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Abstract 

Base metal mine tailings phytostabilisation has been severely hindered by the lack of 

growth media (soil and inert overburden), and associated hydrogeochemical instability, and 

phytotoxicity in the tailings. A new paradigm of in situ engineered pedogenesis of tailings 

into functional technosols has been proposed as a cost-effective and sustainable solution. 

This project aimed to understand critical factors and processes driving soil formation towards 

functional technosols in Cu-Pb-Zn tailings, which may be manipulated and stimulated by 

ecological engineering inputs (e.g., organic amendments, microbial inoculum, and pioneer 

plants).  

Native soil characteristics (under native plant communities located in subtropical, semi-

arid Mount Isa region) have set the direction of technosols formation and justified the plant 

biomass-based organic amendment option, to couple with physiological traits (slow growth 

rates, low water and nutrient requirements) of native plant communities dominant in the 

investigated region. Both Cu-Pb-Zn tailings (TD5, TD7) from Mount Isa Mines and Cu-Mo-

Au tailings from Ernest Henry Mine were used in this study, representing typical 

hydrogeochemical conditions of tailings. 

Organic carbon (OC) is recognised as an overall indicator of technosols formation in 

tailings. In a 2.5-year old column trial under field conditions with weathered (TD5) and fresh 

(TD7) Cu-Pb-Zn tailings, exogenous organic amendments (woodchips) rapidly built up OC 

content with 61.5-80.3 % OC physically protected in aggregates and organo-mineral 

complexes in the amended tailings, regardless of the mineral weathering stages. N-rich and 

surface charged organic compounds interacted with tailings minerals (e.g., Fe and Al (hydr-) 

oxides) to form organo-mineral complexes and aggregates, contributing significantly to OC 

stabilisation. Native plants (e.g., Acacia chisolmii, Triodia pungens) survived beyond the 

time of sampling in the TD5 in the field trial, but not in the TD7. Plant colonisation in TD5 

further accelerated technosols formation in the amended tailings, significantly stimulating 

OC stabilisation, microbial biomass and functions. While the amended tailings were far from 

reaching the desired hydrogeochemical stability, the pioneer native plant species were 

proven to be critical to the colonisation of heterotrophic bacteria and associated 

biogeochemical processes. 

Organic matter properties (e.g., labile OC, C: N ratio) induced biogeochemical changes 

in the tailings with different directions. In a 6-month microcosm experiment, the weathered 

and neutral Cu-Pb-Zn tailings were amended with plant litter (Acacia chisolmii) and biochar. 

Although little improvement was observed for microbial diversity, the plant litter significantly 
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increased the labile OC and N, and microbial biomass and enzymatic activities in the 

amended tailings. Comparatively, bacterial communities more readily recolonised than the 

fungi in the tailings. The abundance of heterotrophic bacteria affiliated to Bacteroidetes and 

Proteobacteria stimulated in the plant litter amended tailings significantly. Interestingly, 

biochar enhanced the dominance of autotrophic bacteria, Thiohalobacter sp., with 

suppressed rehabilitation of heterotrophic bacteria, probably related to the lack of labile OC 

and N in the biochar. Combined plant litter and biochar further increased the microbial 

diversity and functions in the amended tailings. 

Topsoil underneath native plant communities rich in microbial inoculums may be used 

to rapidly prime microbial diversity in the amended tailings. In an 8-week microcosm 

experiment, the weathered and neutral Cu-Pb-Zn tailings were inoculated with native soils, 

which had been amended with sugarcane as the base treatment. The colonisation of 

heterotrophic bacteria and fungi were observed in the tailings-soil mix, strongly linkedto the 

microbial biomass and functions. Microbial biomass and enzymatic activities increased by 

1.5-8 folds in the tailings-soil mix compared to the control, depending on soil addition rates. 

25 % soil addition doubled the microbial diversity in the tailings-soil mix compared to the 

control. 50 % soil addition achieved a respiratory quotient, and C and N cycling processes 

similar to those of the native soil. Again, Proteobacteria and Bacteroidetes significantly 

stimulated in the tailings-soil mix. Stresses including EC (thus S) and total heavy metals (Pb, 

Zn) had negatively impacts on microbial community. 

Biogeochemical changes were investigated in fresh Cu-Mo-Au tailings (containing low 

levels of reactive minerals with stable hydrogeochemistry) in response to organic 

amendments (i.e., sugarcane and biochar) and introduction of native grass (Iseilema 

vaginiflorum) and leguminous shrub (Acacia chisholmii). Microbial diversity were 2-4 folds 

in all the amended/revegetated tailings compared to the control. Microbial biomass and 

enzymatic activities in sugarcane amended and revegetated tailings significantly increased 

by 4-25 folds, with stimulated abundance of Bacteroidetes and the dominance of 

heterotrophic bacteria (e.g., Algoriphagus sp. Sphingopyxis sp., Sediminibacterium sp., 

Planctomyces sp.), enhancing plants growth. Again, biochar stimulated the dominance of 

autotrophic bacteria (e.g., Thermithiobacillus sp. Acidiferrobacter sp.) in the amended 

tailings. Furthermore, biochar contributed to Cu immobility, considerably reducing Cu uptake 

by plant roots from the tailings. The introduced pioneer plants effectively involved in 

rehabilitating microbial community structure and functions, particularly in the sugarcane 

amended tailings with low levels of reactive minerals and relative stable hydrogeochemistry. 



iii 

In comparison, the presence of pioneer native plants seemed to be not critical to the 

development of microbial communities in the tailings amended with labile organic matter 

(e.g., sugarcane residue), unlike the Cu-Pb-Zn tailings (TD5) after long-term weathering. 

In summary, engineering technosols with desired biogeochemical capacity in 

hydrogeochemically stable Cu-Pb-Zn tailings must be consistent with the physiological 

characteristics of native plant communities specific to local edaphic and climatic conditions. 

Technosols formation from the tailings can be initiated and accelerated by plant biomass-

based organic amendments coupled with the soil inoculation and the introduction of tolerant 

pioneer native plants. 
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Chapter 1 Introduction  

1.1 Problem statement 

Australia is a leading producer of minerals, producing at least 19 minerals (in significant 

amounts) from close to 400 operating miners (Geoscience Australia, 2015). The industry 

contributes to more than 10 % of the national gross domestic product (GDP), with the 

production of most minerals growing. In particular, the production of copper (Cu), black coal, 

lead (Pb), zinc (Zn), and iron (Fe) ores has increased markedly over the last decade (Mudd, 

2010; Sutton and Dick, 1987). From the mid-1800s to 2008, cumulative Cu, Pb and Zn 

production (kt) in Australia reached 20473, 37945, and 48465, respectively, in which their 

production in Queensland accounted for 50-60 % (Mudd, 2010). 

