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Allogeneic immune responses are modulated by a subset of host T cells with regulatory function (Treg) contained within the
CD4�CD25high subset. Evidence exists that Treg expand after peritransplantation lymphopenia, inhibit graft rejection, and
induce and maintain tolerance. Little, however, is known about the role of Treg in the clinical setting. IL-2 and activation by
T cell receptor engagement are instrumental to generate and maintain Treg, but the influence of immunosuppressants on Treg
homeostasis in humans in vivo has not been investigated. This study monitored Treg phenotype and function during immune
reconstitution in renal transplant recipients who underwent profound T cell depletion with Campath-1H and received
sirolimus or cyclosporine (CsA) as part of their maintenance immunosuppressive therapy. CD4�CD25high cells that expressed
FOXP3 underwent homeostatic peripheral expansion during immune reconstitution, more intense in patients who received
sirolimus than in those who were given CsA. T cells that were isolated from peripheral blood long term after transplantation
were hyporesponsive to alloantigens in both groups. In sirolimus- but not CsA-treated patients, hyporesponsiveness was
reversed by Treg depletion. T cells from CsA-treated patients were anergic. Thus, lymphopenia and calcineurin-dependent
signaling seem to be primary mediators of CD4�CD25high Treg expansion in renal transplant patients. These findings will be
instrumental in developing “tolerance permissive” immunosuppressive regimens in the clinical setting.
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R enal allotransplantation is the treatment of choice for
most ESRD (1). However, the substantial benefit that is
obtained from transplantation is offset by the adverse

effects of immunosuppression (2). The field of transplant med-
icine now needs to focus on drug efficiency/safety, with toler-
ance being the ultimate goal. Immune activation in graft rejec-
tion involves multiple effector cell populations, but with few
exceptions, CD4� and/or CD8� lymphocytes have a requisite
role (3). In experimental models of organ transplantation, allo-
geneic immune responses are modulated by a subset of host T
cells with regulatory function (Treg), contained within the
CD4�CD25high subset (4), that can inhibit graft rejection and
maintain tolerance to alloantigens. Little, however, is known
about the role of Treg in the clinical setting.

Experimental evidence exists that Treg expand after lymphope-
nia that is induced by T cell–depleting agents (5–7). Recently, the
humanized anti-CD52 mAb Campath-1H (Alemtuzumab; Scher-
ing Plough, Milan, Italy) was used to reduce markedly both cir-

culating and bone marrow lymphocytes for several months in
kidney transplant recipients (8). Thus far, in the kidney transplant
setting, Campath-1H induction has been followed by diverse im-
munosuppressive regimens (8–11), in accordance with the princi-
ple of minimum use of posttransplantation immunosuppression.
Among the agents that are associated with Campath-1H, siroli-
mus does not interfere with calcineurin-dependent IL-2 synthesis
and signaling (12,13) and promotes in vitro Treg expansion upon
T cell receptor (TCR) stimulation (14) or the de novo induction of
Treg from naı̈ve CD4� T cells (15), events that would favor toler-
ance induction in vivo. However, it is theoretically possible that
calcineurin inhibitors, including cyclosporine (CsA) and tacroli-
mus (16,17), represent a barrier to immune tolerance in organ
transplantation given the following: (1) Treg have a crucial role in
maintaining immune tolerance (4); (2) IL-2 has a well-defined
physiologic role in generating and maintaining Treg, because IL-2
and IL-2 receptor � knockout mice die of autoimmunity, which is
prevented by Treg administration (18–20); and (3) calcineurin
inhibitors block IL-2 formation in T lymphocytes (17). This, how-
ever, has never been tested in vivo in humans. To clarify the role of
lymphopenia and of calcineurin-dependent signaling in Treg ho-
meostasis in clinical transplantation, we treated kidney transplant
recipients with Campath-1H to deplete lymphocytes profoundly
and examined the impact of low-dosage sirolimus- or low-dosage
CsA-based maintenance immunosuppression on the emergence
and activity of Treg.
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Materials and Methods
Patients

Twenty-one white primary kidney transplant recipients were en-
rolled under a protocol that was approved by the Ethics Committee of
the Renal Transplant Center of Bergamo. Recipients were selected
according to age 18 to 70 yr, current panel reactive antibodies �10%,
non-HLA identical to the donor and a negative cross-match test, and
random allocation on a 1:1 basis to either low-dosage sirolimus or
low-dosage CsA added to low-dosage mycophenolate mofetil (MMF)
and induction therapy with Campath-1H. Baseline characteristics are
shown in Table 1. Schematic representation of the study design is
outlined in Figure 1. Informed written consent was obtained from all
participating patients according to the Declaration of Helsinki.

