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Predicting the metabolic state of an organism after a gene knock-
out is a challenging task, because the regulatory system governs a
series of transient metabolic changes that converge to a steady-
state condition. Regulatory on�off minimization (ROOM) is a con-
straint-based algorithm for predicting the metabolic steady state
after gene knockouts. It aims to minimize the number of significant
flux changes (hence on�off) with respect to the wild type. ROOM
is shown to accurately predict steady-state metabolic fluxes that
maintain flux linearity, in agreement with experimental flux mea-
surements, and to correctly identify short alternative pathways
used for rerouting metabolic flux in response to gene knockouts.
ROOM’s growth rate and flux predictions are compared with
previously suggested algorithms, minimization of metabolic ad-
justment, and flux balance analysis (FBA). We find that minimiza-
tion of metabolic adjustment provides accurate predictions for the
initial transient growth rates observed during the early postper-
turbation state, whereas ROOM and FBA more successfully predict
final higher steady-state growth rates. Although FBA explicitly
maximizes the growth rate, ROOM does not, and only implicitly
favors flux distributions having high growth rates. This indicates
that, even though the cell has not evolved to cope with specific
mutations, regulatory mechanisms aiming to minimize flux
changes after genetic perturbations may indeed work to this
effect. Further work is needed to identify metrics that characterize
the complete trajectory from the initial to the final metabolic
steady states after genetic perturbations.

The study of metabolic networks has attracted considerable
attention in recent years. Much of this research has concen-

trated on building mathematical models of cell metabolism. In
this paper, we focus on flux analysis using steady-state con-
straint-based modeling (1, 2). In constraint-based modeling,
stoichiometric thermodynamic flux capacity and possibly other
constraints are used to limit the space of possible flux distribu-
tions attainable by the metabolic network. Flux balance analysis
(FBA) (3–6) is a specific constraint-based method that assumes
optimal behavior of the network. FBA applies various optimi-
zation criteria, such as growth or energy maximization, with the
aim of achieving a biologically meaningful description of the
metabolic state of the system. It has been successfully used for
predicting growth, uptake rates, by-product secretion, and
growth after adaptive evolution, among others (7–11).

Predicting the lethality and phenotypes of organisms under-
going genetic perturbations is an additional, perhaps more
challenging, task of constraint-based models (10, 12). Experi-
ments have shown that, after stressful environmental changes
and genetic perturbations, the organism may respond with rapid
and dramatic alterations in global gene expression patterns.
However, after the organism adapts to the new condition, the
gene expression program adjusts to a new steady state that may
be only slightly altered from the program seen before the
perturbation.

DNA microarray experiments have shown that the expression
of �900 genes in Saccharomyces cerevisiae drastically changes
after environmental transitions and then adjusts to a steady state
not very different from the original state (13, 14). This large-

scale response appears in environmental changes that do not
necessarily impair viability or growth rates. It was suggested that
these environmental responses were evolved to protect and
maintain critical features of the organism and to provide for
relative stability against enzymatic alterations (13, 15). Similar
experimental measurements of gene expression after gene
knockouts in S. cerevisiae have revealed a high number of
transient changes, converging to a steady state that is close to the
wild type (16, 17). The effect of the transient behavior of the
regulatory system after genetic perturbations on metabolism has
also been observed in a recent study of Escherichia coli adaptive
evolution, showing that in many cases the growth rate of the
organism drops after a gene knockout and then gradually
increases and converges to a near-optimal growth rate similar to
that predicted by FBA (18). Such transient drops in growth rates
caused by large-scale changes in expression patterns were sug-
gested to aid in the conservation of energy after environmental
perturbations (13). It has been suggested that the nonoptimal
metabolic behavior observed after a gene knockout is a result of
the organism’s adjustment, minimizing the changes in its f lux
distribution in accordance with the minimization of metabolic
adjustment (MOMA) approach (19). This method minimizes the
Euclidean norm of the flux differences between the metabolic
states of the knocked-out strain and the wild type. MOMA was
reported to provide more accurate predictions of E. coli lethality
and metabolic f luxes after knockouts than FBA. The Euclidean
metric on which MOMA is based tends to prohibit large
modifications in single fluxes. However, such large modifications
may be required for rerouting metabolic f lux through alternative
pathways and are actually observed at times experimentally (21).