Intensive mining and processing activities generate vast volumes of tailings. Tailings 

are mine wastes and mineral residues left behind following extraction of the metals via 

various combinations of mining processing methods. Briefly, metal-rich ore is ground to a 

fine particle size, and then separated by flotation into metal-rich concentrates and by-

products of low and uneconomic grade. These by-products, referred to as mine tailings, are 

usually deposited in the slurry form in purposely-constructed dams or storage facilities (EPA, 

1994). In Australia, the mining industry produces 1750 million tons (Mt) of mine waste per 

year (Lottermoser, 2010), with an estimated 135 Mt tailings produced from Cu mines 

between 1899 and 2005 (Mudd, 2007).  

Tailings typically contain various biotoxic and hazardous chemicals and minerals in 

significant quantities. These include heavy metals, metalloids, radioactive elements, acids 

and bases, all of which pose a long-term threat to both environmental and human health 

(Järup, 2003). Finely-grained tailings may contaminate the surrounding area through wind 

dispersion and/or water erosion. Furthermore, sulphide-rich tailings are potential sources of 

metals and acidity resulting from oxidation and mineral weathering (Bobos et al., 2006). High 

concentrations of heavy metals and acid mine drainage have not only been found in mined 

sites (Aykol et al., 2003), but also in local streams and waterways (Fields, 2003). Therefore, 

rehabilitation of tailings is a legal requirement and legitimate community expectation. 

Phytostabilisation (surface stabilisation with plant cover) has been advocated as a 

sustainable and cost effective solution across mined landscapes including those occupied 

by mine wastes (Mendez and Maier, 2007). 

However, successful phytostabilisation for non-polluting and sustainable outcomes is 

challenging in tailings landscapes (Huang et al., 2012). Base metal mine (e.g., Cu, Pb, Zn) 
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tailings present a range of physical and (geo)chemical constrains to plant growth and 

recruitment. They typically lack organic matter and available macronutrients (e.g., nitrogen, 

phosphate) (Ye et al., 2000). Fresh tailings consist of crushed rock containing large 

proportions of silt and fine silt, and thus lack proper physical structure for soil hydraulic 

functions and root penetration. Following sedimentation, tailings have a high bulk density (> 

1.8 × 103 kg m-3) and mechanical resistance, and lack water stable aggregates and 

macropores (Huang et al., 2012; Lottermoser, 2010). Furthermore, tailings are characterised 

by very high levels of salts, heavy metals (and/or metalloids) and potential acidity (if not 

sufficiently neutralised) (Dold and Fontboté, 2002). The inherent ecotoxicity from these 

contaminants can prevent natural colonisation of plants in tailings for many decades (Ye et 

al., 2000). To overcome these primary constraints and create reasonable growth conditions 

for pioneer plants, several amendments are usually applied before planting. Conventional 

practices and amendments (e.g., fertiliser, ripping, organic amendments, mulch, liming etc.) 

target the primary constraints in tailings related to plant establishment and growth (Ram and 

Masto, 2010). Most studies on tailings phytostabilisation have focused on plant growth 

relying on continuous inputs of amendments with little information related to long-term 

sustainability of the rehabilitated tailings (Mendez and Maier, 2007). In addition, 

conventional cover systems require mega volumes of growth media (including improved 

inert overburden and/or topsoil) to reconstruct root zones for target plant communities. 

However, at many mine sites in Australia, this option is constrained by material shortage, 

expensive transport cost and secondary site disturbances for sourcing those cover materials. 

Recently, a new approach has been proposed based on years’ of field research at 

Mount Isa Mines (MIM), namely, engineered pedogenesis (soil and soil horizons) of tailings 

into functional technosols through purposely oriented and stimulated processes to achieve 

non-polluting and sustainable phytostabilisation across tailings landscapes (Huang et al., 

2014a; Huang et al., 2012; Li and Huang, 2015). ‘Technosol’ is a developed taxa by the 

World Reference Base for Soil Resources for soils with human interventions, such as soils 

in urban/industrial area followed by landfills, farming, earth movement and heavy metal 

contamination, and agricultural area with erosion, ripping, and/or land levelling. In this study, 

the use of “engineered” rather than ‘anthropogenic’ pedogenesis emphasises that tailings-

soil are consequences of mining engineering, mineral processing and ecological 

engineering inputs at the initial phase. These processes initiate soil formation under the local 

climatic conditions with minimal continuous human inputs at the later phases.  

Based on the knowledge from natural ecosystems, soil formation is the consequence 

of alteration and transformation of parent minerals from long-term abiotic and biotic 
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interactions (Jenny, 1941). Decades to millennium is required to alter earth rock into parent 

materials for soil, with plant colonisation greatly accelerating the soil formation at the later 

phases (Van Breemen and Buurman, 2002). Continuous organic matter transformation 

(decomposition, humification, carbon and nitrogen cycles) principally from plants 

incorporated into the soil, greatly modifies soil physicochemical properties and 

biogeochemical processes. Particularly, soil microorganisms are the most active agents in 

stabilisation soil physical structure and facilitating the soil functions.  

In contrast, tailings properties are mainly inherited from the mineralogical profile of the 

original ores and hosting rocks. Their geochemistry from mineral processing, are normally 

characterised with abundant reactive minerals (e.g., pyrite, chalcopyrite) and high specific 

surface area (due to their fine particle size). At best, these can be classified as parent 

minerals subject to rapid oxidation and dissolution when exposed to air and water. Therefore, 

engineered pedogenesis from geochemical unstable tailings to biogeochemically functional 

technosols requires purposely oriented ecological engineering to simulate the deterministic 

physical, chemical and biological processes that would enhance geochemistry stability, and 

rehabilitate biogeochemical properties and functions (such as build-up and stabilisation of 

organic carbon, recovery of soil-like microbial community and functions, and rehabilitation 

of organic matter decomposition and nutrient cycling processes to couple with target plant 

communities) (Huang et al., 2014; Li and Huang, 2015). 

