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Introduction
Within days of conception, the embryo attaches to the uterine 

lining, and trophoblast cells invade into the uterine decidua (1). 

A finely controlled developmental program then unfolds, with 

successive waves of trophoblast invasion, proliferation, and dif-

ferentiation to form a mature placenta that sustains fetal growth 

throughout gestation.

This remarkable feat occurs in apparent defiance of the moth-

er’s immune response. Abundant immune cells reside in the decid-

ua in close contact with infiltrating trophoblasts, and paternally 

derived alloantigens are expressed in the developing placental and 

fetal tissues. Far from the immune evasion or systemic immune 

suppression historically invoked to explain maternal- fetal toler-

ance (2), maternal immune cells exhibit priming toward fetal allo-

antigens (3–5) and actively participate in many aspects of estab-

lishing, sustaining, and terminating pregnancy (6).

Mammalian pregnancy cannot be readily reconciled with 

the classical self/non-self discrimination theory or alternative 

models of immune regulation (7). Central tolerance, where-

in self-reactive lymphocytes are deleted in the thymus (8), 

is not relevant, since fetal alloantigens are not encountered 

outside of the reproductive context. Instead, a range of spe-

cialized mechanisms in both the innate and adaptive immune 

compartments mediate an active state of functional tolerance 

that permits fetal and maternal cells to coexist. Key suppres-

sive mechanisms include attenuated placental expression of 

polymorphic MHC molecules (9, 10); placental release of anti-

inflammatory and protolerogenic hormones, cytokines, and 

immune modulatory molecules (11–13); and specialized decid-

ual regulation of immune cell access and egress (refs. 14, 15, 

and for additional information, see refs. 6, 16–18).

There is a strong imperative to define how pregnancy toler-

ance is established, as an immune etiology is implicated in com-

mon reproductive conditions including recurrent implantation 

failure and miscarriage (19–21), as well as later-onset gestational 

disorders that arise as a result of disturbed implantation and pla-

cental morphogenesis (22–24). Recurrent implantation failure 

occurs when overtly healthy embryos fail to implant normally 

and is the cause of infertility in approximately 10% of women 

seeking in vitro fertilization (IVF) treatment (25). Recurrent 

pregnancy loss, defined as loss of three or more karyotypically 

normal embryos before 20 weeks’ gestation, occurs in approxi-

mately 1% to 2% of women (26). Preeclampsia affects 3% to 5% 

of pregnancies (27) and is a major cause of morbidity and mor-

tality for women and infants, particularly in low- and middle- 

income countries, and it is often accompanied by fetal growth 

restriction and preterm birth (28, 29).

Tolerance arises in the preimplantation phase of early preg-

nancy and appears to require a unique dialog involving mater-

nal-, paternal-, and conceptus-derived signals  and specialized 

anatomical elements of the reproductive tissues (30, 31). Their 

interaction drives a cascade of immune changes that initiate 

prior to conception, persist through gestation, and culminate 

with birth (6, 18). Innate immune cells, particularly macro-

phages (32), DCs (33), and a unique population of NK cells with 

a CD56hiCD57lo phenotype (uterine NK cells, or uNK cells) (34), 

are abundant in the decidua in the luteal phase of the menstrual 

cycle when implantation commences. These cells influence pla-

cental development through immune regulation, provision of 

growth factors, and facilitation of adaptations in the uterine vas-

culature to support trophoblast invasion. Innate immune cells 

exhibit altered phenotypes and contribute to pathophysiological 

processes in many gestational conditions (refs. 35, 36, and for 

more information, see refs. 17, 37, 38).

At implantation, the embryo expresses paternally derived alloantigens and evokes inflammation that can threaten 

reproductive success. To ensure a robust placenta and sustainable pregnancy, an active state of maternal immune tolerance 

mediated by CD4+ regulatory T cells (Tregs) is essential. Tregs operate to inhibit effector immunity, contain inflammation, and 

support maternal vascular adaptations, thereby facilitating trophoblast invasion and placental access to the maternal blood 

supply. Insufficient Treg numbers or inadequate functional competence are implicated in idiopathic infertility and recurrent 

miscarriage as well as later-onset pregnancy complications stemming from placental insufficiency, including preeclampsia 

and fetal growth restriction. In this Review, we summarize the mechanisms acting in the conception environment to drive the 

Treg response and discuss prospects for targeting the T cell compartment to alleviate immune-based reproductive disorders.
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events surrounding conception that critically impact the availabil-

ity and function of Tregs for implantation and later gestation. We 

explain the evidence for Tregs in the pathophysiology of infertility 

and obstetric disorders, discuss the origins of Treg deficiency in 

some women, and speculate on the prospect of targeting Tregs to 

address common reproductive and obstetric conditions.

The immune response and embryo implantation
Normal fetal growth depends on establishing a robust placenta 

to nurture the fetus; remarkably, two-thirds of genetic mutations 

identified as embryonically lethal in mice affect placental mor-

phogenesis (69). Even minor derangement of the developmental 

program of the placenta can cause later miscarriage or set a tra-

jectory toward preeclampsia (22, 27, 70). These conditions can be 

traced back to aberrant interactions between trophoblasts and the 

uterine decidua at conception and implantation (70–72).

