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Foxp3+CD25+CD4+ regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we
characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or
tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum
hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5
consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3+CD25+CD4+ T cells) in the
airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than
in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4highCD62LlowCD44highCD54highCD69+)
that distinguished them from naive regulatory T cells (CCR4intCD62LhighCD44intCD54intCD69−). These regulatory T cells
efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.

1. Introduction

Regulatory T (Treg) cells have been implicated in the mech-
anisms that govern peripheral dominant tolerance. From
autoimmunity, transplantation, and cancer to mucosal tol-
erance, the presence of functional Treg cells, either thymus-
derived naturally occurring or peripherally-induced adaptive
Treg cells have been associated with the control of inflamma-
tion [1].

Allergic asthma is a chronic inflammatory disease char-
acterized by airway eosinophilia, airway hyperreactivity
(AHR), mucous hypersecretion, and high titers of IgE [2].
In asthmatic patients, CD4+ T lymphocytes upon allergen

challenge secrete type-2 cytokines such as IL-4, IL-5, IL-9,
and IL-13 that in turn mediate the Th2-associated inflamma-
tory network and IgE production [3]. It has been suggested
that insufficient immune regulation by Treg cells might
lead to aberrant Th2 response [4–7]. Conversely, mucosal
exposure to nonpathogenic antigens results in a state
of hyporesponsiveness, known as mucosal tolerance that
efficiently inhibit pulmonary and systemic Th2-mediated
response [8–12].

Different subtypes of regulatory T cells or suppressive
cytokines have increasingly been defined as important in
mediating T-cell unresponsiveness by mucosal tolerance
[9, 13–15]. For instance, TGF-β-producing Th3 cells and
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IL-10-producing Tr1 cells were proposed to mediate oral
and nasal tolerances, respectively [9, 16, 17]. Other Treg
cells involved in mucosal tolerance have been character-
ized as CD4+CD25+CD45RBlow T cells that also express
glucocorticoid-induced TNF receptor (GITR), CTLA-4, and
Foxp3 [13, 14, 18–23].

The involvement of Treg cells in the control of allergic
responses was clearly established in double T/B transgenic
mice [7], a mice that harbor monoclonal CD4+ T-cell
population specific to OVA and monoclonal B cells specific
to hemagglutinin A (HA). These animals when devoid of
natural Treg cells develop hyper-IgE response upon OVA-
HA sensitization and challenge [7]. Previously, we have
shown that oral tolerance induced by OVA feeding prevented
the development of hyper-IgE production and asthma-like
responses in these animals [24]. We found that oral OVA
exposure induced the development of adaptive OVA-specific
Treg cells that displayed suppressive activity in vivo and
in vitro in a TGFβ-dependent manner [24] indicating that
Tregs are quite efficient in preventing priming of naive
T cells.

Natural or adaptive Treg cells can be further charac-
terized as naive or effector Treg cells by the expression of
chemokine receptors and adhesion molecules responsible for
their preferential localization in lymph nodes or in inflamed
tissues [25]. The suppressive effect of Treg cells in lymph
nodes is well documented, whereas their role at sites of
allergen challenge is still elusive. It has been reported that
the resolution of allergic airway disease induced by long-term
allergen challenge (inhalational tolerance) is associated with
local accumulation of Treg cells [26]. Previous studies that
employed oral or nasal tolerance to suppress OVA-induced
allergic lung disease did not investigate the migration of Treg
cells to the lung [23, 24].

In the present work, using the murine OVA model of
asthma-like responses, we investigated whether Treg cells
migrate to the site of allergen challenge in allergic mice or
in mice made tolerant by OVA feeding before sensitization
(oral tolerance). Because we found that Foxp3+ Treg cells
as well as Th2 inflammatory cells and high levels of
suppressive cytokines accumulated in the airways of allergic
but not in tolerant mice, we further characterized the
phenotype of these Treg cells. Upon allergen challenge,
Treg cells accumulated into airways of allergic mice and
showed upregulation of the chemokine receptor CCR4 and
substantially downregulation L-selectin. These two surface
markers could, at least, distinguish Treg cells present in
the airways (CCR4highCD62Llow) from those present in the
draining lymph nodes (CCR4intCD62Lhigh). In addition,
airway Treg cells also upregulated molecules associated with
effector/memory T cells such as CD54, CD44, and others
[27, 28]. Interestingly, the increased frequency of Foxp3+

Treg cells in the allergic lung expressed CD69, whereas
the majority of lung Treg cells from tolerant mice were
Foxp3+CD69-negative. Finally, airway CD4+CD25+ Treg-
like cells from allergic mice exhibited strong and efficient
antiproliferative activity on lung CD4+CD25− T cells but
were unable to suppress type 2 cytokine production. Indeed,
experiments with highly purified green fluorescent Foxp3

Treg cells confirmed the inability of these cells to suppress
cytokine production by Th2 cells.

2. Materials and Methods

2.1. Mice. Female BALB/c and C57BL/6 mice at 8–12-week
old, housed under specific pathogen-free conditions at the
Department of Immunology, Biomedical Science Institute,
University of São Paulo, Brazil, were used throughout
the experiments. Foxp3-green fluorescence protein knockin
(Foxp3gfp.KI) mice were already described elsewhere [29];
these animals were kindly provided by Howard L. Weiner
(Center for Neurologic Diseases, Brigham and Women’s
Hospital, Harvard Medical School) and were bred at the
Department of Microbiology, Immunology and Parasitology
of Federal University of São Paulo. Mice were treated
according to Animal Welfare guidelines of the Biomedical
Science Institute (ICB-USP).