Immunosuppressive Therapy
At surgery, patients were given methylprednisolone (500 mg intra-

venously), followed by a 30-mg infusion of Campath-1H. Methylpred-
nisolone was also infused on days 1 (250 mg) and 2 (125 mg) after
transplantation. Low-dosage sirolimus (Rapamune, Wyeth-Lederle,
Rome, Italy) was started on day 1 (4 mg/d orally, then adjusted to
target trough levels of 5 to 10 ng/ml, by HPLC [21]). CsA was given
intravenously (1 to 2 mg/kg per d) on day 1, then shifted to oral CsA
(2 mg/kg twice daily) and adjusted to trough blood concentrations of
120 to 220 ng/ml (by HPLC [22]) in the first month and of 70 to 120
ng/ml thereafter (Table 2). In both groups, patients were also given
MMF (Cell Cept; Roche, Milan, Italy) at the oral dosage of 500 mg twice
daily from day 1.

Follow-Up and Patient Outcome
Patients were followed up for 24 mo. Mean serum creatinine concen-

tration progressively decreased during the first 2 mo and remained
stable in the two study groups up to study end. GFR, measured by
plasma clearance of iohexol (23), showed a stable graft function at 6, 12,
and 24 mo (Figure 2) in both groups. In sirolimus-treated patients,
however, GFR was numerically higher than in the CsA group at all time
points. The adverse events were comparable in the two study groups
(Table 3). Three patients, one on sirolimus and two on CsA, had an
acute rejection episode at 14, 9, and 210 d after transplantation, respec-

tively, and fully recovered with intravenous methylprednisolone. One
patient who was on sirolimus died from sepsis 18 mo after transplan-
tation.

Peripheral Leukocyte Count and Lymphocyte Phenotype
Peripheral blood mononuclear cells (PBMC) were monitored by flow

cytometry using TruCount tubes and analyzed by FACSCalibur cytom-

Table 1. Distribution of patient demographicsa

Demographic Overall
(n � 21)

SRL
(n � 11)

CsA
(n � 10)

Age (yr) 49 (24 to 70) 51 (31 to 69) 47 (24 to 70)
Gender (M/F) 13/8 6/5 7/3
Type of donor

cadaveric 19 11 8
living 2 0 2

Mismatches 4.0 � 1.3 4.0 � 1.4 4.0 � 1.2
Cause of renal failure

IgA nephropathy 6 3 3
membranous nephropathy 1 1 0
other glomerulonephritis 1 1 0
polycystic kidney disease 3 1 2
interstitial inflammation 1 1 0
pyelonephritis 3 3 0
unknown 6 1 5

aData are median (range) or mean � SD. CsA, cyclosporin A; SRL, sirolimus.
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Figure 1. Schematic representation of study design. Twenty-one
white primary kidney transplant recipients were randomly al-
located on a 1:1 basis to either low-dosage sirolimus (SRL
group; n � 11) or low-dosage cyclosporin A (CsA group; n �
10) added on to low-dosage mycophenolate mofetil (MMF) and
induction therapy with Campath-1H (C1H). Immunosuppres-
sive treatments are indicated by arrows. At surgery, patients
were given 500 mg of methylprednisolone intravenously, fol-
lowed by 30 mg of Campath-1H intravenously. Methylpred-
nisolone was also infused on days 1 (250 mg) and 2 (125 mg).
Sirolimus (low SRL) was started on day 1 (4 mg/d orally, then
adjusted to expected target trough levels). Intravenous CsA
(low CsA) was started soon after surgery (1 to 2 mg/kg per d);
on day 1, CsA was shifted to oral CsA (2 mg/kg twice daily)
and adjusted according to trough blood concentrations. In both
groups, patients were also given MMF at the oral dosage of 500
mg twice daily starting on day 1 (low MMF). Phenotypic and
functional assessments are outlined on the left. Timing of each
evaluation is marked with a cross.
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eter (BD Bioscience, San Jose, CA). For T lymphocyte subset immuno-
phenotyping, fresh blood samples and PBMC were incubated with
fluorochrome-conjugated mAb against human CD3, CD4, CD8, CD25,
CD69, CD45RO, and Ki-67 antigens (BD Bioscience). The samples were
analyzed by FACSort or by FACSAria cytometers (BD Bioscience). For
each marker, blank samples with isotype-matched control antibodies
were analyzed.

