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Abstract

Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct

cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources

have been called stem cells, even though they range from pluripotent cells, typified by embryonic

stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem

cell lines, which can generate a far more limited repertory of differentiated cell types. The rapid

increase in reports of new sources of stem cells and their anticipated value to regenerative

medicine1, 2 have highlighted the need for a general, reproducible method for classification of these

Correspondence and requests for materials should be addressed to F. J. M. (fmueller@scripps.edu) and J. F. L. (jloring@scripps.edu).
‡Present address: Genome and Biomedical Sciences Facility and Department of Statistics, University of California, Davis 451 Health
Sciences Drive, Davis, CA 95616 USA
Contributions: JFL and FJM designed the study and wrote the manuscript, IU, RW, DK, RS, LL and FJM designed and conducted the
bioinformatics analysis, LL, CL, PHS, MR, IHP, FJM and NOS conducted experiments and provided essential materials for this study.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2009 March 18.

Published in final edited form as:

Nature. 2008 September 18; 455(7211): 401–405. doi:10.1038/nature07213.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



cells3. We report here the creation and analysis of a database of global gene expression profiles

(“Stem Cell Matrix”) that enables the classification of cultured human stem cells in the context of a

wide variety of pluripotent, multipotent, and differentiated cell types. Using an unsupervised

clustering method4, 5 to categorize a collection of ~150 cell samples, we discovered that pluripotent

stem cell lines group together, while other cell types, including brain-derived neural stem cell lines,

are very diverse. Using further bioinformatic analysis6 we uncovered a protein-protein network

(“PluriNet”) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas,

and induced pluripotent cells). Analysis of published data showed that the PluriNet appears to be a

common characteristic of pluripotent cells, including mouse ES and iPS cells and human oocytes.

Our results offer a new strategy for classifying stem cells and support the idea that pluripotence and

self-renewal are under tight control by specific molecular networks.

Cultured cell populations are traditionally classified as having the qualities of stem cells by

their expression of immunocytochemical or PCR markers.7 This approach can often be

misleading if these markers are used to categorize novel stem cell preparations or predict

inherent multi- or pluripotent features.8 To develop a more robust classification system, we

created a framework for identifying putative novel stem cell preparations by their whole

genome mRNA expression phenotypes (Figure 1). The core reference dataset, which we call

the Stem Cell Matrix, includes cultures of human cells that have been reported to have either

stem cell or progenitor qualities, including human embryonic stem cells, mesenchymal stem

cells, and neural stem cells. To provide the context in which to place the stem cells, we included

non-stem cell samples such as fibroblasts and differentiated embryonic stem cell derivatives.

To avoid biasing the classification methods, it was critical that we designate the input cell types

with terminology that carried as little preconception about their identity as possible. Our

nomenclature (“Source Code”) has two components: the first is the tissue or cultured cell line

of origin. The second term captures a description of the culture itself. Supplementary Tables

1 – 8 summarize the descriptions of the core samples and their assigned Source Codes.

To sort the cell types we used an unsupervised machine learning approach to cluster

transcriptional profiles of the cell preparations into stable distinct groups. Sparse nonnegative

matrix factorization (sNMF) was adjusted for this task by implementing a bootstrapping

algorithm to find the most stable groupings (see also Supplementary Discussion 1).4, 5 The

stability of the clustering9 indicated that the dataset most likely contained about twelve

different types of samples (Figure 2; Supplementary Method 2). The composition of the stable

clusters revealed both predictable and unpredicted groupings of a priori designations (Figure

2 and Supplementary Figure 1). The twenty samples identified as undifferentiated human

pluripotent stem cell (PSC) preparations were grouped together in one dominant cluster (Figure

2, Cluster 1) and one secondary cluster (Figure 2, Cluster 5). Sixty-two of the samples were

brain-derived cells that were described as neural stem or progenitor cells based on their source,

culture methods and classical markers. Most of the designated neural stem cells were

distributed among multiple clusters, indicating a great deal of diversity in neural stem cell

preparations. But one group of the brain-derived lines, those derived from surgical specimens

from living patients (HANSE cells, see below), remained together throughout the iterative

clusterings (Figure 2, Cluster 6; Supplementary Figure 3; Supplementary Method 1). The

HANSE cell group consisted of transcriptional profiles that were derived from neurosurgical

specimens following published protocols for multipotent neural progenitor derivation and

propagation.10, 11 These cells expressed markers that are commonly used to identify neural

stem cells12 (see Supplementary Figure 4), but the clustering clearly separated them from the

other samples that had been derived from postmortem brains of prematurely born infants (see