2.2. OVA Sensitization and Airway Challenge. Mice were
sensitized and boosted by subcutaneous route with 4 µg
chicken OVA/1.6 mg of aluminum hydroxide gel in 0.2 mL
of sterile PBS at days 0 and 7. For the induction of airway
inflammation, mice receive two intranasal (i.n.) challenges
with 10 µg OVA in 40 µL of sterile PBS at days 14 and 21.
Experiments were performed 24 h after the last i.n. OVA
challenge (day 22).

2.3. Oral Tolerance Induction. Oral tolerance to OVA was
induced by spontaneous intake of 1% OVA (grade V, Sigma-
Aldrich, St. Louis, Mo USA) solution dissolved in sterile
drinking water for 5 consecutive days before sensitization as
previously described [24].

2.4. Bronchoalveolar Lavage (BAL). Mice were deeply anes-
thetized, trachea was cannulated, and lungs were rinsed with
1.0 mL of cold PBS. Total and differential cell counts of
BAL fluid were determined by hemocytometer and cytospin
preparation stained with Instant-Prov (Newprov, Brazil).

2.5. Determination of Respiratory Pattern. Respiratory pat-
tern was determined before and after increasing doses of
inhaled methacholine (3, 6, 12, and 25 mg/mL) in con-
scious unrestrained mice using whole-body plethysmograph
(Buxco Electronics Inc. Wilmington, NC, USA) as previ-
ously described [12, 30]. The enhanced pause (Penh), a
dimensionless value that takes into account box pressure
recorded during inspiration and expiration and the timing
comparison of early and late expiration was used to define
the respiratory pattern.

2.6. Flow Cytometry Analysis. Single cell suspensions were
preincubated with FcBlock for 10 min at room temperature
(BD PharMingen, San Diego, Calif, USA). Cells were then
incubated in staining buffer (PBS containing 2% fetal
calf serum and 0.1% NaN3) for 30 min at 4◦C with the
antibody cocktails. Samples were analyzed in FACSCalibur
or FACSCanto II instruments (Becton Dickinson, San Diego,
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Calif, USA). Anti-mouse CD4-FITC, CD4-PerCP, CD4-
Pacific Blue, CD25-PerCP-Cy5.5, CD25-FITC, CD62L-PE,
CD69-FITC, CTLA-4-PE, GITR-PE, IgG2aκ-PE, IgG2aκ-
FITC, IL-10-PE, IL-5-PE, and streptavidin-PE-Cy5 were
purchased from BD Pharmingen (San Diego, Calif, USA).
Anti-mouse Foxp3-APC and Foxp3-FITC antibodies were
purchased from e-Biosciences (San Diego, Calif, USA).
Affinity-purified biotinylated goat anti-TGF-β-bound pre-
cursor cytokine latency-associated peptide (LAP) polyclonal
antibodies were purchased from R&D Systems (Minneapolis,
Minn, USA). The remaining antibodies CCR4-APC, CD44-
PE, CD54-PE, and CCR7-PerCP-Cy5.5 were purchased from
BioLegend (San Diego, Calif, USA).

2.7. Intracellular Staining for Foxp3, CTLA-4, and Cytokines.
After stimulation with 2 µg/mL anti-CD3 for 8 h in the
presence of Monensin (Sigma-Aldrich) at 37◦C, cells were
first surface stained and then permeabilized for 30 min with
Cytofix/Cytoperm kit (BD Pharmingen). After washing, cells
were stained with anti-IL-10 and IL-5 antibodies for 45 min
at 4◦C. For Foxp3 and CTLA-4 intracellular staining, an
additional permeabilization was performed using a Foxp3
Staining Buffer Set (eBiosience) for 30 min at 4◦C. Samples
were analyzed in a FACSCalibur or FACSCanto II instru-
ments (Becton Dickinson, San Diego, Calif, USA).

2.8. Lung Digestion and Cell Sorting. After bronchoalveolar
lavage, pieces of lung tissue were digested with collage-
nase (2 mg/mL) and DNase (1 mg/mL) (Sigma-Aldrich)
at 37◦C for 30 min. Lung CD4+CD25− and CD4+CD25+

cells were isolated using magnetic cell sorting (Miltenyi
Biotec). First, CD4+ cells were negatively isolated using
MicroBeads to MHCII, CD8a, and B220 (Miltenyi Biotec).
Negative cells were then magnetically labeled to CD25 and
isolated CD4+CD25− (>95%) and CD4+CD25+ (>90%)
cells assessed by flow cytometry. In selected experiments,
lung cells from allergic Foxp3gfp.KI mice were staining for
CD4-Pacific Blue and sorted into CD4+Foxp3-GFP− and
CD4+Foxp3-GFP+ using a FACSAria cell sorter (Becton
Dickinson).

