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Both males and females of heliothine moths utilize sex-pheromones during the mating
process. Females produce and release a sex pheromone for the long–range attraction of
males for mating. Production of sex pheromone in females is controlled by the peptide
hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will high-
light what is known about the role PBAN plays in controlling pheromone production in
female moths. Male moths produce compounds associated with a hairpencil structure
associated with the aedaegus that are used as short-range aphrodisiacs during the mat-
ing process. We will discuss the role that PBAN plays in regulating male production of
hairpencil pheromones.
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BACKGROUND ON PBAN
The hormonal regulation of pheromone biosynthesis in moths
was first demonstrated in the heliothine Helicoverpa zea (Raina
et al., 1987) and a peptide isolated shortly thereafter (Raina et al.,
1989). Pheromone biosynthesis activating neuropeptide (PBAN)
was identified as a 33 amino acid C-terminal amidated peptide
from the brain–subesophageal ganglion complex of adult female
moths. Immunohistochemical procedures traced the neuronal
production of PBAN to three groups of neurons in the sube-
sophageal ganglion (Blackburn et al., 1992; Kingan et al., 1992;
Rafaeli and Jurenka, 2003). The gene encoding for PBAN was sub-
sequently identified (Davis et al., 1992; Ma et al., 1994, 1998). In
addition to encoding for PBAN four other neuropeptides could be
produced. One of these had been identified as the diapause hor-
mone that regulates embryonic diapause in the silkworm moth
(Imai et al., 1991). The analysis of mRNA from a number of moth
species now indicates that five peptides could be produced by the
PBAN gene (Choi et al., 2004). Evidence indicates that these pep-
tides could be processed and released into circulation as active
neuropeptides (Ma et al., 1996).

Sequence similarities to the pyrokinins became evident after
it was determined that the minimum activity required was the
last five C-terminal amino acids (Raina and Kempe, 1990, 1992).
Leukopyrokinin was first identified in the cockroach Leucophaea
maderae due to the stimulation of hindgut muscle contraction
(Holman et al., 1986). A variety of PBAN/pyrokinin peptides have
been found in all insects to date based on gene sequence and pep-
tide isolation (Jurenka and Nusawardani, 2011). These peptides
are found in neurons localized to the brain–subesophageal gan-
glion and ganglia of the ventral nerve cord. Most insects possess
another peptide produced by the capa gene. This gene, first iden-
tified in Drosophila melanogaster (Kean et al., 2002), can produce

three peptides. Two of the peptides are periviscerokinins that usu-
ally have an FPRVamide C-terminal ending. Periviscerokinins are
involved in a variety of functions including stimulating heart
rate and affecting Malpighian tubule functions. The third pep-
tide, that can be produced by the capa gene, is related to the
diapause hormone because it has a WFGPRLamide C-terminal
ending.

As indicated above the first functions described for
the PBAN/pyrokinin family of peptides was stimulation of
pheromone biosynthesis in female moths and stimulation of
hindgut muscle contraction in cockroaches. Other functions were
soon described for peptides in the family including induction of
embryonic diapause in females and cuticle melanization in larvae
of the silkworm moth, Bombyx mori (Matsumoto et al., 1990; Imai
et al., 1991). Once the peptides were identified it became apparent
that these peptides belong to the same family with cross-reactivity
of function. Subsequently other functions were identified includ-
ing acceleration of puparium formation in higher flies (Zdarek
et al., 1997) and pupal diapause development in heliothine moths
(Sun et al., 2003; Zhang et al., 2004). This list of functions indicates
the pleiotropic nature of the PBAN/pyrokinin family of peptides
across the Insecta. Other functions could potentially be found for
the family because these peptides are found in all insects (Jurenka
and Nusawardani, 2011).

The target tissue for the action of PBAN in adult female moths
is the pheromone gland, which is found as intersegmental tissues
located between the eighth and ninth abdominal segments of the
ovipositor in heliothines (Rafaeli and Jurenka, 2003). Pheromone
biosynthesis can be stimulated by either injecting peptides into
intact female moths or peptides can be incubated with an iso-
lated pheromone gland on saline. The in vitro studies demonstrate
that the PBAN-receptors are located in the epidermal cells of the
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pheromone gland. A biologically active biotinylated-PBAN ana-
log was used to demonstrate specific binding to a protein from
isolated pheromone glands (Rafaeli et al., 2003). Cloning and func-
tional expression of a PBAN-receptor was first reported in H. zea,
the same moth in which PBAN was first identified (Choi et al.,
2003).

PBAN-RECEPTOR
The PBAN-receptor was identified based on sequence similar-
ities with a group of three receptors from D. melanogaster.
After the D. melanogaster genome was sequenced and anno-
tated peptide G-protein coupled receptors (GPCR) were identi-
fied based on sequence alignment with known vertebrate peptide
GPCRs (Hewes and Taghert, 2001). One group of three recep-
tors (CG8784, CG8795, CG9918) had sequence similarities with
the neuromedin U (NmU) receptor from mammals. The ligand,
NmU, has a C-terminal ending of FRPRNamide, which is simi-
lar to the C-terminal ending of PBAN, FSPRLamide. Choi et al.
(2003) demonstrated that the vertebrate NmU peptide stimu-
lated pheromone biosynthesis in female moths indicating cross-
reactivity and receptor activation. The D. melanogaster sequences
were used in a PCR based sequencing approach to obtain the
full-length sequence from pheromone glands of H. zea. The three
receptors from D. melanogaster were also characterized as being
activated by pyrokinins (Park et al., 2002) indicating that all of
these receptors belong to a similar family.

