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Genomic DNA Hybridizations. We determined variation in gene expression between two 
distinct accessions of Arabidopsis as well as within a RIL population derived from these 
accessions. However, the microarray probe set was designed on the sequenced accession Col 
and signal intensity ratios might therefore be affected by hybridization differences due to 
DNA polymorphisms between Col, Ler, and Cvi. We therefore assessed this effect by 
hybridizing genomic DNA of the parental accessions. 

Genomic DNA was isolated with CTAB-buffer (100 mM Tris·HCl/20 mM EDTA/1.4 M 
NaCl/2% wt/vol CTAB/1% wt/vol PVP-40/2% vol/vol 2-mercaptoethanol) followed by 
phenol/chloroform extraction and subsequently sheared in a nebulizer (Invitrogen, Valencia, 
CA) according to the manufacturer's protocol. Ten micrograms of genomic DNA was 
nebulized in 750 µl of shearing buffer for 90 seconds at 10 psi. Four µg of each DNA sample 
was amplified and labeled with the BioPrime Plus Array CGH Indirect Genomic Labeling 
System (Invitrogen). DNA probe immobilization was performed according to instructions 
from the Galbraith laboratory (http://ag.arizona.edu/microarray/). DNA microarrays were 
three times rehydrated over a 50°C water bath for 10 sec and snap dried on a 70°C heat block, 
followed by UV cross-linking (140 mJ). Four µg of each labeled DNA sample was combined 
with 2× hybridization buffer (50% formamide, 10× SSC and 0.2% SDS) and denatured for 
five minutes at 70°C. Samples were hybridized to the slides for 12-18 h in hybridization 
chambers at 42°C. Washes were performed at room temperature in 1× SSC/0.1% SDS, 0.2× 
SSC/0.1% SDS, and 0.2× SSC respectively. Arrays were scanned using a ScanArray Express 
HT (PerkinElmer, Wellesley, MA) and quantified with Imagene 6.0 (BioDiscovery, El 
Segundo, CA). 

A comparison on 4 microarrays, including a dye swap, yielded no significant differential 
hybridization between the 2 genomes (q <0.05). 

Alternatively we used CGH-Plotter, which has been designed to identify the deletion or 
amplification of groups of genes by applying k-means clustering and dynamic programming 
(1). Nineteen differentially hybridizing regions were identified containing 148 genes (SI 
Table 3). The larger regions are located on chromosome 3 (genes At3g42240 to At3g42570) 
and chromosome 4 (genes At4g16830 to At4g17450) and comprise numerous retrotransposon 
and transposase family members, as well as disease resistance genes and their homologs. 
Only 10 of the 148 genes are also differentially expressed between the parental accessions 
(1.2% of 855 differentially expressed genes) and 26 (0.65% of 4,066) showed an expression 
QTL with no enrichment for locally regulated genes. We therefore conclude that 
hybridization effects due to genomic polymorphisms only have a minor effect on gene 
expression analysis, as Kliebenstein et al also concluded. (2). 

Automatic Cofactor Selection. In the multiple QTL model mapping, the cofactors were 
selected by using backward elimination process. A total of 55 evenly distributed markers with 
an average distance of 9.2 cM were preselected as initial cofactors. We then fitted the 
observed expression data to a model <graphic1>, where y is the log-ratio of signal intensities, 
xi is the genotype comparison at the ith cofactor (i = 1.55), taking values 1 for Cvi/Ler, -1 for 
Ler/Cvi and 0 for Ler/Ler and Cvi/Cvi; and bi is the substitution effect for the ith cofactor. 
This model was called a full model, which is an unbiased estimate of the noise, not suffering 
from overfitting. We then conducted an ANOVA test to compute the F and P values for 
explained variation by each factor, the estimate of residual variance (Vfull) and the residual 
degree of freedom (dffull). Of all F statistics not significant at 99.9% confidence (P < 0.001) 
with 1 dffull, the factor with the lowest F value was eliminated from the model. ANOVA 



analysis on this reduced model recomputed the F values for explained variance by using 
remaining factors and the residual variance (Vred). The F values in reduced models were 
adjusted by a factor Vred/Vfull, and then these corrected F values could be analyzed by using 
the same cutoff as in the full model. This backward elimination process was repeated until all 
remaining markers were significant (P < 0.001) and the number of remaining cofactors was 
<10 because we would not expect the number of QTL for a single transcript to exceed 10. In 
the QTL mapping procedure, these remaining markers were used as cofactors for QTL 
detection. 