1.2 Research objectives 

Understanding organic carbon dynamics and microbial community structure and 

functions in engineered tailings-soil (technosols) is crucial to the development of effective 

ecological engineering methodologies and technologies to form technosols to sustain target 

plant communities for tailings phytostabilisation. However, there have only been limited 

studies in literature systematically investigating critical factors and processes involved in in 

situ engineered technosols formation in the tailings. Biogeochemical rehabilitation is 

promising in the tailings with a relatively stable hydrogeochemistry, such as those have 

undergone rapid oxidation and weathering of most of the reactive minerals (e.g., sulphides) 

(Huang et al., 2014).  

The present study is timely and important to the development of cost-effective and 

sustainable methodology for base metal mines tailings phytostabilisation within Australia 

and across the world. This is one important component within Mount Isa Mine Tailings 

Revegetation Research Project, which investigates critical factors and processes involved 

in the development of biogeochemical properties and functions in response to changes 
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induced/stimulated by ecological engineering options in Cu-Pb-Zn tailings. In detail, this 

study will evaluate the efficacy of organic amendments, microbial inoculums and pioneer 

plant roles in inducing and stimulating biogeochemical changes along desired directions, 

such as the organic carbon stabilisation, aggregation, rehabilitation of the soil-like microbial 

community structure and microbial functions (such as enzymes required in nutrient 

cycling).The specific aims of this research include: 

(1) Establish methods for characterising organic carbon pools and forms in Cu-Pb-Zn 

tailings with different mineral compositions and amendments. 

(2) Investigate the role of organic amendments in stimulating aggregation and organic 

carbon stabilisation. It is hypothesized that organic carbon derived from exogenous 

organic matter can be stabilised via interaction with tailings minerals and aggregation, 

leading to gradual development of soil structure and functions in the amended tailings. 

(3) Investigate the role of pioneer plants and organic amendments with contrasting labile 

organic carbon and N contents in the rehabilitation of microbial community structure and 

functions in the amended tailings. It is hypothesized that introduction of pioneer plant 

species and labile organic matter can stimulate the colonisation of rhizosphere 

microorganism and shift microbial communities from autotrophic to heterotrophic 

dominant species, closely linked to rehabilitation of biogeochemical processes for 

technosols formation.  

(4) Evaluate the efficacy of topsoil inoculum in the rehabilitation of biogeochemical 

properties and functions in amended tailings, including the microbial diversity, microbial 

community composition and dominant microbial groups, and key soil enzymatic activities. 

It is hypothesized that native microbes in the topsoil from native vegetation sites can be 

introduced into the tailings amended with labile organic matter and stimulate the 

development of soil-like microbial communities in the tailings-soil mix; and from the 

above 

(5) Develop integrated knowledge on effective ecological engineering inputs and associated 

tailings environmental factors in driving the rehabilitation of organic carbon, microbial 

communities and associated biogeochemical processes in relation to the formation of 

functional technosols. 

1.3 Organisation of thesis 

The thesis is divided into eight chapters.  
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Chapter 1 (the current chapter) presents a broad overview of project background and 

research objectives.  

Chapter 2, Literature Review, includes existing knowledge in the literature, on: (1) 

characteristics of soil organic matter, biogeochemical processes influencing its dynamics 

and associated soil properties and functions; (2) biogeochemical changes induced by 

tailings amendments for supporting plant growth; and (3) the importance of rehabilitation of 

biogeochemical capacity and processes in the formation of technosols. It provides an 

overview of the up-to-date understanding on the topic area. A set of key research questions 

have been raised based on the knowledge gaps identified. These questions forms the basis 

for research focuses in the following chapters. 

Chapter 3, Organic carbon stabilisation in weathered and fresh Cu-Pb-Zn tailings 

amended with woodchips under field conditions, details and investigates OC characteristics 

and stabilisation mechanisms in Cu-Pb-Zn tailings in response to exogenous organic 

amendments. OC fractionation and quantification methods were applied to characterise OC 

in the Cu-Pb-Zn tailings representing typical biogeochemical conditions in response to 

woodchips application in a 2.5-year field column incubation.  

Chapter 4, Plant colonisation stimulated organic carbon formation and microbial 

biomass and functions in weathered Cu-Pb-Zn tailings from a long-term field trial, contains 

findings on the roles of introduced native plants in stimulating the colonisation and shift of 

microbial communities, aggregation and associated biogeochemical processes in the 

amended tailings. Information about underlying biogeochemical processes of OC 

stabilisation and preferred OC provides fundamental information to enhance OC 

stabilisation and associated structure and functions rehabilitation in tailings. 

Chapter 5, Biogeochemical changes induced by addition of exogenous organic matter 

with contrasting properties in weathered and neutral Cu-Pb-Zn tailings – a 6-month 

microcosm study, presents findings from a controlled study to evaluate efficacy of organic 

amendments with contrasting properties applied individually or in combination on tailings 

amelioration in laboratory conditions. The findings explain how microbial community 

composition and functions responded to physicochemical properties induced by organic 

amendments without association of native plant species in the tailings.  

Chapter 6, Establishing microbial diversity and functions in weathered and neutral Cu–

Pb–Zn tailings with native soil addition, presents findings about the roles of topsoil from 

native vegetation sites in combination with organic amendments in the rehabilitation of 

biogeochemical properties and functions along soil addition gradients, including microbial 
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community structure and enzymatic activities. The findings have been published in 

Geoderma under the same title. 

Chapter 7, Sugarcane and biochar differ in ameliorating Cu-Mo-Au tailings for 

phytostabilisation with native plant species-A greenhouse study, presents findings from a 

study based on a greenhouse experiment, where neutralised Cu-Mo-Au tailings were 

amended with a combination of organic amendment and direct native plant colonisation. The 

efficacy of plant based biomass and recalcitrant biochar on tailings amelioration is not only 

evaluated in terms of rehabilitation of organic carbon, microbial community and functions, 

but it was also assessed for their linkage to typical tolerant native plants establishment and 

growth. This information is useful to guide efficient amendment formulation for tailings 

phytostabilisation with native plant species. 

Chapter 8, General discussion and conclusions and future research needs, 

summarises the major findings and develops a conceptual model to encapsulate knowledge 

on the pathways to rehabilitate organic carbon, microbial community structure and functions 

in the tailings with ecological engineering inputs, leading the formation of functional 

technosols, which can then be integrated into reconstructed root zones to support 

sustainable native plant species and communities. 