The functional expression of the H. zea PBAN-receptor indi-
cated that PBAN activated the receptor at a half-maximum effec-
tive concentration of 25 nM (Choi et al., 2003). Several other
peptides produced by the PBAN-gene were also active at similar
concentrations. Although, concentrations required to stimulate
pheromone biosynthesis in vitro in Helicoverpa armigera showed
that PBAN was active at 0.5 nM and the other peptides at signifi-
cantly higher concentrations (Stern et al., 2007). PBAN-receptors
have been characterized from several moths including B. mori
(Hull et al., 2004), Heliothis virescens (Kim et al., 2008), and Plutella
xylostella (Lee et al., 2011). These studies indicate that PBAN
will activate receptors at concentrations in the low nanomolar
range. Several other PBAN-receptors have been identified based
on sequence homology from other moths including H. armigera
(Rafaeli et al., 2007), Spodoptera exigua (Cheng et al., 2010), and
Spodoptera littoralis (Zheng et al., 2007).

Only one PBAN-receptor sequence was identified from
pheromone glands of H. zea (Choi et al., 2003). However, three
PBAN-receptor sequences were identified from cDNA obtained
from the central nervous system of H. virescens fourth instar
larvae (Kim et al., 2008). All three receptor sequences were
identical except for C-terminal extensions. The N-terminal and
seven-transmembrane domain regions of the H. virescens PBAN-
receptors are about 98.5% identical with the H. zea and H. armigera
receptors. The H. virescens PBAN-receptor subtype C, was iden-
tified in pheromone glands of adult female H. virescens. The
other two were identified from the larval central nervous system
and did not have activity when tested in a calcium mobilization
assay using a heterologous expression system (Kim et al., 2008).
The C-terminal extension of H. virescens PBAN-receptor subtype
C is similar to the C-terminal of the B. mori PBAN-receptor

(Hull et al., 2004). The C-terminal extension in the B. mori
PBAN-receptor is involved in efficient internalization of the recep-
tor after activation (Hull et al., 2004). It is interesting to note
that the PBAN-receptors identified from pheromone glands of
other moths have a shortened C-terminal ending similar to that
of the H. zea PBAN-receptor. Functional significance of a short C-
terminal ending indicates that the receptor could remain active in
the pheromone gland cell membrane for a longer period of time.
Time course studies on induction of pheromone biosynthesis in
isolated pheromone glands indicated that the PBAN-receptor does
remain active for a period of time after stimulation by PBAN (Choi
et al., 2004).

The diapause hormone-receptor (DH-receptor) has high
sequence homology to the PBAN-receptor especially in the trans-
membrane domains (Jurenka and Nusawardani, 2011). In Lepi-
doptera the DH-receptor has only been characterized from B. mori
(Homma et al., 2006). Other insects have a pyrokinin 1-receptor
(PK1-receptor) that is similar to the DH-receptor in sequence
and are activated by DH-like peptides with an FGPRLamide C-
terminal ending. Other insects also have PK2-receptors that are
similar to the PBAN-receptor. A third GPCR is the perivicerokinin-
receptor (PVK-receptor) that is activated by PVKs but not by other
PBAN/pyrokinin-like peptides (Iversen et al., 2002; Park et al.,
2002; Olsen et al., 2007). Phylogenetic relationships of these recep-
tors from insects indicate three groups of receptors that follow a
typical evolutionary origin for orders of insects (Figure 1).

G-protein coupled receptors have a seven-transmembrane
domain motif that appears to be structurally conserved. With the
X-ray crystal structure of rhodopsin, β1 and β2 adrenergic recep-
tors, and A2A adenosine receptors published, it is possible to con-
struct homology models based on these solved three-dimensional
structures. A detailed model of the H. zea PBAN-receptor was built
using the crystal structure of rhodopsin as a template and in sil-
ico binding studies indicated possible interactions with PBAN as
a ligand (Stern et al., 2007). A putative ligand binding pocket was
indicated in a study utilizing an evolutionary trace approach in
comparing the insect PBAN-receptors (Jurenka and Nusawardani,
2011). The conserved nature of the transmembrane domains and
structural features of the ligand binding pocket for GPCRs allows
the prediction of ligand interactions in a binding pocket of the
PBAN-receptor. A model illustrating a putative H. zea PBAN-
receptor binding pocket is shown in Figure 2. This model will need
to be verified with mutation studies to determine if the specified
amino acids are involved in ligand binding.

Several mutation studies have been conducted to determine
which domains of the PBAN-receptor are involved in ligand recog-
nition and activation. One study utilized chimeras where the
extracellular domains were exchanged sequentially between the H.
zea PBAN-receptor and the D. melanogaster PK1-receptor (Choi
et al., 2007). All extracellular domain chimeras reduced activity
of the chimera receptor when challenged with PBAN. However
the H. zea PBAN-receptor chimera with the third extracellular
loop exchanged had increased activity when challenged with the
diapause hormone. The D. melanogaster PK1-receptor chimera
with the third extracellular loop exchanged had increased activ-
ity when challenged with PBAN. These results indicate that the
third extracellular loop is important for peptide recognition and
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FIGURE 1 | Phylogenetic relationships of the PBAN/PK2-receptor,

DH/PK1-receptor, and PVK-receptor. Species abbreviations: Aaeg,
Aedes aegypti ; Agam, Anopholes gambiae; Agos, Aphis gossypii ;
Amel, Apis mellifera; Apis, Acyrthosiphon pisum; Bmor, Bombyx mori ;
Cfor, Coptotermes formosanus; Cqui, Culex quinquefasciatus; Dvir,
Diabrotica virgifera virgifera; Dmel, Drosophila melanogaster ; Harm,

Helicoverpa armigera; Hzea, Helicoverpa zea; Hvir, Heliothis virescens;
Msex, Manduca sexta; Nvit, Nasonia vitripennis; Othy, Orgyia thyellina;
Phum, Pediculus humanus; Pxyl, Plutella xylostella; Rpro, Rhodnius
prolixus; Sinv, Solenopsis invictus; Sexi, Spodoptera exigua; Slit,
Spodoptera littoralis; Tcas, Tribolium castaneum (Jurenka and
Nusawardani, 2011).