For example, when a knocked-out enzyme is ‘‘backed up’’ by
a short alternative pathway (e.g., isoenzymes), a reasonable
adjustment would use this alternative pathway instead of the
knocked-out enzyme (ref. 21; Figs. 1 and 2). This weakness of the
Euclidean metric is marked also with respect to the recent notion
of linearity of flow: Ihmels et al. (22) have recently shown that
transcriptional regulation may lead metabolic f low toward lin-
earity, because in most cases the flow is directed in one particular
direction at metabolic branch points. The quadratic nature of
Euclidean distance minimization used in MOMA, which favors
numerous small changes in fluxes over a few large changes with
an equal total sum, will be shown to yield flux distributions
having a low flux linearity score, in contrast to the results of
Ihmels et al. (22). However, as noted in ref. 23, it is not clear
whether in all cases the results of Ihmels et al. (22) apply to
metabolic f low, because in some cases, simultaneous flow
through different branches is necessary.
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The problems mentioned with the Euclidean norm suggest it
may not be suitable to provide a satisfactory approximation for
the metabolic state after adaptation to the gene knockout.
However, we show that MOMA appropriately predicts transient
metabolic states after genetic perturbations, which are charac-
terized by large-scale changes in expression patterns.

We propose a method, regulatory on�off minimization
(ROOM), for predicting the metabolic steady state of the
organism after gene knockouts. ROOM uses a different norm
than MOMA, minimizing the total number of significant flux
changes from the wild-type f lux distribution. Specifically,
ROOM finds a flux distribution for a perturbed strain that
satisfies stoichiometric constraints (mass balance) and thermo-
dynamical and flux capacity constraints, while minimizing the
total number of significant flux changes from the respective
fluxes of the wild-type strain (Methods). The heuristic underlying
ROOM’s distance metric is motivated by the assumptions that (i)
the genetic regulatory changes required for realizing f lux
changes after gene knockouts are minimized by the cell, mini-
mizing its adaptation cost, and (ii) such regulatory changes can
be parsimoniously described by Boolean on�off dynamics, which
assign a fixed cost to each regulatory change, regardless of its
magnitude.

These assumptions are supported first by studies that show
there has been continuous evolutionary pressure to minimize the
cost of gene expression; highly expressed genes have shorter
introns and high bias in synonymous codons and amino acid
composition, which altogether yield more efficient protein syn-
thesis by reducing energetic costs (24–26). Second, the findings
of Ihmels et al. (22) that flow is usually biased in one direction
in metabolic branch points, and that in most cases isoenzymes
are not coexpressed, suggest that minimization of gene expres-
sion follows on�off dynamics, under which the cost of expressing
a single gene in high rate is lower than that of expressing multiple
genes in lower rates.

Because regulatory constraints are not explicitly incorporated
into metabolic network models, ROOM implicitly accounts for
regulatory changes by identifying significant flux changes in the
respective metabolic reactions. If expression is used efficiently,
e.g., using ‘‘just-in-time’’ mechanisms (27, 28), a change in flux
is likely to require a change in expression level through the
respective gene.

Both MOMA and ROOM search for a flux distribution that
is close to the wild type and are not concerned with maximizing
the growth rate. It turns out, however, that in contrast to
MOMA, the metric on which ROOM is based implicitly prefers
high growth-rate solutions, leading to its more accurate predic-
tions of postadaptation states.