Critical to implantation is an adequate decidual response. 

Immune cells are instrumental, with reciprocal interactions 

between DCs, uNK cells, and invading trophoblasts (73, 74) in 

response to hormonal triggers to transform the uterine lining in 

the luteal phase (1, 71, 72). Extensive contact between trophoblasts 

and immune cells in the decidua is common to all placental mam-

mals (75) but is most conspicuous with invasive hemochorial pla-

centation, as occurs in mice and humans (17). A sufficient number 

of decidual immune cells must acquire appropriate phenotypes to 

support the decidual response and remodel the local vascular net-

work for embryo attachment and implantation (71, 76).

Leukocyte recruitment builds during the estrogen-dom-

inated periovulatory phase, and a threshold level of inflam-

matory activation may facilitate the generation of a receptive 

endometrium (77, 78). However, within days of conception, 

inflammation must be contained and controlled in order for 

decidualization and implantation to progress (72). The capacity 

to resolve decidual inflammation has evolved as a key feature 

underpinning placentation in viviparous mammals (79), and 

disturbance to the dynamic balance between pro- and antiin-

flammatory mediators is a hallmark of impaired implantation 

(21, 80). Through their potent antiinflammatory actions, Tregs 

appear to be critical for controlling inflammation in early preg-

nancy and establishing a receptive decidual environment (refs. 

18, 81, and Figure 1).

The adaptive immune response is also critical to pregnancy 

tolerance (refs. 39–41 and for more information, see refs. 18, 42), 

and an imbalance of T regulatory cells (Tregs) and effector T cells 

(Teffs) is emerging as a key underpinning factor in common fer-

tility and obstetric disorders (19–21, 23, 24). Tregs are well known 

for their capacity to limit excessive inflammation and recalibrate 

tissue homeostasis after insult or injury, as well as to suppress Teff 

reactions to self or non-self antigens (43, 44). Tregs exert potent 

antiinflammatory, immune-regulatory, and vaso-regulatory func-

tions (43–45) relevant to establishing pregnancy. Also significant is 

their distinct phenotypic plasticity, or capacity to transdifferenti-

ate into Th17 cells (46, 47), which provides a potential mechanism 

for strategic female reproductive investment (48).

In women, T cells comprise 10% to 20% of decidual immune cells 

in the first trimester (49). Many of these are CD8+ T cells, including 

regulatory subsets (50, 51). Among the CD4+ T cells, approximate-

ly 10% to 30% express the Treg transcription factor FOXP3, which 

constitutes a substantial enrichment compared with its expres-

sion in peripheral blood (52–54). Decidual Th1 cell frequencies are 

moderately elevated, while Th17 and Th2 cells are generally not 

enriched, indicating a mild inflammatory environment controlled 

by Tregs (53, 55). The Tregs are composed of both thymus-derived 

Tregs (tTregs) and peripheral Tregs (pTregs) and exhibit phenotyp-

ic heterogeneity according to the cycle and pregnancy phase (36, 

56, 57). Uterine recruitment of Tregs in preparation for conception 

commences in the proliferative phase of each cycle, with an estro-

gen-driven increase peaking at ovulation (58). After increasing in 

early pregnancy, decidual Tregs remain elevated through mid-gesta-

tion before declining prior to birth (52, 53, 59), with peripheral blood 

Tregs following a broadly similar pattern (60, 61).

In reproductive disorders, insufficient numbers of Tregs or 

impaired function is a common feature (19, 20, 23), with a coun-

teractive increase in Teffs (21, 24). Compelling evidence that Treg 

deficiency is causal in pregnancy loss comes from animal models 

(39, 62–64). An underlying T cell etiology in women is supported 

by correlations with prior sexual and reproductive history (65) and 

by couple-specific, HLA-linked dispositions to reproductive condi-

tions (66–68), consistent with a protective effect of adaptive immune 

“memory” for partner histocompatibility antigens.

In this Review, we describe the current understanding of 

Tregs as master regulators of pregnancy tolerance, focusing on 

Figure 1. Tregs are critical for controlling inflammation in the transition 

to an antiinflammatory decidual environment necessary for embryo 

implantation and progression of pregnancy. Mouse models show that 

Tregs act to suppress inflammation, prevent adverse effects of antifetal 

alloantigen Teff cells, and allow vascular adaptations required for placental 

morphogenesis  (39, 41, 62, 63, 82, 87). Tregs arise as a consequence of 

events during the inflammation-like response in the periconception phase, 

and their abundance, suppressive function, and stability are impacted by 

events at conception and in the preimplantation phase (39, 83–85, 135, 137). 