could be involved in accepting the correct peptide for binding to a
receptor activation site which is the ligand binding pocket located
in the transmembrane domain area of the receptor. Alanine sub-
stitution mutations made in the third extracellular loop indicate

that specific amino acids could be involved in peptide recogni-
tion (Choi and Jurenka, 2010). Further studies will be required to
validate these models and establish how this family of receptors
recognize specific peptides and activate the receptor.
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PBAN MODE OF ACTION
Pheromone biosynthesis activating neuropeptide activation of the
receptor induces the influx of extracellular calcium and the subse-
quent increase in cytosolic calcium (Jurenka et al., 1991; Jurenka,
1996). In heliothine moths, as in all moth species examined to
date, the presence of calcium in the extracellular medium is a
prerequisite for PBAN action (Rafaeli, 1994; Choi et al., 2004;
Choi and Jurenka, 2006) suggesting that the opening of cation
channels and the concomitant influx of calcium are most likely
conserved features of PBAN activation. In the absence of cal-
cium or the presence of calcium–calmodulin inhibitors such as
W7, pheromonotropic activity is abolished (Rafaeli and Gileadi,
1996a) and, conversely, the pheromonotropic effects of PBAN
can be duplicated with calcium ionophores such as ionomycin,
thapsigargin, and A23187 (Rafaeli and Gileadi, 1996a; Rafaeli and
Jurenka, 2003).

However, unlike the signal transduction pathway determined
for the silkworm B. mori, in the heliothine moths there is evi-
dence that the increase in cystosolic calcium activates a calcium–
calmodulin sensitive adenylate cyclase which in turn promotes the
production of cyclic-AMP (Rafaeli and Soroker, 1989; Soroker and
Rafaeli, 1995; Rafaeli and Gileadi, 1996a). Furthermore, pharma-
cological compounds that affect cyclic-AMP levels such as cyclic-
AMP analogs, isobutyl methyl xanthine (a phosphodiesterase
inhibitor), and forskolin (an adenylate cyclase activator) have been
shown to stimulate downstream events and thereby pheromone
biosynthesis in H. armigera (Rafaeli and Soroker, 1989; Rafaeli,
1994) and H. zea (Jurenka et al., 1991). In addition, in H. armigera
sodium fluoride, a G-protein activator can induce intracellular
cyclic-AMP levels and subsequent downstream events leading to
pheromone production, independent of the ligand PBAN (Rafaeli
and Gileadi, 1996b). As an outcome of the activation of the second

FIGURE 2 | A model of the Helicoverpa zea PBAN-receptor illustrating

amino acids that could be involved in binding PBAN. Reproduced with
permission from Jurenka and Nusawardani (2011).

messengers, kinase, and/or phosphatase is activated, which, in
their turn, stimulate fatty acid biosynthesis in the pheromone
biosynthetic pathway (Figure 3).

What enzyme in the biosynthetic pathway is affected by the sig-
nal cascade brought about through PBAN binding to its receptor?
Demonstration of the enzymatic key regulatory step in the biosyn-
thesis of sex-pheromones primarily relies on following labeled
precursors and intermediates into pheromone molecules in the
absence and presence of PBAN. Thus, if production of a labeled
pheromone component from incorporation of labeled precursor
occurs in the absence of PBAN to the same extent as in its presence
the labeled precursor must be acting downstream of the regula-
tory enzyme and therefore regulation must occur upstream. The
effect of PBAN on the different steps in the biosynthetic pathway
has been investigated in several Lepidopteran species including B.
mori (Arima et al., 1991; Ozawa et al., 1993), Thaumetopoea pity-
ocampa (Arsequell et al., 1990), S. littoralis (Martinez et al., 1990;
Fabrias et al., 1994), Manduca sexta (Fang et al., 1995; Tumlin-
son et al., 1997), H. zea (Jurenka et al., 1991), H. armigera (Tsfadia
et al., 2008), and Plodia interpunctella (Tsfadia et al., 2008). Studies

FIGURE 3 | A diagrammatic representation of sex pheromone

biosynthesis resulting from PBAN release into the hemolymph and its

interaction with the PBAN GPCR in female pheromone glands (PG)

and male hairpencil–aedaegus-complexes of Helicoverpa armigera.

Up-regulation of female components in red and male components in blue.
(Male-complex illustration taken from Bober and Rafaeli, 2010 with
permission). Abbreviations: AC, adenylate cyclase; ACCase, acetyl-CoA
carboxylase; Br, brain; CaM, calcium–calmodulin; cAMP, cyclic-AMP; CC,
corpora cardiaca; Δ11-des, Δ11 desaturase; FAS, fatty acid synthetase;
GPCR, G-protein coupled receptor; oxi, oxidase; PBAN, pheromone
biosynthesis activating neuropeptide; PK, protein kinase A; red, reductase;
SOG, subesophageal ganglion.
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of this nature have so far indicated that PBAN does not influence
desaturase activity.

Using both stable isotopes and specific enzyme inhibitors the
rate limiting step of PBAN pheromone biosynthesis regulation in
H. armigera was determined (Tsfadia et al., 2008). These studies
showed that only incorporation of labeled acetate is affected by
PBAN and that this incorporation can be inhibited by the acetyl
coenzyme A carboxylase (ACCase) inhibitor, tralkoxydim. Levels
of incorporation of labeled malonyl CoA or palmitic acid (down-
stream of acetate) were unaffected by the presence or absence of
PBAN (Tsfadia et al., 2008). Thus, in H. armigera, the rate limiting
step for PBAN control is regulation of the ACCase which catalyzes
the rate limiting enzyme of fatty acid biosynthesis, prior to the
action of fatty acid synthetase (Figure 3). PBAN is also thought to
influence ACCase activity in Argyrotaenia velutinana (Tang et al.,
1989), P. interpunctella (Tsfadia et al., 2008), and H. zea (Jurenka
et al., 1991). In contrast, in B. mori, T. pityocampa, S. littoralis, and
M. sexta PBAN stimulates a reductase that converts an acyl-CoA
to an alcohol precursor (Arsequell et al., 1990; Martinez et al.,
1990; Ozawa et al., 1993; Fang et al., 1995). In H. virescens a two-
step regulatory role for PBAN was demonstrated (Eltahlawy et al.,
2007). This two-step theory entailed a push (ACCase) and a pull
(acyl-CoA) for the action of PBAN and may explain the contro-
versial hypotheses suggested for identifying the rate limiting steps
controlled by PBAN in the different moth species.