FOXP3 Expression in CD4� Subset
After gating for CD3, CD4�, CD4�, CD4�CD25�, and CD4�CD25low,

CD4�CD25high T cells were isolated by cell sorting (FACSAria; BD
Bioscience), and purity was �99%. Total RNA was reverse-transcribed
to cDNA, and quantitative real-time PCR was performed on a TaqMan
ABI Prism 5700 Sequence Detection System (Applied Biosystems, Fos-
ter City, CA) with SYBR Green PCR Core reagents and the following
primers: FOXP3, forward (300 nM) 5�-AGC CAT GGA AAC AGC ACA
TTC-3� and reverse (300 nM) 5�-GAG CGT GGC GTA GGT GAA A-3�.
�2-Microglobulin served as housekeeping gene. The ��Ct equation
was used to compare the FOXP3 gene expression in each sample with
the expression in a pool of CD3�CD4� cells from healthy subjects
(calibrator). Results were expressed as arbitrary units taking the expres-
sion in the calibrator as 1.

Measurement of Lymphocyte Alloreactivity
Mixed Lymphocyte Reaction. Recipient PBMC (1 	 105) were

cultured in RPMI/20% human serum type AB, with irradiated (4000

RAD) stimulator cells from donor and third-party subjects (either
PBMC from living donors or CD2-depleted spleen cells from cadaveric
donors). Third-party controls were chosen, to the extent possible, such
that the HLA mismatches were the same as those between the donor
and the recipient. Cells were incubated for 6 d and pulsed with 1 �Ci
[3H]thymidine during the last 16 h. The stimulation index was calcu-
lated by the ratio of cp/min allogeneic combinations (donor or third-
party) to the cp/min self combinations.

Enzyme-Linked Immunosorbent Spot Assays. Enzyme-linked
immunosorbent spot (ELISPOT) assays were performed using BD ELIS-
POT Human IFN-� reagents. Responder PBMC (300,000/well) were
plated in ELISPOT plates (Millipore, Billerica, MA) in the presence of
irradiated donor or third-party stimulators (300,000). Plates were incu-
bated overnight, and the resulting spots were counted by Immunospot
image analyzer (Aelvis Elispot Scanner system). Aliquots of responder
PBMC were also incubated with medium alone (negative controls) or in
the presence of 10 �g/ml phytohemagglutinin (PHA) (positive con-
trols). Results are the mean value of IFN-� spots/300,000 recipient
PBMC after subtracting IFN-� spots in negative controls (usually two or
fewer).

Statistical Analyses
Results are mean � SEM. Baseline characteristics of patients were

compared by �2 test or by t test as appropriate. Variations in peripheral
blood count, phenotype, and functional data were assessed by
ANOVA. The statistical significance level was defined as P � 0.05. The
Bonferroni correction for multiple comparison was applied.

Results
Phenotype of Peripheral Blood Leukocytes in Renal
Transplant Patients after Campath-1H

Campath-1H profoundly depleted total B cells, NK cells,
monocytes, and T cells and CD4� and CD8� T cell subsets

Table 2. SRL and CsA trough levels during the 24-mo
follow-up after transplantation

Months after
Transplantation

Mean SRL Trough
(ng/ml)

Mean CsA C0
(ng/ml)

1 7.6 � 2.9 143 � 89
3 8.6 � 3.1 124 � 50
6 9.3 � 3.6 113 � 27

12 9.3 � 2.1 99 � 36
18 10.3 � 5.0 87�22
24 10.4 � 3.7 75 � 32
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Figure 2. Kidney graft function. GFR at 6, 12, and 24 mo after
C1H induction in SRL-treated (n � 11, n � 10 at 24 mo; �) and
CsA-treated (n � 10 f) groups. Data are means � SEM.