Tregs sustain an antiinflammatory environment until a decline, associated 

with the inflammation events of parturition and birth, is triggered (40, 64, 

88, 89). Decidual Tregs in pregnant women show kinetics and regulatory 

mechanisms comparable to those in mice (36, 52–54, 56, 58, 59). Recurrent 

implantation failure, recurrent miscarriage, preeclampsia, and in utero 

growth restriction are all linked with insufficient numbers, reduced sup-

pressive function and/or instability of Tregs (19–21, 23, 24), and excessive 

inflammation in the uterus and/or gestational tissues (21, 27, 80).
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increases at implantation are consistently greater with alloge-

neic fetuses, indicating fetal antigen–driven expansion, and are 

accompanied by specific suppression of anti-paternal alloantigen 

responses (83, 85). Male-specific minor antigens such as H-Y con-

tribute to driving the Treg response, with male fetuses being more 

vulnerable to Treg depletion (86).

Studies in which Tregs are depleted at various time points show 

that the pre- and peri-implantation phase is the most vulnerable. 

Anti-CD25 Ab administered shortly after mating causes complete 

implantation failure (62, 87). Depletion of FOXP3+ cells from Foxp3-

Dtr mice during early placentation increases later fetal resorption 

(41, 63), but mid-gestation depletion increases fetal death only mod-

erately (40), unless mice receive a second-hit inflammatory chal-

lenge (64, 88, 89). Mice deficient in T cells due to Rag1-null mutation 

Tregs as essential mediators of pregnancy 
tolerance
Experiments in mice provide compelling evidence that Tregs are 

essential for the antiinflammatory transition accompanying implan-

tation and placental development. Initially, this was shown by trans-

ferring T cells depleted of CD4+CD25+ Tregs into pregnant T cell–

deficient mice (39). In the absence of Tregs, allogeneic fetuses were 

uniformly rejected, but Tregs were not essential when fetuses shared 

maternal MHC (39). Likewise, depletion of CD25+ T cells using the 

PC21 mAb on the day of mating caused a dramatic increase in activat-

ed CD8+ and CD4+ T cells in para-aortic lymph nodes (PALNs) drain-

ing the uterus, and few fetuses survived in allogeneic pregnancies (82).

Treg dynamics in mice mirror those in human pregnancy, 

providing a useful model for key regulatory features (83, 84). Treg 

Figure 2. Tregs arise as a result of events initiated at conception, resulting in the recruitment of pTreg and tTreg populations into the uterine decidua 

at embryo implantation. (i) Estrogen (E2) and seminal fluid induce the recruitment of macrophages and DCs, which acquire M2 and tDC phenotypes in 

response to TGF-β and prostaglandin (PGE) in seminal fluid; granulocyte-macrophage CSF (GM-CSF) and chemokines released by uterine epithelial cells; 

and IFN-γ and IL-10 originating in uNK cells (38, 105, 128). tDCs take up paternal alloantigens in seminal fluid and traffic to the uterus-draining PALNs 

(90). (ii) In the PALNs, tDCs present antigen to naive Th0 cells, which become activated, proliferate, and differentiate into pTregs before release into the 

peripheral blood (39, 84, 90, 137). (iii) An expanded pool of peripheral blood pTregs and tTregs (41, 83, 139) is recruited and retained in the uterus prior to 

and during embryo implantation in response to epithelial cell–derived CCL3, CCL4, CCL5, and CCL19 (85, 137). Here, Tregs inhibit the activation and function 

of Th1 and Th17 cells by sequestering IL-2 and other suppressive mechanisms (53, 88, 99, 100) and control inflammation by the release of TGF-β, IL-10, and 

HO-1 to interact with DCs and uNKs (53, 88, 99, 104, 105). This in turn impairs Th1 survival, promotes further Treg generation (39, 102, 103, 105), and poten-

tially influences decidual transformation and receptivity to embryo implantation (108–110). Treg phenotype and stability are reinforced by IDO and TSLP 

from tDCs and trophoblasts (111). gal-1, galectin-1; P4, progesterone.
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responses, reveals a key function of Tregs in preventing destruc-

tive Teff responses to fetal alloantigens (41, 92–94). Paternal 

antigen–reactive CD8+ Teffs arise in uterus-draining lymph 

nodes in early pregnancy but normally don’t exhibit cytotoxicity 

in mice (95) or women (5). However, excessive IFN-γ and IL-2 

at priming can promote the generation of cytotoxic CD8+ T cells 

that later drive fetal loss (96), consistent with evidence of CD8+ 

T cell–associated trophoblast damage in early-onset preeclamp-

sia (59). Unrestrained Teffs adversely affect placental devel-

opment in a fetal antigen–independent manner, presumably 

through inflammatory cytokine release (96), as well as through 

antigen-dependent trophoblast cytotoxicity (97, 98). Decidual 

Tregs secrete IL-10 and TGF-β and express CD25, CTLA4, and 

PD-L1 (53, 88, 99, 100), all of which are hallmark mediators of 

Treg suppression that probably contribute to Teff constraint in 

early pregnancy (88, 101).

Second, Tregs regulate other leukocytes and nonhemopoi-

etic cell lineages to influence decidual support of implantation 

(Figure 2 and ref. 42). Notably, Tregs promote antiinflammatory 

and tolerogenic phenotypes in alternatively activated (M2) mac-

rophages and tolerogenic DCs (tDCs) through TGF-β, IL-10, 

and CTLA4-mediated mechanisms. Indoleamine 2,3-dioxygen-

ase (IDO) produced by tDCs impairs Th1 cell survival (102, 103). 

