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Abstract

Background: Despite the mounting research on Arabidopsis transcriptome and the powerful

tools to explore biology of this model plant, the organization of expression of Arabidopsis genome

is only partially understood. Here, we create a coexpression network from a 22,746 Affymetrix

probes dataset derived from 963 microarray chips that query the transcriptome in response to a

wide variety of environmentally, genetically, and developmentally induced perturbations.

Results: Markov chain graph clustering of the coexpression network delineates 998 regulons

ranging from one to 1623 genes in size. To assess the significance of the clustering results, the

statistical over-representation of GO terms is averaged over this set of regulons and compared to

the analogous values for 100 randomly-generated sets of clusters. The set of regulons derived from

the experimental data scores significantly better than any of the randomly-generated sets. Most

regulons correspond to identifiable biological processes and include a combination of genes

encoding related developmental, metabolic pathway, and regulatory functions. In addition, nearly

3000 genes of unknown molecular function or process are assigned to a regulon. Only five regulons

contain plastomic genes; four of these are exclusively plastomic. In contrast, expression of the

mitochondrial genome is highly integrated with that of nuclear genes; each of the seven regulons

containing mitochondrial genes also incorporates nuclear genes. The network of regulons reveals

a higher-level organization, with dense local neighborhoods articulated for photosynthetic function,

genetic information processing, and stress response.

Conclusion: This analysis creates a framework for generation of experimentally testable

hypotheses, gives insight into the concerted functions of Arabidopsis at the transcript level, and

provides a test bed for comparative systems analysis.

Background
Genes that share a similar expression profile across multi-
ple spatial, temporal, environmental and genetic condi-
tions are likely to be under common transcriptional
regulations. Such sets of coexpressed genes could be con-
sidered eukaryotic regulons [1]. Meta-analysis of microar-
ray data, sometimes combined with other types of data –

proteomics, co-precipitation, literature, yeast two hybrid
– has proven valuable for model organisms including bac-
teria [2], nematode [3], human [4,5], chimpanzee [6],
mouse [7], rat [8] and yeast [9-11]. The use of transcrip-
tome data alone has allowed for identification of func-
tionally coherent modules corresponding to major
cellular processes in yeast [12-14] and some of these mod-
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ules might be important enough to be conserved across
eukaryotic organisms [12].

Meta-analysis of the Arabidopsis transcriptome thus offers
the potential to identify prevailing cellular processes, to
associate genes with particular biological processes, and
to assign otherwise unknown genes to biological proc-
esses they are correlated with. Despite the model plant
Arabidopsis genome having been fully sequenced since
2000, the function of many of its over 27,000 protein-
coding genes is experimentally undetermined. Almost
9,000 of the genes cannot be ascribed any function. Many
other genes contain a domain recognizable as represent-
ing a general molecular or biochemical function (phos-
phorylation, glycosylation), but no clear physiological
function; i.e., the nature of their involvement in cellular
processes is not understood (TAIR8 Genome Release,
April 28, 2008 [15]). The effort to assign the function to
otherwise unknown genes that are correlated with genes
of known function was recently undertaken by Horan and
coworkers [16]. The authors used the clustering of expres-
sion data to propose a function to 1547 genes coding for
proteins of unknown function (PUF) and set up a Plant
Unknown-eome Database (POND) [17].

Arabidopsis expression data is available across a wide
range of perturbations of nutrients, stress, and light, in the
framework of defined organs, genetic backgrounds, and
developmental stages. With this wealth of data it is tempt-
ing to identify genes that share common expression signa-
tures across a variety of experiments. Thus, the
Arabidopsis transcriptome is receiving growing attention,
despite the challenges associated with a high volume of
genes, distribution of data across multiple databases and
publications, and incompleteness of the biological data
and metadata. Several online repositories for microarray
data and metadata storage and/or analysis have been cre-
ated, including NASCArrays [18,19], Genevestigator
[20,21], PLEXdb [22,23], MetaOmGraph [24], ArrayEx-
press [25,26], Vanted [27,28], VirtualPlant [29], ATTED-II
[30,31], Arabidopsis Coexpression Data Mining Tools
[32,33], Bio-Array Resource [34,35], MapMan [36,37],
PageMan [38,39] and CressExpress [40,41]. Based on the
data from public datasets, coexpression of genes in the
indole, flavonoid and phenyl-propanoid biosynthetic
pathways has been reported [42]. Similarly, coexpression
has been shown for genes encoding synthesis of cellulose
and other cell wall components [43-45] and oxidative
phosphorylation [46]. Morcuende et al. [47] used large-
scale transcript data, along with metabolomic and enzy-
matic activity data, to investigate finer-tuned changes in
Arabidopsis regulatory networks during phosphate starva-
tion. Ma and Bohnert [48] and Weston et al. [49] classi-
fied characteristic transcriptome responses to stresses,
using public microarray data. Biehl et al. [50] assigned

1590 Arabidopsis nuclear genes, mostly encoding plastid-
localized proteins, to 23 regulons, based on RNA accumu-
lation profiles across 101 different conditions. Wei et al.
[51] study of the transcriptional coordination of 1,330
genes coding for enzymes in AraCyc pathways [52,53]
indicated a broad transcriptional basis for coexpression of
metabolic pathways. Recently, Ma et al. [54] presented an
Arabidopsis gene coexpression network based on partial
correlation analysis. With the random sampling of genes,
the authors circumvented the computational problem
resulting from small number of samples versus large
number of genes and approximated direct associations
between the genes, obtaining a network with 6760 genes
and 18,000 interactions.

Here, we present a global analysis of the regulon organi-
zation of the Arabidopsis genome, derived from the
results of the graph clustering of the coexpression network
of the 13,456 genes. The relationships among genes in a
complex organism clearly entail shifts in alliances among
the genes, resulting in "fuzzy" memberships [55] in differ-
ent clusters according to perturbations in environmental
and genetic conditions. None-the-less, this analysis cap-
tures the prevailing transcriptional network of the organ-
ism. As such, it provides a strategy to evaluate functions of
genes in a given gene family, and to develop experimen-
tally testable hypotheses about the functions of genes with
no known physiological or developmental role. The
approach applied in this study delivers a perspective that
is not constrained by existing assumptions about the
organization of plant processes. Instead, the organization
emerges directly from observations. The analysis reveals
biologically coherent functional modules, representing a
sometimes surprising combination of metabolic and
developmental genes.

Results
Graph-clustering of Arabidopsis transcriptome data

To facilitate identification of the regulon organization of
coexpressed Arabidopsis genes that reflect the most pre-
vailing processes in this plant, we performed meta-analy-
sis of multiple microarray experiments. We developed a
transcriptome data set for 70 experiments from the public
microarray depositories NASCArrays [19,18] and PLEXdb
[23,56] (described in detail in Methods). The experiments
from these databases incorporate a wide variety of
mutants, environmental conditions and stages of devel-
opment. To avoid artifactual signals, samples and experi-
ments with poor replicate quality were removed. The
resulting 963 chips were normalized to the common
range and the replicates were averaged to yield 424 sam-
ples. To further minimize noise in the data, probe sets
with low expression values (defined as probes whose
expression in every microarray chip was lower than the
mean value for that chip) were removed from analysis
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(Figure 1). In order to concentrate on the most prominent
coexpressed sets, only genes correlated above Pearson's
correlation threshold of 0.7 with at least two other genes
were included in the analysis. The expression data for the
resulting 13,456 probe sets was treated as a coexpression
network in which genes are represented as nodes, and two
nodes are connected by an edge if the Pearson correlation
between their RNA accumulation profiles is higher than a
threshold of 0.7.

