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 Individuals with APECED (autoimmune polyendocrinopa-

thy-candidiasis-ectodermal dystrophy) have a mutation in 

the gene encoding Aire. Such individuals, and mice lacking 

Aire, develop multi-organ autoimmune disease. Aire pro-

motes immunological tolerance by inducing, specifically in 

thymic medullary epithelial cells (MECs), a large repertoire 

of mRNA transcripts encoding proteins characteristic of 

differentiated cell-types (peripheral-tissue antigens, PTAs), 

such as insulin or casein-α. Peptides derived from these pro-

teins are displayed on major histocompatibility complex 

(MHC) molecules at the MEC surface. The MHC:PTA-

peptide complexes negatively select thymocytes whose anti-

gen (Ag) receptors (T cell receptors, TCRs) are engaged too 

aptly. In addition, MECs can positively select Foxp3+CD4+ 

regulatory T (Treg) cells (1, 2), at least some of them in an 

Aire-dependent manner (3, 4). Cross-presentation of Aire-

induced PTAs by thymic dendritic cells (DCs) also occurs, 

and can promote either negative or positive selection (4, 5). 

Aire’s presence during the first few weeks of life is necessary 

and sufficient to guard against the autoimmune disease 

characteristic of Aire-knockout (KO) mice (6). We sought to 

uncover the root of this unexpected finding. 

To compare the effectiveness of clonal deletion in peri-

natal and adult mice, we exam-

ined the thymus of young and 

old Aire-WT and Aire-KO ani-

mals expressing 1) membrane-

bound ovalbumin driven by the 

rat insulin promoter (RIP-

mOva), and thereby within 

MECs; and 2) TCRs that recog-

nize a peptide of ovalbumin pre-

sented by MHC-II molecules 

(OT-II) (7, 8). In both perinatal 

and adult mice, Aire-dependent 

clonal deletion was readily evi-

dent (fig. S1). 

As a first step in comparing 

the Treg compartments, we 

enumerated Foxp3+CD4+ T cells 

in the thymus of progressively 

older Aire-WT and -KO mice 

(Fig. 1A and fig. S2A). While a 

few Tregs were detected in the 

thymus of WT individuals two 

days after birth, a substantial 

population was evident only on 

day 4, and it gradually increased 

through day 35. KO mice showed 

a similar pattern of Treg accu-

mulation in the thymus, but 

their fractional representation 

was reduced vis-à-vis WT litter-

mates through day 35, and their 

numbers until day 10. Results 

were similar in the periphery (fig. S2A and B). 

To address the relative importance of the Treg compart-

ments for the maintenance of immunological tolerance, we 

used a NOD.Foxp3-DTR system to deplete Tregs during the 

day 0-10 or day 35-45 age-window, and followed the mice 

until fifteen weeks of age (or loss of ≥ 20% body weight). 

Depletion of Tregs during the 0-10 day window resulted in 

significant weight reduction by 16 days of age (even though 

Treg numbers were normal by day 11-12), and ≥20% weight 

loss in all mice by 24 days (Fig. 1B). All individuals showed 

the multi-organ autoimmunity typical of Aire-KO mice on 

the NOD genetic background (Figs. 1B and fig. S3). In con-

trast, Treg ablation during the 35-45 day window had no 

significant effect on either weight gain or survival, although 

there were some mild manifestations of autoimmunity in 

scattered individuals (figs. S3 and S4). 

We next performed a complementation experiment to 

rule out the trivial explanation that perinatal mice are non-

specifically perturbed by the repeated injection of DT. Addi-

tion of Tregs from 20-day-old Treg-replete, but not Treg-

depleted, donors to recipients perinatally depleted of Tregs 

resulted in a striking improvement in the autoimmune man-

ifestations (figs. S5 and S6). To confirm that the critical per-
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inatally generated Treg population was, indeed, Aire-

dependent, we transferred Tregs isolated from 20-day-old 

Aire-WT or -KO mice into either Treg-depleted (Fig. 1C and 

D) or Aire-KO (fig. S7) perinates. For both types of recipient, 

only the perinatal Tregs from WT mice protected from de-

velopment of the characteristic “Aire-less” autoimmune dis-

ease. Thus, Aire promotes the generation of Treg cells 

during the perinatal age-window. Mice lacking these cells 

phenocopy Aire-KO mice; exhibiting a spectrum of patholo-

gy that differs substantially from that of mice either consti-

tutively lacking Tregs or depleted of them as adults (9–11). 