Figure 2).10,11
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We tested the ability of our dataset to categorize additional preparations by adding 66 samples

comprising new cultures derived from PSC lines that were already in the matrix, preparations

that were not yet included (but their presumptive cell type was already represented), or new

cell types. We chose two new types of cells: a differentiated cell type (umbilical vein

endothelial cells [HUVEC]) and a recently developed new source of pluripotent cells, induced

pluripotent stem cells13-16 (iPSC, Supplementary Table 9). iPSCs have been generated from

somatic cells, including adult fibroblasts, by genetic manipulation of certain transcription

factors.13, 15-17 We re-computed clustering results including the test dataset (Supplementary

Table 10). All of the HUVEC samples clustered together and formed a distinct group. Most of

the additional PSC lines (human ES cells [embryonic PSC; ePSC] and iPSCs) from several

different labs were placed into a context that contained solely PSC lines. The three additional

germ cell tumor lines clustered together with the tumor-derived pluripotent stem cell (tPSC)

line 2102Ep and samples of three human ES cell lines: BG01v18, Hues719, and Hues1319.

BG01v is an established aneuploid variant line and the two Hues lines were aneuploid variants

of the originally euploid lines (not shown).

We used a combination of analysis tools to explore the basis of the unsupervised classification

of the samples in the core dataset. Gene Set Analysis3 (GSA) is a means to identify the

underlying themes in transcriptional data in terms of their biological relevance.

GSA uses lists of genes5 that are related in some way; the common criterion is that the

relationships among the genes in the lists are supported by empirical evidence.20 GSA

highlighted numerous significant differences among the computationally defined categories.

(See Supplementary Figure 2, Supplementary Table 11 and Supplementary Online Materials).

While GSA is valuable for discovering specific differences among sample groups, it is limited

to curated gene lists and cannot be used to discover new regulatory networks. The MATISSE

algorithm6 (http://acgt.cs.tau.ac.il/matisse) takes predefined protein-protein interactions (e.g.

from yeast-two-hybrid screens) and seeks connected subnetworks that manifest high similarity

in sample subsets. The modified version used in this analysis is capable of extracting sub-

networks that are co-expressed in many samples but also significantly up- or down-regulated

in a specific sample cluster. Since the PSC preparations were consistently clustered together

we used MATISSE to look for distinctive molecular networks that might be associated with

the unique PSC qualities of pluripotence and self-renewal. A Nanog-associated regulatory

network has been outlined in mouse embryonic PSC,21 and we looked for the elements of this

network in human PSCs using our unbiased algorithm. We found that the algorithm predicts

that human PSC possess a similar NANOG-linked network (Figure 3a; elements labelled in

red). However, we also discovered that the human NANOG network appears to be integrated

as a small component of a much larger protein-protein interaction network that is up-regulated

in human PSCs (Figure 3). Remarkably, this PSC-specific network (termed Pluripotency

associated Network, PluriNet) contains key regulators that are involved in the control of cell

cycle, DNA replication, DNA repair, DNA methylation, SUMOylation, RNA processing,

histone modification and nucleosome positioning (see also Supplementary Discussion 2 and

www.openstemcellwiki.org). Many of the genes in the PluriNet have been linked to

embryogenesis, tumorigenesis, and aging (Figure 3c and Supplementary Figure 6). We further

explored the hypothesis that pluripotency is closely linked to PluriNet expression by analyzing

published gene expression datasets from human oocytes, various types of PSCs, and murine

embryos (see Table 1 for a summary of our findings in various model systems). Analysis of a

microarray dataset22 that spans development from murine oocytes to the late blastocyst stage

revealed that the PluriNet expression is dynamic and up-regulated during early mammalian

embryogenesis (Table1; Supplementary Figures 7 - 9).23 Also, our preliminary analyses

indicate that the PluriNet is strongly up-regulated in mouse PSCs, mouse iPSCs, and mouse

epiblast-derived stem cells24 when compared to somatic cells. Therefore the PluriNet may be
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useful as a biologically inspired gauge for classifying both murine and human PSC phenotypes

(Table 1; Supplementary Figures 10 – 13).

In summary, our data indicate that an unbiased global molecular profiling approach combined

with a transcriptional phenotype collection using suitable machine learning algorithms can be

used to understand and codify the phenotypes of stem cells.4, 5, 25 Although it is more

extensive than any stem cell dataset reported to date, we consider our database and the PluriNet

to be a work in progress. As more direct evidence for protein-protein interactions in human

cells becomes available, it will be possible to refine the networks we’ve defined and make them

more useful for testing hypotheses about the nature of stem cell pluri- and multipotence. Also,

our sample collection is limited to pluri- and multipotent stem cell types that grow well in

culture, and does not include some of the most well-studied lineages, such as hematopoietic

stem cells. Resolution and reliability of a context-based unsupervised classification can be

expected to grow with the breadth and depth of the database content.26 Even with these

limitations, we have shown that the dataset and PluriNet have already proved useful for

categorizing cell types using unbiased criteria. As more stem cell populations become

available, cultured by new methods, isolated from new sources, or induced by new methods,

we will use the PluriNet and the Stem Cell Matrix as a reference system for phenotyping the

cells and comparing them with existing cell lines.