Pearson's R has been chosen as the similarity measure
between the expression profiles, in spite of its known
shortcoming – measuring the strength of only linear rela-
tionships and sensitivity to outliers. We estimate that the
presence of strong non-linear relationships between gene
expression profiles in expression data, which would not
be picked up by Pearson's R, is relatively rare. The results
presented by Daub et al. [57], where authors found no
increase in the discovery of high correlations in gene
expression data when using measures of non-linear rela-
tionships (mutual information) agree with this assertion.
Pearson correlation gives high score for the expression
profiles which consist of mostly very low values and one,

or few, very high values, which in our dataset often occurs
for genes that are expressed only in couple of underrepre-
sented tissues or conditions. This sensitivity to outliers is
usually seen as the drawback of Pearson's correlation
measure. However, we decided that for the purpose of our
analysis these outliers are valid, though extreme,
datapoints and that clusters based on the presence of
genes in only couple of samples do represent valid clus-
ters. For the groups of genes with expression profiles that
are variable and parallel across many diverse conditions,
a hypothesis of common regulatory program acting upon
participating genes is particularly plausible. For clusters
that are active only under a small subset of conditions,
there is less ground for a co-regulation assumption. How-
ever, such clusters may also reveal valuable information.
For example, the subset of genes for increased growth in
response to auxin and cytokinin upregulated only in cell
cultures and tumors would be hard to pinpoint if not for
meta-analysis. Correlations based on extreme values
would not be found with Spearman rank correlation, Ken-
dall's tau or in logged data.

We aimed to identify sets of coexpressed genes, which are
represented in our model as densely-connected regions of
the network. A graph-clustering method based on flow
simulation (Markov chain graph clustering, MCL) was
used to identify clusters in this network that correspond to
the sets of coexpressed genes. This method, developed by
van Dongen [58], has been used previously for clustering
protein sequence data [59] and for identifying modules in
the yeast protein interaction network [60]. One of the
advantages of Markov clustering is that it is scalable to
large graphs, unlike most other graph clustering algo-
rithms, which are not applicable to graphs with more than
5000 nodes. Using MCL, we identified 998 clusters in the
Arabidopsis network, ranging in size from 1 to 1623
genes.

To evaluate the significance of the clustering results, we
compared the overrepresentation of Gene Ontology (GO
[61]) terms in the set of the 148 largest regulons (i.e., con-
taining at least 10 genes) derived from Markov clustering
of the experimental data, with GO terms overrepresenta-
tion of 100 randomly-obtained sets of clusters. For each
randomly-obtained set, clusters were designated by per-
muting the gene locus IDs, such that the sizes of the 148
clusters were preserved relative to the experimental data,
but the genes assigned to each cluster changed (see Meth-
ods section). The best p-value for overrepresentation of
GO terms was recorded for each cluster in a set and aver-
aged over all clusters. Distribution of p-values for GO
terms in the randomly-obtained clusters was then com-
pared to the respective value for the regulons derived from
the experimental data (Figure 2). For each GO terms cate-
gory (Molecular Function, Biological Process, Cellular

Data processing for construction of the transcriptional net-workFigure 1
Data processing for construction of the transcrip-
tional network. Filters were applied to original probe sets 
on ATH1 chip to remove the genes with expression lower 
than the mean of 100 and with correlation to other genes 
lower than the threshold of 0.7. The network was then con-
structed and the largest connected component of this net-
work was retained; smaller connected components as well as 
genes with only one neighbor in the giant connected compo-
nent were filtered out. This resulting network, containing 
13,456 genes, was then clustered. Enrichment of Gene 
Ontology terms in groups of filtered genes is indicated.
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Component), the experimental dataset scores signifi-
cantly better than any of the randomly-obtained sets (Wil-
coxon test p-value < 2.2 × 10-16). This analysis indicates
that the concentration of similar GO terms in the clusters
derived from experimental data is not random, and thus

these regulons might correspond to meaningful biological
processes.

The Markov clustering result was also compared with
results obtained from another common method, k-means

Statistical significance of Markov chain graph clustering resultsFigure 2
Statistical significance of Markov chain graph clustering results. The best p-values for over-representations of Gene 
Ontology (GO) terms, averaged over all clusters (S score, denoted by color arrow) are compared to the analogous values for 
100 randomly-obtained clusterings (histogram). GO categories: (A) Molecular Function, (B) Biological Process, (C) Cellular 
Component. In each case, the actual clustering scored significantly better than any of 100 randomly obtained ones (Wilcoxon 
test p-value < 2.2 × 10-16). In a comparison of the MCL (Markov clustering) and k-means clustering results (the latter denoted 
by black arrows), MCL had better S scores for GO terms overrepresentation than the k-means method (0.0016 versus 0.0020 
for "Molecular Function" category; 0.0016 versus 0.0026 for "Biological Process"; and 0.0044 versus 0.0050 for "Cellular Com-
ponent").
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clustering, with the same number of clusters (= 998) as a
parameter. The clusterings produced by MCL and k-means
differed in the distribution of the cluster sizes, which
might have influenced their scoring. The agreement
between gene assignments to regulons by these two meth-
ods is 0.044 (based on the adjusted rand index; as com-
pared to an agreement between MCL clustering and
random reassignment of genes to clusters of only 10-5).
MCL clustering yielded somewhat better S scores for GO
terms overrepresentation than the k-means method
(0.0016 versus 0.0020 for the Molecular Function cate-
gory, 0.0016 versus 0.0026 for Biological Process cate-
gory, and 0.0044 versus 0.0050 for Cellular Component
category). MCL clustering had also higher Z-score for the
total mutual information between the clustering and all
the GO terms describing the genes within the clustering
(80.1 versus 54.2 for k-means clustering).

The prevalent physiological or developmental functional-
ity of each regulon containing over 20 genes (69 regulons
comprising collectively 9,436 genes) was examined in
more detail; the results are summarized in Table 1. To
assign functionality to a regulon, we combined the results
from two independent methods, automatic analysis of
enrichment of GO terms and manual inspection of anno-
tation supplemented by literature searches for each gene's
annotation and function, as well as examination of the
conditions under which the genes of the regulon are max-
imally expressed. Most regulons are characterized by a
mixture of molecular functions (enzymes, transporters,
transcription factors and signaling molecules) that work
together to achieve a common goal. This goal could be, for
example, hormone-mediated development of floral
organs accompanied by metabolic processes (Regulon
43), or a defense response leading to synthesis of protec-
tive compounds (Regulon 46). One cluster is almost
exclusively devoted to proteolysis (proteasome complex
in Regulon 45). Although genes with low expression have
been filtered out, the genes that predominate in three of
the larger clusters (Regulons 11, 17, and 58) are annotated
as "hypothetical", transposons", or "pseudogenes".

A simplified view of the coexpression network formed by
69 largest regulons is shown in Figure 3. A link between
two regulons means that there are genes in one regulon
that are correlated with genes in the second regulon. It is
interesting to note the higher-order grouping of the regu-
lons that predominantly contain genes with genetic infor-
mation-related, photosynthetic/plastidic, and stress
response functions.

Six regulons are devoted to nuclear-encoded plastidic 

functions

Six of the regulons with over 20 genes represent plastidic
functions that are encoded predominantly by nuclear

genes (Regulons: 2, photosynthesis/chloroplast biogen-
esis; 15, plastid stress and circadian rhythm; 33, plastid
organization and biogenesis; 49, plastid-encoded genes;
53, fatty acid biosynthesis; 69, glucosinolate biosynthesis;
Table 1).

Regulon 2, the second biggest cluster, contains 971
mainly nuclear-encoded genes involved in chloroplast
biogenesis and photosynthesis (overrepresented GO
terms: chloroplast: p-value < 10-85, thylakoid: p-value =
1.02 × 10-28, photosynthesis: p-value = 1.68 × 10-15) (Fig-
ure 4A). Nineteen genes are involved in the formation and
development of plastid organelle: its biogenesis, organiza-
tion, fission and relocation. An example of these genes is
thylakoid formation 1 (PSB29), required for thylakoid
membrane organization [62]. Transporters of sodium,
calcium and other metals are represented. Two hundreds
and eighteen genes in Regulon 2 have a photosynthesis-
related activity. Of these, 36 encode enzymes required for
synthesis of the photosynthetic apparatus metabolome
(porphyrin pigments, tetrahydrofolate, chlorophyll, caro-
tenoids, and other plastidic isoprenoids). Seventy five
genes encode plastidic ribosome constituents and related
functions. Twenty genes from the Calvin cycle, 16 genes
from photorespiration, 14 genes representing a subset of
plastidic glycolysis enzymes, and 11 genes involved in
starch metabolism are also present, reflecting the coupling
of these metabolic activities with the light reactions of
photosynthesis. In addition, enzymes for plastidic metab-
olism of amino acids and nucleotides are represented.