An interesting feature revealed by studies on the mode of PBAN
action is that in those species in which PBAN has been shown
to regulate reductase activity, cyclic-AMP has proven to be inef-
fective as a pheromonotropic agent whereas in those species in
which PBAN regulates ACCase activity, cyclic-AMP appears to be
involved as a second messenger. Moreover, it is interesting that
different receptor subtypes maybe correlated with the different
downstream intracellular signal cascades that are induced. It is
apparent that at least two subtypes of PBAN-receptors could be
located in pheromone glands: one with calcium signaling cascade
including cyclic-AMP and a shorter C-terminal tail (H. zea, H.
armigera); the other dependent only on calcium having a longer
C-terminal tail (B. mori). Allocating these characteristics may be
too premature until more evidence becomes available as to the
involvement of cyclic-AMP in the signal transduction of other
PBAN-receptor subtypes. For example,PBAN induces calcium ele-
vations by the P. xyllostella PBAN-receptor, which also has a short
C-terminal tail; however cyclic-AMP levels were not analyzed in
the P. xyllostella study (Lee et al., 2011).

PBAN’s INFLUENCE ON MALE PHEROMONAL COMPONENTS
Male pheromone production has been studied in several insect
species. Male insects often possess scent-releasing organs in the
form of hairpencils, coremata, or androconial scales (Birch et al.,
1990). In the Lepidoptera, studies have identified hairpencil secre-
tions produced by several species (Chow et al., 1986; Phelan et al.,
1986; Teal and Tumlinson, 1989; Heath et al., 1992; Thibout et al.,
1994; Huang et al., 1996). The behavioral role of these secretions is
not well understood, but most often these odors have been deemed
important in courtship behavior. In general male pheromones
can be considered to have many possible functions: they can act
as aphrodisiacs to stimulate female receptivity during courtship

(Birch, 1974); they have been reported to induce female calling
(Szentesi et al., 1975), females become immobile allowing copula-
tion; and they have been reported to function as male-to-male
inhibitory compounds, thereby minimizing male-competition
(Hirai et al., 1978; Teal et al., 1984; Teal and Tumlinson, 1989; Wu
et al., 1991; Huang et al., 1996). Odors released by male hairpencils
are important in male acceptance by the female and may play a
role in mate choice and species isolation (Hillier and Vickers, 2004;
Lassance and Löfstedt, 2009). In the European corn borer, Ostrinia
nubilalis, scents released during courtship by males provide critical
information for female acceptance (Lassance and Löfstedt, 2009).
Close-range chemical cues have also been proposed as a trait used
by females to assess male quality (Eisner and Meinwald, 1995).

In species of Lepidoptera belonging to the Arctiidae and
Danaidae, scent gland composition is related to host plant con-
sumption and sequestration of compounds during the larval and
adult stages (Birch and Hefetz, 1987). However, in other moth
species, as in the heliothine moths, these male odors are derived
from the fatty acid biosynthetic pathway, and as such are similar
to the female sex-pheromone blends (Teal and Tumlinson, 1989;
Huang et al., 1996). In O. nubilalis the male chemical signal is
also analogous to the female signal in that structurally similar
compounds are being used by both sexes and are governed by

FIGURE 4 | Pheromone biosynthesis activating

neuropeptide-immunoreactivity in the brain-subesophageal

ganglion-corpora cardiaca-corpora allata complexes of Helicoverpa

armigera males (Hirsch, 1991) and females (Rafaeli et al., 1993).

Histograms represent means ± SE of eight replicates each of a pool of at
least five tissue equivalents. Gray bars, photophase period; black bars,
scotophase period.
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the same genes encoding biosynthetic enzymes (Lassance and
Löfstedt, 2009).

Pheromone biosynthesis activating neuropeptide was originally
isolated from female H. zea suboesophageal ganglia and its distri-
bution in the female nervous system was studied using ELISA
(Kingan et al., 1992) however the gene transcript was shown to
be present in both the male and female central nervous system
(Ma et al., 1998). Using an immunoassay, PBAN was also found
in both female and male H. armigera central nervous systems and
throughout the photoperiod (Figure 4; Hirsch, 1991; Rafaeli et al.,
1993).

The function of PBAN in the males, however, has been a mys-
tery since its discovery but its presence has been speculated to
have other functional significances particularly in light of the
pleiotropic action of PBAN and PBAN-like peptides in other
insects. However, a recent temporal differential expression study
of the PBAN-R revealed the presence of gene transcripts in both
the male-complexes (hairpencil–aedaegus complex) and female
pheromone glands of two moth species, H. armigera and B. mori
(Bober et al., 2010) with levels dependent on the age of the adults
and up-regulated on or just before eclosion. Whilst the presence
of PBAN in males can be understood in terms of the ubiqui-
tous characteristic of this peptide family, the presence, as well as
the transcriptional regulation of its receptor in the male-complex

called for a re-examination of a possible function for PBAN and
its receptor in this tissue.

As discussed above, and, since fatty acid-derived pheromonal
compounds were identified in male-complexes of several moth
species including heliothine moths, we aimed to determine
whether PBAN plays a role in the regulation of the biosynthesis
of these compounds in male H. armigera. We utilized both phys-
iological bioassays and RNA interference (RNAi) technology to
identify several male pheromone components that are responsive
to PBAN stimulation and to photoperiod, and are also significantly
affected by silencing of the PBAN-R (Bober and Rafaeli, 2010).
We hypothesized that these components are key in the chemi-
cal communication between females and males during copulation
(Figure 4). It remains to be demonstrated that those PBAN up-
regulated male produced compounds are indeed responsible for
a successful mating encounter by either arresting females for
copulation, increasing their receptivity, or deterring co-specific
males from competing.