The three appendixes provide background information about method validation, 

biochemical properties of natural soil supporting the acacia-spinifex open woodland 

communities in a colluvial plain (a potential reference site for rehabilitation completion), and 

a summary of Mount Isa Mine tailings rehabilitation practices. Specifically, Appendix A 

compares two methods in terms of accuracy and reliability for OC quantification in mine 

wastes. Appendix B characterises physicochemical and biological properties in natural soils 

colonised by keystone native plant species (i.e., Acacia chisolmii and Triodia pungens) from 

a colluvial plain landscape, in order to understand plant-soil-microbe interactions to set the 

benchmarks and goals for engineered pedogenesis in the tailings. Lastly, Appendix C 

summarises current amendment practices conducted in Mount Isa Mine with general 

amendment strategies formulated based on previous studies. 

Overall, this thesis covers a number of laboratory incubation, glasshouse and field 

experiments examining carbon (and nitrogen) pools and dynamics, and microbial 

community diversity, composition and functions in the mine tailings, which critically 

contribute to technosols formation in the amended tailings. The work employs many 

methodologies and technologies to characterise changes in the physical, chemical and 

biological properties and processes in the tailings treated by ecological engineering options, 

along the directions of technosols development. These include carbon fractionation and 
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quantification, investigation of microbial community diversity and structure with aid of 

advanced molecular techniques, and microbial activities based on enzyme assays analysis 

(Fig. 1-1). 

 

 

Fig. 1-1 Schematic chart of structure of this thesis  
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Chapter 2 Literature review 

2.1 Importance of soil organic matter and microbial communities in soil 

biogeochemical functions 

2.1.1 Soil organic matter affecting soil properties and functions 

Soil organic matter (SOM) has been defined as the organic fraction of soil, including 

plant, animal, and microbial residues, in fresh forms and forms at all stages of decomposition, 

and the relatively resistant soil humus (Nelson and Sommers 1982). In natural soil, SOM is 

comprised mainly from inputs of plant litter, dead roots and root exudates (Tate et al., 2000), 

which plays a critical role in maintaining soil fertility (Torn et al., 2005) and regulating 

chemical environment and stabilising physical structure (Oades, 1984). SOM represents the 

dominant source of plant available nutrients (e.g., N, P, S) in natural ecosystems (Gardenas 

et al., 2011). In soils with low activity clay or low clay contents, up to 97 % of cation exchange 

capacity (CEC) is contributed by SOM, related to its abundant charged surface functional 

groups (e.g., carboxyl and phenolic-OH groups). Also, functional groups in the SOM is the 

foundation of organo-mineral interactions and aggregation, thus contributing to improving 

soil physical structure and hydraulic properties (Tisdall and Oades, 1982). Although 

accounting for only approximately 5 %, SOM is the critical substrate in many soil 

biogeochemical processes (e.g., SOM mineralisation and nutrient mobilisation, organo-

mineral interactions, cation exchange and adsorption, and pollutant removal) (Rovira and 

Vallejo, 2002). As it is difficult to quantitatively estimate the amount of SOM present in a soil, 

it is normally estimated by multiplying the organic carbon (OC) concentration by a 

conversion factor based on the percentage of carbon (C) in organic matter alternatively. 

Published OC-OM conversion factors for surface soils have varied from 1.724 to 2.0 (Nelson 

and Sommers 1982). 
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Table 2-1 Turnover, composition, function and representative fractions and fractionation methods of OC pools 

OC 
Pools 

Turnover 
time 

Perce
ntage 
(%) 

Composition Functions Representative fractions Fractionation 
Methods 

Labile 
pool 

Months 
to years 

1-5 Molecules readily 
removed from the 
soil by living 
organisms 
Readily soluble 
molecules 

Early indicator of soil 
C dynamics;  
Energy source for 
microorganisms 

Water soluble organic carbon (WSOC);  
Free OC in light fraction (<1.6 g·cm-3); 
OC in the coarse fraction (>250 μm). 

Water extraction; 
Density 
fractionation;  
Particle-size 
fractionation 

Slow 
pool 

Decades 60-85 Chemically 
recalcitrant but 
moderately 
decomposable 
materials in the form 
of macro-aggregate  

Important source of 
mineralisable 
nutrients; 
Physical and 
chemical soil 
properties  

OC in the aggregate (53 μm-250 μm); 
Mineral-associated OC soluble in 
hydrofluoric acid (<1.6 g·cm-3). 

Particle-size 
fractionation; 
HF 
demineralization 

Stable 
pool 

Millennia 10-40 Polymerized 
substrates; 
Microaggreates, 
organo-minenal 
complexes; 
Charcoal 

Formation of stable 
aggregates; 
Soil structure and 
chemical buffering 
capacity 

silt+clay particles associated OC (< 53 
μm); 
Mineral-associated OC in density 
fractions in sodium polytungstate or 
other heavy liquids/ solutions (1.6-2.0 
g·cm-3);  
OC resistant to oxidation unless under 
high temperature and pressure (e.g., 
charcoal). 

Particle-size 
fractionation; 
Density 
fractionation; 
Dumas high-
temperature 
combustion 
(above 450 ℃) 
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Depending on its turnover time and decomposition rate, total OC can be categorised 

into labile, slow and stable OC pools (Jenkinson, 1990). As summarised in Table 2-1, the 

labile OC pool turns over relatively rapidly, including molecules readily consumed by soil 

organisms and readily soluble organic molecules (Marriott and Wander, 2006). The relatively 

slow pool of OC is normally represented by physically or chemically protected OC, which 

have slower turnover rates than the labile pool (Denef et al., 2001). The stable OC pool is 

mainly composed of humic polymers, intercalated OC in microaggregations, organo-mineral 

complexes and charcoal (John et al., 2005), which collectively contribute to chemical 

buffering capacity and soil physical structure and hydraulic properties (Brodowski et al., 

2007).  

A range of physical and chemical fractionation procedures have been developed to 

approximately separate various OC pools, including physical (particle size or density 

separation) and chemical (solubility, mobility) fractionation methods (Helfrich et al., 2007). 

Although these fractions are only approximate estimation of labile, slow and stable OC pools 

(with missing and overlay among them) rather than accurately measuring OC pools, they do 

contribute to our understanding about OC dynamics and associated biogeochemical 

processes in soils.  