Indeed, because ROOM acts to minimize the number of
significant flux changes, a significant change in growth is un-
likely, because maintaining stoichiometry after a change in flux
through the growth reaction requires modification in flux toward
all biomass precursors. This is not a mere technical epiphenom-
enon but a strong indication that, even though the cell has
obviously not evolved any explicit mechanism to cope with every
specific mutation by maximizing growth, the evolved regulatory
mechanisms aiming to minimize flux changes after genetic
perturbations may work to this effect. Thus, we find that
accepting MOMA’s view that the flux distribution of the
knocked-out strain should be proximal to that of the wild type
does not preclude the possibility of finding close-to-optimal
growth solutions using ROOM’s metric. It should be noted that
the metric on which MOMA is based also favors high growth
rates but to a much lesser extent.

Indeed, in all predictions we performed, the growth rate
obtained by ROOM was very close to that of FBA, whereas the
growth rate predicted by MOMA was significantly lower. How-
ever, the flux distributions predicted by ROOM are different

from those predicted by FBA and are shown to correlate with
experimental data better than the predictions of both FBA and
MOMA. Considering that for a given growth media there are
multiple equivalent optimal growth FBA solutions (29, 30), it
turns out that, in many cases, ROOM finds specific solutions
from within this space of optimal FBA solutions that best
approximate the metabolic state of the knocked-out strain.

Interestingly, we find that MOMA’s flux predictions markedly
improve when forcing its growth rate to be at least as large as
ROOM’s (see the supporting information, which is published on
the PNAS web site).

The example network in Fig. 1 and Table 1 demonstrates the
difference in predicted f lux distribution between MOMA and
ROOM. Modeling a gene knockout by constraining the f lux
through v6 to zero, MOMA predicts modifications in all
network f luxes, whereas ROOM predicts that only f luxes v5

Fig. 1. An example network (adapted from ref. 20). (a) A given flux distri-
bution for the wild-type intact network that can be obtained by FBA and
experimental flux data. The flux through b2 represents growth rate. (b)
MOMA’s prediction for the knocked-out network following the knockout of
reaction v6. (c) ROOM’s prediction for the knocked-out network. ROOM finds
changes in flux only along a short alternative pathway through v5 and v4,
preserving the optimal growth rate of the wild-type strain. In all figures,
metabolic branch point B, along with the reactions that produce or consume
it, are highlighted. Note that in ROOM’s prediction, linearity of flow is
preserved in branch point B as opposed to MOMA’s prediction. Note also that
the MOMA solution (b) has Euclidean distance 62.8 from a. ROOM solution (c)
has three altered fluxes with respect to a. On the other hand, MOMA solution
has nine altered fluxes with respect to a, and ROOM solution has Euclidean
distance 75 from a.
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and v4 are modified, forming a short alternative pathway to the
knocked-out reaction v6. Furthermore, ROOM predicts a
linear f low with respect to branch point B, whereas MOMA
predicts the opposite.

Methods
We use the E. coli metabolic model of Edwards and Palsson (7)
for all predictions other than the adaptive evolution growth
predictions in which we use the model of Reed et al. (31) (also
used in ref. 18). For the yeast S. cerevisiae, we use the metabolic
model of ref. 32 (also used in ref. 10). The commercial solver
CPLEX (ILOG, Mountain View, CA) was used for solving linear
programming (LP), quadratic programming, and mixed-integer
LP (MILP) problems, on an Intel (Santa Clara, CA) Pentium 4
processor running RED HAT LINUX.

FBA. FBA (3–6) uses LP to maximize an objective function under
different constraints. In our model, we look for a steady-state
flux distribution (v) that maximizes growth rate under mass
balance, thermodynamical, and flux capacity constraints. The LP
problem is formalized as follows:

max fTv ,

s.t. S �v � 0, vmin � v � vmax.

Here, mass balance constraints are imposed by a system of
linear equations, where S is an n � m stoichiometric matrix, in
which n is the number of metabolites, and m is the number of
reactions. The vector f is an objective function maximizing
growth rate, which is represented by a reaction that drains
biomass components. Thermodynamic constraints that restrict
f low direction and capacity constraints are imposed by setting
vmin and vmax as lower and upper bounds on flux values. The
running time of the solver for LP problems of the size we are
interested in is on the order of tens of milliseconds.