2.9. In Vitro Suppression Assay. The suppression assay was
performed with CD4+CD25+ cells purified by magnetic sort-
ing or with highly purified FACS-sorted CD4+ Foxp3-GFP+

obtained from Foxp3gfp.KI mice. For this, CD4+CD25− and
CD4+CD25+ cells were purified using magnetic sorting.
Proliferation assays were set up in 96-well round-bottom
plates and contained, per well, 2 × 104 responder cells
(CD4+CD25− cells from sensitized and challenged BALB/c
mice), 4 × 104 APCs (Mitomycin C-treated spleen cells
from TCRαβ-deficient BALB/c mice or from nude mice),
and anti-CD3 (145-2C11) antibody at a 1 µg/mL. Cells were
cocultured at CD25−/CD25+ ratios of 1 : 1, 1 : 0.3, and 1 : 0.1.
Proliferation was determined by adding 3H-thymidine on the
third day of culture and determining incorporation 6 h later.
Suppression assay with CD4+ Foxp3-GFP+ was performed
with lung CD4+ Foxp3-GFP+ or Foxp3-GFP− T cells that
were FACS-sorted from allergic Foxp3gfp.KI mice. Responder

cells (CD4+Foxp3-GFP−) were labeled with 5 µM of Cell
Proliferation Dye eFluor-670 (eBiosciences, San Diego, Calif,
USA) according to the manufacturer’s recommendations.
Dye labeled CD4+Foxp3-GFP− T cells (2 × 105) were than
cultured without or with CD4+Foxp3-GFP+ Treg cells at
ratios of 1 : 1, 1 : 0.3, and 1 : 0.1 in the presence of 4 ×

105 APCs (spleen cells from RAG−/− mice) and anti-CD3
(1 µg/mL) for 72 h. The proliferation was determined by
reduction of the fluorescence intensity of Dye eFluor-670
using a flow cytometry instruments. For analysis of IL-4 and
IL-5 production, responder cells (2×104 CD4+Foxp3-GFP−)
were cocultured without or with CD4+Foxp3-GFP+ Treg cells
in the presence of 35 Gy-irradiated lung MHCII+ MACS-
purified cells (4 × 104) from Foxp3gfp.KI mice and anti-
CD3 (1 µg/mL). Cytokine concentrations were quantified
by sandwich kit ELISA according to the manufacturer’s
recommendations as previously described [8].

2.10. Determination of OVA-Specific IgE and IgG1 Anti-
bodies. OVA-specific antibodies were assayed by sandwich
ELISA as previously described [8]. For OVA-specific IgE
determinations, plates were coated overnight at 4◦C with
2 µg/mL of goat anti-mouse IgE antibody (Southern Biotech-
nology). Serum samples were added followed by addition
of biotin-labeled OVA. Bound OVA-biotin was revealed
by Streptavidin Peroxidase conjugate (Sigma) as previ-
ously described [8]. Hyperimmune serum from OVA/Alum-
immunized BALB/c mice was used as IgE standard and
arbitrarily assigned as 10.000 U/mL. For OVA-specific IgG1
antibodies, serum samples were plated on 96 wells previously
coated with OVA (2 µg/well). The bound antibodies were
revealed with goat anti-mouse IgG1 followed by peroxidase-
labelled rabbit anti-goat antibodies (all from Southern
Biotechnology). The concentration of OVA-specific antibody
was estimated by comparison with IgG1 standards run in
parallel as previously described [8].

2.11. Cytokine Determinations. The levels of IL-4, IL-5, IL-
10, IL-13, and TGF-β in the BAL fluid or supernatants
from lung cells culture were assessed by a sandwich kit
ELISA according to the manufacturer’s recommendations
as previously described [8]. Values are expressed as pg/mL
deduced from standards run in parallel with recombinant
cytokines. Purified and biotinylated antibodies to IL-4, IL-5,
and IL-10 kits were from BD OptEIA, San Diego, Calif, USA.
IL-13 kit was from R&D Systems and TGF-β1 from Promega,
Madison, Wis, USA.

2.12. Lung Histology. Lungs were perfused via the right
ventricle with 10 mL of cold PBS, removed, and immersed in
10% phosphate-buffered formalin for 24 h and then in 70%
ethanol until embedding in paraffin. Tissues were sliced and
5 µm sections were stained with hematoxylin/periodic acid-
Schiff (PAS) for analysis of cellular inflammation and mucus
production.

2.13. Statistical Analysis. ANOVA was used to determine the
levels of difference between all groups. Comparisons of all
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Figure 1: Oral tolerance prevents airway allergic disease. (a) Respiratory pattern to increasing dose of methacholine (MCh) in control,
allergic, or tolerant BALB/c mice 24 h after the last OVA challenge. (b) BAL differential cell counts. Quantification by ELISA of (c) IL-5, (d)
IL-13 in the BAL fluid, and (e) anti-OVA IgE, (f) IgG1 in the serum. (g) Histology of lung sections at 100x. Lung parenchyma inflammation
and mucus production by goblet cells are shown in representative lung sections stained with hematoxylin/PAS. Values represent the means±
SEM for groups of five mice and are representative of more than three experiments. Significant differences ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001 are shown.

pairs were performed by Tukey-Kramer honestly significant
difference test. Values for all measurements are expressed as
mean ± SEMs, and the P values for significance were set to
0.05.