Table 3. Patients with adverse events that required
treatment or hospitalizationa

Adverse Events Overall SRL CsA

Infectious
CMV reactivation 4 — 4
pneumonia 2 1 1
urinary tract infection 4 3 1
herpes zoster reactivation 2 2 —
sepsis 2 1 1

Surgical
perirenal hematoma 2 — 2
hemoperitoneum 1 — 1
lymphocele 1 — 1
pleural effusion 1 — 1

Medical
fever of unknown origin 10 3 7
leukopenia 3 1 2
diarrhea 2 — 2
myocardial ischemia 2 1 1
thrombocytopenia 1 — 1
gout 1 — 1
thrombophlebitis 1 — 1
diabetes 3 1 2

aCMV, cytomegalovirus.
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(Figure 3, A and B). Confirming previous reports (24), the
depleted CD4� T cell pool, however, was enriched by memory
CD45RO� cells (Figure 3C). Campath-1H–induced cell deple-
tion was not influenced by the type of maintenance immuno-

suppression therapy (Figure 3, D through I). CD3�CD4� T cells
recovered very slowly: At month 24 after transplantation, their
count was approximately one third of baseline values in both
sirolimus- and CsA-treated patients (Figure 3H). In the siroli-
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Figure 3. Effect of C1H on circulating leukocyte subsets in renal transplant patients. Using flow cytometry analysis, absolute
numbers of total CD3�CD19� B cells and CD3�CD16�CD56� NK cells (A) and of total CD3� T cells and of CD3�CD4� (CD4�)
and CD3�CD8� (CD8�) subsets (B) were calculated for healthy subjects (n � 11) and patients at baseline (before transplantation,
n � 21) and at 14 d after transplantation and C1H induction (n � 21; data from SRL- and CsA-treated patients were cumulated
because no difference was recorded between the two groups at this time). Absolute numbers of monocytes were obtained from
a complete blood count that was done on the same day (A). (C) Percentage of memory CD45RO� cells within CD3�CD4� from
healthy subjects and from patients at baseline and at 14 d after transplantation and C1H induction (cumulative data from the SRL
and the CsA group). (D through I) Kinetics of absolute numbers of repopulating total CD3�CD19� B cells, CD3�CD16�CD56�

NK cells, monocytes, CD3� T cells, and CD3�CD4� and CD3�CD8� T cell subsets in the peripheral blood of C1H-treated renal
transplant patients from baseline (time 0) to 24 mo after transplantation. E, SRL recipients (n � 11, n � 10 at 24 mo); f, CsA
recipients (n � 10). Data are means � SEM. *P � 0.05 versus time 0; §P � 0.05 versus SRL-treated group at the same time point.
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mus group, CD3�CD8� T cell counts remained lower than before
transplantation until month 24 after surgery, whereas in the CsA
group, they returned to preoperative values within 4 to 5 mo
(Figure 3I). B cells, NK cells, and monocytes recovered faster than
CD4� and CD8� T cells, reaching pretransplantation values
within 6 (B cells) and 3 mo (NK cells and monocytes) after trans-
plantation in both groups (Figure 3, D through F).

Sirolimus- but Not CsA-Based Maintenance
Immunosuppression Is Associated with In Vivo Expansion
of CD4�CD25high Cells after Campath-1H

The number and the proportion of circulating CD4� cells that
comprised CD25high cells were comparable in participants, an-
alyzed at baseline, and in healthy individuals (n � 11; mean age
36 yr; range 32 to 55; Figure 4, A and B). Campath-1H induced
a profound and unselective depletion of CD4�CD25�,
CD4�CD25low (effector T cells) (25) and CD4�CD25high subsets
(Figure 4, A through C) in transplant patients.