MOMA. MOMA (19) finds a solution that satisfies the same
constraints as FBA, while minimizing the Euclidean distance
from a wild-type flux distribution (usually obtained previously by
FBA). MOMA is formalized by using quadratic programming as
follows:

min�v � w�T�v � w� ,

s.t. S �v � 0, vmin � v � vmax,

vj � 0, j � A,

where w is the wild-type flux distribution, and A is a set of
reactions associated with the deleted genes. The running time of
the solver for quadratic programming problems is �1 sec.

ROOM. ROOM finds a flux distribution that satisfies the same
constraints as FBA while minimizing the number of significant

(large enough) flux changes. We account only for significant flux
changes because of the inherent noise in biological systems and
to reduce the running time. We use MILP, formalized as:

min �
i�1

m

yi,

s.t. S �v � 0, vmin � v � vmax,

vj � 0, j � A,

for 1 � i � m

vi � yi�vmax,i � wi
u� � wi

u, [1]

vi � yi�vmin,i � wi
l� � wi

l, [2]

yi � �0, 1�, [3]

wi
u � wi � ��wi� � �,

wi
l � wi � ��wi� � �,

where for each flux i, 1� i � m, yi � 1 for a significant flux
change in vi and yi � 0 otherwise, and wu and wl are thresholds
determining significance of the flux change, with � and �
specifying the relative and absolute ranges of tolerance, respec-
tively (w and A are as in MOMA).

Indeed, when yi � 1, inequalities 1 and 2 do not impose new
constraints on vi, whereas if yi � 0, inequalities 1 and 2 constrain
vi to the range defined above. The size of � and � influences the
running time of the MILP solver; we have chosen the minimal
values that resulted in reasonable running times. (Specifically, we
have used � � 0.03, � � 0.001 for flux predictions, and � � 0.1,
� � 0.01 for lethality predictions). The choice of these param-
eters influences the resulting flux distribution of the algorithm
by allowing a small amount of additive (�) and multiplicative (�)
f lux to route through alternative pathways with no cost. The
running time of the solver on our MILP problems is a few
seconds.

Relaxing the integer constraints in 3 to 0 � yi� 1 results in a
LP variant of the system above. For this variant, the values of �
and � may be set to zero. Predictions based on the LP variant of
ROOM are quite accurate, although less so than ROOM’s
predictions (see the supporting information). The flux predic-
tions for E. coli and lethality predictions for the yeast are with
respect to the MILP formulation, whereas the E. coli lethality
predictions and growth rate predictions are with respect to the
LP formulation. Interestingly, the LP formulation of ROOM is
somewhat similar to a variant of MOMA, suggested in ref. 19,
which uses a normalized norm.

Alternative Solutions. In the investigation of E. coli, we used the
method of Mahadevan and Schilling (29) to compute a set of
alternative optimal flux distributions for the wild-type strain for
each required growth condition. For the ammonia growth
condition, there are multiple FBA solutions with flux variability
in reactions for which we have experimental measurements.
Therefore, we have incorporated the methods of Burgard and
Maranas (33) and Mahadevan and Schilling (29) for finding a set
of wild-type flux distributions that is both at minimal Euclidean
distance from the experimental f luxes and optimal (providing
optimal growth rate). Then, for each knockout experiment and
its respective growth condition, we run MOMA and ROOM on
the knocked-out network using all solutions in the wild-type set.
For our S. cerevisiae investigation, we ignore alternative solutions
and use the ones we get from the solver for simplicity [as
conventionally done in previous knockout studies (10)].

