Fungal Genetics Reports

Volume 40

Article 4

Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences

J. J. P. Bruchez Max Planck Institut für Molekulare Genetik

J. Eberle Max Planck Institut für Molekulare Genetik

V. E. A. Russo Max Planck Institut für Molekulare Genetik

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Bruchez, J. J., J. Eberle, and V.E. Russo (1993) "Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences," *Fungal Genetics Reports*: Vol. 40, Article 4. https://doi.org/10.4148/1941-4765.1395

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences

Abstract

Minireview. Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences.

No. 40, 1993

Bruchez et al.: Regulatory sequences in the transcription of Neurospora crassa ge

MINIREVIEW

Regulatory sequences in the transcription of *Neurospora crassa* genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences

Jon J.P. Bruchez, J. Eberle and V.E.A. Russo - Max Planck Institut für Molelulare Genetik, Ihnestraße 73, D-14195 Berlin, Germany

We have analyzed the sequences of 77 nuclear genes of *N. crassa* thought to be transcribed by RNA polymerase II (references 1-72 of the accompanying paper). In Table I we present the data on regulatory sequences in the 5' region, in Table II the data on the regulatory sequences located at the 3' end of the genes, in Table III the regulatory sequences involved in intron splicing of *N. crassa* genes, and, in Table IV, a study of the distribution of these introns.

While in mammalian systems the binding proteins for at least two regulatory sequences, the CAAT and TATA boxes (Montague, 1987, Gene Structure in Eukaryotic Microbes, Kinghorn, Ed., IRL Press p. 263), are known, in *N. crassa* no binding proteins for any such sequences have yet been identified. The validity of the boxes presented here is therefore based entirely upon statistical analysis. Note, though, that Selker <u>et al.</u> (1986) Mol. Gen. Genet. **205**:189-192) have shown through deletion analysis that a (A/T)TATA(A/G) box, highly conserved in both sequence and position, appears to play a role in the regulation of transcription of the 5S rRNA genes of *N. crassa*. This is unusual as such a sequence is not usually associated with other Pol III transcribed genes.

When is a box statistically significant?

N. crassa has a G+C content of 54% (Villa and Storck, 1968, J. Bacteriol. **96**:184-190); we assume 50% here for simplicity in our calculations. Whether a box is statistically significant or not depends both on the length of the sequence, on its stringency to a defined consensus and the window (expressed in bp) in which it is to be found. A box of 4 given bases, no matter whether contiguous or not, has a probability of 1 in 256 to be found in a region of DNA just large enough to house the particular sequence, a window of 1 bp. We define a window as the number of possible positions that each base in the box is permitted to occupy on the DNA sequence. It will be found with a probability of 256/256 = 100% in a window of 256 bp. Given below are the probabilities to find boxes of given length and stringency in a 1 bp window:

4/4 = 1/256	5/5 = 1/1024	6/6 = 1/4096	7/7 = 1/16384
	4/5 = 1/68	5/6 = 1/227	6/7 = 1/781
		5/7 = 1/86	

Regulatory sequences in the 5' region

The CAAT box

Fifty genes had determined 5' mRNA ends (+1) and were screened for possible CAAT type boxes around the -80 bp position, the usual location for mammalian CAAT boxes. When several 5' ends were given, +1 was taken to be the most distal from the <u>ATG</u> except when the authors indicated the major site themselves. Six genes were found to harbor a CAAAT sequence (underlined in Table I) in a range of -75 to -88, a window of 13 bp. The cumulative window of 13 bp in 50 genes is 650 bp. The probability of finding a 5/5 box in a 1 bp window is 1/1024, therefore in a window of 650 bp, the box should occur 650/1024=0.6 times. In other words, of a Statistical basis we should find the CAAAT sequence in this position only 0.6 times

Fungal Genetics Reports, Vol. 40 [1993], Art. 4

out of all 50 genes. The fact that we find 6 indicates that the CAAAT box is of statistical significance, 10 times above statistical background. For comparison the mammalian CAAT box has a consensus of GG(C/T)CAATCT at around -80 bp. (Montague, 1987, Gene Structure in Eucaryotic Microbes, J. Kinghorn Ed., IRL Press, P. 263)