3. Results

3.1. Oral Tolerance Prevents the Development of Asthma-Like
Responses. OVA-sensitized and -challenged mice (Allergic)
developed an enhanced ventilation as revealed by Penh

values to increasing doses of methacholine (MCh) com-
pared to untreated mice (Control). Conversely, prior oral
administration of OVA (Tolerant) prevented the increase in
ventilation (Figure 1(a)). Differential cell counts showed an
increased number of mononuclear cells, neutrophils, and
mainly eosinophils in allergic mice compared to control
mice. In tolerant mice, the influx of inflammatory cells was
almost completely absent (Figure 1(b)). The levels of type-2
cytokines IL-5 and IL-13 in the BAL (Figures 1(c) and 1(d))
and the serum levels of OVA-specific IgE and IgG1 antibodies
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Figure 2: Regulatory T cells in lymphoid organs. Frequency of Foxp3+CD4+ T cells in (a) spleen, (b) cervical lymph nodes (cLN), and
(c) mesenteric lymph nodes (mesLN) of C57BL/6 fed or not with OVA before and after OVA/Alum sensitization. Cells recovered from the
different lymphoid organs were stained for CD4 and Foxp3 and gated in CD4-positive cells. Values are representative of two independent
experiments with pooled cells from three animals per group.

(Figures 1(e) and 1(f)) were also significantly increased in
allergic mice than those orally OVA exposed. Furthermore,
lung histology of allergic mice showed intense peribronchial
and perivascular inflammatory infiltrates and mucus hyper-
secretion, determined by PAS staining (Figure 1(g)). In
contrast, tolerant mice exhibited lung histology similar to
control group (Figure 1(g)). These data show and confirm
[12] that OVA-feeding before sensitization efficiently sup-
presses airway allergic responses and systemic IgE antibody
production.

3.2. OVA-Feeding Increase Regulatory T Cells in Spleen after
Antigen Sensitization. We and others have previously shown
that adaptive CD4+CD25+ (Foxp3+) regulatory T (Treg)
cells increase in peripheral lymphoid organs after oral
OVA administration in mice with monoclonal OVA-T-cell
receptor repertoire [13, 14, 18–23]. Here we were interested
in determining whether oral OVA in mice with polyclonal T-
cell repertoire could also increase the frequency of Treg cells.
For this we monitored the frequency of CD4+Foxp3+ Treg
cells detected in spleen, mesenteric lymph nodes (mesLN),
and cervical-draining lymph nodes (cLN) before and after
OVA sensitization in mice that received previously OVA or
not in the drinking water. We found that the frequency of
CD4+Foxp3+ Treg cells increased at day 3 (d.3) after s.c.
OVA sensitization in the spleen of tolerant but not allergic
mice and decreased thereafter (Figure 2(a)). No differences
were observed between tolerant and allergic mice when the
percentages of CD4+Foxp3+ Treg cells were quantified in
cLN and mesLN (Figures 2(b) and 2(c), resp.). These results
show that oral OVA administration leads to an increased
frequency of spleen Treg cells even in mice with polyclonal
T-cell repertoire.

3.3. Regulatory T Cells Accumulate in the Airways of Allergic
but Not in Tolerant Mice. To monitor the appearance of Treg

cells in the airways the number of CD4+CD25+Foxp3+ cells
present in the BAL and in the lung tissue were determined
from days 14 to 22 (before and after OVA challenges) in mice
that received or not OVA in the drinking water. Interestingly,
we found an increased number of Foxp3+ Treg cells in the
BAL of allergic but not tolerant mice. An apparent increase
of these cells was found at day 17, that is, 48 h after the first
OVA challenge and a significant increase was detected after
the second OVA challenge (d.22) (Figure 3(a)). As expected,
the number of effector (CD4+CD25+Foxp3−) T (Teff) cells in
allergic mice also increased after the first (d.17) and second
OVA challenge (Figure 3(b)). Similar results were found in
the lungs of allergic group where the frequency and number
of both Treg and Teff cells increased after first and second
OVA challenge (Figures 3(c), 3(d), and 3(e)). In allergic
group at day 22, the number and frequency of Teff cells in
the BAL and lung tissue were more than 4-fold higher than
Treg cells (Figures 3(a), 3(b), and 3(c)). These results clearly
document that Treg cells are recruited at sites of allergen
challenge only in mice experiencing allergic inflammation.

3.4. Lung Infiltrating Regulatory T Cells Expresses an Effec-
tor/Memory Phenotype. Because Treg cells were recruited
to the airways of allergic mice, we reasoned that these
cells might have acquired a migratory phenotype similar to
Th2 cells that infiltrate lung tissue [31, 32]. Therefore, we
analyzed several T-cell surface molecules associated with T-
cell migration and/or activation. As shown in Figure 4(a)
by mean fluorescence intensity (MFI) into each FACS-
histogram, the BAL CD4+Foxp3+ Treg cells from allergic
mice upregulated the chemokine receptor CCR4 but not
CCR7, downregulated L-selectin (CD62L) and upregulated
ICAM-1 (CD54) when compared with CD4+Foxp3+ Treg
cells from lung draining lymph nodes (dLN) (Figure 4(a)
upper histograms). To further characterize the phenotype of
these Treg cells, we determined the expression of activation
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Figure 3: Regulatory T cells accumulate in the airways of allergic but not tolerant mice. Time course of (a) CD4+CD25+Foxp3+ (Treg) and
(b) CD4+CD25+Foxp3− (Teff) cells number in the BAL of allergic and tolerant mice. (c) Frequency and (d) number of CD4+CD25+ lung
cells expressing or not Foxp3. Pooled cells from three mice recovered from BAL and lung were stained for CD4, CD25, and Foxp3 and gated
in CD4-positive cells. Values in (a) and (b) represent the means ± SEM for groups of three mice and are representative of two experiments.
The data in (c) show a representative experiment of two. Significant differences ∗∗P < 0.01, ∗∗∗P < 0.001 are related to tolerant group.
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recovered from lung or BAL were stained for CD4, CD69, and Foxp3 and gated in CD4-positive cells. The results are representative of two
experiments with four mice per group.

