to the overproduction of
ROS which in turn aggravates the inflammatory process and
perturbs the function of the vasculature (Crowley, 2014). In the
pathogenesis of hypertension, Angiotensin II (Ang II), as the
main active peptide of renin-angiotensin system (RAS), can
participate in oxidative stress and apoptosis leading to
endothelial dysfunction by activating apoptosis-related
proteins, stimulating ROS production, and reducing NO
production. Therefore, interfering with Ang II-induced
endothelial dysfunction, inhibiting oxidative stress, and
reducing cell apoptosis can effectively improve hypertension. A

study involving the HUVEC model of Ang II injury determined
that baicalin can significantly reduce the endothelial dysfunction
and oxidative stress induced by Ang II. These positive effects are
mainly achieved by regulating the expression of Bax, Bcl-2 and
cleaved caspase-3, activating the ACE2/Ang-(1-7)/mas axis, and
upregulating the PI3K/AKT/eNOS pathway. They also found that
baicalin attenuated oxidative stress indicators such as reducing
MDA and ROS, promoting nitric oxide (NO) and Total
Antioxidant Capacity (T-AOC) levels (Heitsch et al., 2001;
Mehta and Griendling, 2007; Sampaio et al., 2007; Wei et al.,
2015). Another potential mechanism involved in the hypertension-
protecting effects of baicalin is enhancing endothelial nitric oxide
synthase (eNOS) -induced production of endogenous NO in
HUVECs (Chen et al., 2013). Apart from the above pathogenetic
mechanisms involving baicalin, baicalin lowered blood pressure
partially by relaxing vascular smooth muscle by decreasing Ca2+

levels and the enhancing KATP function in VSMCs (Ding et al.,
2019). The combined application of baicalin and berberine was also
found to relax blood vessels, owing to the voltage-dependent Ca2+

channel (VDCC) (Wu et al., 2020). Together, these studies
indicated that baicalin might have comprehensive effects on
ameliorating hypertension.

FIGURE 4 | The molecular mechanisms and potential targets of baicalin in hypertension, myocardial infarction and reperfusion, heart failure (↓ decrease or inhibit; ↑

increase or up-regulate). Abbreviations: tumor necrosis factor (TNF)-a; extracellular signal-regulated kinase (ERK); c-Jun N-terminal kinase (JNK); phosphatidylinositol

3-kinase (PI3K); nuclear factor kappa B (NF-kB); interleukin 6, 8, 10, 1b (IL-6, IL-1b, IL-8,IL-10); superoxide dismutase (SOD); malondialdehyde (MDA); nuclear factor

E2-associated factor 2 (Nrf2); heme oxygenase-1 (HO-1); mitogen-activated protein kinases (MAPKs); mitochondrial aldehyde dehydrogenase 2 (ALDH2); high-

sensitivity C-reactive protein (hs-CRP); zonula occludens-1 (ZO-1); Short-chain fatty acids (SCFAs); oxygen reactive species (ROS);(eNOS);Total Antioxidant Capacity

(T-AOC); nitric oxide (NO); extracellular matrix (ECM); Connective Tissue Growth Factor (CTGF); creatine kinase (CK), creatine kinase MB (CK-MB), lactate

dehydrogenase (LDH) and serum cardial troponinT (cTnT); malondialdehyde (MDA); superoxide dismutase (SOD).

Xin et al. Cardiovascular Protection of Baicalin

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5832009

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Heart Failure
Heart failure (HF) is the final process resulting from different
cardiac insults and subsequent dysregulation of in compensatory
mechanisms and pathogenic processes (Yancy et al.,
2013). Cardiac fibrosis characterized by interstitial fibroblast
proliferation and excessive production and deposition of
myocardial extracellular matrix (ECM) proteins is an
independent and predictive risk factor for HF in both ischemic
and nonischemic cardiomyopathy (Fan et al., 2012; Prabhu and
Frangogiannis, 2016). Some studies have revealed that baicalin
had an anti-fibrosis effect. One study had observed that baicalin
could alleviate myocardial fibrosis manifested by reducing the
ECM and decreasing fibrosis genes expression [type I collagen,
type III collagen and Connective Tissue Growth Factor (CTGF)]
in pressure overload mouse model (Zhang et al., 2017). Similarly,
another study found that baicalin could inhibit fibroblast
proliferation and ECM accumulation, thereby suppressing
cardiac fibrosis from the pressure overload-induced in the
abdominal aortic constriction (AAC) rat model; the underlying
mechanisms are linked to the AMPK/TGF-b/Smads signaling
pathway (Xiao et al., 2018). Moreover, baicalin inhibited
apoptosis by reducing the Bax/Bcl-2 ratio and caspase-3,
indicating that that suppression of apoptosis could decrease
adverse remodeling and subsequent progression to HF
(Wencker et al., 2003; Dai et al., 2017). It is worth exploring
additional more mechanisms of baicalin-mediated HF protection
furtherly (Figure 4).

CONCLUSION

In conclusion, numerous preclinical studies have provided
evidence that baicalin, a naturally occurring bioactive compound
in S. baicalensis Georgi, is a promising therapeutic agent for
cardiovascular protection. The pharmacokinetics profile of
baicalin mainly includes gastrointestinal hydrolysis, enterohepatic
recycling, carrier-mediated transport and complicated metabolism.
A comprehensive understanding of its pharmacokinetics is essential
for its safety and efficacy in clinical applications. Baicalin exerts
prophylactic and/or therapeutic effects in cardiovascular disorders
via mechanisms involving in regulating lipid metabolism, reducing
inflammation-induced damage, inhibiting oxidative stress,

reducing apoptosis, and immune regulation. The pleiotropic
pharmacological activities of baicalin suggest it has great potential
for clinical application in the prevention and treatment of AS,
MIRI, hypertension, and HF. Although a great deal of knowledge
has been acquired regarding the benefits of baicalin on CVDs from
experimental data, it is worth noting that the specific underlying
mechanisms are still relatively unexplained. Thus, the limited
clinical and pharmacological data available are not enough to
evaluate its efficacy at the present moment. Further, concerning
the undesirable physical characteristics of baicalin, additional
research and technological development are required to improve
bioavailability and to overcome the challenges in its clinical
application. Therefore, making full use of modern analytical
techniques, establishing reasonable detection methods, and
studying the role of baicalin in a more systematic and in-depth
manner are important. Further exploration into the molecular
mechanisms and potential targets of baicalin, is also urgent and
necessary in order to conduct a large randomized and controlled
trials to evaluate the efficacy and safety of the cardiovascular activity
of baicalin.
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