From month 1 after transplantation, the percentage of
CD25high cell subset in total CD3�CD4� T cells progressively
increased over baseline in sirolimus-treated patients (Figure 4,
D through F), reaching values that were significantly higher
than before transplantation from months 4 to 24 postopera-
tively. In the CsA group, the trend of CD4�CD25high cell per-
centage to increase was milder: Values that were significantly
higher than before transplantation were recorded only at
month 6 (Figure 4, D through F). As a consequence, the Treg/
effector T cells ratios were significantly higher (P � 0.05) in the
sirolimus than in the CsA group from months 2 through 24
(data not shown).

For assessment of whether enrichment in CD4�CD25high T
cells was associated with cell proliferation, staining for Ki-67 (a
nuclear cell proliferation–associated antigen that is expressed in
all active stages of cell cycle) (26) was performed in cells that
were taken from patients at baseline and at the time of maximal
CD4�CD25high cell expansion (3 to 5 mo after transplantation).
Higher cycling was observed in the three CD4�CD25 cell sub-
sets from all patients who were studied 3 to 5 mo after trans-
plantation (P � 0.05) than in cells from patients at baseline and
from healthy individuals (Figure 5C), which is consistent with
CD4� T cell recovery after Campath-1H–induced lymphopenia
(Figure 3H). Of note, the proportion of CD4�CD25highKi-67�

cells was significantly (P � 0.05) higher in the sirolimus- than in
the CsA-treated group, whereas no difference in the percent-
ages of both CD4�CD25lowKi-67� and CD4�CD25�Ki-67� cells
was found between the two groups (Figure 5C).

Expanding CD4�CD25high Cells Express the Treg Hallmark
FOXP3

The previous results document that Campath-1H–induced T
cell depletion favors the emergence of CD4�CD25high T cells in
patients who receive sirolimus maintenance therapy. However,
CD25 cannot be regarded as a specific hallmark of Treg, be-
cause also effector/memory T cells express this molecule on
their surface (27). To ascertain whether the high levels of CD25
expression in regenerating CD4� cells upon Campath-1H in-
duction reflected a regulatory phenotype, we evaluated the

mRNA expression level of FOXP3, a gene that encodes a tran-
scription factor that is required for Treg development and
function (28,29). Using electronically sorted CD3�CD4� sub-
populations, we saw the highest levels of FOXP3 expression in
CD25high subset both in patients and in healthy individuals,
with intermediate and low levels of FOXP3 expression in the
CD25low and CD25� subsets, respectively (Figure 5A). FACS
analysis showed that the large majority (99.0%; range 98.5 to
99.5%) of CD4�CD25high cells from all groups were CD69�,
excluding that they were activated cells (30). There was a
significantly (P � 0.05) increased FOXP3 expression in
CD4�CD25high cells that were isolated 24 mo after transplan-
tation from sirolimus- compared with CsA-treated patients or
from participants at baseline and healthy individuals (Figure
5A).

To quantify Treg in the total CD3�CD4� cell population, we
further evaluated FOXP3 expression in positively selected
CD3�CD4� T cells. Cells that were isolated 24 mo after trans-
plantation from sirolimus-treated patients had higher (P �

0.05) FOXP3 expression compared with CD3�CD4� cells from
the same patients at baseline or from healthy individuals (Fig-
ure 5B), which is consistent with both CD4�CD25high T cell
expansion that was observed through flow cytometry and in-
creased FOXP3 expression in this cell subset. Notably, in CsA-
treated patients, FOXP3 expression in CD3�CD4� T cells was
lower (P � 0.05) than in the sirolimus group (Figure 5B).
Altogether, these results indicate that, after lymphocyte deple-
tion by Campath-1H induction, sirolimus but not CsA in-
creased the pool of FOXP3-expressing CD4�CD25high cells. We
saw no evidence in any group of significant FOXP3 expression
in CD4� cells (FOXP3 expression �0.01 arbitrary units).