ACKNOWLEDGMENTS
Research originating from the authors’ laboratories was supported
by Research Grant No. IS-4163-08C from BARD, The United
States – Israel Binational Agricultural Research and Develop-
ment Fund.

REFERENCES
Arima, R., Takahara, K., Kadoshima, T.,

Numazaki, F., Ando, T., Uchiyama,
M., Nagasawa, H., Kitamura, A., and
Suzuki, A. (1991). Hormonal reg-
ulation of pheromone biosynthe-
sis in the silkworm moth, Bom-
byx mori (Lepidoptera: Bombyci-
dae). Appl. Entomol. Zool. (Jpn.) 26,
137–147.

Arsequell, G., Fabrias, G., and Camps, F.
(1990). Sex pheromone biosynthesis
in the processionary moth Thaume-
topoea pityocampa by delta-13 desat-
uration. Arch. Insect Biochem. Phys-
iol. 14, 47–56.

Birch, M. C. (1974). “Aphrodisiac
pheromones in insects”, in
Pheromones, ed. M. C. Birch
(Amsterdam: North Holland),
115–134.

Birch, M. C., and Hefetz, A. (1987).
Extrusible organs in male moths and
their role in courtship behavior. Bull.
Entomol. Soc. Am. 33, 222–229.

Birch, M. C., Poppy, G. M., and Baker, T.
C. (1990). Scents and eversible scent
structures of male moths. Annu. Rev.
Entomol. 35, 25–58.

Blackburn, M. B., Kingan, T. G., Raina,
A. K., and Ma, M. C. (1992). Colocal-
ization and differential expression of
PBAN- and FMRF-like immunore-
activity in the subesophageal gan-
glion of Helicoverpa zea (Lepi-
doptera: Noctuidae) during devel-
opment. Arch. Insect Biochem. Phys-
iol. 21, 225–238.

Bober, R., Azrielli, A., and Rafaeli, A.
(2010). Developmental regulation of
the pheromone biosynthesis activat-
ing neuropeptide-receptor (PBAN-
R): re-evaluating the role of juvenile
hormone. Insect Mol. Biol. 19, 77–86.

Bober, R., and Rafaeli, A. (2010). Gene-
silencing reveals the functional sig-
nificance of pheromone biosynthe-
sis activating neuropeptide recep-
tor (PBAN-R) in a male moth.
Proc. Natl. Acad. Sci. U.S.A. 107,
16858–16862.

Cheng, Y., Luo, L., Jiang, X., Zhang,
L., and Niu, C. (2010). Expression
of pheromone biosynthesis activat-
ing neuropeptide and its recep-
tor (PBANR) mRNA in adult
female Spodoptera exigua (Lepi-
doptera: Noctuidae). Arch. Insect
Biochem. Physiol. 75, 13–27.

Choi, M.-Y., Fuerst, E.-J., Rafaeli, A.,
and Jurenka, R. (2003). Identifica-
tion of a G protein-coupled receptor
for pheromone biosynthesis activat-
ing neuropeptide from pheromone
glands of the moth, Helicoverpa zea.
Proc. Natl. Acad. Sci. U.S.A. 100,
9721–9726.

Choi, M.-Y., Fuerst, E.-J., Rafaeli,
A., and Jurenka, R. (2007).
Role of extracellular domains
in PBAN/Pyrokinin GPCRs from
insects using chimera receptors.
Insect Biochem. Mol. Biol. 37,
296–306.

Choi, M.-Y., Lee, J. M., Han, K. S.,
and Boo, K. S. (2004). Identification

of a new member of PBAN family
and immunoreactivity in the cen-
tral nervous system from Adoxophyes
sp. (Lepidoptera: Tortricidae). Insect
Biochem. Mol. Biol. 34, 927–935.

Choi, M.-Y., and Jurenka, R. A. (2006).
Role of extracellular calcium and
calcium channel activated by a G
protein-coupled receptor regulat-
ing pheromone production in Heli-
coverpa zea (Lepidoptera: Noctu-
idae). Ann. Entomol. Soc. Am. 99,
905–909.

Choi, M.-Y., and Jurenka, R. A.
(2010). Site-directed mutagenesis
and PBAN activation of the Helicov-
erpa zea PBAN-receptor. FEBS Lett.
584, 1212–1216.

Chow, Y. S., Lin, Y. M., and Teng, H. J.
(1986). “Morphological and biolog-
ical evidence for the presence of a
male sex pherome of the diamond-
back moth,” in Diamondback Moth
Management: Proceedings of the First
International Workshop, eds N. S.
Talekar and T. D. Griggs (Shan-
hua: Asian Vegetable Research and
Development Center), 103–108.

Davis, M. B., Vakharia, V. N., Henry,
J., Kempe, T. G., and Raina, A. K.
(1992). Molecular cloning of the
pheromone biosynthesis-activating
neuropeptide in Helicoverpa zea.
Proc. Natl. Acad. Sci. U.S.A. 89,
142–146.

Eisner, T., and Meinwald, J. (1995). The
chemistry of sexual selection. Proc.
Natl. Acad. Sci. U.S.A. 92, 50–55.

Eltahlawy, H., Buckner, J. S., and
Foster, S. P. (2007). Evidence for
two-step regulation of pheromone
biosynthesis by the pheromone
biosynthesis-activating neuropep-
tide in the moth Heliothis virescens.
Arch. Insect Biochem. Physiol. 64,
120–130.

Fabrias, G., Marco, M. P., and Camps,
F. (1994). Effect of the pheromone
biosynthesis activating neuropep-
tide on sex pheromone biosynthe-
sis in Spodoptera littoralis isolated
glands. Arch. Insect Biochem. Physiol.
27, 77–87.