Table 1. Stoichiometric matrix

v1 v2 v3 v4 v5 v6 b1 b2 b3

A �1 0 0 0 0 0 1 0 0
B 1 �2 �2 0 0 0 0 0 0
C 0 1 0 0 �1 �1 0 0 0
D 0 0 1 �1 1 0 0 0 0
E 0 0 0 1 0 1 0 �1 0
byp 0 1 1 0 0 0 0 0 �1
cof 0 0 �1 1 �1 0 0 0 0

A–E, byp, and cof represent metabolites; v1–v6 represent intracellular
reactions; and b1–b3 represent transport reactions.
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Results and Discussion
We tested ROOM’s predictions of metabolic f luxes for five
different E. coli knockouts: pyruvate kinase (pyk), phosphoglu-
cose isomeras (pgi), glucose 6-phosphate 1-dehydrogenase (zwf ),
6-phosphogluconate dehydrogenase (gnd), and phosphoenol-
pyruvate carboxylase (ppc), under growth conditions by com-
paring them with experimental results and with the predictions
of FBA and MOMA (21, 34–36). All measured fluxes belong to
the central carbon metabolism of E. coli and were empirically
determined by combining NMR spectroscopy in 13C labeling
experiments and physiological data measurements. Fig. 2 shows
the central carbon metabolism of the E. coli and displays the
reactions measured experimentally. The number of measured
fluxes for each mutant varied (17 for pyk; 22 for pgi, zwf, and gnd;
and 19 for ppc). To predict intracellular fluxes and growth rates
for these experiments, we used the E. coli metabolic network
model of Edwards and Palsson (7). To model gene knockouts,
the fluxes through the associated reactions are constrained to
zero (Fig. 2).

Because ROOM and MOMA depend on the flux distribution of
the wild-type strain, we considered multiple possible FBA flux
distributions for the wild-type strain (Methods). The comparison

among the three algorithms is based on the average accuracy of
predictions of ROOM and MOMA obtained starting from multiple
FBA flux distributions for the wild-type strain. Note that the
standard deviations in the accuracy are generally low, and in fact,
we get similar results starting from each FBA solution for the
wild-type strain (see the supporting information). For a given flux
distribution of the wild-type strain, there exists a unique MOMA
solution that is closest to the wild-type solution under a Euclidean
norm (19). Because ROOM’s prediction is not necessarily unique,
we considered alternative ROOM predictions that give similar
results (see the supporting information).

Comparing ROOM with FBA and MOMA for all nine
knockout experiments, we find that in eight of nine knockout
experiments, ROOM’s flux predictions are either equal to or
more accurate than its contemporaries (Fig. 3a). Specifically, the
flux predictions obtained by applying ROOM for the pyk mutant
under the different growth conditions are significantly more
accurate than those obtained by either FBA or MOMA. For this
knockout, the correlations with the experimental measurements
obtained by ROOM are 13%, 1%, and 4% higher than MOMA
for the low-glucose, medium-glucose, and ammonia-limited
growth conditions, respectively. Inspecting ROOM, MOMA,
and FBA flux distributions, we find that the average number of
fluxes that are significantly changed from the wild type’s f lux
distribution are 12, 317, and 119, respectively (Fig. 4 and
Methods). The low number of significant f lux changes in
ROOM’s predictions is in agreement with biological data show-
ing a small number of regulatory changes in the adapted
steady-state condition after a knockout (13, 14, 17). The high
number of significant flux changes in MOMA’s predictions
suggests that MOMA may be more suitable for predicting
transient postperturbation states, in agreement with measured
large-scale transient changes in expression patterns (13, 14, 16).