Metal mine tailings are normally comprised of finely ground particles (ranging from fine 

silt to fine sand) and consist residue minerals of high reactivity, where there are little OC 

contents (Lottermoser, 2010). The initial level of total organic carbon (TOC) in copper (Cu) 

tailings can be less than 0.1 % (Ye et al., 2002). The extremely low levels of TOC deprive 

the tailings from the potential to develop basic physical, chemical and biological properties 

and functions as ‘soil’ for productive and healthy plant communities. As a result, 

rehabilitation of SOM and OC stabilisation is critical to technosols formation, which is 

required for the development of geochemical stability, hydraulic properties and physical 

structure and nutrient cycling and supplying capacity in tailings. Although TOC in the tailings 

can be rapidly increased by direct input of organic amendments, the formation and 

distribution of various OC functional pools in tailings may be a complex process. As a result, 

it is necessary to understand characteristics of SOM and OC forms and distribution to 

evaluate effective options of ecological engineering to speed up technosols development in 

tailings. However, until recently there was limited information available concerning OC pools 

or fractions in tailings and especially those under field conditions. 

2.1.2 Biogeochemical processes and SOM dynamics   

SOM decomposition and coupled nutrient cycling processes 



11 

In natural ecosystems, plant available nutrients are mainly from SOM decomposition 

and nutrient cycling. Mineralisation of 1.5-3.5 % of the organic nitrogen (N) would provide 

sufficient mineral N for the growth of natural vegetation in most soils except for those with 

low SOM (Kemmitt et al., 2008). Also, ecophysiological requirements of plant species are 

closely linked to the SOM decomposition and nutrients cycling processes (Wardle et al., 

2004). Specifically, a fertile and productive ecosystem is often colonised by fast growing, 

short-lived plants with high quality litter (high N content, low lignin) returning to soil, and 

rhizosphere microbial community is likely to be bacteria dominated which enable rapid 

decomposition rates to supply nutrients at relatively higher rates for plants. On the other 

hand, in an infertile and less productive ecosystem, plant species are slow growing and long-

lived with low quality litter, coupled with rhizosphere microbial communities with more fungi 

enabling relatively slower litter decomposition and nutrient supply rates for the plants. More 

than 85 % of litter decomposition in natural soil is mediated by microorganisms (Zhang et 

al., 2008). Decomposers (e.g., bacteria, fungi) quickly utilise newly added organic materials 

and start the decomposition process with the aid of enzymes hydrolysing complex molecules 

and polymers to smaller molecules. As shown in Fig. 2-1, during decomposition, there is 

initially a large decrease of water soluble organic matter in litter/organic amendments, 

followed by a decline in cellulose and hemicellulose and an increase of lignin (Sina, 2003). 

Chemical composition analysis suggests that the degree of decomposition can be indicated 

by declines of carbohydrates, increases of relative proportion of alkyl C and carboxyl C, and 

the breakdown of lignin. In addition, the C: N ratio decreases as decomposition proceeds, 

as N retented in microbial biomass or by-products while C is respired into CO2 (Quideau et 

al., 2000). 

Enhancing the formation and accumulation of OC pools in tailings is a critical aspect 

of engineering tailings into biogeochemically functional technosols. Therefore, ascertaining 

SOM decomposition and nutrient cycling processes in tailings and its linkage with plant 

species is fundamental to the adoption of necessary and effective ecological engineering 

options for developing functional technosols from the tailings. This informs the necessary 

properties and functions that permit sustainable growth and development of target plant 

species and communities for tailings phytostabilisation. 
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Fig. 2-1 SOM decomposition, nutrients cycling and chemical change 

 

Mechanisms involved in SOM stabilisation, organo-mineral interactions and 

aggregation  

The formation of stable SOM in soil is important to soil structure and functions. It is 

widely recognised that several biotic and abiotic processes are involved in SOM stabilisation. 

These include: (1) chemical recalcitrance of organic matter with complex structure retarding 

its degradation by microorganisms (e.g., lignin, wax) (Marschner et al., 2008); (2) 

interactions between organic molecules with inorganic (e.g., Ca2+, Mg2+, Fe3+, Al3+) or other 

organic substances (Kleber et al., 2007); and (3) physical protection by forming barriers 

between microbes and enzymes to organic substance (e.g., aggregates, clay occluded OM) 

(Six et al., 2002). 

Two typical forces between organic matter and mineral surfaces are observed, 

including strong force (i.e., ligand exchange, polyvalent cation bridges) and weak force (i.e., 

hydrophobic interaction, H-bonding and van der Waals forces) (Kogel-Knabner et al., 2008). 

Among them, ligand exchange and polyvalent cation bridges are the dominant mechanisms 

to form stable organo-mineral complexes in soil. For instance, in kaolinite and 

montmorillonite, contribution to absorption ability of different interactions are in the order: 

cation bridging (40 %)> ligand exchange (33 %)> van der Waals force (22 %) (Feng et al., 

2005). The binding mechanisms depend strongly on the surface chemistry of SOM and clay 

minerals. Among functional groups of SOM, carboxylic C with negative charges has the 
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highest potential to bind minerals, followed by phenolic and hydroxylic C (Kumar et al., 2007), 

while alkyl and aromatic C which are relatively nonpolar or hydrophobic, are little involved in 

organo-mineral interactions.  

 

Table 2-2 Typical interactions between organic matter and minerals, adapted from Kögel-

Knabner et al. (2008)  

Interaction 
force 

Organic matter Minerals 

Strong binding force 
Ligand 

exchange 
OM functional groups (aliphatic or 
phenolic OH) Aliphatic acid (citric 
acid, malic acid)  
Amines, ring-NH, heterocyclic-N;  

OH groups on Fe, Al, Mn oxides 
OH groups on edge sites of 
phyllosilicates; 
Allophane, imogolite. 

Polyvalent 
cation bridges 

OM functional groups (carboxyl, 
carbonyl, alcoholic OH-) 
Microbial polysaccharides with 
glucuronic-, 
galacturonic-,mannuronic-, 
pyruvic-, succinic-acid 

Expandable layer silicate (e.g., 
smectite, vermiculite, illite); 
Electrostatic cation bridges (Fe3+, 
Al3+; Pb2+ Ca2+, Mn2+, Mg2+). 