Methods Summary

For an overview of the general workflow, please also refer to Figure 1. A detailed list of the

samples, culture methods and reference publications is provided in the Supplementary

materials.11. Generally, RNA from each sample was prepared from approximately 1 × 106

cultured cells. Sample amplification, labeling and hybridization on Illumina WG8 and WG6

Sentrix BeadChips were performed for all arrays in this study according to the manufacturer’s

instructions (http://www.illumina.com) at a single Illumina BeadStation facility. We used the

Consensus Clustering framework9 to cluster transcription profiles and to assess stability of the

results. As the algorithm, we used sparse non-negative matrix factorization.5 For data

perturbation, 30 sub-sampling runs were performed for each considered number of clusters

(k). In each run, 80% of the data was subjected to ten random restarts. The R-script can be

downloaded at the accompanying website www.stemcellmachinelearning.org. Details on the

application of GSA,20 PAM,27 MATISSE6 as well as publicly available datasets used in this

study can be found in the Methods section. We modified the MATISSE6 computational

framework to fit the goals of this study. For the present analysis we used the human physical

interaction network that we had previously assembled6 and augmented it with additional

interactions from recent publications.21, 28 29 The 64 interactions in Wang et al. 200621 were

mapped to the corresponding human orthologs using the NCBI Homologene database. The

microarray data has been deposited at NCBI GEO (GEO series accession number: GSE11508).

It can also be accessed, processed and downloaded at www.stemcellmesa.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sample collection and analysis for the Stem Cell Matrix

Cell preparations for the Stem Cell Matrix are cultured in the authors’ laboratory or collected

from other sources worldwide. Samples are assigned source codes that capture their biological

origin and an relatively unbiased description of the cell type (such as BNLin for brain-derived

neural lineage). Samples are collected and processed at a central lab for microarray analysis

on a single Illumina BeadStation instrument.

The genomics data are processed by unsupervised algorithms that are capable of grouping the

samples based on non-obvious expression patterns encoded in transcriptional phenotypes. For

pathway discovery, existing high-content databases with experimental data (e.g. protein-

protein-interaction data or gene sets) are combined with our transcriptional database, a priori
assumed identity of cell types and bootstrapped sparse non-negative matrix factorization

(sample clustering) to produce metadata that can be mined with Gene Set Analysis software

and topology-based gene set discovery methods (systems wide network analysis). Web-based,

computer-aided visualization methodologies can be used by researchers to formulate testable

hypotheses and generate results and insights in stem cell biology.

Two exemplary results we report in this paper are the classification of novel stem cell types in

the context of other better understood stem cell preparations, and a molecular map of interacting

proteins which appear to function in concert in pluripotent stem cells.
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Figure 2. Clusters of samples based on machine learning algorithm

Samples were distributed on the basis of their transcriptional profiles into consensus clusters

using sNMF.

A. Consensus matrix from consensus clustering results (center matrix plot). The consensus

matrix is a visual representation of the clustering results and the separation of the sample

clusters from each other. Blue indicates no consensus, and red very high consensus. The

numbers (1-12) on the diagonal row of clusters indicate the number assigned to the cluster by

sNMF. These numbers (“Cluster 1” …“Cluster 12”) are used throughout the text to indicate

the group of samples in that cluster. The bar graph above the consensus matrix plot shows the

summary statistics assessing the overall quality of each cluster. The cluster consensus value

(0-1) is plotted above the corresponding cluster in the matrix plot. Note that most clusters

(Clusters 10, 12, 6, 4, 9, 1, 8, 11, 7, 2) have a high quality measurement. To the left of the

consensus matrix is another view of the consensus data, visualized as a dendrogram. This is a

representation of the hierarchical clustering tree of the consensus matrix

B. The content of the sample clusters resulting from the same sNMF run are displayed. Numbers

are the same cluster numbers assigned by the consensus clustering algorithm that are used

throughout the text and figures. For more information on samples and Source Code and

references see Supplementary Tables 1 – 10.