CD4�CD25high T Cells from Sirolimus-Treated Patients
Suppress T Cell Alloreactivity Ex Vivo

Treg are anergic T cells that respond poorly to allogeneic
stimuli and are also capable of inhibiting the alloreactive re-
sponse of effector T cells (31). Therefore, we performed func-
tional assays to address whether the emergence of Treg was
associated with host T cell hyporesponsiveness against donor
antigens. Both the proliferative response of T cells to alloanti-
gens in MLR and the frequency of previously activated/mem-
ory T cells by ELISPOT for IFN-� after overnight exposure to
alloantigens were analyzed (32). Samples were taken before
transplantation and at two different time intervals after T cells
had repopulated the peripheral blood at an adequate amount
(at months 12 and 24 after transplantation). In sirolimus-treated
patients, the anti-donor T cell proliferative response and the
frequencies of IFN-�–producing donor-reactive cells were sig-
nificantly (P � 0.05) reduced at both posttransplantation points
as compared with before transplantation (Figure 6, A and B).
Posttransplantation anti–third-party alloreactivity was signifi-
cantly lower than pretransplantation as well (Figure 6, A and
B). These results could not be attributed to incomplete recovery
of T cell count or to a state of general immunosuppression
caused by maintenance therapy, because T cells that were iso-
lated at the same time points responded normally to a poly-
clonal T cell stimulus with PHA (Figure 6B). In CsA-treated
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patients, T cells that were studied at the same time points
showed donor-specific hyporesponsiveness assayed with MLR
and ELISPOT, compared with before transplantation (Figure 6,
A and B). T cell response to PHA was normal (Figure 6B).

To clarify the role of Treg in these phenomena, we repeated
ELISPOT assays at 24 mo after transplant and after
CD4�CD25high cell depletion by sorting. As shown in Figure
6C, in the sirolimus group, depletion of CD4�CD25high cells
was associated with a statistically significant (P � 0.05) increase
in the frequency of IFN-�–producing effector/memory cells to
both donor and third-party antigens. The suppression ratios,
defined as frequency after depletion minus frequency before
depletion divided by frequency after depletion (33), were com-
parable for both anti-donor (0.43 � 0.06) and anti–third-party
(0.45 � 0.06) response. To confirm that the CD4�CD25high

subset in sirolimus-treated patients had regulatory activity and
to exclude any possible overlapping inhibitory effect of the
concomitant immunosuppressive therapy on the function of
effector T cells, we added sorted CD4�CD25high cells, taken
from these patients at 24 mo after transplantation, to
CD4�CD25high-depleted PBMC from the same patients before
surgery. Addition of CD4�CD25high cells consistently reduced
the IFN-� frequencies to both donor and third-party antigens
(Figure 6D). The amount of added Treg did correspond to the
percentage of circulating CD4�CD25high cells in patients before
transplantation, which supports a potential clinical significance
of our findings.

Conversely, in patients who were on CsA, CD4�CD25high

cell depletion had no effect on the frequencies of anti-donor
IFN-�–producing T cells that were taken at 24 mo after
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transplantation (Figure 6C). These results indicate that Treg
did not play a significant role in the hyporesponsiveness to
donor alloantigens in CsA-treated patients. By contrast, ad-

dition of IL-2 to the ELISPOT assay increased the IFN-�
frequencies against donor antigens to reach anti–third-party
values (Figure 6E). Thus, anergy rather than regulation con-
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tributed to donor-specific hyporesponsiveness in CsA-
treated patients (34).

Discussion
Here we demonstrated that in renal transplant recipients,

CD4�CD25high FOXP3-expressing Treg expand in the periph-
eral blood during immune reconstitution after profound T cell
depletion with Campath-1H, provided that sirolimus and not
CsA is given as maintenance immunosuppression. On the basis
of these data, we hypothesized that lymphopenia and cal-
cineurin-dependent signaling could be instrumental to achiev-
ing pro-tolerogenic Treg expansion in the clinical transplant
setting.