Additionally, Tregs release heme oxygenase-1 (HO-1), which 

are susceptible to inflammation-induced fetal loss, which is mitigat-

ed by CD4+ T cells that differentiate into Tregs after transfer (64). 

Tregs also protect against fetal loss elicited by activated invariant 

NK T cells (iNKT cells) (88) or after IL-10 depletion from NOD mice 

(89). mAb-mediated depletion of CD25+ cells in mid-gestation has 

a less severe impact, but this may be because Teffs as well as Tregs 

express CD25 and are removed by PC61 mAb treatment (62, 90).

Mouse models with a high rate of spontaneous fetal loss rein-

force the critical importance of Tregs for implantation. CBA/J 

females mated with DBA/2J males have fewer Tregs and elevat-

ed decidual Th1 cell numbers, attributable to DBA/2J expression 

of the superantigen MIs (87, 91). Adoptive transfer of Tregs from 

CBA/J females mated with BALB/c males elevates decidual Tregs 

to restore fetal viability (87), but only if Tregs are transferred before 

embryo implantation (87). These findings confirm that Tregs have 

essential roles in the uterus, particularly in the peri- implantation 

period, consistent with managing the antiinflammatory transition 

required for embryo receptivity (Figure 1).

Mechanisms by which Tregs mediate 
implantation success
Mouse studies indicate at least three mechanisms by which Tregs 

facilitate implantation and placental development (Figure 2). 

Selective depletion of Tregs, or induction of overwhelming Teff 

Figure 3. Decidual Tregs facilitate maternal blood vessel adaptation and the transformation of spiral arteries underpinning placental development. (A) 

Decidual uNK cells release IFN-γ to regulate decidual vascular remodeling associated with extravillous trophoblast invasion as well as displacement of endothe-

lial cells and smooth muscle cells (SMCs) (107). Tregs release TGF-β, IL-10, and HO-1 to suppress inflammatory activation and modulate decidual uNK, macro-

phage, and DC phenotypes (53, 88, 99, 104, 105). The result is reduced vascular resistance and increased blood flow to the developing placenta. (B) When Tregs 

are deficient, decidual vascular remodeling is impaired (41, 63, 116), particularly when uNK cells are also dysregulated (115). The effects of Treg cell deficiency may 

be mediated by elevated decidual Th1 and Th17 cells and/or M1 macrophages (41, 97, 99). The result is an elevated synthesis of the proinflammatory cytokines 

TNF, IL-6, and IL-17 that elicit elevated vascular resistance and permeability, causing inflammatory injury accompanied by elevated soluble Flt (sFlt), soluble 

endoglin (sEng), VEGF, and NO, which in turn impair placental development, resulting in fetal growth restriction (63, 119, 120). Treg deficiency is thus implicated 

in contributing to “shallow placentation,” the upstream cause of preeclampsia and other gestational disorders in women (27, 70, 176). ET-1, endothelin-1.
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The preeclampsia symptoms are T cell dependent: they cannot 

be induced in T cell–deficient athymic rats, but can be induced by 

transfer of Th17 cells (120), and are mitigated by Tregs transferred 

from pregnant controls (119). Treatments that boost endogenous 

Tregs, including IL-10 (121) or low-dose CD28 superagonist (119), 

also reduce hypertension and fetal growth restriction in the RUPP 

model. In a rat model of preeclampsia, induction of Tregs using a 

CD28 superagonist treatment alleviates maternal and fetal disease, 

most effectively in the preimplantation phase (122).

Treg origins and antigen specificity in early 
pregnancy
The two lineages of Tregs required for implantation have differ-

ent ontogenies: tTregs emerge from the thymus fully competent to 

suppress responses to self and alloantigens, while pTregs differen-

tiate from conventional naive CD4+ precursors in peripheral lymph 

nodes or tissues (123) following presentation of cognate antigen 

by tDCs in the presence of IL-2 and TGF-β (124). Both pTregs and 

recent thymic emigrant (RTE) tTreg populations require antigen 

contact to activate full suppressive function and memory (125).

Expansion of CD4+Helios+FOXP3+ pTregs predominantly 

accounts for the Treg expansion in blood and decidua in early  

human pregnancy (36). This is consistent with nonredundant 

functions for pTregs shown in CNS1-null mice, wherein elevated 

fetal loss is attributable to pTreg deficiency (41). Helios+ tTregs, 

as opposed to pTregs, may be preferentially recruited into first 

trimester decidua (56). Among peripheral blood tTregs, the 

CD45RA+CD31+ RTE population expands in the first trimester and 

differentiates into CD45RA–CD31– memory Tregs (57).

By using tetramer-based enrichment, selective stimulation 

and expansion of endogenous Tregs with fetal alloantigen speci-

ficity can be demonstrated initially in the PALNs and then decidua 

in mice (40), explaining why fetal-maternal MHC disparity is an 

important determinant of Treg numbers (126). Antigen-experi-

enced Tregs retain protective memory for fetal MHC antigen and 

rapidly reaccumulate during second pregnancies (40). Although 

antigen is required for Treg generation, the anti gen independence 

of the effector functions of Tregs confers bystander suppression 

and infectious tolerance that protect a wider array of fetal and 

placental antigens than the antigens against which the Tregs were 

initially primed (127).