Observing the flux distribution that ROOM finds for the pyk
knockout on the medium-glucose growth condition, we see that
only fluxes on an alternative pathway (v19–v18–v21 in Fig. 2) are
significantly modified. Indeed, under the medium-glucose
growth condition, experimental data show that the above three
fluxes have the largest f lux deviations between wild-type and
knocked-out organisms (21). MOMA predicts smaller f lux
changes along this pathway as well as a large number of 314 other
significant flux changes in the network. To compare the flux
prediction of different methods with respect to the findings of
Ihmels et al. (22) that flow is biased in one direction at divergent
metabolic branch points, we consider all divergent junctions in
the network consisting of one input reaction and two output
reactions and having nonzero flow (following the branch points
studied in ref. 22). The flux linearity score of a flux distribution
is the percentage of such divergent junctions in which one of the
output reactions has zero flow, and the other has nonzero flow.
Additional support for the biological plausibility of ROOM’s
flux predictions over MOMA’s is the high-flux linearity score it
achieves. The average score over the nine knockout predictions
achieved by FBA, ROOM, and MOMA is 70%, 58%, and 25%,
respectively (see the supporting information). For the same set
of nine flux measurement experiments, we used FBA, MOMA,
and ROOM to predict the final steady-state growth rate after the
adjustment of the strain to the gene knockout. We found that
ROOM and FBA provide significantly more accurate predic-
tions, with a mean relative error of 14% and 15%, respectively,
than MOMA, with a mean relative error of 31% (Fig. 3b).

In a recent experiment of E. coli adaptive evolution, changes
in growth rates were measured during an adaptation period after
gene knockouts (18). In contrast to the previous experiments,
the growth rate was measured both immediately after the
knockout and after an adaptation period in which the knocked-
out strains increase their growth rates by 87% on average. We
applied the metabolic model of Reed et al. (31) [also used by

Fig. 2. A schematic representation of the central carbon metabolism of E.
coli (adapted from ref. 35). Experimental fluxes are labeled v1–v24 and are
measured in the direction of the arrows. Note that in some cases, flux flows in
the opposite direction and is measured by a negative value. The thick arrows
highlight the short alternative pathway (v19–v18–v21) predicted by ROOM in
response to the knockout of pyk (marked with an X) under medium-glucose
growth conditions. Major changes in flux along this pathway were experi-
mentally determined (21). See the supporting information for the mapping
between the experimental fluxes and model reactions. (Note that unlabeled
reactions such as 6PG to KDPG were not experimentally measured.)
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Fong and Palsson (18)] to examine FBA, MOMA, and ROOM
predictions for these growth measurements for six knocked-out
E. coli strains grown on four different media. We found that the
correlations between the measured growth rates after adaptive
evolution and the predictions obtained by FBA and ROOM are
0.724 and 0.727, respectively, whereas the correlation obtained
by MOMA is only 0.658. The correlations between the measured
growth rates before the adaptive evolution and FBA’s and
ROOM’s predictions are 0.772 and 0.777, whereas MOMA’s
correlation is 0.834.

These results support the claim that MOMA is more appro-
priate for predicting transient growth rates in response to genetic
perturbations, whereas ROOM and FBA better predict the final
growth rate achieved after the adaptation process.

In a previous large-scale study of in silico gene deletion for the
yeast S. cerevisiae, FBA was applied to the model of Forster et al.
(32) to predict the lethality of gene knockouts for 555 genes, of
which 87 were experimentally determined to be lethal (MIPS) (10)
(a gene was predicted to be lethal if the respective prediction of the

mutated organism’s maximal growth rate was 	5% of the wild
type’s growth rate). We examined both ROOM and MOMA on
these data, because they offers an opportunity to study a large
knockout data set. Because FBA maximizes the growth rate for the
knocked-out organism, the growth rate predicted by both ROOM
and MOMA cannot be greater than that predicted by FBA.
Consequently, genes predicted to be lethal by FBA are also
predicted to be lethal by ROOM and MOMA. We find that the
predictions of the three algorithms with respect to experimentally
determined lethal genes are quite similar, with 26%, 29%, and 31%
success for FBA, ROOM, and MOMA, respectively (Table 2). With
respect to experimentally determined nonlethal genes, ROOM’s
and FBA’s predictions are significantly more accurate than
MOMA’s, with 96% success for both ROOM and FBA and only
85% success for MOMA. Specifically, of the 449 genes that ROOM
and FBA correctly predict to be nonlethal, MOMA falsely predicts
50 to be lethal. The large percentage of lethal genes that are
incorrectly predicted to be nonlethal is mostly due to missing
constraints and other known limitations of constraint-based models
(10). A close examination of the 50 viable genes correctly predicted
by ROOM and FBA and falsely predicted to be lethal by MOMA