The TATA box

The genes with a defined +1 were also screened for the presence of a possible TATA box around 30 bp upstream of the +1. This revealed a statistically highly significant TATATAA box which is present in 5 of the genes (double underlined in Table I) at a distance from the first +1 of 34-44 bp (window 10 bp). The probability that 1 gene out of 50 has such a sequence is $(10 \times 50)/16384 = 0.03$. We have found 5 such genes giving a factor of 150 above statistical background. If there is indeed a factor that can bind to this sequence even with one wrong base then there are 6 more genes with a degenerate TATATAA (single underlined in Table I). For comparison, the mammalian and yeast TATA box is: TAT(A/T)A(A/T) at around -30 bp (Montague, 1987, Gene Structure in Eucaryotic Microbes, J. Kinghorn Ed., IRL Press, P. 263)

+1 Sequence Consensus

The most striking consensus sequence around the +1 is TCATCANC (double underlined in Table I) which has a probability of 1/16384 of being found in a 1 bp window as a 7/7sequence. There are 6 genes in which 16 transcription starts lie either within the TCATCANC sequence itself or up to two bases away so that we can consider the window to be 12 bp. The probability that out of 50 genes, there is one gene with at least one +1 (there are 107 + 1's highlighted in Table I) lying within a 12 bp window of such a sequence is (107 x 12)/16384=0.08. Having found 6 genes with 16 transcription starts, that gives us a factor of 200 over background. Similar results are obtained if we consider only the first transcription start point. We have scored 5 other genes with this sequence at single base degeneration (single underlined in Table I).

Regulatory Sequences in the 3' Region

Polyadenylation signal sequences

Among the 77 genes in consideration there are 29 which have a 3' end of their mRNA determined by the poly(A) of their cDNA. Some have several 3' ends, so in total there are 34 3' ends given. The polyadenylation sequence in mammals is AATAAA, and in yeast is AATAA, both located 10 to 30 bp upstream of the poly(A) tail (Montague, 1987, Gene Structure in Eucaryotic Microbes, J. Kinghorn Ed., IRL Press, P. 263). We looked within the same region and found two genes, *nit-4* and *spe-1*, with the AATAAA sequence 20 and 17 bases respectively upstream from their 3' ends (double underlined in Table II). Statistically we expect $(34 \times 20)/4096 = 0.16$ such sequences in a window of 20 bases. Therefore 2 is 12 times more than expected. There are then 14 more 3' ends showing the same sequence 3 to 23 bp upstream, window 20 bp, but with a stringency of 5/6 (single underlined in Table II). Statistical background.

Intron Regulatory Sequences

Table III presents the introns from the 77 genes analyzed. There are in total 149 introns https://nwithiandistribution/similar to the Poisson distribution (Table IV). The number of introns seems DOI: 1044664407613864ependent of the length of the gene, for example, the three genes with 7 introns,

No. 40, 1993

Bruchez et al.: Regulatory sequences in the transcription of Neurospora crassa ge

atp-2, crp-1, and *nur-40* have coding regions of 2200 bp, 950 bp, and 1600 bp, respectively, including the introns. Among the genes without introns there are some very large, e.g. frq 2360 bp, *nuc-1* 2565 bp, *qa-1F* 2400 bp, and some very short or middle length, e.g. *cys-3* 710 bp, *met-* 7 1630 bp, *qa-4* 1100 bp. Of the 14 genes without introns there are 5 in the *qa* cluster of 7 genes. This indicates that the location of the gene might be important in determining whether or not it contains introns.

The 5' signal is:

 $G_{51}-G_{99}T_{99}(A_{77}/G_{17})(A_{50}/C_{23})G_{94}(T_{76}/C_{15})$

The Lariat or internal sequence is:

 $(G_{45}/A_{37})C_{94}T_{94}(A_{48}/G_{40})A_{93}C_{82}$ with a distance of 6 to 29 bases from the 3' splice site.