Regulon 2 contains a total of 38 plastid-encoded genes, 27
of which participate in the light reactions of photosynthe-
sis. Such coupling of plastid-encoded and nuclear-
encoded genes for the light reactions might be achieved by
nuclear-encoded proteins with tetratricopeptide (TPR) or
pentatricopeptide (PPR) motifs, which are thought to be
transcript-specific regulators of plastome expression
[63,64], and sigma factors for plastidic RNA polymerase
[65]. Consistent with this concept, 43 genes in Regulon 2
encode proteins with a TPR or PPR domain. One of these,
HCF107, has been reported to process the polycistronic
chloroplast psbB-psbT-psbH-petB-petD operon coding for
proteins of the photosystem II and cytochrome b6/f com-
plexes [66]; both psbH and petB are members of Regulon
2. FLU, another TPR containing protein in Regulon 2, is a
negative regulator of chlorophyll synthesis [67]. Five of
the six nuclear-encoded sigma factors that modulate the
specificity of plastidic RNA polymerase are present in Reg-
ulon 2 (SIG1-SIG4 and SIG6 [68]). The exception is the
phylogenetically and functionally distinct SIG5, which
has been reported to be important for stress response
[69,70]; SIG5 is a member of Regulon 15, "plastid stress
and circadian rhythm".
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Table 1: Predominant functions of the regulons

Regulon # of genes Postulated physiological function FCa

1 1629 mixed (tricellular and mature pollen-specific) b ND

2 1136 Photosynthesis 29

3 869 protein synthesis 65

4 583 Mitosis 49

5 507 membrane transporters -metal, toxins removal (root-preferential) 77

6 417 embryo maturation (fruit and seed-preferential) 25

7 330 developmental regulation (leaf apex- preferential) 38

8 281 information (uninucleate microspore and bicellular pollen-specific) 64

9 234 response to environmental stimuli 26

10 223 protein modification, defense response 66

11 215 nuclear, others with very low expression ND

12 182 mixed (fruit-preferential) ND

13 154 upregulated in 'response to CO2 levels' experiment ND

14 140 regulation of organ development 61

15 138 plastid stress and circadian rhythm 56

16 121 Information 58

17 115 Information 51

18 100 cell wall, respiration/catabolism (pollen-specific; highest in tricellular pollen) 46

19 96 mixed (flower-preferential) ND

20 94 Information 80

21 92 secondary products, secondary wall (flower-specific, mostly tapetum) 54

22 81 cell wall biosynthesis, carbohydrate metabolism 47

23 77 membrane proteins 69

24 71 defense response 70

25 70 defense response 77

26 68 Information 79

27 68 regulation, root (root- and hypocotyl-preferential) 73

28 66 nucleic acid binding, regulation 60

29 63 aerobic respiration in mitochondria 92

30 56 Signalling 89

31 52 defense response 25

32 48 nuclear genes, RNA processing, DNA replication 70

33 48 chloroplast organization and biogenesis 62

34 47 mitochondrial genes 96

35 45 kinases, signaling, disease resistance 69

36 43 lipid modification and cuticular wax synthesis (flowers and shoot apex-specific) 54

37 42 heat shock response 60

38 40 RNA processing, translation, transcription regulation 82

39 40 catabolic processes deriving energy 51

40 40 transcription, translation, protein folding and transport 86

41 36 regulation, information 83

42 34 Regulation 78

43 33 flower/fruit, cell wall depositions (flower/fruit-preferential) 48

44 31 metabolic processes in flowers/fruit (flower/fruit-specific) 22

45 30 proteasome complex 87

46 29 defense response 50

47 29 nuclear, replication, chromosome organization, cell cycle 67

48 28 cell culture and tumor specific ND

49 27 chloroplast-encoded 100

50 27 Signalling 90

51 26 organ specification in shoot (leaf apex- and hypocotyl-preferential) 35

52 26 endoplasmic reticulum: protein folding and secretion/redox function 73

53 25 fatty acid biosynthesis 83

54 23 protein degradation and lipid modification 59

55 23 epidermal/cuticular deposits 43

56 22 nectaries/carpel specific function (carpel-specific) 29

57 22 phloem specific (vasculature tissues-specific) 26

58 22 transposases, mostly CACTA-type 100

59 21 metabolism and transport of triterpenoids (root hairs-preferential) 71
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Protein import is represented in Regulon 2 by: HCF106, a
translocation pathway component that imports proteins
into the thylakoid lumen [71]; Tic22 and TOC159, a tran-
sit sequence receptor required for import of proteins and
essential for chloroplast biogenesis [72]; and CPFTSY and
CAO, chloroplast signal-recognition particle receptor pro-
teins [73,74]. Two hundred and three genes in Regulon 2
have no known function. The expression of Regulon 2 is
high in light, and in every organ except roots.

Expression of the plastidic genome is partitioned

The plastid-encoded genes are partitioned across five of
the 998 regulons: Regulon 2 (described above), Regulon
176 (8 genes), Regulon 283 (5 genes), Regulon 656 (2
genes) and Regulon 49 (27 genes). In contrast to Regulon
2, with its mixture of nuclear and plastidic genes, the other
four regulons contain exclusively plastid-encoded genes:
Regulon 49 contains genes for 17 ribosomal proteins and
RNA polymerases, seven photosystem-related proteins,
and three "hypothetical" proteins (Figure 4B). Interest-
ingly, the operon membership of genes does not necessar-
ily conform to their regulon membership. For example,
genes from the tri-cistronic operon, psaA-psaB-rps14, each
belong to a different cluster (Regulons 49, 2 and 176,
respectively), likewise, the genes from the accD operon are
scattered among three clusters (Regulons 2, 49 and 283).

Aerobic respiration is a major mitochondrial-related 

regulon

Only a single regulon of over 20 genes (Regulon 29, 63
genes) contains exclusively nuclear-encoded genes with a
predominantly mitochondrial function. Most genes of
Regulon 29 are involved in mitochondrial aerobic respira-
tion (Figure 4C). Thirty-nine of these genes encode struc-
tural components of the electron transport chain and ATP
synthase, six encode TCA cycle enzymes, two code for
pyruvate dehydrogenase (one for a cofactor) and twelve
are of unknown function. The four remaining genes
encode the putative cytosolic galactose kinase GAL1, ade-

nylate kinase, sigma F inhibition-like factor and a mito-
chondrial dicarboxylate/tricarboxylate carrier. Fifty-one of
the 63 proteins encoded by Regulon 29 genes are experi-
mentally demonstrated or predicted to have a mitochon-
drial localization. The expression is well correlated and
highest in pollen.

A large subset of the genes involved in mitochondrial pro-
tein synthesis (191 of 869 genes) is contained in Regulon
3, together with genes for protein synthesis in other cell
components.

Mitochondrial genes are integrated with nuclear genes

Seven of the 998 regulons contain an amalgamation of
genes from the mitochondrial and nuclear genomes.
Although mitochondrial genes predominate in three of
these regulons: Regulons 73 (17 out of 18 genes), Regulon
205 (5 out of 7 genes), and Regulon 34 (45 out of 47
genes), no regulon contains exclusively mitochondrial
genes. This synchronization of expression of mitochon-
drial and nuclear genomes is consistent with the recent
report that mitochondrial functions require coexpression
of genes from both genomes [46].

Of the genes in Regulon 34, 19 represent respiration-
related functions (ATPases, cytochrome, NADPH dehy-
drogenase) (Figure 4D). Most of the other genes are anno-
tated as hypothetical or unknown. Eight are adjacent
genes already reported to be co-transcribed (nad3 and
rpsL2; rpl5 and cob; nad4L and orf25; atp1 and orf294)
[75], however, other genes are from scattered regions of
the mitochondrial chromosome. This observed coexpres-
sion of genes from different regions of the mitochondrial
genome is consistent with experimental evidence that
modulation of RNA stability plays a major role in regula-
tion of gene expression in this organelle [75]. The expres-
sion of Regulon 34 is generally high and well-correlated,
and is upregulated in seeds, male gametophytes, and dur-
ing starvation.