Polyclonal and monoclonal anti–T cell antibodies have been
used as an integral part of tolerance induction protocols in
experimental transplantation (7,35). Their tolerogenic activity
has been attributed primarily to the profound T cell depletion
from the circulating pool via complement-dependent lysis or
Fas/Fas ligand–mediated apoptosis (36,37), although emerging
evidence suggests also a role for Treg expansion during lym-
phopenia-induced homeostatic proliferation (6,26,38,39). After
anti–lymphocyte serum (ALS)-induced lymphopenia in C57/
BL6 mice (5), the reduction of CD4�CD25� Treg was smaller
than that of CD4�CD25� cells, which raised the concept that
Treg may be resistant to ALS-depleting effects. At variance
with ALS, we found that in renal transplant patients, Cam-
path-1H did not selectively spare Treg but induced a profound
and unselective depletion of CD4�CD25�, CD4�CD25low, and
CD4�CD25high subsets. These results are consistent with the
observations that all CD4� T cell subsets, including
CD4�CD25�, express at similar densities on their cell surface
the CD52 target antigen of Campath-1H (40) and that Campath-
1H, added in vitro to human blood, causes depletion of
CD4�CD25high cells (40).

As a part of homeostatic proliferation secondary to Campath-
1H–induced lymphopenia, we documented a progressive in-
crease of CD4�CD25high T cells, which, however, was restricted
to sirolimus-treated patients. CD4�CD25high T cell expansion
may result from two mutually nonexclusive and possibly com-
plementary mechanisms. Antibody-induced lymphopenia may
promote the selective homeostatic proliferation of naturally
occurring CD4�CD25high cells. Finding a higher expression of
the proliferation marker Ki-67 in CD4�CD25high cells than in
CD4�CD25low and CD4�CD25� cells from renal transplant
patients after Campath-1H would support this hypothesis. This
possibility is also in line with data in genetically lymphopenic
Rag�/� mice showing proliferation of adoptively transferred
CD4�CD25� but not CD4�CD25� cells upon treatment with
IL-2 (26). However, T cell depletion after Campath-1H infusion
could stimulate the expansion of CD4�CD25� cells that become
activated and acquire high CD25 expression upon exposure to
the lymphopenic environment, as observed in other studies in
immunodeficient mice (38). Conversion between CD4�CD25�

and CD4�CD25� phenotype also has been shown in immuno-
competent wild-type mice after T cell depletion with ALS (5)
and in ALS-stimulated human PBMC in vitro (41).

Data on the immune function of expanding cells after lym-

phopenia are controversial. CD4�CD25� cells that were col-
lected from mice after ALS inhibited in vitro CD4� and CD8� T
cell proliferation against alloantigens and prolonged in vivo
skin allograft survival upon adoptive transfer (5). On the con-
trary, studies in anti-CD4 plus anti-CD8 mAb–treated C57BL/6
mice documented that lymphopenia led to a skewing of the
lymphocyte pool toward a higher percentage of effector/mem-
ory cells, which are prone to activate the immune response (42).
Similarly, Pearl et al. (43) found that in renal transplant recipi-
ents who were given Campath-1H/deoxyspergualin induction
therapy and no maintenance immunosuppression, postdeple-
tion T cells were predominantly effector/memory T cells that
expanded in the first month and were uniquely prevalent at the
time of acute graft rejection episodes. Also in our patients, most
residual T cells after Campath-1H actually expressed the
CD45RO� memory-like marker. Nevertheless, a substantial
proportion of cells that expanded from such remaining T cell
pool, upon sirolimus maintenance immunosuppression, were
CD4�CD25high cells with regulatory phenotype and function.
Indeed CD4�CD25high cells that were taken from these patients
did not express the CD69 activation marker but high levels of
the Treg hallmark FOXP3. Moreover, they were hyporespon-
sive to alloantigens and capable of suppressing the alloreactive
immune response of autologous effector CD25�/low T cells
against donor antigens in co-cultures. Notably, Treg expansion
did not cause a state of generalized immunosuppression, be-
cause T cells from these patients responded normally to a
polyclonal T cell mitogenic stimulus. However, concomitant
suppression of anti–third-party response was found, which
likely reflects the alloantigen cross-reactivity of TCR from ex-
panding Treg (44) or, alternatively, a phenomenon of bystander
regulation (45).