The 3' signal is:

 $G_4(A_{56}/T_{20})(T_{62}/C_{33})A_{100}G_{100}-G_{40}$

where the subscript number indicates the % occurrence of the particular nucleotide, Ø indicates a conserved absence of that particular nucleotide, and - shows the splicing site.

We have determined the majority of the internal lariat sequences presented here. These *N. crassa* intron signals are very similar to the mammalian signals which are:

5':	AG-GT(A)AGT
Lariat:	CT(A/C)A(T/C)?
3':	(T/C) ₁₁ NCAG-G

(Montague 1987 Gene Structure in Eucaryotic Microbes, J. Kinghorn Ed., IRL Press, P. 263) For *N. crassa*, intron lengths lie between 46 and 856 with a tendency toward 60 bp.

Gene	CAAT box	Dist C ^a		lst T ^b	TCATCANC at +1
am		- mesti	TCT <u>TGTATAA</u> AGT	38	
arg-2	AAT <u>CAAAT</u> GTC	85	-	-	CCG <u>TCATCAA</u> CTCT
atp-1	-	-	-	-	CCT <u>CCATCAAC</u> CTCCCGCTACATCI
atp-2	GAG <u>CAAAT</u> CAC	78	-	-	-
bli-7		-	GTGTATATAAGAC	42	TCATCATCAGCATC
chs-1	ST AND - ALL ST	-	-	-	CTAGCATCATCTAG
cmt	S DATEL OF SAL	1-	GGG <u>TATATAA</u> AGC	44	TTGTCATCAACCGA
con-10	12 C C C C C C C C C C C C C C C C C C C	2	GTGTATATAAGCA	42	-
con-13		-	ATGCATATAAGAA	30	
cys-3	-	-	TTGTATATCAGAT	37	-
for	-	-	-	-	CCTTCATCATCCTC
grg-l	-		GCC <u>TATATAA</u> GAC	42	CCATCATCAGCCAA
his-3	TAC <u>CAAAT</u> CAC	88	CTG <u>TACATAA</u> GCG	46	-
hsp30	The second second	-	TCAAATATAAATC	46	- 1
laccase	-		ACGTGTATAAAGT	45	T <i>CT</i> TCATCATCATA
lox	the second s	- 1 0 d - 3	GTCTATATAAGAG	34	
pho-4	-		-	-	TTC <u>TCTTCAGC</u> ACC
ga-4	GGT <u>CAAATCAAAT</u> CTT	88	-	-	ATTTCCTCACCATT
qa-x	CAGCAAATGCT	75	-	-	-
spe-1	TCA <u>CAAAT</u> TTC	81	-	-	
Γ	-	-	e acharta	-	ACTACATCAGCAGT

Table I Regulatory sequences in the 5' region of Neurospora crassa genes

Key: <u>Double Underlining</u> indicates a box showing perfect stringency.

Single Underlining indicates a box showing a single nucleotide degeneracy.

a is the distance from the end of the CAAT box to the first major +1

b is the distance from the end of the TATA box to the first major +1 Published by Nerceloticles shown in *italics* are major +1 transcription initiation sites.

3

Table II Regulatory sequences located at the 3' end of Neurospora crassa genes among the 29 genes with 3' determined by poly(A) tail in their cDNA:

Gene	Dist. 3ª	AATAAA Dist. A ^b	3' terminal sequence
acp	218	TGT <u>AATACA</u> AGA 19	GCTGTTTCCC <u>C</u> ATGTGTATTC TTCGTAGATAAAGTCTTGGGA
al-1	128 160	GGG <u>TATAAA</u> CGA 14 GGG <u>AATATA</u> TAG 15	GTTTTGTTTT <u>T</u> ATGTCGAAGA
atp-1	27 73	TTG <u>AATTAA</u> TTC 7 TAGAGTAAAGAA 15	CTATTCCCGT <u>G</u> GTTCTTGAGA GGTTTTTCGG <u>G</u> ACGTTCCTCC
atp-2	194	GTT <u>AATGAA</u> TAC 17 TGAAAGAAAAGA 23	TGAATGAACT <u>C</u> AGCCTATGTG ACGAGTCATGGAAAAAAGAAG
cys-3 grg-1	540 223	GCCAATTAATAC 3	TTAATACCTT <u>C</u> ACATCTGTTT GAACACAACTACGCCAGTTCG
hsp30 ilv-2	374 327	ATA <u>ACTAAA</u> GTT 22 GTC <u>AATGAA</u> CTT 21	TTTTCTCTGT <u>T</u> CAATGGCTTG
nit-3 nit-4	50 129	AGC <u>AATGAA</u> TTG 17 CACAATAAATGC 20	CCTTCAGATG <u>A</u> CCTTTTGTGT GTCGTTCTAT <u>A</u> CACAAATTCC
nur22	266	TCCAATAACATT 15	TCTCCTTCTT <u>T</u> GAATCATCAT AGAGATTTGC <i>G</i> CAACGTTTGA
nur40 spe-1	135 201	ACGAATAAAATT 17	TTGGACCCTA <u>T</u> AAGATATTTG
T	430	ACAAAAAAAGAC 18	TTTTTCATCG <u>C</u> CGTAACCACC

Double Underlining indicates a AATAAA box showing perfect stringency. Key: Single Underlining indicates a AATAAA box showing a single nucleotide degeneracy or poly(A) tail addition sites. .

a is the distance between last codon and first poly(A) site.

b is the distance between AATAAA consensus and first poly(A) tail site.

al-1 and atp-2 each have two poly(A) tail addition sites.

Ref.	Gene	Id	a	5' signal	Lariat signal	Dist ^b	3'signal	LC
1	1 de las			G GTRNGY	RCTRAC	6-29	N YAG G	
1	acp	D	1) 2)		ACATGCTAACATCGC GTGTGCTGACGACCC	18 10	CTACAG CCC CCCTAG GAT	380 192
2	acu-3	D	1)	GCTOGTTAGT	ACAATCTCACTGACA ACAATCTCACTCGGC	21 10	CGACAG AAG	70
			2)	TACOGTGAGT	AGCCCCTCCCATACT CCATACTGATATTCG	18 x 12 x	ATCTAG ACC	66
3	acu-5	S	1)	ACT1GTAAGT	AGATACTAACAGCTG	12	AAATAG CTC	58
4	acu-8	D	1) 2)	CAA1GTAAGT TACOGTAAGT	AGTTGCTAACCCATG GTTTGCTAACCCCTA	13 20	CTACAG GAA CAACAG GGC	73 67
5	acu-9	S	1)		TCATACTAACAACCA	11	CAACAG GAG	46
6	al-1	D	1) 2)	TTG1GTATGT TTCOGTAAGT	GCTAACTTCTTCCCC TCCAACTAACTTCAC	15 x 21	CAACAG GCG GAACAG TAC	77 108
7	al-3		NO	INTRONS				
8	alc	D	1)	TCG1GTCCGT	TTCAACTAACGGAAG	21	ATACAG ATC	72
raigiepres	s.org/fgr/vol40/	iss1/&	1) 2)	AGG1GTACGT GCC1GTAAGT	CAGAGCTGACTTGAT ATTTGCTGACTCGGC	17 13	CCACAG AGT CTCTAG TGA	67 61

Regulatory sequences involved in intron splicing in Neurospora crassa genes. Table III

 $G_{51}-G_{99}T_{99}(A_{77}/G_{17})(A_{50}/C_{23})G_{94}(T_{76}/C_{15})$

 $(G_{45}/A_{37})C_{94}T_{94}(A_{48}/G_{40})A_{93}C_{82}$

5' Consensus:

Lariat Consensus:

Ref.	Gene	Id	a	5' signal	Lariat signal	Dist ^b	3'signal	LC
10	arg-2	D	1)		TAAACCTAACATTTT	14	GCTCAG GAT	56
			1					202
11	atp-l	D	1)		TAGGGCTAACTCGAC	8 16	CAGCAG CGA GTATAG TGA	202 309
			2)		GGATGCTGACGTGTC CAAATCTGACCCTTT	13	CCCCAG GTT	63
			3)	CCTOCTAACT	ACTGGCTAACCAGAA	18	ACACAG GCG	323
			4) 5)		CAGAGCTGACGAGTC	14	CTACAG TTG	61
			5)	00100111101	Gildhoordhoord	2.		
11	atp-2	D	1)	GAG2GTGAGT	TTGGCCTTCCTCTTG	16 x	ATATAG CGG	111
10			2)		CCTTGCTAACCGCGC	21	CCACAG GTG	157
			3)		TTATACTGACCCCGC	18	CAACAG TCA	101
			4)		ATGCGCTAACCAGCC	11	CCGCAG CAA	88
			5)		ATTCGCTGACATGAT	17	TTATAG CTG	69
			6)		TTTTACTGACGCAAA	12 11	GTGTAG TGT CTGTAG TGT	83 61
			7)	AIGIGIAIGI	CGTTGCTAACGCAGT	11	CIGIAG IGI	01
12	bli-7	D	1)	AACOGTAAGT	CCTTGCTAACCTTCG	26	AAAAAG ACC	95
13	P = 1	D	1)	ATTOCTAACT	CGACGCTGACACGAT	21	CTATAG GTT	240
	Bm1	D	$\frac{1}{2}$		CAGGACTAACACAAC	17	GATCAG GGT	74
			$\frac{2}{3}$		CGACGCTGACAGAAT	11	AAACAG GCA	68
			4)		GAAAGCTCACCGCCC	12	CTACAG GTA	66
			5)		GCTCGCTAACTAGCT	18	TGACAG GCT	73
			6)	CTT2GTAAGT	TAATACTGACGAATC	11	AAACAG CCG	57
4	chs-l	D	1)	CAGIGTAAGT	TAACACGAACGTCGT	12 x	ATCCAG GGG	73
.4	CIIS - I	D	$\frac{1}{2}$		AACCACTTACTAATA	16	TGATAG CAA	59
14		1764		19 <u>1</u>		10		0/
.5	cmt	D	1)	GCT1GTAAGT	TGGTACTAACTTTGA	15	TTCTAG GCT	94
.6	con-8	D	1)	CGGOGTATGT	ATGTGCTAACAGCTC	23	ACATAG CCA	169
1			2)	TAA2GTACGT	TTAAGCTAACTCGTT	17	TAATAG TTG	69
.7	con-10	D	1)	CCC2CTATGT	CTTTGCTAACATAAT	17 x	CTCCAG CCC	70
'	011-10	D	$\frac{1}{2}$		GTTGACCAACACATG	17	AAACAG CGC	74
		-		0.1 mo om 1 0.0 m	OTOTO OTTA A COTTA A	16	CAATAC TCC	57
.8	con-13	D	1) 2)	GATOGTAGGT GGA2GTAAGT	CTGTGCTTACCTTAA CTGTGCTGACCGGAA	16 14	CAATAG TGC AAACAG CAC	62
			-/					
.9	cot-1	С	1)	CCA2GTATGC	TCATTCTAACATTGA	14	TACTAG CAA	78
	197 A.M 101		2)	CAG2GTAAGC	AGATACTGACACGGT	16	ATGCAG AGA	59
			3)	AAG2GTATGC	ACGCGCTCACCATAT	18	TCATAG CCT	58
20	cpc-1	D	1)	CAGIGTAATT	ATGCGCTTACAATCT	12	GCACAG AAC	57
1	n nor	c	1	CCC2CTACCT	ATTGGCTGACCCCTC	18	TTTTAG TGA	856
21	cpi	S	1) 2)		ACCGACTGACCTGCA	13		94
			3)		GATGTCTAACTCCCA	11	ATGCAG CTC	271
			4)	AAC?GTAAGT	AAGACCTAACCTCTC	12	GAACAG GGG	66
		D	1 \	A TOOOT A TOO		15 x	ATGTAG CCT	47
22	crp-1	D	1) 2)		AAACGCTGATTCAGT GATGACTGACTGTAG	16	TTATAG GTT	50
			3)		GAGTATTGACAGCAT	13 x	TTCCAG CCG	62
			4)		TGATGCTAACAATGG	11	GAACAG TGG	62
			5)		CGATACTAACCCGAC	11	GATAAG CAC	63
			6)		AAACGCTGACGATGA	12		126
			7)		CTCGTCTAACAACAC	12	TTCTAG GCC	61
23	crp-2	С	1)	GCG1GTAAGT	GGAGGCTGACAATCA	11	ATTTAG TTG	73
	CIP Z	· ·	2)		TGAGGCTAACATCCT	17	TTCCAG TGG	215
			3)		TGATCCTAACATTTT	10	TCATAG TCA	54
4	crp-3	D	1)	AAGOGTGCGT	GGGATCTAACATGTT	17	CAATAG ATT	93
	CTP J	5	$\frac{1}{2}$		TTTGTCTAACTTACC	14	GAACAG TTC	98
			-/	or	TCTAACTTACCTTCG	10	a i build ad	
						0.1	100010 000	200
.5	cya-4	D	1)	CTG1GTAAGT	AAAGACTGACATGTA	21	ACGCAG CCT	398
	cju +		2)	A A COOTTO COTT	ATCAACTAACACATA	21	AAACAG GCC	68