An inducible Treg lineage-tracer system (12) allowed us 

to explore the functional and phenotypic properties of peri-

natally generated Tregs. In NOD-backcrossed Foxp3eGFP-Cre-

ERT2xR26Y mice, all Foxp3+CD4+ cells express GFP; treatment 

with tamoxifen turns on yellow fluorescent protein (YFP) in 

the Tregs extant during drug coverage, rendering them 

GFP/YFP double-positive thereafter. We first used this sys-

tem to examine the stability of Tregs made perinatally. Lin-

eage-tracer mice were injected with tamoxifen from days 0-

10 or 35-45, and their splenic Treg compartment analyzed 1 

day, 1 week or 8 weeks later (Fig. 2). The adult-tagged and 

perinate-tagged Treg populations were both readily discern-

ible the day after termination of tamoxifen, constituting 

about a quarter of the Foxp3+CD4+ compartment. For adult-

tagged Tregs, this fraction remained similar throughout the 

period examined. In contrast, perinate-tagged Tregs dwin-

dled to a minor component of the Foxp3+CD4+ compartment 

between 1 and 8 weeks after cessation of labeling. This re-

duction in fractional representation was a dilution effect as 

total Treg numbers increased exponentially during this 

time. In fact, the actual numbers of perinate-tagged Tregs 

was very stable over the two months examined. 

The persistence of the tagged Treg populations permit-

ted us to address the functionality of perinatally generated 

Tregs by conducting a four-way comparison (as schematized 

in fig. S8A). Mice were treated with tamoxifen from 0-10 or 

35-45 days, and were then left unmanipulated until 60 days 

of age, at which time the GFP+YFP+ (tagged) Treg and 

GFP+YFP- (bulk) Treg populations were sorted and trans-

ferred into newborn Aire-KO mice. According to all criteria 

evaluated, disease was not affected by introduction of adult-

tagged Tregs nor either control bulk Treg population (Fig. 

2B-D and fig. S8B). In contrast, addition of perinate-tagged 

Tregs resulted in substantial reversal of the typical Aire-KO 

pathology (but with substitution of the insulitis characteris-

tic of classical NOD mice) (Fig. 2E and fig. S8B). These find-

ings argue that the Treg population generated perinatally 

has distinct functional properties that persist within the 

adult environment. 

We also sorted GFP+YFP+ and GFP+YFP- CD4+ T cells 

from 8-10 week-old mice whose Tregs had been labeled be-

tween 0 and 10 or 35 and 45 days after birth, and analyzed 

their transcriptomes. Distinct sets of genes were either over- 

(pink) or under-expressed (green) in Treg cells tagged peri-

natally vis-à-vis the bulk Treg population of the same mice, 

but were not differentially transcribed in mice whose Tregs 

were labeled as adults (Fig. 3A, table S1). Overlaying the 

standard Treg signature on a volcano plot comparing the 

two labeled Treg populations revealed an over-

representation of Treg “up” genes in perinate-tagged Tregs 

(Fig. 3B). Indeed, these Tregs performed better than the 

three comparator populations in a typical in vitro suppres-

sion assay (Fig. 3C), perhaps reflecting higher transcription 

of genes such as Fgl2, Ebi3, Pdcd1, Icos, etc (table S1A), pre-

viously implicated in Treg effector function (13–16). The per-

inate-tagged Treg population was in a more activated state 

(Fig. 3D), which fit with its higher content of CD44hiCD62Llo 

cells (Fig. 3E). It was also more proliferative, as indicated by 

fractions of EdU-incorporating and of Ki67+ cells higher 

than those of the three comparator populations (Fig. 3F). 

Indeed, the top pathways over-represented in perinate-

tagged Tregs according to Gene-Set Enrichment Analysis 

(GSEA) were related to DNA replication and cell division 

(eg, Fig. 3G). We confirmed the elevated expression of a 

number of functionally relevant genes at the protein level 

(Fig. 3H and fig. S9). 

Lastly, we sought a molecular or cellular explanation for 

the distinct Treg compartments generated in perinatal and 

adult mice. We first used a mixed fetal-liver:bone-marrow 

chimera approach to rule out the possibility that T cell pre-

cursors derived from fetal liver hematopoietic stem cells, 

which service the developing immune system for the first 

few weeks after birth (17), are predisposed to yield Tregs 

with particular properties, measuring both reconstitution 

efficiencies and gene-expression profiles (fig. S10). 