Weak binding force 
Van der Waals 

force 
Uncharged non-polar groups 
(aromatic, alkyl-C) 

Non-expandable layer silicates, 
neutral microsites on smectites, 
quartz sand; 

Hydrophobic 
interaction 

 Non-polar, uncharged surface. 

H-bondings OM functional groups (carboxyl, 
carbonyl, phenolic OH-);  
amines, heterocyclic-N. 

Minerals with oxygen surfaces 
(e.g., kaolinite). 

 

In particular, organo-mineral interactions are the basis for aggregation and soil 

structure stability (Shang and Tiessen, 1998). Plant rootlets, fungal hyphae, cell filaments 

and secretions from living organisms interact with mineral components to form clumps and 

increase the size and stability of aggregates (Denef et al., 2001). Pores formed between 

and within aggregates allow gas exchange (large pores: 30-60 μm) and retention of water 

and nutrients (small pores: 0.2-60 μm) (Skopp, 1981).  

Several studies have reported the significantly positive impacts from organic inputs on 

aggregation (Kong et al., 2011). Despite a much improved understanding on the organo-

mineral interactions and aggregation in soil (Kaiser and Guggenberger, 2003), significant 

gaps remain in our current understanding about SOM stabilisation processes in the mine 

tailings, which is anticipated to be distinct from those in natural soils depending on tailings 

mineralogy and forms of extraneous organic inputs. Organic amendments may stimulate 

organo-mineral interactions and aggregation in tailings. Therefore, understanding 
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mechanisms of SOM stabilisation and its linkage to aggregation is important to tailings 

physical structure improvement and biogeochemical functions recovery. 

2.1.3 Microbial community composition and functions in tailings 

SOM dynamics driven by microorganisms is indicative of biogeochemical linkages 

between engineered soil and plant systems, which is an useful indicator for assessing the 

success of tailings rehabilitation (Harris, 2003; Harris, 2009). In spite of the recognised 

importance of diverse and functioning microbial communities for tailings phytostabilisation, 

the evolution of microbial communities in the engineered technosols remains poorly 

understood in literature, with and without amendments.  

As microorganisms rely on energy from SOM decomposition or mineral oxidisation and 

nutrients (e.g. N and P) to grow (Torsvik and Øvreås, 2002), forms of SOM, minerals and 

levels of nutrients have marked impacts on microbial community composition and 

associated biogeochemical processes. Other environmental variables (e.g., moisture, 

temperature, pH, osmotic conditions) may also significantly influence composition and 

functions of microbial communities in the tailings. Some optimum conditions for microbial 

communities in soil have been summarised in Table 2-3 (Madigan et al., 2006).  

 

Table 2-3 Environmental factors and optimum conditions for microbial community  

Environmental factor Optimum conditions 
Available soil moisture 25-85 % Water holding capacity 
Oxygen >10 % air-filled pore space for aerobic degradation 
Redox potential Eh> 50 mill volts (mV) 
Nutrients C: N: P=120: 10: 1 molar ratio 
pH 6.5-8.0 
Temperature 20-30 ℃ 
Heavy metals  ≤700 ppm 

 

Tailings represent an extremely and geochemically dynamic (rather than stable as in 

soil) environment with strong selection pressure on microbial colonisers. The extremity and 

intensity of physical and geochemical stresses are closely related to the shift of structure, 

composition and functions of microbial communities, due to the loss and/or gain of 

species/function diversity (Schimel et al., 2007). Tailings are typical of low species and 

functional diversity, with low levels of microbial biomass, microbial activities and energy 

utilisation efficiency. For instance, in Cu tailings, total cell counts are around 109 g-1 (Diaby 

et al., 2007), much lower than that (1012 g-1) in typical and healthy soil (Or et al., 2007). Also, 

species richness is very low, with only a few species abundant in Pb-Zn tailings (Mendez et 

al., 2008).  
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Because of the lack of SOM, microbial communities in tailings mainly comprise of 

microorganisms that tolerant of extreme geochemical conditions and rely on chemical 

energy from primary and secondary minerals in the tailings (Li et al., 2014; Schimel et al., 

2007). Among them, the most intensively studied microorganisms are related to S and Fe 

oxidation (e.g., T. ferrooxidans) (Fortin et al., 2000). Some recent molecular examinations 

of microbial communities in base metal mine tailings (Kock and Schippers, 2008) suggest 

that in addition to low microbial biomass and diversity, some essential groups (e.g., fungi) 

may be absent (Kock and Schippers, 2008; Li et al., 2014) and result in a very limited 

capacity to decompose complex organic compounds (e.g., lignin) (Blanchette, 1995). 

Furthermore, tailings are normally characterised with much lower microbial metabolic 

activities than soils (Chen et al., 2005). The microbial limitation in the tailings significantly 

lower the rate of bioweathering of unstable minerals and development of functional 

technosols within foreseeable timeframe (e.g., years-decades). As a result, ecological 

engineering options will be needed to stimulate microbial-mediated processes involved in 

mineral weathering and hydrogeochemical stabilisation, which forms the foundation for the 

development of soil-like microbial communities in the tailings-soils.  

Many sulfidic tailings are biologically toxic and not hospitable for natural colonisation 

of soil microorganisms and plants, because of their acidic pH conditions, elevated soluble 

metal concentrations and acute heavy metal toxicities (Ortega-Larrocea et al., 2010). In 

extremely acidic tailings, all phylotypes identified are closely related to S- and Fe- oxidising 

bacteria with high degree of phylotype dominance (e.g., Leptospirillus ferriphilum; 

Sulfobacillus, Acidimicrobium ferrooxidans) (González-Toril et al., 2003). The relative 

degree of microbial diversity and community complexity increases with pH rise to slightly 

acidic conditions in the tailings, where microorganisms with neutrophilic growth preference 

are colonising (e.g., thiosulfate, ferrous iron and arsenite oxidisers), thus permitting the 

recolonisation of microbial communities resembling those in local natural soil (Mendez et al., 

2008).  

Sulphur/Fe-oxidising bacteria are the most intensively investigated microbes, which 

mediated biogeochemical processes in sulfidic tailings, such as pyrite weathering and acid 

mine drainage formation (Dold and Fontboté, 2001; Lindsay et al., 2009). However, the most 

important microbial activities in soil are decomposition and turnover of structural complex 

and highly diverse organic matter from plants and associated nutrient cycling (Berg, 2000; 

Moretto et al., 2001). Yet, to date knowledge concerning the evolution of soil-like microbial 

communities and associated SOM decomposition is limited, save for a few studies on the 
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monitoring of SOM decomposition and nutrient cycling processes in tailings (Hulshof et al., 

2003; Moynahan et al., 2002).  