26 cys-3 NO INTRONS Published by New Prairie Press, 2017 Fungal Genetics Reports, Vol. 40 [1993], Art. 4

	Ref.	Gene	Id	a	5' signal	Lariat signal	Dist ^b	3'signal	LC	
	27	cys-14	D	1) 2) 3) 4)	AAT2GTATGG GTG1GTAAGT	AGATACTGACAAGAT TATTGCTAACATAAT CGTAACTTACGAACC CAGAACTGACAGAAG	18 15 17 17	TAACAG CAA CCACAG GTC CAACAG GCT CAACAG GAC	162 59 72 87	
	28	cyt-2	C D	1) 2)		CTGATCTAACCTCTT TTTTGCTAACGATGT CTTTACTCACTATCT	21 24 7	ATGTAG CCT ATCTAG CAC	92 95	
	29	cyt-18	S	1)	TGG2GTAAGT	CATGACTAACACGAT	16	TACCAG CAC	64	
	30	cyt-20	С	1)	ACG1GTTCGT	ACCAACTTACACCTG	22	TTGTAG ACA	62	
	31	cyt-21	D	1)	CAG2GTACGC	ACCAGCTAACTCTCT	19	TATTAG AAC	73	
				2)	or CTTOGTACGT	ACTCTCTGACTCCCA ATTGACTGACATTGC	11 25	AAACAG GTC	100	
	32	for	D	1) 2)		GTTGACTCATAATCC CCAAACTAACCCACC	16 x 17	ATACAG ATG CTCCAG GAT	80 63	
	33	frq	NO	IN	TRONS					
	34	grg-l	D	1) 2)		AGACACTGACATCTC AGACACTAACATTCA	16 18	TCACAG GCG TCTCAG TCT	88 65	
	35	НЗ	С	1)	CTCOGTAAGT	CGTTGCTAACGCGTC	14	ACCCAG GTC	67	
ł	35	H4	С	1)		GTGTTGTAACATCAT CATGACTGACTCGTA	29 17	CATCAG GCG	69	
				2)		GTCAACTAACATGTC	17	CAACAG TGA	67	
	36	his-3	С	1)	TGC1GTAAGT	TTTAACTCAAGACAC	9 x	ACATAG CTA	59	
	37	hsp30		NO	INTRONS					
	38	ilv-2	D	1) 2) 3) 4)	CTTOGTGAGT AAGOGTGAGT	GTTTACTGACGAGCT CCATGCTGACCCTTT GCGAGCTAACAAACA CCTGACTAACATTTG	19 18 15 18	ACACAG AGC CTTCAG GAC CAACAG ACC TCCTAG TCC	90 236 77 69	
	39	laccase	Ρ	1)	CGGOGTAAGT	AATGACTGACACACA	10	ACCTAG TAC	56	
	40	leu-5	S	1)	TGCOGTGCGT	CCATGCTAACCCAGC	9	GCCCAG GAA	60	
	41	leu-6	D	1)	CAGOGTACGC	CGGTACTAACTCGTC	11	TTCCAG GCC	63	
	42	lox		NO	INTRONS	N				
	43	met-7		NO	INTRONS	1				
	44	mrp-3	D	1)	AACOGTAAGT	CCATGCTGACCATGC	23	CTCTAG CCC	307	
	45	mta-l	С	1) 2)		TTGTACTGACCATTT TGAGACTAACCTCAC	12 9	CACTAG GAA ACTTAG CGG	53 57	
	46	mtA-l	D	1)	GAT1GTGAGT	CATGGCTGATTGCTC	15 x	TTTCAG CGT	59	
	47	nac	S	1) 2) 3)	GACOGTACGT	TCAAACTAACGGGTG CGTAACTGACCATTG AGAGACTAAAGTTCC	29 17 14 x	CTACAG CAG ACACAG GAC TTACAG ACA	234 691 64	
	48	ncypt1	D	1) 2) 3) 4)	TTTOGTACGT ATCOGTAAGC	CCCTGCTGACGATGC ACATGCTGACCGTTT ATTCGCTGACCCAGT ACATACTTACACATC	11 11 16 14	AACCAG ATA GGCTAG AAA ATTCAG TGG CAACAG GAG	258 70 68 58	
h	49 ttps://new	<i>nit-2</i> prairiepress.org/f	D gr/vol4	1) 402i)s	CCG2GTATGT 1/4CGCOGTGAGT	GCAAGCTAATTATAA CTGGTCTGATATATT	27 x 16 x	AAAAAG GAC GTCTAG AAC	99 78	
		48/1941-4765.139 nit-3		1)		TCCATCTAACTGACT	13	TCACAG ACA	61	(