markers. We found that BAL CD4+Foxp3+ Treg cells from
allergic mice also upregulated CD44, CTLA-4, GITR, and
CD25 (Figure 4(a) lower histograms). Moreover, in lung
tissue the frequency of CD4+Foxp3+ Treg cells expressing
CD69 molecule increased substantially after OVA challenge
in allergic mice compared to tolerant mice (Figure 4(b)). As
expected, the frequency of Foxp3-negative CD69+ T helper
(Teff) cells was drastically enhanced in allergic but not in
tolerant group after OVA challenges (Figure 4(b)). Similar
results were obtained with T cells present in BAL at day 22
(Figure 4(c)). Notably, the frequency of CD69+ Treg cells in
the lung and BAL of allergic mice was higher than CD69−

Treg cells, whereas in tolerant mice we found an inverse
relation (Figure 4(c)). Taken together, our findings clearly
indicate that infiltrating Foxp3+ Treg cells from allergic mice

acquire an effector/memory phenotype distinguishing them
from Treg cells present in lung-draining lymph nodes and
from those present in the airways of tolerant mice.

3.5. Regulatory T Cells Recruited to the Airways of Allergic
Mice Are Not the Principal Producers of Suppressive Cytokines.
Interleukin-10 (IL-10) and transforming growth factor-β
(TGF-β) have been implicated in suppression of inflamma-
tion by Treg cells [33–36]. Therefore, we investigated whether
airway infiltrating Treg cells from allergic mice produce these
cytokines. We first determined the levels of IL-10 and TGF-
β in BAL fluid. We found that high levels of IL-10, total,
and bioactive TGF-β were significantly increased in the BAL
of allergic mice compared to control or tolerant groups
(Figures 5(a), 5(b), and 5(c)). To ascertain whether Treg
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Figure 5: Regulatory T cells are not the major producer of suppressive cytokines in the BAL. Quantification by ELISA of BAL (a) IL-10, (b)
total, and (c) bioactive TGF-β of BALB/c control, allergic and tolerant mice upon 24 h of the last OVA challenge. (d) IL-10, LAP, and IL-5
staining of BAL CD4+Foxp3+ cells from allergic mice. Pooled cells recovered from BAL of five allergic mice were stained for CD4, Foxp3,
IL-10, LAP, and IL-5 and gated in CD4-positive cells. Values represent the means ± SEM for groups of five mice and are representative of
two experiments. Significant differences ∗P < 0.05, ∗∗∗P < 0.05 are shown.

cells of allergic mice produce these suppressive cytokines,
we stained CD4+Foxp3+ T cells for intracellular IL-10 or
for latent-associated peptide (LAP) to indirectly detect TGF-
β producing cells. TGF-β complexes with latency-associated
peptide (LAP), and LAP expression correlates with TGF-
β production in many cell types [37–39]. We found that
only CD4+Foxp3− cells stained positively for IL-10. The
expression of LAP was found in both Foxp3− and Foxp3+

cells, however, the majority (25%) of CD4+ cells in the
BAL expressing LAP were Foxp3− (Figure 5(d)). As expected,
Foxp3+ T cells did not produce IL-5 (Figure 5(d)). These
results indicate that high levels of suppressive cytokines at
site of allergen challenge are associated with lung allergic
inflammation and that CD4+Foxp3+ Treg cells in the airways
of allergic mice do not produce IL-10 and are not the major
population of TGF-β producing cells.

3.6. Lung Treg Cells of Allergic Mice Exhibit Strong Antipro-
liferative Activity but Are Unable to Suppress Type-2 Cytokine
Production. Finally, to address the role of Treg cells present

in the lung of allergic mice, we performed a standard in
vitro suppression assay [40, 41], as previously described [24].
First, we tested the proliferative activity of CD4+CD25−

(memory/effector T cells) cells from lung upon anti-CD3
stimulation in the presence or absence of CD4+CD25+

cells. As shown in Figure 6(a), lung CD4+CD25− cells
exhibited high proliferative response upon anti-CD3 anti-
body stimulation whereas lung CD4+CD25+ cells did not
proliferate. Coculture of CD4+CD25+ with CD4+CD25−

cells showed that CD25+ cells almost completely suppressed
CD25− cell proliferation at ratio 1 : 1, partially at 0.3 : 1
but not at 0.1 : 1 (Figure 6(a)). Next, we evaluated the
production of Th2-cytokine by lung CD4+CD25− cells
in the presence or absence of CD4+CD25+ cells. Albeit
CD4+CD25+ cells efficiently suppressed T-cell proliferation,
they were unable to inhibit IL-4 and IL-5 production upon
anti-CD3 stimulation (Figures 6(b) and 6(c)). Similar data
were found when these cells were stimulated specifically
with OVA (data not shown). The lack of inhibition of IL-
4 and IL-5 secretion by CD4+CD25+ cells might be due to
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Figure 6: Lung CD4+CD25+ T cells from allergic mice suppress T-cell proliferation but not Th2 cytokine production. (a) Proliferation of
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supernatants showed in (a). Values represent the means ± SEM of triplicate wells. The results are representative of two experiments.
Significant differences ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 are shown.