Contact with conceptus alloantigens must occur under con-

ditions that favor stable Treg (not Teff) development. pTregs 

require the support of tDCs to differentiate from naive Th0 cells. 

A tolerogenic phenotype is imposed on uterine tDCs by TGF-β, 

granulocyte-macrophage–CSF (GM-CSF), IL-10, galectin-1 (gal-

1), and prostaglandin E (refs. 38, 100, 128, and Figure 2). Treg- 

derived IL-10, TGF-β, and HO-1 induce tDC and M2 macrophages 

to express IDO and sustain pTreg generation (102–104). Decidual 

Tregs also express CTLA4 (53, 105), which downregulates the DC 

costimulatory molecules CD80 and CD86 needed for Teff activa-

tion (43). uNK cells contribute to the reinforcement of protolero-

genic M2 through IFN-γ–mediated promotion of IDO expression 

in decidual M2 macrophages (105) and IL-10–mediated stabi-

lization of tDCs (76). A PD-1–PD-L1 interaction is essential for 

Treg-mediated protection of alloantigenic fetuses, as shown by 

fetal death after PD-L1 blockade (129) or in PD-L1–null mutant 

targets uterine DCs and maintains their immature state (104). 

In turn, these M2 and tDC phenotypes promote further Treg 

generation (104, 105).

In mice, DCs are key regulators of decidual transformation (73, 

76), and through regulation of the uterine DC phenotype (104), 

Tregs may influence the extent and quality of the decidual response 

(Figure 2). uNK cells also promote decidualization (106) and regu-

late decidual artery remodeling (107). Tregs may be important reg-

ulators of the uNK phenotype and function at implantation (108), 

since Tregs control IL-15 release from DCs (109) and suppress uNK 

cytolytic activity (110). Invading trophoblasts engage with Tregs in 

a reciprocal interaction that modulates the secretory phenotype of 

both lineages (111). These coordinated interactions allow Tregs to 

constrain and limit the inflammatory damage and oxidative stress 

associated with trophoblast invasion (112).

Third, Tregs are emerging as important regulators of the 

maternal vascular changes that are essential for normal pla-

cental development and adequate placental access to mater-

nal blood. Recent studies have shown that Tregs are critical for 

modulating cardiovascular function and vascular homeostasis 

(45). How this relates to the vascular changes required for preg-

nancy is detailed below.

Tregs and maternal vascular adaptation  
for placental development
uNK cells regulate decidual blood vessel remodeling to enable ves-

sel dilatation, trophoblast invasion, and secure placental access to 

maternal blood (ref. 107 and Figure 3). Mouse models show that T 

cells can interact with uNK cells to influence the maternal hemo-

dynamic response to pregnancy (113, 114), and adverse effects of 

uNK deficiency on decidual vessel remodeling are exacerbated 

when T cells are also deficient (115).

Treg-deficient mice show consistent impairment in uterine 

spiral arterial modification, reduced placental blood flow, and 

fetal growth restriction (Figure 3 and refs. 41, 63, 116). Acute 

depletion of FOXP3+ Tregs in early pregnancy causes later uter-

ine artery dysfunction associated with increased production of the 

vasoconstrictor endothelin-1 (ET-1) (63). A particular function for 

pTregs is indicated by CNS1-null mice, in which deficiency for the 

Foxp3 enhancer impairs remodeling of uterine spiral arteries and 

placental development (41). Poor trophoblast invasion and failure 

to transform spiral arteries is also seen in mice after depletion of 

proangiogenic, neutrophil-induced Tregs (116).

Hypertensive mouse models indicate that Tregs limit inflamma-

tory injury and oxidative stress to reduce blood pressure and protect 

against hypertensive damage (117, 118). Tregs also protect against 

hypertension in pregnancy (63, 119), with depletion of FOXP3+ 

Tregs during early pregnancy perturbing the regulation of arterial 

blood pressure in mid-gestation (63). Rat models of preeclampsia 

show that Tregs suppress inflammation to reduce blood pressure 

and progression to preeclampsia-like symptoms. In the reduced 

uterine perfusion pressure (RUPP) model, reduced uterine artery 

blood flow results in placental ischemia and oxidative stress and 

hypertension. This is accompanied by reduced decidual and placen-

tal Tregs, elevated CD4+ T cells and Th17 cells, and increased cir-

culating vasoactive and inflammatory factors TNF, IL-6, and IL-17, 

resulting in fetal growth restriction (refs. 119, 120 and Figure 3).  
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mice, which can be reversed by WT Tregs (130). Trophoblasts 

reinforce the tDC phenotype and drive local Treg differentiation 

by inducing DC production of the cytokine thymic stromal lymph-

opoietin (TSLP) (111).

The significance of antigen exposure for Treg effector function 

at implantation is evidenced by studies in abortion-prone mice. 