Fang, N., Teal, P. E. A., and Tumlin-
son, J. H. (1995). PBAN regulation
of pheromone biosynthesis in female
tobacco hornworm moths, Mand-
uca sexta (L.). Arch. Insect Biochem.
Physiol. 29, 35–44.

Heath, R. R., Landolt, P. J. Dueben, B. D.
Murphy, R. E., and Schneider, R. E.
(1992). Identification of male cab-
bage looper sex pheromone attrac-
tive to females. J. Chem. Ecol. 18,
441–453.

Hewes, R. S., and Taghert, P. H. (2001).
Neuropeptides and neuropep-
tide receptors in the Drosophila
melanogaster genome. Genome Res.
11, 1126–1142.

Hillier, N. K., and Vickers, N. J. (2004).
The role of Heliothine hair pen-
cil compounds in female Helio-
this virescens (Lepidoptera: Noctu-
idae) behavior and mate acceptance.
Chem. Senses 29, 499–511.

Frontiers in Endocrinology | Experimental Endocrinology October 2011 | Volume 2 | Article 46 | 6

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


Jurenka and Rafaeli PBAN in heliothine moths

Hirai, K., Shorey, H. H., and Gaston,
L. K. (1978). Competition among
courting male moths: male-to-male
inhibitory pheromone. Science 202,
844–845.

Hirsch, J. (1991). Distribution and Mode
of Action of Pheromone Biosynthe-
sis Activating Neuropeptide (PBAN)
in the Moth Helicoverpa (Heliothis)
Armigera. M.Sc. thesis, The Hebrew
University of Jerusalem, Faculty of
Agriculture, Rehovot.

Holman, G. M., Cook, B. J., and Nach-
man, R. J. (1986). Isolation, pri-
mary structure and synthesis of
a blocked neuropeptide isolated
from the cockroach, Leucophaea
maderae. Comp. Biochem. Physiol.
85C, 219–224.

Homma, T., Watanabe, K., Tsurumaru,
S., Kataoka, H., Imai, K., Kamba, M.,
Niimi, T., Yamashita, O., and Yag-
inuma, T. (2006). G protein-coupled
receptor for diapause hormone, an
inducer of Bombyx embryonic dia-
pause. Biochem. Biophys. Res. Com-
mun. 344, 386–393.

Huang, Y. P., Xu, S. F. Tang, X. H. Zhao,
Z. W., and Du, J. W. (1996). Male
orientation inhibitor of cotton boll-
worm: identification of compounds
produced by male hairpencil glands.
Entomol. Sin. 3, 172–182.

Hull, J. J., Ohnishi, A., Moto, K. I.,
Kawasaki, Y., Kurata, R., Suzuki,
M. G., and Matsumoto, S. (2004).
Cloning and characterization of the
pheromone biosynthesis activating
neuropeptide receptor from the silk-
moth, Bombyx mori: significance of
the carboxyl terminus in receptor
internalization. J. Biol. Chem. 279,
51500–51507.

Imai, K., Konno, T., Nakazawa, Y.,
Komiya, T., Isobe, M., Koga, K.,
Goto, T., Yaginuma, T., Sakakibara,
K., Hasegawa, K., and Yamashita, O.
(1991). Isolation and structure of
diapause hormone of the silkworm,
Bombyx mori. Proc. Jpn. Acad. 67,
98–101.

Iversen, A., Cazzamali, G., Williamson,
M., Hauser, F., and Grimmelikhui-
jzen, C. J. P. (2002). Molecu-
lar cloning and functional expres-
sion of a Drosophila receptor for
the neuropeptides capa-1 and -2.
Biochem. Biophys. Res. Commun.
299, 628–633.

Jurenka, R., and Nusawardani, T.
(2011). The pyrokinin/pheromone
biosynthesis-activating neuropep-
tide (PBAN) family of peptides and
their receptors in Insecta: evolution-
ary trace indicates potential receptor
ligand-binding domains. Insect Mol.
Biol. 20, 323–334.

Jurenka, R. A. (1996). Signal trans-
duction in the stimulation of sex

pheromone biosynthesis in moths.
Arch. Insect Biochem. Physiol. 33,
245–258.

Jurenka, R. A., Jacquin, E., and Roelofs,
W. L. (1991). Control of the
pheromone biosynthetic pathway in
Helicoverpa zea by the pheromone
biosynthesis activating neuropep-
tide. Arch. Insect Biochem. Physiol.
17, 81–91.

Kean, L., Cazenave, W., Costes, L., Brod-
erick, K. E., Graham, S., Pollock,
V. P., Davies, S. A., Veenstra, J.
A., and Dow, J. A. T. (2002). Two
nitridergic peptides are encoded by
the gene capability in Drosophila
melanogaster. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 282, R1297–
R1307.

Kim, Y.-J., Nachman, R. J., Aimanova,
K., Gill, S., and Adams, M. E.
(2008). The pheromone biosynthe-
sis activating neuropeptide (PBAN)
receptor of Heliothis virescens: iden-
tification, functional expression,
and structure-activity relationships
of ligand analogs. Peptides 29,
268–275.

Kingan, T. G., Blackburn, M. B., and
Raina, A. K. (1992). The distrib-
ution of pheromone biosynthesis-
activating neuropeptide (PBAN)
immunoreactivity in the central ner-
vous system of the corn earworm
moth, Helicoverpa zea. Cell Tissue
Res. 270, 229–240.

Lassance, J.-M., and Löfstedt, C.
(2009). Concerted evolution of
male and female display traits
in the European corn borer,
Ostrinia nubilalis. BMC Biol. 7, 10.
doi:10.1186/1741-7007-7–10

Lee, D.-W., Shrestha, S., Kim, A. Y.,
Park, S. J., Yang, C. Y., Kim, Y.,
and Koh, Y. H. (2011). RNA inter-
ference of pheromone biosynthesis-
activating neuropeptide receptor
suppresses mating behavior by
inhibiting sex pheromone produc-
tion in Plutella xylostella (L.).
Insect Biochem. Mol. Biol. 41,
236–243.