the fact that this cell population also contains effector T cells.
Indeed, CD4+CD25+ cells produced significant amounts
of type-2 cytokines (Figures 6(b) and 6(c)). In order to
circumvent this problem and address more directly whether
Treg cells affect type-2 cytokine production, we performed
experiments in Foxp3gfp.KI mice that harbor fluorescent
Treg cells [29]. Therefore, we induced airway allergic disease
in Foxp3gfp.KI mice and sorted CD4+ T cells expressing
Foxp3-GFP+ Treg cells and CD4+GFP− T cells (Foxp3−)
present in the lungs. We found that only Foxp3− T cells
produced significant amounts of type 2 cytokines upon
anti-CD3 stimulation (Figures 7(a) and 7(b)). Notably, a
highly purified (>98%) lung population of Foxp3-GFP+ Treg
cells could not suppress efficiently Th2 cytokine production
by CD4+Foxp3-GFP− T cells upon anti-CD3 stimulation
(Figures 7(a) and 7(b)). Finally, through using purified
lung Foxp3-GFP+ Treg cells, we confirmed the suppression
assay obtained with CD4+CD25+ T-cell by showing that
they efficiently suppressed T effector (CD4+GFP−) cells
proliferation at ratio 1 : 1 and 0.3 : 1 but not at 0.1 : 1 as
evidenced by Dye eFluor-670 staining (Figure 7(c)). We
conclude that lung Treg cells with regulatory phenotype
present in the airways of allergic mice exhibit a strong
antiproliferative activity but are unable to efficiently suppress
type-2 cytokine production.

4. Discussion

A critical issue in immune regulation is where Treg cells
exert their suppressive function. Their presence on lymphoid
tissue appears to be required for efficient suppression of naive
T-cell activation. Conversely, some data indicate that Treg
cells are recruited to effector site in order to suppress the
action of inflammatory T cells [25, 42, 43]. Previous reports
showed a relationship between suppression of asthma-like
responses by mucosal tolerance and the emergence of Treg
cells in lymphoid organs [17, 21, 24]. We have previously
shown in T/B receptors transgenic mice (T-Bmc) devoid of
natural regulatory T cells that soon after mucosal antigen
exposure, Foxp3-expressing Treg cells are generated in dLN

and in spleen [24]. This early induction of Treg cells by prior
oral antigen exposure appears to inhibit the development
of polarized Th2 inflammatory cells in a TGF-β-dependent
manner [24]. Indeed, using the T-Bmc model, we found that
Treg cells are able to suppress early T-cell activation, 48 h
after immunization with the cognate antigen [24]. However,
after establishment of tolerance they became dispensable for
its maintenance in situ. In the present study, we used a
well-established model of mucosal tolerance to allergic lung
inflammation [8, 12, 24, 44] to monitor the appearance
of Treg cells in the airways after OVA challenge in mice
with polyclonal repertoire. We found that only in OVA-
fed mice, the frequency of spleen Treg cells increased at
day 3 after OVA sensitization, a result resembles the T-
Bmc model. However, here we were particularly interested in
determining whether Treg cells migrate to airways of allergic
or tolerant mice after administration of OVA. We found that
allergic but not tolerant mice showed a striking increase in
the number of Treg cells in the BAL compared to tolerant
mice. Also, high levels of IL-10 and TGF-β were detected in
the airways of allergic mice. Notably, we found that among
CD4+ T cells recruited to allergic inflammation only Foxp3-
negative, but not Foxp3-positive T cells stained positively
for IL-10. Moreover, the majority of LAP+ cells were Foxp3-
negative T cells. Our results are line with data obtained with
T-cell infiltrates in Shcistosoma mansoni egg-induced Th2-
mediated inflammation [45]. In concert with our findings,
migration of Treg cells was also reported in a model of
parasite egg antigens-induced inflammation [46], or other
pathological conditions, such as arthritis, type 1 diabetes,
sarcoidosis and transplants [25, 43, 47–52]. Therefore, it
is plausible that the allergic inflammatory milieu triggers
the migration of Treg cells into the airways. Accordingly, it
has been shown that recruitment of Foxp3-expressing Treg
cells to the site of allergic inflammation is dependent on
chemokine receptors such as CCR4 [52] and CCR8 [53],
where their ligands CCL17, CCL22, and CCL1 are high
expressed during allergic lung inflammation [54, 55]. Our
data demonstrated that the majority of Foxp3-expressing
Treg cells present in the airways upregulated CCR4, CD44
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and CD54 and drastically downregulated CD62L, a pheno-
type that resembles effector/memory T cells. Noteworthy,
this phenotype could distinguish Treg cells present in the
airways from those present in the lung-draining lymph
nodes (dLN). In addition, we showed that Treg cells that
accumulated in the airways of allergic mice also acquired
activated phenotype, as revealed by increased expression of
CTLA-4, GITR, and CD25 contrasting with Treg cells present
in the dLN. Moreover, CD69, a marker of cell activation, was
highly expressed in Treg cells present in the lung and BAL of
allergic mice but not in tolerant group. These data suggest
a functionally important activation step that accompanies
Treg cell migration. The loss of CD62L and the increased of
CD54 expression by Treg cells could also contribute to their
migration to the lung [32]. A picture that emerges from our
findings is that Treg cells get activated and are recruited to
sites of allergic inflammation probably because at these sites
CCR4-specific ligands are expressed at high levels [28, 56].