# Number of samples,

¶ Samples were derived from adult brain specimens
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Figure 3. Pluripotent Stem Cell-specific protein-protein interaction network detected by MATISSE

Clusters from the sNMF k=12 analysis were used in combination with the transcriptional

database to identify protein-protein interaction networks enhanced in PSC.

A. A large differentially expressed connected subnetwork (“PluriNet”) shows the dominance

of cell cycle regulatory networks in PSC (see legend). All of the dark blue symbols are genes

that are highly expressed in most PSCs compared to the other cell samples in the dataset. Front

nodes as represented by Stem Cell Matrix expression data and back nodes as inferred by

MATISSE are displayed with different colour shades.6 Highlighted in red are the interactions

of a group of proteins associated with pluripotency in murine ePSC21. Interestingly, this

subnetwork shows a significant enrichment in genes that are targeted in the genome by the
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transcription factors NANOG (p=5.88 * 10-4), SOX2 (p=0.058) and E2F (p=1.29 * 10-16, all

p-values are Bonferroni corrected). For an interactive visualization of PluriNet, see

www.stemcellmatrix.org.

B. Heat map-like visualization of PluriNet genes for samples from the test dataset: HUVEC

(UC-EC, a-b, derived from three independent individuals), germ cell tumor derived pluripotent

stem cells (tPSC-UN, d-f, lines GCT-C4, GCT-72, GCT-27X, derived from three independent

individuals), induced pluripotent stem cells (iPSC-UN, g-i, BJ1-iPS12, MSC-iPS1, hFib2-iPS5

three independently derived lines from different somatic sources) and embryonic stem cells

(ePSC-UN, j-l, lines Hues22, HSF6, ES2, derived from three independent blastocysts in three

independent labs). Most PluriNet genes are markedly up-regulated in iPSC-UN and ePSC-UN.

tPSC-UN do show a less consistent expression pattern. UC-EC show lower expression levels

of most PluriNet genes. Please refer to Supplementary Figure 5 for a larger version of the same

Net-Heatmaps

C. Analysis of genes from PluriNet in the context of phenotypes, which have been reported to

result from specific genetic manipulations (e.g. gene knock-out) in mice in the MGI 3.6

phenotype ontology database (http://www.informatics.jax.org/). We find significant

overrepresentation of phenotypes “lethality (perinatal/embryonic)”, “tumorigenesis”,

“cellular”, “embryogenesis”, “reproductive system” and “life span and aging” among the genes

in PluriNet. Although these broad categories might be rather unspecific surrogate markers for

PSC function in mammals, this analysis might point towards PluriNet’s role in vivo. For more

details, see also Supplementary Figure 6 and Supplementary Table 12.
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Table 1

PluriNet Expression patterns in various model system for pluripotecy

A: Expression of PluriNet genes

in murine model systems

MII Oocytes up-regulateda

Zygote up-regulateda

Embryo (2 cell–Blastocyst) up-regulateda

ePSC up-regulatedb

EpiSC up-regulatedb

iPSC up-regulatedb

Fibroblasts (normal) down-regulatedb

Fibroblasts (transformed) down-regulatedb

B: Successful PluriNet based, post-hoc classification for …

in murine model systems pluripotency germ-line transmission

ePSC yesc yesc

EpiSC yesc yesc

iPSC yesc yesc

Fibroblasts (normal) yesc yesc

Fibroblasts (transformed) yesc yesc

C: Expression of PluriNet genes

in human model systems

MII Oocytes up-regulatedd

tPSC up-regulatede

ePSC up-regulatede/f

iPSC up-regulatede/f

ePSC derived cell types down-regulatedf

somatic cell types down-regulatede/f

somatic cancer line (HeLa) down-regulatedg

D: Successful PluriNet based, post-hoc classification for …

in human model systems pluripotency

tPSC yesh

ePSC yesh

iPSC yesh

ePSC derived cell types yesh

somatic cell types yesh
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a
for more details see Supplementary Figure 8

b
for more details see Supplementary Figures 9 and 10

c
for more details see Supplementary Figure 10

d
for more details see Supplementary Figure 7

e
for more details see Figure 3B, Supplementary Figures 5 and 12

f
for more details see Supplementary Figure 11

g
for more details see Supplementary Discussion 2 PluriNet and Cell Cycle

h
for more details see Supplementary Figure 12

PAM – Prediction Analysis of Microarray classifier with leave-one-out cross validation27;

“yes” in Table 3B and 3D stands for: correct classification of pluripotent state (pluripotent or not pluripotent) in > 90% of samples.

This table summarizes the expression patterns of PluriNet in various model systems of pluripotence and differentiation. More details on the specific tests

and explanations of the data sources for the results can be found at the respective Supplementary Figures and Materials as listed in the above.
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