At variance with the protocol of Pearl et al. (43), our patients
were on maintenance immunosuppression with sirolimus and
MMF, which would have been instrumental to favor Treg ex-
pansion and limit memory T cell proliferation and activation.
This interpretation is in line with a number of published exper-
imental pieces of evidence. In the presence of sirolimus, TCR-
mediated stimulation of murine and human CD4� cells results
in the generation of Treg that suppress syngeneic T cell prolif-
eration in vitro (14,15) and prevent allograft rejection in vivo
(14). Because of its favorable effects on Treg, sirolimus has been
recently advocated as a pro-tolerogenic immunosuppressive
drug (46). Moreover, MMF has been shown to prevent the
differentiation of naı̈ve T cells into memory cells and to inhibit
memory cell proliferation both in vitro in human mixed lym-
phocyte cultures (47) and in vivo in F5 TCR transgenic mice (48).

Expansion of CD4�CD25highFOXP3� cells, however, was
negligible in renal transplant patients who received the cal-
cineurin inhibitor CsA along with MMF as maintenance ther-
apy after Campath-1H induction. In this group, functional T
cell studies excluded the presence of Treg that were capable of
inhibiting anti-donor alloreactivity, because CD4�CD25high de-
pletion failed to reverse anti-donor T cell hyporesponsiveness.
However, restoration of the immune response after addition of
IL-2 to ELISPOT assays suggests that T cell anergy may have
contributed to anti-donor hyporesponsiveness in the CsA-
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treated group. We speculate that in patients who received
Campath-1H and were maintained on CsA, donor reactive T
cells that emerged during T cell reconstitution were primed in
vivo by donor antigens from the kidney graft. However, the
activation signaling through calcineurin/IL-2 was blocked by
CsA, resulting in anergy instead of conversion into effector
cells. This is in line with previous data in renal transplant
patients on conventional immunosuppressive therapy includ-
ing calcineurin inhibitors (34,49). Lack of development of
CD4�CD25high Treg with CsA could be explained by the fact
that IL-2, whose generation is inhibited by CsA, promotes
acquisition of CD25 molecules (16) and is a surviving factor for
Treg in vitro (16) and in vivo (19). This interpretation is sup-
ported by findings that IL-2 administration to pediatric patients
with sarcoma during immune reconstitution markedly in-
creased Treg cell compartment in the peripheral blood as com-
pared with patients who did not receive the cytokine therapy
(26). In vitro evidence that CsA, by inhibiting calcineurin phos-
phatase-dependent NFAT translocation into the nucleus (50),
suppresses FOXP3 promoter activity, mRNA, and protein ex-
pression in T cells (50) is also consistent with our in vivo data.

Conclusion
We have documented that in human renal transplantation,

Campath-1H, via lymphocyte depletion, allows a subset of
CD4�CD25high FOXP3-expressing cells with regulatory activity
to emerge, provided that sirolimus but not CsA is used as
concomitant therapy. These cells did not seem to impair sys-
temic immune competence to the extent that we found no
difference in infectious episodes in the two groups (Table 3).
Patients and graft outcome did not differ between the two
study groups. However, GFR was numerically higher in siroli-
mus- than in CsA-treated patients, which may be related to
differences in renal blood flow as a result of the vasoconstrictor
effect of CsA. Nonetheless, we found that GFR values, at 24 mo
after transplantation, strongly correlated with FOXP3 expres-
sion levels in CD4� cells (P � 0.0087, r2 � 0.78), which suggests
that the expansion of Treg in the sirolimus group contributed to
maintain graft function, possibly by preventing the immune
insult to the graft tissue. Whether in humans adaptive FOXP3-
expressing Treg have functional regulatory capacity in vivo, as
shown in rodents by adoptive transfer experiments, has not
been documented yet. The results presented here provide the
evidence, although indirect, that this may be the case.

Our findings create a case for launching a formal clinical trial
to compare the best available anti-rejection treatment versus
Campath-1H and low-dosage sirolimus and MMF, which seem
to create the ideal environment for T cell regulation to occur.
Whether this will eventually translate in a “tolerance permis-
sive” state in human transplantation has to be established.
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