Ma, P. W. K., Knipple, D. C., and Roelofs,
W. L. (1994). Structural organiza-
tion of the Helicoverpa zea gene
encoding the precursor protein for
pheromone biosynthesis-activating
neuropeptide and other neuropep-
tides. Proc. Natl. Acad. Sci. U.S.A. 91,
6506–6510.

Ma, P. W. K., Knipple, D. C., and
Roelofs, W. L. (1998). Expression of
a gene that encodes multiple neu-
ropeptides in the central nervous
system of corn earworm, Helicov-
erpa zea. Insect Biochem. Mol. Biol.
28, 373–385.

Ma, P. W. K., Roelofs, W. L., and Jurenka,
R. A. (1996). Characterization of

PBAN and PBAN-encoding gene
neuropeptides in the central nervous
system of the corn earworm moth,
Helicoverpa zea. J. Insect Physiol. 42,
257–266.

Martinez, T., Gabrias, G., and Camps, F.
(1990). Sex pheromone biosynthetic
pathway in Spodoptera littoralis and
its activity by a neurohormone. J.
Biol. Chem. 256, 1381–1387.

Matsumoto, S., Kitamura, A., Naga-
sawa, H., Kataoka, H., Orikasa,
C., Mitsui, T., and Suzuki, A.
(1990). Functional diversity of a
neurohormone produced by the
suboesophageal ganglion: molecu-
lar identity of melanization and
reddish colouration hormone and
pheromone biosynthesis activating
neuropeptide. J. Insect Physiol. 36,
427–432.

Olsen, S. S., Cazzamali, G., Williamson,
M., Grimmelikhuijzen, C. J. P., and
Hauser, F. (2007). Identification of
one capa and two pyrokinin recep-
tors from the malaria mosquito
Anopheles gambiae. Biochem. Bio-
phys. Res. Commun. 362, 245–251.

Ozawa, R. A., Ando, T., Nagasawa, H.,
Kataoka, H., and Suzuki, A. (1993).
Reduction of the acyl group: the
critical step in bombykol biosyn-
thesis that is regulated in vitro
by the neuropeptide hormone in
the pheromone gland of Bombyx
mori. Biosci. Biotechnol. Biochem. 57,
2144–2147.

Park, Y., Kim, Y.-J., and Adams, M. E.
(2002). Identification of G protein-
coupled receptors for Drosophila
PRXamide peptides, CCAP, cora-
zonin, and AKH supports a the-
ory of ligand-receptor coevolution.
Proc. Natl. Acad. Sci. U.S.A. 99,
11423–11428.

Phelan, P. L., Silk, P. J., Northcott,
C. J., Tan, S. H., and Baker, T.
C. (1986). Chemical identification
and behavioral characterization of
male wing pheromone of Ephesia
elutella (Pyralidae). J. Chem. Ecol.
12, 135–146.

Rafaeli, A. (1994). Pheromonotropic
stimulation of moth pheromone
gland cultures in vitro. Arch. Insect
Biochem. Physiol. 25, 287–299.

Rafaeli, A., Bober, R., Becker, L.,
Choi, M. Y., Fuerst, E. J., and
Jurenka, R. (2007). Spatial distri-
bution and differential expression
of the PBAN receptor in tissues of
adult Helicoverpa spp. (Lepidoptera:
Noctuidae). Insect Mol. Biol. 16,
287–293.

Rafaeli, A., and Gileadi, C. (1996a).
Down regulation of pheromone
biosynthesis: cellular mechanisms of
pheromonostatic responses. Insect
Biochem. Mol. Biol. 26, 797–807.

Rafaeli, A., and Gileadi, C. (1996b).
“Multi-signal transduction of
moth pheromone biosynthesis-
activating neuropeptide (PBAN)
and its modulation: involvement
of G-proteins?,” in The Peptider-
gic Neuron, eds B. Kirsch and
R. Mentlein (Basel: Birkhauser),
239–244.

Rafaeli, A., and Jurenka, R. A. (2003).
“PBAN regulation of pheromone
biosynthesis in female moths,” in
Pheromone Biochemistry and Molec-
ular Biology, eds G. J. Blomquist and
R. Vogt (San Diego: Academic Press),
107–136.

Rafaeli, A., and Soroker, V. (1989).
Cyclic-AMP mediation of the hor-
monal stimulation of [14C]-acetate
incorporation by Heliothis armigera
pheromone glands in vitro. Mol. Cell.
Endocrinol. 65, 43–48.

Rafaeli, A., Soroker, V., Hirsch, J.,
Kamensky, B., and Raina, A. K.
(1993). Influence of photoperiod
and age on the competence of
pheromone glands and on the dis-
tribution of immunoreactive PBAN
in Helicoverpa spp. Arch. Insect
Biochem. Physiol. 22, 169–180.

Rafaeli, A., Zakharova, T., Lapsker, Z.,
and Jurenka, R. A. (2003). The iden-
tification of an age- and female-
specific putative PBAN membrane-
receptor protein in pheromone
glands of Helicoverpa armigera: pos-
sible up-regulation by juvenile hor-
mone. Insect Biochem. Mol. Biol. 33,
371–380.

Raina, A., and Kempe, T. (1990).
A pentapeptide of the C-
terminal sequence of PBAN
with pheromonotropic activity.
Insect Biochem. 20, 849–851.

Raina, A. K., Jaffe, H., Kempe, T. G.,
Keim, P., Blacher, R. W., Fales, H. M.,
Riley,C. T.,Klun, J. A.,Ridgway,R. L.,
and Hayes, D. K. (1989). Identifica-
tion of a neuropeptide hormone that
regulates sex pheromone produc-
tion in female moths. Science 244,
796–798.