To facilitate comparison of the repertoires of Aire-

dependent PTA transcripts in perinatal and adult MECs, we 

generated Adig reporter mice, which express GFP under the 

dictates of Aire promoter/enhancer elements (18), on either 

an Aire-WT or -KO background. GFP+MHC-IIhi cells were 

isolated from thymic stroma of <3-day-old or 5-week-old 

animals, and gene-expression profiling performed. The frac-

tion of Aire+MHC-IIhi MECs and the Aire mean fluorescence 

intensity (MFI) were indistinguishable in mice of the two 

ages (fig. S11A and B). The repertories of Aire-dependent 

MEC transcripts were also extremely similar (fig. S11C). 

Going one step further, we asked whether the similar 

repertoires of PTA transcripts might still yield distinct sets 

of MHC-presented peptides, owing to different Ag-

processing/presentation machinery in mice of the two ages, 

which need not be Aire-dependent. Transcripts encoding 

several molecules implicated in generating or regulating the 

repertoire of peptides bound to MHC-II or -I molecules were 

differentially expressed in perinatal and adult MECs (Fig. 

4A). The data on H2-O transcripts drew our attention be-

cause DO is known to inhibit the activity of DM, an “editor” 

needed for dislodging the invariant chain (CD74) derivative, 

CLIP, and other peptides from the Ag-binding groove of a 

maturing MHC-II molecule, enabling effective loading of a 
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diverse repertoire of peptides (19, 20). Transcripts encoding 

both DO chains were expressed at a significantly lower level 

in perinatal than in adult MECs, independently of Aire (Fig. 

4B); perinatal MECs also had reduced levels of intracellular 

DO complexes (Fig. 4C). In addition, they displayed higher 

intracellular levels of DM complexes (Fig. 4E). Co-plotting 

intracellular levels of the two complexes at the single-cell 

level revealed a subset of perinatal MECs with reduced DO 

and enhanced DM expression (Fig. 4F). A lower DO:DM ra-

tio should promote more effective replacement of CLIP by 

other peptides. Indeed, a higher percentage of perinatal 

MECs displayed low levels of or no CLIP (37.6 ± 6.4% vs 

20.9 ± 2.2%), and the CLIP MFI was lower for perinatal 

MECs (761.7 ± 78.7% vs 1019.0 ± 54%) (Fig. 4G). Thus, the 

repertoires of peptides presented by perinatal and adult 

MECs are different, the latter appearing to be more limited. 

Aire-dependent PTAs can be “cross-presented” by mye-

loid-lineage cells in the vicinity (4, 5), primarily MHC-

IIhiCD8α+ DCs (4). Interestingly, this cell-type was present at 

strongly reduced levels in thymi from perinatal mice (Fig. 

4H). Since the splenic MHC-IIhiCD8α+ DC subset showed an 

even more extreme age-dependence, it is unlikely that this 

difference is Aire dependent. 

Such differences in the Ag processing/presentation ma-

chinery of MECs from perinatal and adult mice suggested 

that their Treg TCR repertoires might diverge. We con-

strained the inventory of TCRs to be examined by using an 

approach that had proven fruitful in the past (21, 22). 

BDC2.5 is a Vα1+Vβ4+ T helper cell specificity directed at a 

pancreatic Ag presented by Ag7 molecules; so generation of 

Tregs in BDC2.5/NOD mice is dependent on rearrangement 

of an endogenous Tcra gene and thymic selection on the 

resulting second TCRαβ complexes. The fixed Vβ4+ chain 

constrains the TCR repertoire, and the analysis is further 

delimited by sorting individual cells expressing Vα2. We se-

quenced 281 Vα2+ TCR CDR3 regions from splenic Tregs of 3 

individual BDC2.5/NOD adults and another 232 from the 

corresponding population of 3 individual perinates. This 

restricted, but parallel, slice of the TCR repertoire was clear-

ly different in the two age-groups. Perinate Treg TCRs were 

less clonally expanded (fig. S12A), had shorter CDR3α 

stretches (fig. S12B) and, as expected (23), had fewer Tcra N-

region additions (fig. S12C). To permit a more statistically 

robust assessment, we focused on repeat sequences. There 

were many more repeated sequences in the adult mice, and 

very low values were obtained for both the Morisita-Horn 

Index (0.069 on a scale from 0-1) and the Chao abundance-

based Jaccard index (0.058 on a scale from 0-1), indicating 

that the two repertoires were very different (table S2 and 

Fig. 4I). 