60 21 ubiquitin ligase 53

61 20 metabolism of glutathione and glutamate, redox 56

62 20 information, nuclear 78

63 20 stress-induced catabolism, mediated by jasmonic acid 72

64 20 information, nuclear 87

65 20 secondary metabolism/pathogen infection 61

66 20 exocytosis 29

67 20 Ca 2+ – triggered exocytosis (pathogen response?) 60

68 20 shoot meristem development and nucleic acid binding (leaf apex and hypocotyl – preferential) 69

69 20 leucine/glucosinolates metabolism 65

Regulons with 20 or more genes are shown. Annotations are postulated based on GO terms supplemented with information from the published 
literature.
a Functional Coherence, calculated as percentage of annotated genes whose TAIR annotation is consistent with the cluster functional classification. 
(Genes designated "hypothetical" or "unknown" are not included in this calculation.)
b prevalent locations of expression are indicated in parenthesis. "specific" refers to virtually all expression in the given location; "preferential" refers 
to most expression being in the given location

Table 1: Predominant functions of the regulons (Continued)
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Control of nuclear function and information processing

Sixteen regulons are enriched in genes with a genetic
information-related function (transcription, translation,
replication, DNA metabolism and repair, RNA processing,

chromatin assembly, chromatin rearrangement or cell
cycle; Table 1).

Regulon 4 contains 495 genes, many with experimentally
determined or predicted functions in the cell cycle (Figure

Higher-order structure in the coexpression networkFigure 3
Higher-order structure in the coexpression network. All regulons containing at least 20 genes are depicted; these com-
prise a total of 9,436 genes. Regulons are represented by ovals numbered 1 through 69. A linkage between two clusters means 
that one or more genes in one of the clusters are correlated with one or more genes in the other cluster. As observed from 
the proximity of regulons with similar broader functional category, three super-clusters of regulons are revealed: regulons 
related to information-related functions (purple), plastidic functions (green) and defense response-related functions (yellow). 
The predominant functionality of each regulon is defined in Table 1. Network was visualized using the GraphExplore tool 
[118].
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5A). For example, twenty one genes are directly involved
in mitosis, including cell division control proteins
(CDKB1, CDKB2;1, CDKB2;2, CDC2MsF) and cell divi-
sion cycle protein HBT, cyclins and other cyclin-depend-
ent proteins. Other nuclear functions represented include
gene silencing, regulation of organ development, nuclear
transport, RNA processing and histones. Regulatory and
signaling genes include 55 transcription factors, 54 pro-
tein kinases, 53 signaling-related genes and 18 other regu-
latory proteins. The expression of Regulon 4 is highest in
the leaf apex.

Regulon 20 provides an example of a set of genes involved
in nuclear function, which is also associated with a spe-
cific developmental process (Figure 5B). Sixty-five out of
94 genes have some kind of nucleic acid-associated activ-
ity: transcription factors, splicing factors, chromatin
remodeling, histone deacetylases, RNA helicases, DNA
repair, RNA processing. However, five genes in this cluster
have been implicated in the regulation of flower develop-
ment: At3g12680, HUA1, is an RNA-binding protein
which specifies stamen and carpel identities [76];
At5g04240 (ELF6, early flowering) acts as a repressor of
the photoperiod pathway [77]; At2g28290 (SYD) regu-

Regulons with organelle-specific functions and organelle-encoded genesFigure 4
Regulons with organelle-specific functions and organelle-encoded genes. Regulon 2, photosynthesis (for clarity, rep-
resentative expression profiles of 200 randomly chosen genes from this regulon are shown) (A); Regulon 49, plastid-encoded 
genes (B); Regulon 29, mitochondrial respiration (C); Regulon 34, mitochondrion-encoded genes (D). The plots on the right 
side show expression profiles of the genes in respective regulon (each gene depicted with different color) across the 424 sam-
ples in the dataset. The samples have been arranged according to plant tissue. Pie charts are based on manual annotations from 
published data. RNA profiles plotted using MetaOmGraph [24,124].
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Regulons with developmental and metabolic functionsFigure 5
Regulons with developmental and metabolic functions. Regulon 4, cell division (for clarity, representative expression 
profiles of 200 randomly chosen genes are shown) (A); Regulon 20, nuclear regulation (B); Regulon 35, protein kinases, signal-
ing and defense response (C); Regulon 69, glucosinolate biosynthesis (D); Regulon 25, defense response (E); and Regulon 1, 
pollen-specific (200 randomly chosen genes) (F). Pie charts are based on manual annotation. RNA profiles plotted using 
MetaOmGraph [24,124].
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lates floral homeotic gene expression [78]; At5g17690
(TFL2) controls flowering and floral organ identity by
silencing nuclear genes [79]; and At4g32551 (LUG) is a
negative regulator of the floral homeotic gene AGAMOUS
[80]. No genes reported to be involved in other develop-
mental processes are represented. Rather surprisingly, the
expression pattern of this cluster is relatively low and uni-
form.

Defense responses

Six regulons contain primarily genes involved in resist-
ance to disease or a pathogen; each is characterized by a
set of genes that appears to have a specialized function.

Regulon 35 (45 genes) includes genes involved mostly in
a combination of signaling events and responses to path-
ogens (Figure 5C). Sixteen of the genes encode protein
kinases, some experimentally linked to pathogen
responses (e.g., CRK5); 10 other genes are involved in dis-
ease resistance, response and signaling (cellulase,
expansin, six disease resistance proteins, calmodulin- and
cyclic nucleotide-binding proteins). Three genes are
involved in MAPKKK cascades: MPK3 (a MAP kinase),
and MKK1 and MKK2 (MAP kinase kinases). Twenty-three
of the encoded proteins have a predicted location in the
endomembrane system. At3g56710 (SIB1) is a nuclear
protein that modulates transcription in chloroplasts [81]
and might coordinate the response of the plastidic
genome to the pathogen with the nuclear one. Expression
is high in leaves, especially following perturbations by
pathogens or during senescence.

Glucosinolates provide a chemical defense against herbiv-
ores [82]. Most of the 20 genes in Regulon 69 (Figure 5D)
may participate in glucosinolate biosynthesis in chloro-
plasts. Of the 16 genes annotated with biosynthetic func-
tions, seven have demonstrated or putative involvement
in glucosinolate biosynthesis [83], six encode enzymes
similar in sequence to those of leucine, homoserine,
lysine or choline biosynthesis. Enzymes currently anno-
tated in TAIR by sequence evidence as being involved in
leucine biosynthesis might be also active in the glucosi-
nolate pathway, since those pathways have analogous
chemical reactions [84,85]. A flavin-containing monoox-
ygenase, an antioxidant involved in glucosinolate produc-
tion from phenylalanine in rapeseed [86] is also present
in the regulon.

Regulon 25 has 70 genes, 19 of which are annotated as
disease resistance proteins (Figure 5E). It also contains
other genes involved in pathogen response, among them
lectin and lectin kinases, genes related to apoptosis, 17
protein kinases, many of them receptors, and eight genes
annotated as involved in signaling. Eighteen genes are
predicted to be integral membrane genes. The spiky

expression of this cluster, highest in leaves, could be con-
sidered symptomatic of genes responding to environmen-
tal stimuli.

Other regulons predominantly devoted to stress responses
include heat shock response (Regulon 37), stress-induced
catabolism (Regulon 63), and synthesis of protective
compounds derived from shikimate (Regulon 46).

Tissue-specific regulons

Only sixteen regulons are predominantly expressed in
particular reproductive or vegetative structures (flowers-
Regulons 21 and 36; flower/fruit – Regulons 12, 43, 44
and 56; pollen – Regulons 1, 8 and 18; leaf apex – Regu-
lon 7; root- Regulons 27 and 59; phloem – Regulon 57;
shoot meristem – Regulon 68).