It was recently reported that the loss of CCR4 severely
inhibited the accumulation of CD4+CD25+ T cells in the

lung and skin [57]. CCR4 knockout mice also fail to develop
allograft tolerance after administration of anti-CD154 with
donor spleen cells, which is associated with a decreased of
Foxp3+ T cells in the graft [43]. Previous data indicated
a division of labor between naive and activated Treg cells
[58]. For instance, naive-like Treg cells use the chemokine
receptor CCR7 for recirculation through lymph nodes where
they control the priming phase of an immune response
whereas CCR7 is dispensable in effector/memory-like Treg
cells for their accumulation in inflamed sites and in fact
CCR7-deficiency enhance Treg cells-mediated suppression
of inflammation [58]. In our model, the role of CCR7
could not be established because activated lung Treg cells
expressed similar levels of CCR7 when compared to naive
dLN Treg cells [25]. Using an islet allograft model it was
demonstrated that Treg cells first migrate from blood to the
allograft where they become activated, and then they migrate
to the dLN in a CCR7 fashion. This movement was essential
for optimal suppression allograft rejection [25]. A similar
situation was found by Graca et al. that found regulatory



Clinical and Developmental Immunology 11

T cells in skin allografts suggesting that T-cell suppression of
graft rejection is an active process that involves the presence
of regulatory T cells at the site of the tolerated transplant
[59]. This scenario does not appear to operate in our model
because we did not find Treg cells in dLN with an activated
phenotype.

We first studied the suppressive activity of airway
CD4+CD25+ T cells, putative Treg cells, in order to determine
their role in lung inflammation. We clearly showed that
CD4+CD25+ T cells containing activated Foxp3+ Treg cells
efficiently suppressed the proliferation of lung CD4+CD25−

memory/effector T cells. Strikingly, these CD4+CD25+ T
cells did not suppress the secretion of IL-4 and IL-5 by
anti-CD3 or OVA-activated CD4+CD25− T cells. Because
CD4+CD25+ T cells contain also effector Foxp3-negative
T cells, it is likely that these cells were the source of the
type 2 cytokines detected in the cultures. To circumvent this
we purified lung fluorescent Foxp3 Treg cells from allergic
Foxp3gfp.KI mice and tested their suppressive activity on
type 2 cytokine production by Foxp3-negative CD4+ T cells.
In this situation, Foxp3-positive Treg cells did not secrete
type 2 cytokines and did not suppress significantly type 2
cytokine production by Foxp3-negative CD4+ T cells but
did suppress CD4+ T-cell proliferation. These results could
explain why, despite the large infiltration of Treg cells, allergic
mice still show Th2-associated pathological responses. Our
results are in line with previous finding showing that in
allergic patients, CD4+CD25+ T cells did not suppress
the release of Th2 cytokines [6]. The inefficiency of Treg
cell in suppressing inflammatory cytokines in established
pathological conditions was also reported in sarcoid gran-
ulomas, in which Treg cells suppressed T-cell proliferation
but were unable to inhibit TNF-α secretion [51]. Notably,
in a model of autoimmune encephalomyelitis, Treg cells also
expand after exposure to myelin antigens and infiltrate the
central nervous system, but these infiltrating Treg cells were
unable to suppress proliferation and inflammatory cytokine
production of effector T cells from target tissue [60]. Based
on our results and previous reports, it appears that the
inflammatory milieu impairs Treg-cell functions.

In summary, we showed that oral tolerance was not asso-
ciated with an increased number of Treg cells or suppressive
cytokines in the airways. Conversely, allergic inflammation
triggers the infiltration of Treg cells into the airways that
efficiently suppress T-cell proliferation but not Th2 cytokine
production. Our findings suggest that allergic inflammation
renders the suppressive activity of Treg cells less stringent
that, in turn, allows the manifestations allergic reactions
mediated by type 2 cytokines.
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assistance.

Author Contribution

Lucas Faustino and Daniel Mucida contributed equally to
this work.

References

[1] M. A. Curotto de Lafaille and J. J. Lafaille, “CD4+ regulatory
T cells in autoimmunity and allergy,” Current Opinion in
Immunology, vol. 14, no. 6, pp. 771–778, 2002.

[2] D. S. Mucida, A. de Castro Keller, E. C. Fernvik, and M. Russo,
“Unconventional strategies for the suppression of allergic
asthma,” Current Drug Targets: Inflammation and Allergy, vol.
2, no. 2, pp. 187–195, 2003.

[3] P. S. Foster, A. W. Mould, M. Yang et al., “Elemental signals
regulating eosinophil accumulation in the lung,” Immunologi-
cal Reviews, vol. 179, pp. 173–181, 2001.

[4] H. Z. Shi and X. J. Qin, “CD4+CD25+ regulatory T lympho-
cytes in allergy and asthma,” Allergy, vol. 60, no. 8, pp. 986–
995, 2005.

[5] E. M. Ling, T. Smith, X. D. Nguyen et al., “Relation of
CD4+CD25+ regulatory T-cell suppression of allergen-driven
T-cell activation to atopic status and expression of allergic
disease,” Lancet, vol. 363, no. 9409, pp. 608–615, 2004.