Reconstructing a soil-like habitat in tailings may be required to sustain diverse and 

functioning microbial communities, which underpins the development of biogeochemical 

functions and sustainable development of target plant community. Therefore, detailed 

evaluation of biogeochemical dynamics in tailings in response to ecological engineering 

options is required, in order to develop suitable options for stimulating recolonisation and 

development of soil-like microbial communities and technosols formation. In particular, 

detailed investigations are to be carried out to understand key environmental drivers of 

changes in microbial community composition and functions in the amended tailings, which 

forms the basis for developing efficient ecological engineering strategies and options to 

engineer functional technosols for tailings phytostabilisation. 

 

Characterisation of microbial community composition and activities  

Methods applied to quantify microbial community have been summarised in Table 2-4, 

and they comprised direct enumeration, chloroform fumigation and methods based on 

molecular technology (e.g., PLFA, 16S rRNA) at higher resolution. Advancement in 

biotechnology has allowed the development of molecular techniques using biomarkers for 

measurements of the whole, or selected parts of microbial communities, which has received 

significant development in the last decade (Chen et al., 2008; Li et al., 2014). Collectively 

this has enhanced knowledge of microbial communities in less known and complex soil 

ecosystems. 

In general, methods based on molecular technology provide extensive information 

about taxa present in soil or tailings, but without providing the information about microbial 

species effectively and specifically facilitating biogeochemical processes in soil. It is 

common to combine microbial activities with microbial composition for microbial community 

characterisation in complex systems.  

Depending on the biogeochemical processes concerned, various methods can be 

used to quantify microbial activities in soil or tailings (Table 2-5), such as microbial 

respiration, community levels physiological profile based on BIOLOG ® system (Cookson et 

al., 2007; Garland, 1997) or specific enzymatic activities (Burns, 1982). 
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Table 2-4 Methods applied to quantify microbial community 

Index Methods description Advantages and limitation Reference 
Microbial 
biomass 

Fumigation extraction 
organic C 

Classical and reliable; 
Both living and dead 
microorganisms will be 
extracted; 

Chotte et al., 
1998 

CFU Dilution plating and culturing 
methods, less than 1 % of 
the microorganism are 
culturable 

Easy and economic operation;  
Suitable for culturable 
microorganisms only. 

Vieira and 
Nahas, 2005 

Phospho
lipid fatty 
acids 
(PLFAs) 
analysis  

Phospholipid fatty acids 
have signature molecules 
presenting in all living cells. 
Specific fatty acid methyl 
esters are used as an 
accepted taxonomic 
discriminator for species 
identification. 

Easily extractable molecules; 
Reveal the presence and 
abundance of particular 
organisms; 
Rely on chromatography of 
phospholipid component with 
medium resolution;  
Not for species identification;  
False signature under specific 
conditions. 

Frostegård 
et al., 2011 

Nucleic 
acid 
techniqu
es (16S 
rRNA) 

DNA extraction, PCR 
amplification, and DGGE 
differentiation 

High resolution;  
Suitable for complex habitat;  
Detect unknown species;  
Multiple steps bias such as 
sample storage, extraction and 
amplification;  
Not suitable for large sample 
processing 

Klindworth et 
al., 2012 

FISH Fixed cell, 16S or 23S rRNA 
is hybridized with 
fluorescently-labelled taxon-
specific oligonucleotide 
probes, viewed with 
scanning confocal laser 
microscopy. 

Direct identification and 
quantification of individual 
species and groups;  
Not suitable to the nutrient-poor 
soils;  
Familiar with sample for probe 
choice 

Hill et al., 
2000 

 

Respiration is commonly used as an integrated indicator to measure entire metabolic 

processes, based on CO2 evolution with relatively low resolution. BIOLOG ® approach 

combines both functional diversity and degradation rates, which is suitable for culturable 

microorganisms, but sometimes resulting in bias from microbial competition (Degens et al., 

2001). Enzyme assay provides information at higher resolution of biological processes 

related to biogeochemical functions such as C, N and P mineralisation. The activities of 

some of the enzymes measure entire metabolic processes (e.g., dehydrogenase), whereas 

others (e.g., invertase, cellulose, protease, urease, phosphatase) measure specific key 

processes involved in nutrient cycling, such as C, N and P (Alef and Nannipieri, 1995). 
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Table 2-5 Methods for measurement of microbial activities  

Index Methods description Advantages and 
limitation 

Reference 

Basal 
respiration  

carbon dioxide (CO2) evolution  Low resolution; 
Difficult to be 
separated from root 
respiration, OM 
decomposition;  

 

Community-
level 
physiological 
profiles 

Based on BIOLOG® system, 
quantify spectrophotometrically 
of colour change 

Suitable for culturable 
microorganisms;  
Time lag bias resulting 
from microbial 
competition; 
Not match with real 
environment; 

Degens et 
al., 2001 

Enzyme 
activities 

Substrate induced respiration, N 
mineralisation, nitrification; 
potential denitrification activity, 
N-fixation  

Specific processes Alef and 
Nannipieri, 
1995 

 

Microbial communities in tailings may be highly adapted to the changing 

physicochemical properties in tailings and are stimulated by rhizosphere effects of plants in 

the tailings subject to remediation by in situ engineering practices. Therefore, the associated 

biogeochemical processes might be greatly influenced, resulting in various levels of 

ecological changes (SOM content, metal and nutrient levels in its solution) in the context of 

soil development and formation (Fig. 2-2). 

 

 

Fig. 2-2 A conceptual linkage between composition and functions of microbial community.  
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The above methods ranging from molecular to physiological analyses can be used to 

characterise microbial community composition and functions and greatly improve our 

understanding of the relationship among changes of microbial composition and functions 

and physico-chemical changes induced by ecological engineering in tailings. The expected 

findings are critical to the development of ecological engineering options for in situ 

engineering of technosols from the tailings. 