Thus, our data highlight Aire’s ability to promote the 

generation of a distinct compartment of Foxp3+CD4+ Tregs 

as the explanation for its importance during the perinatal 

age-window. Given the age-dependent differences in antigen 

processing machinery and presenting cells we documented, 

juvenile and older mice are likely to have distinct reper-

toires of both Aire-dependent and Aire-independent Tregs, 

selected primarily on Ag:MHC complexes encountered on 

MECs. These findings add to, rather than negate, Aire’s role 

in clonal deletion of self-reactive thymocytes, established in 

multiple experimental contexts (4, 5, 24, 25). 

There are striking similarities in the autoimmune dis-

eases provoked by constitutive genetic ablation of Aire, 

thymectomy at 3 days of age, and perinatal depletion of 

Foxp3-expressing cells – in particular, the pattern of target 

tissues on different genetic backgrounds ((26, 27) and Fig. 

1). Our studies yield a unifying explanation for these pheno-

copies: the perinatally generated, Aire-dependent Treg com-

partment is particularly apt at protecting a defined set of 

tissues from autoimmune attack, and there may be little 

overlap with the tissues guarded by adult Tregs. This notion 

is consistent with the observations that mice which under-

went a thymectomy 3 days after birth exhibit multi-organ 

autoimmune disease but do not have a numerically dimin-

ished Treg compartment when they get older (28, 29), and 

that mice constitutively devoid of Tregs or inducibly deplet-

ed of them as adults show a very different spectrum of pa-

thologies (9–11). Such a dichotomy also provides an 

explanation for the frequently posed question: why is the 

autoimmune disease characteristic of both APECED patients 

and Aire-KO mice restricted to such a limited set of tissues? 

An important implication of this dichotomy is that therapies 

based on transfer of Tregs isolated from adult donors may 

not be able to impact a particular subset of autoimmune 

diseases. Thus, our findings extend the notion of a “layered” 

immune system (30). 
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Fig. 1. A perinatal Treg population that is Aire-dependent and guards against the 

autoimmune manifestations typical of Aire-KO mice. (A) Summary data for fractional 

representation (left) and numbers (right) of Foxp3+CD4+CD8- thymocytes from Aire-WT or -

KO mice of increasing age. P-values from the Student’s t test: *, P≤ 0.05; **≤ 0.01; ns = not 

significant. n=5. Examples of corresponding dot plots can be found in fig. S2A. (B) Treg 

depletion in perinates. Perinatal (0.5 days after birth) NOD.Foxp3-DTR+ mice or DTR- 

littermates were treated every other day until day 10 with DT, and then followed for 

manifestations of autoimmune disease. Perinates had to be examined <24 days after birth due 

to wasting in the DTR+ littermates. Upper left: weight curves. Upper right: survival curves; mice 

were sacrificed if their weight fell to <20% of that of their DTR- littermates. Lower left: 

presence (shaded) or absence of organ infiltrates; “i” indicates that insulitis replaced 

infiltration of the exocrine pancreas. Lower right: severity of organ infiltration (scored as per 

the Methods section). n=9. (C and D) NOD.Foxp3.DTR+ mice perinatally depleted of Tregs as 

per panel B were supplemented on days 12 and 19 with Tregs isolated form 20-day-old Aire-

WT (C) or -KO (D) littermates. Cohorts were followed until 70 days of age. n = 9. Otherwise set 
up as per panel B. 
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Fig. 2. Stability and function of perinate- versus adult-tagged Tregs. (A) Tamoxifen was 

administered from 0-10 or 35-45 days of age; at various times later, splenocytes were 

analyzed for GFP and YFP expression by flow cytometry. Left: representative flow-cytometric 

dot-plots. Numbers represent percentages of CD4+3+ cells in the designated gates. Center: 

summary data on numbers of GFP+YFP- bulk Tregs. Right: corresponding data on GFP+YFP+ 

perinate-tagged or adult-tagged Tregs from the same mice. n=5. (B-E) 1.5x105 Tregs were 

transferred into Aire-KO mice on days 0.5, 3 and 7 after birth, and the recipients were followed 

until 16 weeks of age. A four-way comparison as schematized in fig. S8A: GFP+YFP+ Tregs 

tagged from 35-45 days of age and isolated from a 60-day-old mouse (C), GFP+YFP- bulk 

Tregs from the same mouse (B), GFP+YFP+ Tregs tagged from 0-10 days of age and isolated 

from a 60-day-old mouse (E), and GFP+YFP- bulk Tregs from the same mouse (D). Data 
organized as per Fig. 1B. The key comparison is boxed.. 