Genetic Regulatory Network Construction. Combined expression-trait correlations and 
expression-quantitative trait locus mapping has been used to increase the power of identifying 
the candidate regulator gene or novel target genes. Bing and Hoeschele (3) computed the 
Spearman rank correlation coefficient between the expression profiles of genes in an eQTL 
region and the profile of the gene mapped to that region. At least one candidate was retained 
with a significant and highest correlation coefficient. However, the gene affected by an eQTL 
region and all locally regulated genes in this eQTL region are probably coexpressed due to a 
linked genetic effect. The true regulator may be among the top regulators, but will not always 
be the superlative. To improve the reliability in predicting regulators, especially for those 
master regulators with a pleiotropic effect, we considered the function-related genes in a 
group. We made an assumption that the function-related genes mapping to the same eQTL 
region are likely to have one and the same regulator in that region. The most likely candidate 
is the one that best correlates to the whole group. Another reason for starting with subsets of 
function-related genes is that genome-wide studies always have to face the conflict between 
the power of detection (in favor of a less stringent threshold) and the control of FDR (in favor 
of a stringent threshold). The function-related gene can be selected by different ways based 
on, e.g., gene family, keywords, or Gene Ontology terms. To illustrate our method, we first 
consider the gene regulatory network for flower genes as an example. Flower genes here are 
defined as the genes annotated with keywords "circadian rhythm," "flower development," or 
"photoreceptor" in The Arabidopsis Information Resource database. This initial subset was 
complemented with literature mining (4-24). The final set contained 192 genes, 175 of which 
were measured in our experiments. A total of 83 genes showed significant linkage at the 
genome-wide threshold of P value 2.23 × 10-3. The eQTL support intervals of each mapped 
gene were determined by setting left and right border positions associated with max{-
log10P}-1.5. The regulator candidates are the genes physically located in the eQTL intervals. 
The candidates were sorted by using iGA, which was initially proposed to identify the 
functional classes of genes that are significantly changed in a microarray experiment (25). 
We postulated that, among all possible regulators, the best candidates are those that correlate 
particularly well to a large number of their potential target genes. We calculated all pairwise 
Spearman rank correlations on expression profiles (80 log ratios of cohybridized RILs) 
between each of the 83 mapped flower genes and all potential regulators in their eQTL 
intervals. The number of potential regulators is yi (i = 1,...,83) for the ith flower gene, and the 
total number of correlation coefficients (<graphic2>) is 105,899, with 23,306 potential 
candidate genes. These values were then rank-ordered so that the strongly correlated gene-
candidate pairs were at the top of the list. We moved along the rank list of all correlation 
coefficients from top to bottom, counting the genes mapped to one given candidate regulator, 
and each time we encountered a new member we asked how likely it was to observe this 
many members of this given candidate that high up in the list by chance. This probability (P 
value) is exactly 

<graphic3>;<graphic4>, 



where n is the total number of correlation coefficients (n took value 105,899 in the case of 
flower genes), x is the total number of flower genes mapping to a given candidate gene, and t 
is the rank of the zth member. The notation <graphic5> indicates the binomial coefficient 
(i.e., the number of ways of picking y unordered items from a list of x items). By this method, 
we got a vector of P values associated with the comapped flower genes for each candidate 
regulator. For each given candidate, we determined the position, z, in the vector that yielded 
the smallest P value and assigned this value as the iGA possibility of change value (PC value) 
of this given candidate gene. Then, the top z comapping flower genes made a contribution to 
this PC value. The PC-value threshold was 2.15 × 10-6, Bonferroni adjusted as 0.05/m, where 
m is the total number of candidate genes. Any candidate with a significant PC value can be a 
putative regulator, and the flower genes contributing to this PC value are its potential target 
genes. We retained the regulator with the lowest PC value and defined the regulatory relation 
in terms of the sign of the correlation coefficient. If the correlation coefficient is negative, 
regulation is repressive; otherwise, it is activating. 

We started with a subset of known function-related genes, i.e., 192 flower genes. This is a 
knowledge-driven selection. The next natural step is to find whether there are any novel 
genes comapping with this functional class or coregulated, if linkage was not significant. A 
method proposed by Lan et al. (26) was used. Instead of finding seed transcripts by clustering 
QTL profiles, we used the regulators and target genes obtained from iGA study as seed 
transcripts. The log ratio gene expression profile matrix (axb) was then split into two parts: 
one is the a1xb matrix for seed transcripts; the other is the a2xb matrix for other genes, where 
a is the total number of gene transcripts (a = 24,065 in our case); a1 is the number of seed 
transcripts; a2 is the number of other genes (a1+a2 = a); and b is the number of arrays (b = 80 
in our case). We computed the Spearman correlation coefficient and its corresponding P 
value for each a1 seed gene with each a2 transcript. A permutation test was used to compute 
an empirical threshold and estimate its corresponding FDR (27) for which we randomly 
permutated the b columns in the seed transcripts matrix. Therefore, the correlations between 
seed transcripts and other genes were interrupted but the correlation structures within these 
two sets were intact. The correlation coefficients were computed as described above, and the 
highest absolute coefficient was recorded. The process was repeated 1,000 times, and the 
95th percentile of the rank-ordered coefficients generated an empirical threshold. The 
transcripts passing this threshold were potential novel target genes. 
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