Fig. 3. Flux and growth-rate comparison among FBA, MOMA, and ROOM for five knocked-out organisms, under different growth conditions. The marking
x-y on the x axis denotes knockout of gene xxx-y in a mutant strain grown on media y. l, m, h, and al stand for glucose-low, glucose-medium, glucose-high, and
ammonia-low, respectively. (a) Pearson correlations between experimental fluxes and predictions. (b) Relative errors in growth rate predictions, calculated by
subtracting the experimentally measured growth rate from the predicted growth rate and dividing by the experimentally measured growth rate.

Fig. 4. Number of significant flux changes between the flux distribution of
the wild-type strain and the flux distributions predicted by FBA, MOMA, and
ROOM for five knocked-out organisms, under different growth conditions.
The marking on the x axis is explained in the caption of Fig. 3.

Table 2. Lethality predictions by FBA, MOMA, and ROOM

FBA MOMA ROOM

True-positive 449 399 449
False-positive 64 60 62
True-negative 23 27 25
False-negative 19 69 19
Positively predicted genes 96% 85% 96%
Negatively predicted genes 26% 31% 29%
Overall prediction 85.0% 76.7% 85.4%

A true-positive is a case in which the gene deletion is lethal both experi-
mentally and computationally. A false-positive case occurs when the gene
deletion is computationally nonlethal, but the mutant cannot grow experi-
mentally. A true-negative case occurs when the gene deletion is nonlethal
both experimentally and computationally. A false-negative case occurs when
the gene deletion is computationally lethal, but the mutant can grow exper-
imentally. The positively predicted genes comprise the fraction of experimen-
tally nonlethal genes that are correctly predicted, and the negatively pre-
dicted genes are the fraction of experimentally lethal genes that are correctly
predicted. The overall prediction is the percent of true results of all predictions.
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(see supporting information) reveals that ROOM finds a short
alternative pathway to replace the zero constrained reactions. In the
majority of cases, the alternative pathway is in the form of an
isoenzyme, which remains intact after the gene knockout. It is
MOMA’s failure to recognize these solutions in which metabolic
flux is rerouted through an isoenzyme that leads it to a wrong
solution.

We also compared FBA, MOMA, and ROOM with respect
to a set of 31 knockout experiments in E. coli, taken from refs.
7 and 19 by using the metabolic network model of Edwards and
Palsson (7). Using the lethality threshold of 5% of growth rate,
both FBA and ROOM accurately predicted a lethality of 81%
of the genes, whereas MOMA accurately predicted 90% of
them. Specifically, the genes fba, tpiA, and pfkAB, which were
incorrectly predicted to be nonlethal by FBA and ROOM,
were correctly predicted to be lethal by MOMA. However, the
growth rates predicted by ROOM and MOMA for these three
genes are significantly lower than wild type. With a growth-
rate lethality threshold of 60%, ROOM already achieves the
same accuracy as MOMA (87%), whereas FBA achieves 81%.
For even higher threshold choices (80% and above), FBA and
ROOM are more accurate than MOMA (see supporting
information ). It should be noted that the lethality prediction

results presented in Table 2 are not sensitive to lethality
threshold values.

Conclusion
We introduced ROOM as a model for predicting the steady-state
behavior of metabolic networks in response to gene knockouts
and compared its accuracy with FBA and MOMA. We find that
MOMA provides accurate predictions for transient growth rates,
observed during the early postperturbation state, whereas
ROOM and FBA more successfully predict final steady-state
growth rates. Consequently, both ROOM and FBA provide
more accurate lethality predictions. ROOM is shown to provide
more accurate flux predictions than FBA and MOMA for the
final metabolic steady state.

Additional work is required to find metrics that better ap-
proximate the complex adaptation of the metabolic network
after the knockout and to understand their possible biological
consequences.
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