Raina, A. K., Jaffe, H., Klun, J. A., Ridg-
way, R. L., and Hayes, D. K. (1987).
Characteristics of a neurohormone
that controls sex pheromone pro-
duction in Heliothis zea. J. Insect
Physiol. 33, 809–814.

Raina, A. K., and Kempe, T. G. (1992).
Structure activity studies of PBAN of
Helicoverpa zea (Lepidoptera: Noc-
tuidae). Insect Biochem. Mol. Biol. 22,
221–225.

Soroker, V., and Rafaeli, A. (1995).
Multi-signal transduction of the
pheromonotropic response by
pheromone gland incubations
of Helicoverpa armigera. Insect
Biochem. Mol. Biol. 25, 1–9.

www.frontiersin.org October 2011 | Volume 2 | Article 46 | 7

http://dx.doi.org/10.1186/1741-7007-7--10
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


Jurenka and Rafaeli PBAN in heliothine moths

Stern, P. S., Yu, L., Choi, M.-Y.,
Jurenka, R. A., Becker, L., and Rafaeli,
A. (2007). Molecular modeling of
the binding of pheromone biosyn-
thesis activating neuropeptide to
its receptor. J. Insect Physiol. 53,
803–818.

Sun, J.-S., Zhang, T.-Y., Zhang, Q.-R.,
and Xu, W.-H. (2003). Effect of the
brain and suboesophageal ganglion
on pupal development in Helicov-
erpa armigera through regulation of
FXPRLamide neuropeptides. Regul.
Pept. 116, 163–171.

Szentesi, A., Toth, M., and Dodrovol-
sky, A. (1975). Evidence and prelim-
inary investigation on a male aphro-
disiac and a female sex pheromone
in Mamestra brassicae (L.) Acta Phy-
topathol. Hung. 10, 425–429.

Tang, J. D., Charlton, R. E., Jurenka, R.
A., Wolf, W. A., Phelan, P. L., Streng,
L., and Roelofs, W. L. (1989). Reg-
ulation of pheromone biosynthesis
by a brain hormone in two moth
species. Proc. Natl. Acad. Sci. U.S.A.
86, 1806–1810.

Teal, P. E. A., and Tumlinson, J.
H. (1989). Isolation, identification
and biosynthesis of compounds

produced by male hairpencil glands
of Heliothis virescens (F.) (Lepi-
doptera: Lepidoptera). J. Chem. Ecol.
15, 413–427.

Teal, P. E. A., Tumlinson, J. H., Mclaugh-
lin, F. R., Heath, R. R., and Rush,
R. A. (1984). (Z)-11-hexadecanol:
a behavioral modifying chemical
present in the pheromone gland of
female Heliothis zea (Lepidoptera:
Noctuidae). Can. Entomol. 116,
777–779.

Thibout, E., Ferary, S., and Auger, J.
(1994). Nature and role of sex-
ual pheromones emitted by males
of Ascrolepiopsis assectella (Lep.). J.
Chem. Ecol. 20, 1571–1581.

Tsfadia, O., Azrielli, A., Falach, L.,
Zada, A., Roelofs, W. L., and Rafaeli,
A. (2008). Pheromone biosyn-
thetic pathways: PBAN-regulated
rate-limiting steps and differential
expression of desaturase genes in
moth species. Insect Biochem. Mol.
Biol. 38, 552–567

Tumlinson, J. H., Fang, N., and Teal,
P. E. A. (1997). “The effect of
PBAN on conversion of fatty acyls
to pheromone aldehydes in female,”
in Insect Pheromone Research: New

Directions, eds R. T. Cardé and A.
K. Minks (New York: Chapman and
Hall), 54–55.

Wu, W. Q., Tang, X. H., Xu, S. F., and
Du, J. W. (1991). The die1 rhythm of
calling behavior and sex pheromone
production of Helicoverpa armigera
(Hubner) (Lepidoptera: Noc-
tuidae). Contributions from
Shanghai Institute of Entomology 10,
57–62.

Zdarek, J., Nachman, R. J., and Hayes,
T. K. (1997). Insect neuropeptides of
the pyrokinin/PBAN family acceler-
ate pupariation in the fleshfly (Sar-
cophaga bullata) larvae. Ann. N. Y.
Acad. Sci. 814, 67–72.

Zhang, T.-Y., Sun, J.-S., Zhang, Q.-R.,
Xu, J., Jiang, R.-J., and Xu, W.-
H. (2004). The diapause hormone-
pheromone biosynthesis activating
neuropeptide gene of Helicoverpa
armigera encodes multiple peptides
that break, rather than induce,
diapause. J. Insect Physiol. 50,
547–554.

Zheng, L., Lytle, C., Njauw, C.-N., Alt-
stein, M., and Martins-Green, M.
(2007). Cloning and characteriza-
tion of the pheromone biosynthesis

activating neuropeptide receptor
gene in Spodoptera littoralis larvae.
Gene 393, 20–30.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 24 June 2011; accepted: 15 Sep-
tember 2011; published online: 10 Octo-
ber 2011.
Citation: Jurenka R and Rafaeli A
(2011) Regulatory role of PBAN in
sex pheromone biosynthesis of helioth-
ine moths. Front. Endocrin. 2:46. doi:
10.3389/fendo.2011.00046
This article was submitted to Frontiers in
Experimental Endocrinology, a specialty
of Frontiers in Endocrinology.
Copyright © 2011 Jurenka and Rafaeli.
This is an open-access article subject
to a non-exclusive license between the
authors and Frontiers Media SA, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Frontiers in Endocrinology | Experimental Endocrinology October 2011 | Volume 2 | Article 46 | 8

http://dx.doi.org/10.3389/fendo.2011.00046
http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive

	Regulatory role of PBAN in sex pheromone biosynthesis of heliothine moths
	Background on PBAN
	PBAN-receptor
	PBAN mode of action
	PBAN's influence on male pheromonal components
	Acknowledgments
	References