Genes expressed mainly in pollen are grouped in three
clusters, Regulons 1, 8, and 18, each having a different
expression profile among the samples containing pollen.
Regulon 18 is almost exclusively expressed in pollen. Reg-
ulon 1, the biggest cluster, is composed of 1623 genes
(Figure 5F). It is a very highly correlated cluster and also a
very dense one, containing genes with the highest average
number of neighbors (154) for each gene. Regulon 1 con-
tains genes involved in the regulation of the pollen devel-
opment, spermatogenesis and pollen tube growth. Many
genes in Regulon 8 have regulatory functions, and many
in Regulon 18 are associated with lipid and carbohydrate
metabolism and transport. Our clustering confirms the
separation of pollen transcriptome into early and late
stages of pollen development, observed by Honys and
Twell (2004) [87], whose experiment contributes most of
the pollen samples in our dataset. Since the number of
experiments using pollen tissue in our analysis was small,
the temporal resolution of expression of pollen-specific
genes may not be high.

In addition to pollen having its own complement of unu-
sually expressed genes, other clusters (Regulons 3, 29, 43,
and 52) are highly upregulated in pollen but also in other
tissues.

Coexpression of neighboring genes

We noticed that the genes that are neighbors on a chromo-
some are often coexpressed. This phenomenon has also
been observed by others using different approaches [88-
90]. To quantify the extent of the coexpression, we calcu-
lated the number of groups of coexpressed neighbors.
Coexpressed neighbors are defined as nuclear genes in the
same regulon whose Locus IDs differ by at most 20. To
eliminate the contribution of tandem gene duplications
from this evaluation, arrays of tandem duplicates were
removed.
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There are 539 groups of coexpressed genes, 1161 genes in
total. This value is significantly larger than the number of
groups of coexpressed genes from data in which genes are
randomly reassigned to regulons (the mean value from
random data is 421; Wilcoxon test p-value < 2.2 × 10-16;
Additional file 1). The groups of coexpressed adjacent
genes range in size from two to six genes: 384 of the
groups have only two genes and 54 have three genes
(Additional file 2).

We were able to take advantage of our assignments of
genes to functionally coherent regulons to evaluate
whether the phenomenon of coexpressed neighbors is
associated with specific regulons or with regulons of par-
ticular functions or characteristics. The 539 genes groups
of coexpressed neighbors are not members of regulons
with any obvious common characteristic or function, nor
are they associated with any of the three super-clusters of
regulons in the network (photosynthetic functions, infor-
mation processing, and stress responses). Also, the coex-
pressed neighboring genes are not enriched in any GO
term. Thus, coexpressed neighbors don't seem to be asso-
ciated with a particular function, either with respect to
gene annotation or participation in particular regulons.

Interestingly, the distribution of groups of coexpressed
neighbors on the chromosomes is not uniform. Domains
of coexpressed neighbors are absent from large part of the
long arm of chromosome 4, adjacent to the pericentro-
meric region, and very rare in the analogous area of chro-
mosome 2 (Figure 6).

Genes of unknown function

The unknown genes that co-cluster with genes of known
function might be hypothesized to share that function
with characterized genes. Recently, Horan et al. [16] used
the clustering of public expression data to assign function
to genes coding for proteins of unknown function (PUF),
defined as genes with a GO term GO:0003674 (unknown
molecular function). This way authors have proposed a
function to 277–1541 PUFs, depending on the signifi-
cance threshold. Of the 277 PUFs assigned to clusters with
the highest confidence in Horan et al., 216 are present in
our 998 regulons. The highest number of those 216 PUFs
belong to Regulon 2 (photosynthesis, 94 PUFs), 19 are
present in Regulon 3 (protein synthesis) and 12 in Regu-
lon 4 (mitosis).

In our analysis, the total of 2896 PUFs have been assigned
to 148 larger regulons with at least 10 members. In 69
largest regulons there are 2584 PUFs, 1768 PUFs in only
10 largest regulons. PUFs are approximately proportion-
ally distributed and consist about 30% of regulons. Thus,
the functions most often assigned to PUFs are that of Reg-
ulon 1 (pollen-specific, 457 PUFs), Regulon 2 (photosyn-

Coexpressed neighboring genes are absent from the region of long arm of chromosome 4Figure 6
Coexpressed neighboring genes are absent from the 
region of long arm of chromosome 4. Distribution of 
the coexpressed neighboring genes (marked in yellow) on 
five Arabidopsis chromosomes (visualized in Chromosome 
Map Tool, [126,115]). Domains of coexpressed neighbors 
are absent from large part of the long arm of chromosome 4, 
adjacent to the pericentromeric region, and very rare in the 
analogous area of chromosome 2.
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thesis, 327 PUFs) and Regulon 3 (protein synthesis, 213
PUFs). The exceptions are regulons 49 (plastidic genes),
53 (fatty acid biosynthesis), and 69 (leucine/glucosi-
nolates biosynthesis) from which PUFs are entirely
absent.

Genes of extremes

We identified the genes with highly varied expression, lit-
tle variation in expression, as well as those genes that had
sub- or super- mean levels of expression, from the expres-
sion profiles of the 22,746 probes in the Arabidopsis
ATH1 chip using the same 963-chips dataset. To evaluate
whether the genes with extremes in expression patterns
have any particular characteristics, the functions of the
100 genes with the most varied expression, the steadiest
expression and also those with the highest and lowest
expression were assigned to functional classes based on
TAIR and GO annotations and manual curation (Figure 7
and Additional file 3).

Genes with greatly shifting expression patterns across a
wide variety of conditions might be considered candidates
for responses of the plant to internal and/or external sig-
nals. We defined the genes with the most dramatically
shifting expression profiles as 100 genes with the highest
standard deviation of logged expression value. Indeed, 39
of these 100 genes had annotation suggesting their

involvement in signaling (reaction to stimuli, p-value
0.0765; response to oxidative stress, pathogens or hor-
mones) (Figure 7A and Additional file 4). Only a single
metabolic function is included: 12 genes had a function
related to lipid metabolism, lipid transport, or lipid deg-
radation, possibly reflecting fluctuating requirements for
energy and membrane synthesis. The endomembrane sys-
tem is highly overrepresented (p-value 9.2 × 1014).

Genes with the steadiest expression were defined as the
100 genes with the lowest standard deviation of logged
expression value. Twenty-six of these genes are relatively
highly expressed, having a mean level of expression
greater than 100. The group of most evenly expressed
genes includes a conglomerate of metabolic, regulatory,
and transport functions (Figure 7B and Additional file 5).
There is a high proportion of "unknown" genes in this
group (21%); possibly the steady level of expression of
these genes would make it more difficult to ascertain their
function.

A related result was obtained with a different approach,
focused on responses in stress-related microarray experi-
ments, applied by Walther et al. [91]. The authors found
that genes annotated as responding to the various stimuli
were differentially expressed in the highest number of

Functional assignments and expression profiles of genes with the most and the least variable expression across multiple condi-tionsFigure 7
Functional assignments and expression profiles of genes with the most and the least variable expression across 
multiple conditions. (A) 100 genes with the most variable expression (highest standard deviation of logE). (B) 100 genes 
with the most steady expression (lowest standard deviation of logE). The scale along Y axis (expression values) is the same for 
both plots to facilitate comparison of the expression profiles between them. Inlet shows a version of plot B with zoomed scale 
of expression values.



BMC Plant Biology 2008, 8:99 http://www.biomedcentral.com/1471-2229/8/99

Page 14 of 22

(page number not for citation purposes)

experiments, while those with unknown or house-keep-
ing functions had the smallest breadth of response.

Genes with the highest expression (defined as genes with
the highest mean of expression values across all samples)
include photosynthesis-related genes (p-value 9.28 × 10-

26), and structural constituents of ribosomes (p-value 2.26
× 10-09) and other genes for protein biosynthesis and
modification. Together, these functions constitute 58% of
annotations of genes expressed at the highest level (Addi-
tional file 3 and Additional file 6).

The majority of the genes expressed at the lowest levels
(defined as the 100 genes with the lowest mean of expres-
sion values across all samples) are predominantly hypo-
thetical genes, transposons and pseudogenes (Additional
file 3 and Additional file 7); these are classes of genes for
which no or little expression might be expected. Twenty-
three of the genes in low expression group have functional
annotations, including nucleic acid-binding genes and
disease resistance genes. Because the expression for genes
in this group does not exceed 40 for any chip, a significant
component of the signal may be an artifact (e.g., due to
signal processing or normalization).