Tregs are only effective in rescuing fetal loss when transferred from 

donors carrying MHC-matched fetuses, whereas antigen-inexpe-

rienced donor Tregs from nonpregnant mice are ineffective (87). 

Consistent with a role for fetal alloantigens in facilitating uNK and 

Treg responses, studies in congenic mice show that fetal-maternal 

MHC mismatch promotes decidual vascular adaptations and facil-

itates fetal growth (9). Nevertheless, endogenous antigens such as 

hyaluronidase or microbial antigens might also influence the acti-

vation and expansion of Tregs in early pregnancy (131).

The majority of T cells in the human decidua have a memory 

phenotype (CD45RA– or CD45RO+) (51, 132). HLA-C is the only poly-

morphic HLA expressed in human trophoblasts, and fetal- maternal 

HLA-C mismatch is associated with elevated decidual Tregs (4) and 

maternal protection from preeclampsia (68). Many decidual Tregs 

show fetal HLA-C antigen specificity (54, 133), but specificity to 

reproductive and other antigens has not been evaluated.

Seminal fluid priming of Tregs
In mice, appropriate conditions for T cell antigen priming occur 

in two waves during the reproductive process. A first exposure to 

paternal alloantigens that will later be expressed by the conceptus 

occurs following contact with seminal fluid at coitus, which primes 

the activation of antigen-specific Tregs (84). Once placental mor-

phogenesis is complete in mid-gestation and maternal blood con-

tacts the syncytiotrophoblast surface, fetal antigens in the form of 

placental exosomes are released into the maternal blood, provid-

ing a second surge of antigen exposure (134).

The two stages of T cell activation can be tracked in mice 

expressing transgenic T cell receptors (TCRs) that are reactive with 

surrogate paternal antigens. Mating with male mice engineered to 

constitutively express OVA in semen elicit a pulse in the prolifer-

ation of OVA-reactive CD4+ and CD8+ T cells within the PALNs, 

followed by a progressive gain in the postimplantation phase once 

OVA+ placental cells contact maternal blood (90). Release of pla-

cental microparticles containing OVA sustains a progressively sys-

temic T cell response until the postpartum phase (90). A similar 

pattern of T cell responsiveness is seen in T cell–transgenic models 

tracking female responses to paternally derived H-Y antigen (135).

Seminal fluid contains high levels of TGF-β as well as TLR4 

ligands, which provoke an inflammation-like response in the 

female reproductive tract (136), eliciting DCs and macrophages 

that take up male antigens, traffic to the PALNs, and present 

antigen to naive T cells (ref. 90 and Figure 2A). This provokes a 

wave of T cell activation corresponding with a 2-fold expansion in 

Tregs detected within days of conception in the PALNs and then 

the spleen and peripheral blood (refs. 39, 84, 137, and Figure 2B). 

Circulating Tregs then accumulate in the uterus (39) in response 

to CCL3, CCL4, CCL5, and CCL19 secreted by epithelial cells 

(85, 137) and may undergo further rounds of proliferation (39) to 

induce a state of hypo-responsiveness to paternal alloantigens in 

time for embryo implantation (refs. 84, 135, and Figure 2C).

Mouse studies imply that seminal fluid priming is a key step 

for expansion of the pTreg population in early pregnancy (41). 

Consistent with this, pregnancies sired in the absence of seminal 

fluid contact have poor outcomes (138). The size and suppressive 

competence of the pTreg pool are determined by the strength of 

the antigenic challenge and the cytokine context in which antigen 

contact occurs, parameters determined by seminal fluid composi-

tion as well as female tract factors. The plasma fraction of seminal 

fluid is instrumental in Treg activation, as surgical excision of the 

seminal vesicle glands ablates the maternal response (135, 137) 

and abrogates the paternal alloantigen hyporesponsiveness seen 

after mating with intact males (84).

A population of tTregs also expands systemically prior to con-

ception and embryo implantation (83, 139). These cells accumu-

late in the uterus and PALNs during the estrous stage of the repro-

ductive cycle in mice in response to increases in estradiol (E2) at 

ovulation (139). The antigen specificity of tTregs and whether they 

can be further stimulated by tDC presentation of seminal fluid or 

trophoblast antigens is not clear.

In women, vaginal intercourse elicits an immune response 

to seminal fluid, with elevated cytokine expression, immune cell 

recruitment, and T cell activation in the cervix (140, 141). Human 

seminal fluid contains soluble HLA antigens and high levels of 

TGF-β among an array of immune regulatory cytokines (141). 

Analysis of peripheral blood T cells provides evidence that prior 

seminal fluid contact contributes to the priming of paternal anti-

gen–specific Tregs (54) to build on the follicular-phase Treg pool 

expansion (58). Although it is yet to be proven that seminal fluid 

induces pTregs in vivo, seminal fluid has been demonstrated to 

skew DCs to a tDC phenotype and induce Tregs in vitro (141–143). 

A priming effect of seminal fluid explains the benefit of seminal 

fluid contact for implantation success in IVF treatment cycles 

(144) and the protective effect in preeclampsia of sexual cohab-

itation with the conceiving partner (145, 146), particularly when 

maternal-fetal HLA sharing is greater (68).