[6] H. Grindebacke, K. Wing, A. C. Andersson, E. Suri-Payer, S.
Rak, and A. Rudin, “Defective suppression of Th2 cytokines by
CD4+CD25+ regulatory T cells in birch allergies during birch
pollen season,” Clinical and Experimental Allergy, vol. 34, no.
9, pp. 1364–1372, 2004.

[7] M. A. Curotto de Lafaille, S. Muriglan, M. J. Sunshine et al.,
“Hyper immunoglobulin E response in mice with monoclonal
populations of B and T lymphocytes,” Journal of Experimental
Medicine, vol. 194, no. 9, pp. 1349–1359, 2001.

[8] M. Russo, M. A. Nahori, J. Lefort et al., “Suppression of
asthma-like responses in different mouse strains by oral
tolerance,” American Journal of Respiratory Cell and Molecular
Biology, vol. 24, no. 5, pp. 518–526, 2001.

[9] O. Akbari, R. H. DeKruyff, and D. T. Umetsu, “Pulmonary
dendritic cells producing IL-10 mediate tolerance induced by
respiratory exposure to antigen,” Nature Immunology, vol. 2,
no. 8, pp. 725–731, 2001.

[10] D. S. Mucida, D. Rodrı́guez, A. Castro Keller et al., “Decreased
nasal tolerance to allergic asthma in mice fed an amino acid-
based protein-free diet,” Annals of the New York Academy of
Sciences, vol. 1029, pp. 361–365, 2004.

[11] J. Bousquet and F. B. Michel, “International consensus report
on diagnosis and management of asthma,” Allergy, vol. 47, no.
2, pp. 129–132, 1992.

[12] A. C. Keller, D. Mucida, E. Gomes et al., “Hierarchical
suppression of asthma-like responses by mucosal tolerance,”
Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp.
283–290, 2006.

[13] X. Zhang, L. Izikson, L. Liu, and H. L. Weiner, “Activation
of CD25+CD4+ regulatory T cells by oral antigen administra-
tion,” Journal of Immunology, vol. 167, no. 8, pp. 4245–4253,
2001.

[14] F. Hauet-Broere, W. W. J. Unger, J. Garssen, M. A. Hoijer,
G. Kraal, and J. N. Samsom, “Functional CD25− and CD25+

mucosal regulatory T cells are induced in gut-draining
lymphoid tissue within 48 h after oral antigen application,”
European Journal of Immunology, vol. 33, no. 10, pp. 2801–
2810, 2003.



12 Clinical and Developmental Immunology

[15] P. Stock, O. Akbari, G. Berry, G. J. Freeman, R. H. DeKruyff,
and D. T. Umetsu, “Induction of T helper type 1-like
regulatory cells that express Foxp3 and protect against airway
hyper-reactivity,” Nature Immunology, vol. 5, no. 11, pp. 1149–
1156, 2004.

[16] Y. Chen, J. I. Inobe, R. Marks, P. Gonnella, V. K. Kuchroo, and
H. L. Weiner, “Peripheral deletion of antigen-reactive T cells in
oral tolerance,” Nature, vol. 376, no. 6536, pp. 177–180, 1995.

[17] O. Akbari, G. J. Freeman, E. H. Meyer et al., “Antigen-specific
regulatory T cells develop via the ICOS-ICOS-ligand pathway
and inhibit allergen-induced airway hyperreactivity,” Nature
Medicine, vol. 8, no. 9, pp. 1024–1032, 2002.

[18] Y. Chen, Y. Ma, and Y. Chen, “Roles of cytotoxic T-
lymphocyte-associated antigen-4 in the inductive phase of oral
tolerance,” Immunology, vol. 105, no. 2, pp. 171–180, 2002.

[19] S. Fowler and F. Powrie, “CTLA-4 expression on antigen-
specific cells but not IL-10 secretion is required for oral
tolerance,” European Journal of Immunology, vol. 32, no. 10,
pp. 2997–3006, 2002.

[20] K. M. Thorstenson and A. Khoruts, “Generation of anergic
and potentially immunoregulatory CD25+CD4 T cells in vivo
after induction of peripheral tolerance with intravenous or
oral antigen,” Journal of Immunology, vol. 167, no. 1, pp. 188–
195, 2001.

[21] W. W. Unger, F. Hauet-Broere, W. Jansen, L. A. Van Berkel,
G. Kraal, and J. N. Samsom, “Early Events in Peripheral
Regulatory T Cell Induction via the Nasal Mucosa,” Journal of
Immunology, vol. 171, no. 9, pp. 4592–4603, 2003.

[22] B. Dubois, L. Chapat, A. Goubier, M. Papiernik, J. F. Nicolas,
and D. Kaiserlian, “Innate CD4+CD25+ regulatory T cells are
required for oral tolerance and inhibition of CD8+ T cells
mediating skin inflammation,” Blood, vol. 102, no. 9, pp.
3295–3301, 2003.

[23] M. Ostroukhova, C. Seguin-Devaux, T. B. Oriss et al.,
“Tolerance induced by inhaled antigen involves CD4+ T cells
expressing membrane-bound TGF-β and FOXP3,” Journal of
Clinical Investigation, vol. 114, no. 1, pp. 28–38, 2004.

[24] D. Mucida, N. Kutchukhidze, A. Erazo, M. Russo, J. J. Lafaille,
and M. A. Curotto De Lafaille, “Oral tolerance in the absence
of naturally occurring Tregs,” Journal of Clinical Investigation,
vol. 115, no. 7, pp. 1923–1933, 2005.
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