Negatively correlated pairs of genes

These analyses also yield information about which gene
pairs are negatively correlated. Wei et al. [51] noted that
within the subset of 1330 annotated metabolic genes,
there are few negative correlations. Interestingly, this pau-
city of negative correlations is also true when the genes
other than metabolic (e.g., regulatory and unknown) are
examined. In our dataset, negative correlations are far less
abundant than positive ones; the highest negative value in
the dataset is -0.73. This value for negative correlation
may be an underestimate, since Pearson correlation coef-
ficient measures the amount of linear relationship, while
negatively correlated genes appear to have reciprocal rela-
tionships. Interestingly, in six out of the eight most nega-
tively correlated pairs of genes, one or both genes are
implicated in a regulatory function.

Discussion
The picture of Arabidopsis emerging from this study is
that of a plant mainly occupied with gathering energy,
reproduction and defense from a hostile environment.
Genes involved in photosynthesis and photosynthesis-
related metabolic processes are highly expressed, and
form the second largest regulon. Several other regulons
appear to mediate chloroplast development and aerobic
respiration. Developmental programs associated with
reproduction account for the function of ten clusters and
include pollen, flower, fruit, root, and embryo. Maturing
pollen-specific genes form the largest and the most highly
correlated regulon, comprised of the 1623 genes.

Response and signaling programs are diverse and abun-
dant, reflecting the need in the realization of the genetic
program for elasticity in response to changing conditions.
Thirteen of the 69 regulons with at least 20 gene members
appear to mediate plant responses to external or internal
stimuli. Each of these response-related regulons contains
a mixture of molecular functions: receptors, kinases, hor-
mone signaling, and metabolic genes required for defense
(for example, enzymes for degradation of a pathogen cell
wall). Response-related genes are also among the most
variable with respect to expression level.

Comparison with Graphical Gaussian Model

The graphical Gaussian model (GGM network) presented
by Ma et al. [54] is a network which contains only links
that signify direct dependencies between genes. Our pur-
pose was a bit different – we wanted to see all the genes
whose response in expression in various conditions is
similar, irrelevant if the effect on them is direct or not, in
order to learn the organization of the plant cell transcrip-
tome. Similarity of expression between connected genes is
precisely the meaning of the link in our coexpression net-
work. Thus, with no restrictions for the associations to be
direct, our network is much larger, containing 13,456
genes connected by almost 1.5 million links. A method
for exhaustive comparison between these two networks
would be problematic, because only 4749 genes are
shared between them, and because we analyze our net-
work by partitioning it globally into densely intercon-
nected subnetworks, while Ma and coworkers query the
local neighborhoods of the selected seed nodes.

However, generally, we observe that genes from our
genetic information-related regulons are largely missing
from the GGM network (over 90% of genes from Regu-
lons 3, 11, 20, 26, 32, 38, 40–42, 50, 60–61, 64 and 66 are
absent). On the other hand, genes from metabolism-
related and organelle-encoded regulons are very well rep-
resented in GGM (over 90% of genes from Regulons 21,
22, 23, 30, 34, 37, 44, 46, 49, 56, 59, 65, 70 are present).

A network formed by genes for cellulose biosynthesis is
one of the most characterized in Arabidopsis [44,45].
Both in our network and in the GGM network, the cellu-
lose biosynthesis genes were partitioned into those spe-
cific to primary and secondary cell wall biosynthesis.
However, our regulon representing secondary cell wall
(Regulon 22) is more comprehensive, containing 81
genes, compared to 41 in Persson et al. [44], and 64 in
GGM; 34 of those 81 genes have an annotation consistent
with cell wall biosynthesis, including laccases and micro-
tubule-associated proteins linked with this process
[43,92]. The three primary cell wall biosynthesis genes
(CESA1, CESA3 and CESA6) are part of the 12-gene regu-
lon (Regulon 121) which also includes drought and cold-
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responsive genes. Drought and cell wall biosynthesis have
been linked before, as the modulation of the rate of the
cellulose biosynthesis provides a mechanism to cope with
dehydration [93,94]. Likewise, the 11 genes designated as
"proteasome complex" in GGM are part of a bigger mod-
ule in our network: 9 out of these 11 genes are present in
Regulon 45, along with 17 other genes encoding proteas-
ome subunits. On the other hand, most of the genes that
form the local subnetwork related to cytokinin-mediated
signaling in GGM are not present in our network. Some of
the subnetworks identified in GGM are further parti-
tioned in our data into more specialized regulons. For
example, 9 out of 20 chromatin-related genes belong to
Regulon 4 (mitosis), while 3 belong to Regulon 84 (regu-
lation of flower development). Similarly, flavonoid bio-
synthesis genes form Regulon 93 (lignin/lignan
biosynthesis; 12 of the 14 genes have confirmed or puta-
tive functions as catalyzing reactions from synthesis of
shikimate through generation of lignin/an monomers)
and Regulon 146 (flavonoid/rhamnoflavanoid synthesis;
9 of the 10 genes have confirmed or putative functions
catalyzing reactions from chalcone synthase to rhamnose
transferase).

Implications for metabolic pathways modelling

Our analysis reflects a clear dichotomy between the meta-
bolic pathways of textbooks and the Arabidopsis tran-
scriptional network. By identifying genes that are co-
regulated with particular metabolic fluxes, and experi-
mentally evaluating the effect of these genes on these
fluxes, the fundamental mechanisms underlying regula-
tion of metabolism can be better understood. One funda-
mental question is the extent of the integration of
regulatory, metabolic and structural genes within a regu-
lon. Genes for a number of metabolic pathways have been
shown to be coexpressed (eg., [42-45,51,46]), and path-
way genes from the AraCyc metabolic pathway database
also have coexpressed regulatory genes [51]. In contrast,
in a clustering of 3292 nuclear-encoded genes for plastid-
localized proteins, Biehl et al. [50] identified regulons
that, with the exception of photosynthesis and plastid
protein biosynthesis, were composed of genes with
diverse pathway associations. The global clustering
described herein places these observations in the context
of the near-whole Arabidopsis transcriptome. Although
our analysis of a correlation among the 22,746 probes on
the ATH1 chip clearly reflects the co-occurrence of
enzymes from metabolic pathways in regulons, the aggre-
gation of single metabolic pathways into distinct regulons
is surprisingly scarce. Exclusively (or nearly exclusively)
metabolic regulons are: fatty acid synthesis (Regulon 53),
aerobic respiration (Regulon 29), glucosinolate biosyn-
thesis (Regulon 69), lignin/lignan biosynthesis (Regulon
93), flavonoid synthesis (Regulon 146), and protein bio-
synthesis (Regulon 3).

One possible explanation of why a given metabolic path-
way may not form stand-alone regulons is that it is part of
a biological program encompassing several concurrent
and mutually dependent processes. Thus, the clusters of
enzymes found to be coexpressed by Gachon et al. [42] in
their analysis of secondary metabolite pathway genes also
are identified in our analyses, however, most are con-
tained within regulons that combine regulatory functions
with structural genes and related metabolic steps. For
example, shikimate biosynthesis genes are part of Regulon
46, which contains genes involved in defense responses,
including biosynthesis of protective compounds. Simi-
larly, genes from plastidic glycolysis and the Calvin cycle
cluster with other genes active in the chloroplast during
photosynthesis (Regulon 2).

In a few cases, such as sucrose biosynthesis, or glycolysis,
metabolic pathways are dispersed across multiple regu-
lons. Metabolic pathway might not form a discrete regu-
lon because of participating enzymes having multiple
metabolic functions, e.g., enzymes of cytosolic glycolysis
are utilized for respiration and for anapleurotic reactions
[95]. A second possibility is that enzymes from the path-
way may be under translational or post-translational reg-
ulation. Finally, gene families may confound co-
expression patterns, as multiple genes in a family may
contribute under different conditions to a single enzyme.