T cell imbalance in unexplained infertility, 
miscarriage, and preeclampsia
In women with recurrent miscarriage, the luteal-phase endome-

trium exhibits elevated expression of the inflammatory mediators 

IL-1B, TNF, and IFN-γ and reduced IL-4, IL-6, IL-10, IL-6 fami-

ly cytokine LIF, and VEGF (147, 148), and this is accompanied by 

altered uNK and T cells (72, 149–151) as well as evidence of uterine 

vascular dysfunction and reduced expression of key angiogenic 

regulators (152). Together, these observations point to dysfunc-

tional receptivity to implantation stemming from failure to tran-

sition to an antiinflammatory and proangiogenic immune envi-

ronment. This dysfunction is associated with reduced numbers of 

Tregs in decidua (20, 153–155) and peripheral blood (58, 155, 156) 

compared with numbers in fertile women. Conversely, IL-17–pro-

ducing T cells in peripheral blood and decidua are increased (21, 

155), implicating a systemic immune imbalance. Reduced Tregs 

may precede miscarriage onset, with low circulating Treg num-

bers in early pregnancy predicting a risk of loss in women with a 

miscarriage history (157). Tregs from women with recurrent mis-

carriage exhibit reduced suppressive function (58), with fewer 

CD45RA– cells among the CD45RA–FOXP3hi effector pool (56) 
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and reduced expression of CTLA4 (153) and Ubc13, an enzyme 

important for Treg stability (158, 159). Conversely decidual Th17 

cell numbers are elevated (155), and elevated susceptibility to IL-6 

trans-signaling, which can confer abnormal suppressive function 

and disposition to Th17 conversion, may contribute to this (160).

In primary unexplained infertility, IL-1A, IFN-γ, and CCL11 

are elevated in uterine fluid (161), and increased IL-12, IL-15, and 

IL-18 levels are linked with elevated uNK numbers in the decidua 

(80). Reduced endometrial expression of FOXP3 indicates fewer 

Tregs (19) potentially due to a systemic defect, as IVF success cor-

relates with circulating levels of CD4+CD25+FOXP3+ cells (162, 

163). Primate studies suggest that systemic and endometrial Treg 

deficiency is exacerbated by endometriosis, a common condition 

in infertile women (164). The association between reduced fer-

tility and fewer Tregs in asthma (165), allergy (166), and autoim-

mune disease (167) supports the view of Treg dysfunction as an 

underlying cause (168).

In preeclampsia, Tregs in the maternal peripheral blood and 

decidual tissue are reduced (23, 36, 59), and suppressive func-

tion is impaired (169, 170), with an accompanying rise in proin-

flammatory Th17 cells (24), CD8+ effector cells, and trophoblast 

apoptosis (59). This is linked with pTreg deficiency (36), most 

notable in early-onset severe preeclampsia (59), as well as with 

CD45RA+CD31+ RTE tTregs being less able to acquire a memo-

ry phenotype (171). Dysfunctional DCs with reduced HLA-G and 

ILT4 expression (36) and/or insufficient expression of PD-L1 

(172) may amplify Treg deficiency.

The clinical features of preeclampsia point to immune prim-

ing and memory, invoking a causal role for the adaptive immune 

response. Preeclampsia is more common in first pregnancies, 

especially when sexual contact with the conceiving partner has 

been limited because of a short duration of sexual cohabitation or 

barrier contraceptive use — and protection afforded by prior preg-

nancies is lost with a change of partner (65, 145, 173). Use of donor 

oocytes in assisted reproduction, where there is no prior contact 

with the donor’s alloantigens, leads to a striking 4.3-fold increase 

in preeclampsia compared with natural conception (174). With 

donor sperm, the risk is also increased, but, remarkably, this is 

mitigated by multiple exposures to the same donor’s semen (175).

Inadequate Treg priming and “shallow” 
placentation
Considering the extant evidence, it is reasonable to infer that 

insufficient Tregs in the periconception phase is a key upstream 

driver of the altered decidual environment and failure to achieve 

appropriate inflammatory resolution that precede limited invasion 

of trophoblasts and maternal vessel remodeling, in turn causing 

“shallow” placentation and ultimately preeclampsia and/or fetal 

growth impairment in later gestation (refs. 27, 70, 176, and Figure 

3). This view fits the emerging paradigm invoking early pregnancy 

as the origin not just of miscarriage, but also of disorders of pla-

centation linked with early-onset, severe preeclampsia, and as a 

contributing factor to fetal growth restriction, late spontaneous 

abortion, and preterm labor (27, 176, 177). Direct evidence for this 

comes from transcriptional analysis of chorionic villous samples, 

showing evidence of immune changes originating at implantation 

in women who later developed preeclampsia (178).