No. 4	40, 1993		Bruch	ez et al.: Regulatory se	quences in the transcription of	f Neurospora crassa	a ge	95
Ref.	Gene	Id			Lariat signal	Dist ^b	3'signal	r _c
51	nit-4	D	1)	GCA2GTAGGT	AGTTACTCACCTTTT	8	TCACAG CAT	59
52	nuc-1		NO	INTRONS				
53	nur22	D	1) 2) 3)	GATIGTACGT	CTTGACTGACTTGTT AACAACTAATATTTT ACTTGCTAACCGAGC	16 17 x 19	CAAAAG CTC TCACAG CCC ACAAAG GTA	84 197 81
54	nur40	D	1) 2) 3) 4) 5) 6)	TAG1GTACGA ATTOGTGAGC CAA2GTGAGT CAA2GTACGA	GATTGCTAACACGTC CATGGCTTATATCAA AGCTACTAAGCATAA TTGACCTGGGTCCCA GGTTTCTGATTGGAT AGCATCTGACAGCCG	19 17 x 17 x 6 x 11 x 11	CCACAG GCT TTGCAG CGA CTCCAG GAG TCCCAG GAA CTGTAG GGC TTTTAG GTG	66 71 93 63 65 59
			7)		GATGACTGATTCCCA	10 x	ATGCAG GCA	57
55	nur49	D	1) 2)		TCAATCTAATATGTG GGTAGCTAACCCTTT	16 x 20	CCTTAG GAA TTCCAG GTG	158 84
56	pho-4	S D	1) 2)		ATTCACTGACAACCA GCTTGCTAACGACGA	21 16	CAACAG GAG TTACAG AGC	80 83
57+58	3 pma-1	D	1) 2) 3) 4)	GAGOGTACGT GAA2GTAGGT	GCATACTAACCCATT CGATGCTGACTAGTT ACGCGCTAACCCGTT AATAGCTAACAATAC	11 14 15 16	GAATAG GAG CTACAG GGT TTTCAG GAC TCACAG TTG	58 124 64 67
59	preg	D	1)	CCG2GTAGGC	AGCTGCTGACATGAA	14	TCATAG AAC	83
60	pyr-4		NO	INTRONS				
61	qa-1F		NO	INTRONS				
61+62	2 qa-1S	S	1)	TAG1GCACGT	TCGTACTAACAGTCA	15	CACCAG GCT	66
61	qa-2		NO	INTRONS				
61	qa-3		NO	INTRONS				
61+63	9 qa-4		NO	INTRONS				
61	qa-x	S	1) 2)		AAGTCCTGACACTGA GTTGACTAACAAGAA	10 19	AAACAG CGC GCTTAG GGA	69 74
61	qa-y		NO	INTRONS				
64	sod-1	Р	1) 2) 3)	ACTIGTAAGT	TACGGCTAACCTCTT CTAGACTGACCAATG TCTTGCTAACTTTTA	19 24 11	GTCCAG TCG CCGCAG TCA CAACAG CGC	286 100 58
65	spe-1	D	1)	ATG1GTGAGT	GTTTGCTGACTTGGA	18	CATCAG CCG	70
66	Т	D	1) 2)		TTGTACTAACACAAA CGTCGCTGACAAGAA	12 20	ACCCAG GAG CTGAAG TAA	52 99
67	trp-1		NO	INTRONS				
68	trp-3	С	1) 2)		GCATGCTAACATCAC TCTTTCTGACACTTC	18 19	CAACAG GCC CTATAG ATT	77 72
69	Ubi	D	1)	CTT1GTAAGT	CGATGCTAACTATCT	13	TCGCAG TGA	68
70	ucr	D	1) 2)	AACOCTAAGG	GACAGCTGACGAGGC GAATGCTGACCCCGG	20 14	ATACAG AGT TTACAG GTC	323 122
Published	by New Prairie	e Press,	2017	TTG1GTACGC	GGAGACTGACATTTG	22	AAACAG GCG	101 7