Regulation of expression of organellar genomes

Our results agree with a body of experimental literature
(reviewed in [96]), which indicates that the expression of
the 130 genes of the plastidic genome is not uniform and
is apparently finely tuned by multiple levels of regulation.
Genes from the plastidic genome fall into five regulons of
varied functions: Regulon 2 (predominantly encoding
proteins of photosynthesis and related metabolism); Reg-
ulon 176 (predominantly encoding proteins of PSI); Reg-
ulon 49 (mainly ribosomal proteins); and Regulons 283
and 656 (two small clusters of mixed function). In gen-
eral, all genes from a given operon are in the same regu-
lon, suggesting that transcriptional regulation of the
plastid genome is a major determinant of transcript accu-
mulation. However, in some cases, genes from a single
operon are dispersed across multiple regulons. Thus, this
pattern of regulon organization is likely a reflection of two
processes: accumulation of subsets of transcripts driven by
distinct PEP/NEP promoter combinations, and modifica-
tions of transcript levels due to alternative RNA process-
ing, mediated by nuclear processing factors such as PPR
proteins.

Individual regulons may contain many levels of regula-
tion, as exemplified by Regulon 2, which appears to par-
ticipate in the building and function of the
photosynthetic machinery and related metabolic proc-
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esses. The two genomes that cooperate to meet this goal,
nuclear, encoding the majority of the plastid-localized
proteins, and plastidic, [97] both are represented in Regu-
lon 2. Coordination of these two genomes requires anter-
ograde (nucleus to plastid) signaling mechanisms (e.g.,
regulation of transcription of nuclear-encoded plastid
proteins, import of proteins into plastids, plastid genome
transcription rate and specificity, photosynthetic complex
assembly, or plastid development by nuclear-encoded fac-
tors) as well as retrograde (plastid to nucleus) signaling
mechanisms (e.g., via redox state, chlorophyll synthesis
intermediates, sugar or singlet oxygen signaling) [98-
101]. Since genes experimentally identified as participat-
ing in many aspects of anterograde and retrograde signal-
ing are coexpressed in Regulon 2, we infer that a complex
network may modulate photosynthesis-related activities
in this regulon.

Interestingly, of the 998 regulons, none contains genes
from both organellar genomes (mitochondrion and plas-
tid). This suggests that coordination between these
organelles may not be achieved by transcriptional co-reg-
ulation. Furthermore, that all plastid-encoded genes,
except those mobilized in Regulon 2, are grouped in reg-
ulons by themselves (not with any nuclear gene) under-
scores the independence this organelle has maintained
hundreds of millions years after endosymbiosis.

Relationships among the regulons

The grouping of regulons with information-related, stress
response, and plastid-related functions in dense regions of
the transcriptional network indicates that genes in these
dense regions may participate in multiple related genetic
programs that under some subsets of conditions are coex-
pressed. Other studies have shown that stress response
genes are not usually specific and react to several types of
stress [102]. In contrast, some regulons are relatively iso-
lated from the network, most notably, Regulon 53, fatty
acid synthesis, and Regulon 34, containing mitochondrial
genes. Isolated regulons might contain genes that are
committed to a discrete process that is carried out in rela-
tive independence from other cellular functions.

Genes not included in the network

During the data preprocessing, we have filtered out genes
with low expression and with no similarity to other genes
(Fig. 1). The genes that code for proteins located in mito-
chondrion or endomembrane, or involved in apoptosis or
regulation of transcription, were among those with the
least expression. Many genes for membrane-located pro-
teins, including transporters, had expression profiles
unlike any other in the genome. Both these low-expressed
and unique-profile classes of genes were not used for net-
work construction. Although many of low-expressed
genes are hypothetical and might not be transcribed (76

out of 100 genes with lowest expression in our data were
not expressed in the experimental evaluation of the Arabi-
dopsis expression activity by whole genome tiling array by
Yamada et al. [103]), some of the hypothetical genes
might be active, but in very specific cell types or temporal
conditions and thus their expression or ESTs have never
been detected. Several well studied genes, for example reg-
ulators of flowering CONSTANS and FRI, or myb-type
transcription factor CPC, responsible for differentiation of
the epidermal cells, are expressed at a very low level and
were filtered out of our analysis. Furthermore, genes with
flat expression profiles might also have little representa-
tion in the network; only 14 out of the 100 genes with
most steady expression profiles were incorporated into a
cluster, while 68 were filtered out due to low similarity to
any other gene. The profiles of regulatory genes may be
flat because the activity of their products is often modu-
lated by translational or post-transcriptional modification
– addition of a phosphate group, induced conformation
change, binding a cofactor or other subunit. Because reg-
ulatory genes are among the most comprehensively stud-
ied and often helped to guide the designation of cluster
function, their absence in clusters hinders the identifica-
tion of developmental programs in our clustered data.

Coexpression of neighboring genes

The coexpression of neighboring genes identified in this
analysis is higher than expected by chance and cannot be
explained by coexpression of tandem duplicates. This
result is consistent with several reports, each applying dif-
ferent definitions of coexpressed neighbors and using var-
ious methodologies to identify such groups [88-90]. The
small sizes of domains of coexpressed neighbors in our
data also agree with reports that coexpression is a short
distance effect in Arabidopsis. Several hypotheses have
been raised to account for observed local coexpression,
such as that the coexpressed neighbors reside in chroma-
tin domains with open conformation [104,105,90], have
shared regulatory cis-elements [106], or are organized
into eukaryotic operons [107-109]. Our analysis indicated
an unusual distribution of coexpressed neighbors on
chromosomes along with an absence of overrepresenta-
tion of any biological function in co-expressed neighbors;
both these observations are in accordance with the
hypothesis that chromatin structure is the key player in
the local coexpression effect.

Negative correlations

Pairs of negatively correlated genes might merely reflect
disjoint sets of conditions in which the two genes are
active; alternatively, they might indicate a regulatory rela-
tionship. The fact that most of the stronger negative corre-
lations observed in this analysis include regulatory
proteins is consistent with a possible biological impor-
tance of negative correlations. In agreement with this
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interpretation, our analysis identifies negative regulations
that have already been established experimentally. For
example, At2g23430 (ICK1), cyclin-dependent kinase
inhibitor protein, functions as a negative regulator of cell
division and interacts with CYCD3;1 [110]; in our analy-
sis, ICK1 is negatively correlated with CYCD3;1 (Pearson's
R = 0.43). ICK1 also negatively correlates with the cyclin-
dependent protein kinases CYC2b and CYCA2-similar,
cell division control protein CDKB2;1 and other mitosis-
related genes (Pearson's R = 0.52 to 0.56). In a second
example, At1g75950, SKP1, a negative regulator of DNA
recombination [111], is most negatively correlated with
DNA polymerase and tubulin-related genes (R = -0.5 to -
0.4).

Whether a given negative correlation translates to a nega-
tive regulation must be experimentally evaluated. An
example of a pair of genes that are highly negatively corre-
lated (R = -0.73) is At1g06650 (2-oxoglutarate-dependent
dioxygenase similar to tomato ethylene synthesis regula-
tory protein E8) and At5g23430 (transducin family pro-
tein with nucleotide binding WD-40 repeat). Another
example is At3g11910 (DNA binding ubiquitin-specific
protease) and At4g12800 (photosystem I reaction center
subunit XI) (R = -0.73). A testable hypothesis of the later
correlation is that this ubiquitin-specific protease may
play a role in the turnover of the photosystem I reaction
center protein associated with photodamage.

Availability of the data

The regulons data have been incorporated in MetaOm-
Graph software for visualizing and analysis of large data-
sets within the MetNet Platform [112]. Regulons can be
downloaded as the gene sets. The user can view expression
profiles of the regulons across all experiments, or in a sub-
set of experiments, examine the gene contents of the reg-
ulons and calculate the values for the absolute and signed
versions of Pearson and Spearman correlation between
the genes.

Conclusion
This analysis yields insight on the organization of plant
transcriptome into concerted processes. The network pro-
vides an initial glimpse of the interactions among regu-
lons in a broad biological context. Moreover, this study
has the potential of assigning function to un-annotated
and partially annotated genes; nearly 3000 genes of
"unknown" molecular function have been assigned to a
regulon. As such, it provides new, experimentally-testable
hypotheses about the functions of genes. Further analysis
of functionally coherent regulons will enable refining the
existing models of metabolic regulation, developmental
and response programs, and intergenomic communica-
tion.