This raises the question of why some women have insufficient 

Treg numbers and function. Because newly generated pTregs are 

more vulnerable to phenotype switching and lineage instability (47), 

a secure Treg fate will depend on the conception environment. Treg 

priming may be dysregulated as a result of seminal fluid composi-

tion or responsiveness (112, 141). For example, when CD4+ cells from 

patients with recurrent miscarriage are cultured with DCs and the 

partner’s seminal fluid antigens, CD4+IL-17 and CD4+IFN-γ+ cells 

proliferate excessively, and fewer CD4+CD25+FOXP3+ Tregs are 

generated compared with fertile controls (158). The composition of 

seminal fluid immune-regulatory agents, particularly protolerogenic 

TGF-β, varies among and within men over time (179). The antitolero-

genic cytokine IFN-γ, which drives the generation of Th1 immuni-

ty, fluctuates substantially in seminal fluid and can be elevated in 

response to infection (180). IFN-γ is elevated in the seminal fluid of 

male partners of women with recurrent miscarriage (181, 182). IFN-γ 

can interfere with the synthesis of GM-CSF required to drive T cell 

activation at conception (128, 183), skew Th0 differentiation toward 

Th17 cells (46, 184), and cause Tregs to transdifferentiate (185).

Bioavailability of cytokines, hormones, and microRNAs and 

the reproductive tract microbiome in the conception environment 

all potentially influence the Treg response (186–188). IL-10 defi-

ciency elicits an unstable Treg response at implantation, with more 

rapid phenotype conversion and a reduced capacity to withstand an 

inflammatory challenge in later gestation (101, 189). Neutrophils 

also contribute, with neutrophil-depleted mice displaying insuffi-

ciency of proangiogenic, neutrophil-induced Tregs (116). Proges-

terone bioavailability impacts the Treg phenotype and secure fate 

commitment (190, 191), in part by inducing gal-1 to reinforce the 

tDC phenotype (100). Progesterone is commonly administered as 

luteal-phase support in IVF cycles (192), but whether this elevates 

Tregs at implantation remains to be determined.

Within hyperinflammatory environments, pTregs exhibit 

phenotypic plasticity and lineage instability, with a capacity to 

shift the phenotype and express cytokines that are characteristic 

of Teff lineages (47, 185). Tregs that undergo transdifferentiation 

into effector Th1 or Th17 cells, known as exTregs, drive pathology 

in inflammatory conditions and autoimmune disorders (193, 194). 

Epigenetic regulation of FOXP3 expression is a key determinant of 

whether T cells can maintain a suppressive phenotype (195, 196).

There is emerging evidence for Treg phenotype instability 

in reproductive disorders. Defects in stability would explain the 

observations of reduced Treg-suppressive competence (60) and 

evidence of elevated Th1 and Th17 cells in preeclampsia (24, 99). 

An intrinsic deficiency in peripheral blood Tregs in recurrent mis-

carriage is indicated by diminished IL-2 and TGF-β secretion as 

well as reduced IL-2/STAT5 signaling (197), while decidual Tregs 

have elevated IFN-γ expression (198). Exploratory studies impli-

cate gene polymorphisms in the promoter region of FOXP3 in pre-

eclampsia (199, 200). Tregs that express insufficient FOXP3 may 

be phenotypically plastic and express inflammatory cytokines, 

and exTregs could directly contribute to the pathology.

Conclusions and therapeutic prospects
Taken together, clinical studies and animal models support 

the inference that decidual Tregs are rate limiting for resolving 

inflammation at embryo implantation and establishing a decidual 
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environment conducive to implantation receptivity and robust pla-

cental formation. It seems likely that in a substantial proportion of 

cases of infertility, recurrent miscarriage, and preeclampsia, Tregs 

are central and causal in disease development (21, 80). Immune 

imbalance or maladaptation causing incompetent phenotypes or 

insufficient Tregs provides a point of intersection channeling envi-

ronmental, metabolic, and genetic factors (187) that likely interact 

with clinical factors such as prior pregnancy and male partner his-

tocompatibility, which are identified as important in the prepreg-

nancy antecedents of adverse pregnancy outcomes (22).

The biological properties of Tregs, particularly their respon-

siveness to environmental context and capacity to undergo 

phenotype switching (47, 187), may confer a maternal ability 

to distinguish and differentially invest in reproductive oppor-

tunities. The capacity of Tregs to transdifferentiate into Teffs 

in the event of infection, excessive inflammation, or disrupted 

fetal development (129) confers the capacity to terminate preg-

nancy and ensure maternal survival. The plasticity of Tregs 

may thereby provide an evolutionary benefit by contributing to 

maternal “quality control” that ensures optimal reproductive 

investment and maximizes offspring fitness (48). Vulnerability 

to reproductive disorders due to Treg instability (56, 57, 170) 

may be the biological trade-off (48).

The recognition that Tregs contribute to and may be causal 

in disorders of pregnancy raise the prospect of modulating the 

immune response to suppress the progression of symptoms and/

or prevent their development. Interventions to boost Treg num-

bers and/or functional competence are in development and show 

promise for autoimmunity and tissue transplantation (194) and 

have been explored for cardiovascular disease as well (45). Given 

the rapid advances in Treg therapeutics, coupled with informative 

diagnostics based on flow cytometric analysis of peripheral blood, 

there is a strong prospect of targeting Tregs to tackle immune-
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