/ sciencemag.org/content/early/recent / 19 March 2015 / Page 7 / 10.1126/science.aaa7017 

 

http://www.sciencemag.org/content/early/recent


 

Fig. 3. A distinct transcriptome in perinate-tagged Tregs. The same type of four-way comparison employed in Fig. 2 was 

conducted except that the sorted cells were analyzed for diverse phenotypic features. (A) FC/FC plots comparing perinate-

tagged GFP+YFP+ cells vs bulk GFP+YFP- cells from the same mice (x-axis) and adult-tagged GFP+YFP+ cells vs bulk GFP+YFP- 

cells from the same mice (y-axis). Pink dots denote transcripts over-represented in perinate-tagged GFP+YFP+ cells; green 

dots indicate under-represented transcripts. (B) P-value vs FC volcano plot comparing gene expression of perinate-tagged 

GFP+YFP+ and adult-tagged GFP+YFP+ cells. Red and blue dots indicate up- and down-regulated Treg signature genes, 

respectively (31). P-values from the chi-squared test (C) Classical in vitro suppression assay on the four sorted Treg 

populations. P-values from the Student’s t test. **, p≤ 0.01; ***, p≤0.001. (D) Same volcano plot as in panel B, except up-

(red) and down-(blue) regulated activation signature genes (31) are superimposed. (E) Summary data on late activation 

marker (CD44hiCD62Llo) expression in the four Treg populations. n=5. P-value from the Students’ t test ***, P≤0.001. (F) 

EdU uptake (left) and Ki67 expression (right) by the four Treg populations. ***, P≤ 0.001. (G) GSEA of transcripts increased 

in the perinate-tagged GFP+YFP+ vis-à-vis the adult-tagged control Treg populations. NES, normalized enrichment score. 

FDR q-val, false discovery rate. Representative transcripts showing increased expression are shown on the right. (H) Flow 

cytometric confirmation of gene overexpression in perinate-tagged Tregs. For Fgl2 and PD1: Left = representative flow-

cytometric histograms; red, perinate-tagged; blue, adult-tagged; black, control bulk populations; gray shading, isotype-

control antibody; bar indicates marker positivity. Center = summary data for % of the four Treg populations expressing the 
marker; Right = summary data for marker MFI in the marker-positive population. 
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Fig. 4. Age-dependent, Aire-independent differences in the processing and presentation 

of MEC-generated peptides. (A) Microarray-based quantification of transcripts encoding a 

set of proteins involved in processing/presentation of MHCII-bound peptides. (B) Microarray-

based quantification of DOa and DOb in MEChi from Aire-WT or -KO adults or perinates. (C) 

Intracellular expression of DOb protein. Left = representative flow-cytometric histograms. 

Red, perinate; blue, adult; gray shading, negative control staining. Right = summary MFI data. 

(D and E) Same as panels B and C except DMa and DMb were examined. (F) Coordinate 

intracellular staining of DOb and DMab. (G) Surface expression of Ab:CLIP complexes on 

MEChi. Left = representive flow-cytometric histograms. Red, perinate; blue, adult; gray 

shading, negative control staining. Center = summary data for % MEChi expressing little or no 

CLIP. Right = summary data for MFI. (H) Flow cytometric quantification of MHChiCD8α+ DCs in 

perinatal vs adult thymus (left) and spleen (right). Summary data for representation in the 

CD11c+ (left) and CD45+ (right) compartments. (I) High-frequency Vα2+ TCRs from 5wk-old 

(upper) and 4d-old (lower) BDC2.5/NOD females. These sequences correspond to those in 

table S2. Bars represent frequency of each sequence. Except for panel I, P-values are from the 
Student’s t test: *, P < 0.05; **, P < 0.01; ***, P < 0.001. n=3-6. 
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