Methods
Transcriptome data

Arabidopsis expression data for 963 Affymetrix ATH1

chips with 22,746 probes were obtained from Notting-

ham Arabidopsis Stock Centre microarray database

[19,18] and PLEXdb [23,56]). The data represent 70

experiments, including development, stress, mutant, and

other studies. All chips obtained from NASC database

were already individually scaled with MAS 5.0 algorithm

(Affymetrix) to the common mean = 100, excluding top

and bottom 2% signal intensities. The data in PLEXdb are

MAS5-normalized with mean expression of chips set to

500. To make the data from these two databases compara-

ble, we scaled the data from PLEXdb database to set the

chip mean to 100. The reproducibility of experiments was

assessed by visual inspection of scatter plots and by apply-

ing a threshold of R2 > 0.86. Chips with poor biological

replicates were discarded. The remaining biological repli-

cates were averaged to yield 424 samples. The data was

subsequently normalized to the same range by a median

absolute deviation (MAD)-based scale normalization

method described by Yang et al. [113]. MAD-based scale

normalization was chosen instead of the quantile normal-

ization methods in order to minimize the interference

with the data. Expression values xij on microarray chip j

were multiplied by the factor , where MAD is

defined by

MADj = mediani{|xij-mediani(xij)|}

and the constant C is an arithmetic mean of MAD

Because our dataset is rather large, consisting of 424
datapoints, and the distribution is generally assumed to
be approximately normal when the number of datapoints
exceeds 100, the data has not been log-transformed.

The normalized data, together with its metadata is availa-
ble online [24]. The 70 experiments in the dataset are also
listed in the Additional file 8. ATH1 probe set-to-Locus ID
mapping was obtained from TAIR [114,115].

All computations in this work, except for graph clustering,
were performed in R software [116].
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MAD j
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j

n

n
=

=

∑

1



BMC Plant Biology 2008, 8:99 http://www.biomedcentral.com/1471-2229/8/99

Page 18 of 22

(page number not for citation purposes)

Generating the network of coexpressed genes

Because low expression values are not reliable and might
introduce noise in the dataset, the 4551 of the 22,746
gene probes on the Arabidopsis ATH1 chip, whose expres-
sion was < 100 (the mean of the gene expression values on
the chip) in all samples were filtered out. A Pearson corre-
lation matrix was calculated for the remaining 18,195
genes. Of these, only the 14,564 genes that were corre-
lated above the Pearson correlation threshold of 0.7 with
any other gene were retained for further analysis. The
matrix was transformed into a binary matrix by replacing
the values of all correlations > 0.7 by 1, and assigning the
others as 0. The resulting binary matrix induced the adja-
cency matrix of the coexpression network, in which genes
form the nodes and two genes are connected by an edge if
they are correlated above 0.7.

This Pearson correlation criterion of 0.7 was developed on
the basis of our previous results of coexpression analysis
of three metabolic pathways (fatty acid biosynthesis, leu-
cine catabolism and starch metabolism) that was per-
formed on the same expression dataset [117]. In this
previous work we observed the emergence of specific (i.e.
within-pathway) links from the background noise (intra-
pathway links) with the increase of the Pearson correla-
tion threshold from 0.5 to 0.7.

Clustering the coexpression network

Connected components were identified in the network
(connectedComp function in R software), yielding one
giant connected component with 14,368 nodes and 77
smaller components, ranging from 2 to 8 nodes. Because
we aimed to find strongly inter-connected clusters, genes
connected only by a single edge were removed from the
biggest connected component, and the resulting network
composed of 13,456 genes and nearly 1.5 million edges
was clustered by Markov chain graph clustering algorithm
[114,58] with the inflation parameter set at 1.8. An array of
the inflation parameters has been assessed based on the
degree of integrity of three metabolic pathways (fatty acid
biosynthesis, leucine catabolism and starch metabolism)
in the corresponding clustering results. The inflation value
of 1.8 was chosen because it resulted in the best corre-
spondence between the clusters and the sets of genes from
the same pathway. Nine hundred and ninety eight clusters
were produced (see Additional file 9 online for the com-
plete assignment of genes to the regulons); these were
analyzed together with smaller connected components
from the previous step. The network was visualized (see
Figure 3) using the GraphExplore tool [118] in a simpli-
fied representation, in which the nodes represent clusters
(regulons) and an edge joins two clusters if there exists an
edge between any pair of genes belonging to these two
clusters in the underlying network. This criterion was cho-

sen because of the large differences among the number of
between-cluster links.

Clustering significance

The significance of our clustering results was assessed by
comparison of the overrepresentation of GO terms in the
148 regulons identified from the experimental microarray
data with 10 or more genes, to the overrepresentation of
GO terms of 100 sets of 148 randomly-obtained clusters.
Each of these random sets was obtained by permuting the
gene IDs so that the permuted cluster sizes were the same
as the real ones, but genes assignment to the clusters
changed. Each clustering i was assigned a score Si. For this
value, the best p-value pmin for overrepresentation of any
GO term was recorded for each cluster and averaged over
all clusters.

where n denotes the number of clusters (n = 148).

Distribution of S values for GO Molecular Function, Bio-
logical Process, and Cell Compartment for randomly-
assigned groups were compared to the respective values
for the real clustering. In each case, the real value scored
significantly better than any of the random ones (Wil-
coxon test p-value < 2.2 × 10-16).

To compare the overrepresentation of GO terms in clus-
ters obtained by MCL clustering with that of clustering
produced by k-means algorithm, the kmeans function in
the stats package in R was used on the original expression
dataset, with the same number of clusters (998) as a
parameter. Only 471 k-means clusters with at least 10
members were used in the comparison. The adjusted rand
indexes (classAgreement function in e1071 package in R
[119]) were calculated to quantify agreement between
gene assignments to regulons by MCL and k-means clus-
tering algorithms.

The Z-scores for mutual information between clusterings
and GO terms were calculated according to Steuer et al.
[120]

where MI(C, A) denotes the mutual information between
the clustering and the GO terms attributes, and σrandom

denotes the standard deviation of the MI(C, A) in the ran-
domized data. MI(C, A) was calculated from the contin-
gency table that contained the counts of 333 GO terms for
genes in 148 larger clusters with at least 10 genes (305 GO
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terms and 471 clusters, respectively, for k-means cluster-
ing). GO terms included all terms associated with any
gene in the 148 (471) larger clusters, after removing rare
terms (associated with less than 10 genes in the cluster-
ing) and one of each pair of redundant GO terms (that dif-
fer in characterization of less than 10 genes). Random
data was obtained as before, by randomizing assignments
of genes to clusters while preserving the sizes of the clus-
ters.

The mapping of Arabidopsis genes to GO terms was
obtained from TAIR [121]. The modified GoHyperGall
function in R module Bioconductor was used to obtain
batch results of overrepresentation of GO terms.

Analysis of functional coherence

The coherence of functionality of the genes within each
clusters of at least twenty genes was assessed by a combi-
nation of automatic analysis of overrepresentation of GO
terms [122,123] and manual inspection of function and
expression, using the published literature and tools
(MetaOmGraph, AtGeneSearch) in the MetNet Platform
[112,124]. The RNA profiles were visualized and plotted
in MetaOmGraph.

Coexpression analysis of the neighboring genes

Coexpressed neighbors were defined as those nuclear-
encoded genes in the same regulon, whose Locus IDs dif-
fer by at most 20. Arabidopsis Locus IDs are in the form
Atxgyyyyy, where x denotes the chromosome, and the
number yyyyy reflects the order of genes on the chromo-
some. Only one gene from each array of tandem replicates
was used in the calculation of the number of genes in
groups of coexpressed neighbors. Tandem replicates were
identified with AGI software [125] using BLASTP with a
threshold of E < 10-20 and allowing for one unrelated gene
among cluster members.

For identification of groups of coexpressed neighbors in
randomized datasets, nuclear-encoded genes were reas-
signed to regulons randomly, and the number of coex-
pressed neighbors was determined using the same criteria
as for the experimental data. The mean number of groups
of coexpressed neighbors in 100 reshuffled datasets was
421, compared to 539 in the real dataset. Overrepresenta-
tion of GO terms in the genes that form the groups of
coexpressed neighbors was evaluated in GOstat web tool
[123].

Abbreviations
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MCL: Markov cluster algorithm; PEP: plastid-encoded
RNA polymerase; NEP: nuclear-encoded RNA polymer-
ase.
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