96				Fungal Genetics Newsletter
			Fungal Genetics Reports, Vol. 40 [1	993], Art. 4
Ref.	Gene	Id ^a	5' signal Lariat signal	Dist ^b 3'signal L ^C
71	vma-l	D 1)	CCCOGTAAGC GCCTGCTGACATGGC	15 GAATAG CAA 131
		2)	CCG1GTAAGT TTATGCTAATAGCTC	9 x TCGCAG GCA 74
		3)	CGG2GTGCGT GCTCGCTAACCCATA	14 CCAAAG CCC 65
		4)	TTGOGTATGG CTGAGCTGAGACTGG	11 x AATTAG GTT 60
		5)	CGG1GTAAGG GATGGCTAACCAATC	14 CGATAG CTG 63
		6)	AAGOGTATGT TAAGGCTAACCATTT	18 CTATAG TAC 80
72	vma-2	D 1)	AATOGTTGGT CATGTCTAACAACGG	11 CCGCAG GTC 56
		2)	GAG1GTGTGT AACAGCTGACAGCCA	18 CTACAG GAA 71
		3)	CAGOGTAGAT ATGCGCTGATATCAT	11 x GAACAG GTC 59
		4)	AAGOGTGAGG AGAAACTGACCAGGA	12 CAACAG ACC 55
		5)	AGAOGTAAGT TTGTGCTGACAAGAC	9 ACATAG GAA 58

Key: Ref. - Reference number for publication describing gene sequence, see list in accompanying paper.

a - Introns Identified by, C

- C computer analysis
- D cDNA sequencing
- P protein synthesis
- S SI mapping
- b Distance between lariat consensus sequence and splice site of 3' consensus (bp).
- c Length of intron (bp).

x - Introns without a perfect CTNAC sequence within the Lariat consensus

The subscript number in the consensus sequences at the top of the table indicates the % occurrence of the particular nucleotide.

The number present within the 5' signal indicates the splicing position within the codon:

- 0 does not cut codon
- 1 cuts after 1st nucleotide within codon
- 2 cuts after 2nd nucleotide within codon

Number of intro	Number of introns n											
present in gene	0	1	2	3	4	5	6	7	8			
Genes with n introns												
Expected Poisson Distribution	10	21	21	14	7	2.8	0.9	0.3	0.08			
Observed	10	21	21	14	/	2.0	0.9	0.5	0.00			
Distributionepress.org/fgr/vol40	_{0/iss1/4} 14	22	23	5	5	2	2	3	0			
DOI: 10.4148/1941-4765.1395										8		

Table IV Actual number of genes with a given number of introns compared with a Poisson Distribution