2.2 Biogeochemical changes induced by ecological engineering practices in tailings 

2.2.1 Organic amendments to build up nutrients and organic carbon  

Organic amendment (OA) has commonly been used as one of the options to 

rehabilitate SOM and associated soil structure and functions in degraded/polluted soils as 

well as mine tailings (Huang et al., 2012; Ros et al., 2003; Tejada et al., 2006). Diverse 

microbial communities are often observed in tailings following OA (Pepper et al., 2012). The 

most commonly used OAs in tailings include crop residues and their compost, municipal and 

industrial wastes and manure, uncomposted organic materials, such as sludge, plant 

residues, biochar. All of them contain essential elements (e.g., C, N, P) with variable 

concentrations (Table 2-6), due to the differences in their origin and processing methods 

(Quilty and Cattle, 2011). In general, compared to fertile OAs such as compost, manure, 

sludge and plant residues, biochar is relatively low in nutrient quality, where low amounts of 

labile OC is readily available for microbial colonisers.  

 

Table 2-6 Physicochemical properties of typical organic amendments used for tailings 

Type of OAs pH EC 
(cm dm-1) 

CEC 
(cmol+ kg-1) 

OC (%) N  
(g kg-1) 

P  
(g kg-1) 

Compost 4.0-9.7 1.3-36 29-236.3 7.7-60.1 1.3-30.2 0.4-16.2 
Manure 6.3-9.1 1.9-7.3 na 42.7-72.0 1.8-35.8 9.4-42.3 
Sludge 4.8-7.8 0.27-16.0 18-33 28.1-48.4 6.8-65.0 5.2-48.6 
Biochar 4.5-12.0 0.05-1.05 0.06-61.1 31-98 0.6-34.7 0.02-30.1 
Plant residues  5.2-7.7 na na 41.0-52.6 4.3-25.5 0.3-3.7 

a: Data collected from Angın, 2013; Baker et al., 2011; Bolan et al., 1996; Chiu et al., 2006; 

Hoorens et al., 2003; Romero et al., 2005; Schwab et al., 2007; na: not available. 

 

The major impacts of OAs on tailings properties and colonising plants have been 

summarised in Table 2-7. The primary benefits of these OAs in tailings are the high OC 

contents and plant nutrients. OA also improves nutrient retention capacity in tailings through 
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significantly increasing CEC (Gardner et al., 2012; Shu et al., 2002). Although biochar may 

not be beneficial to microorganisms in terms of nutrient supply (Fellet et al., 2011), it is able 

to retain nutrients because of its surface charge and area properties (Laird et al., 2010). 

 

Table 2-7 Examples of OAs applied in tailings and impacts on tailings and plants 

OA types Tailing
s types 

Duration Impacts on tailings Impacts on 
plants 

Reference 

Manure, 
compost 
and 
biosolids. 

Pb/Zn/
Cu  

4 
months 

Increase N, P, K; 
Decrease extractable Pb, Zn, 
Cu. 

Greater 
vegetation 
cover and dry 
weight yield. 

Chiu et al., 
2006 

Compost, 
pig 
manure 

Pb/Zn  1 year Alter pH; 
Increase TOC. 

Deeper root 
system; 
Greater dry 
weight yield 

Ye et al., 
2000 

Domestic 
refuse 

Pb/Zn  3 
months 

Decrease EC; 
Increase TOC and 
macronutrients; 
Decrease both total and 
extractable heavy metals. 

Greater 
vegetation 
cover and dry 
weight yield. 

Shu et al., 
2002 

Biosolids Cu  3 years Decrease bulk  density; 
Increase water retention; 
Increase EC, CEC, TOC and 
microbial activity. 

Increase 
biomass 
production; 
plant cover 

Gardner et 
al., 2012 

Pine bark Base 
metal  

48 
hours 

Increase dissolved OC; 
Increase water extractable 
metals. 

Not available  Munksgaar
d and 

Lottermose
r, 2010 

Mushroo
m 
compost 

Pb/Zn  6 
months 

Improve physical and 
chemical status; 
Decrease metal content. 

Increase dry 
weight yield 

Jordan et 
al., 2008 

Paper 
sludge 

Au  6 years Slow decomposition. Not available  Cousins et 
al., 2009 

Biosolids Cu  10 
years 

Not available Noxious weed 
dominance 

Borden 
and Black, 

2011 
 

Physico-chemical conditions in tailings can be greatly modified by OA. Specifically, as 

intrinsic densities of organic materials are much lower than minerals, they are able to hold 

more water (Tester, 1990). Thus, tailings receiving OA often have considerably lower bulk 

density and greater water holding capacity (WHC) compared the tailings without (Brown et 

al., 2003).  

Several studies suggest that OA immobilises heavy metals through adsorption, 

complexation, reduction and volatilisation effects (Park et al., 2011). For instance, pig 

manure greatly decreased extractable concentrations of Pb, Zn and Cd in tailings (Ye et al., 
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1999). However, the effects of OA on metal mobility in literature are conflicting – possibly as 

a result of from the interaction of several environmental variables (e.g., pH, CEC). Sludge, 

pine bark and woodchips may even induce metal release in readily soluble form when 

applied to tailings (Li et al., 2013). Besides, OA may increase EC in tailings due to elevated 

dissolution of minerals and salts, which may further exacerbate the levels of salinity in 

tailings at least in the short-term, especially in semi-arid areas (Chiu et al., 2006). Therefore, 

comprehensive assessment is necessary for optimum utilisation of OA in tailings to (1) 

identify OA-induced changes in physicochemical conditions in the tailings; (2) the underlying 

biogeochemical processes; (3) and potential impacts on physiological requirements of target 

plant species. 

In the context of engineered pedogenesis of mine tailings, the selection of OA should 

focus on the effectiveness in stimulating the weathering of reactive minerals and speeding 

up hydro-geochemical stabilisation as the first priority, which forms the basis for further 

improvement of biogeochemical capacity towards functional technosols. The perceived 

ecological linkages between soil and target plant subsystems must also be considered when 

selecting OA in relation to associated nutrient loads (such as N content), because soil fertility 

can influence the pattern of plant community development (Huang et al., 2012; Wardle et 

al., 2004). 

 

2.2.2 Introduction of native microbial inoculum for fast development of microbial 

communities in the tailings-soil 

Introducing native or cultured microbes through addition of soil, isolated microbes, and 

soil microbial extracts may speed up microbial community rehabilitation in tailings, which is 

also undergoing physicochemical changes induced by other amendments (e.g., OA) (van 

de Voorde et al., 2012). In previous studies, microbial inoculation was found to help establish 

diverse and functional microbial communities in tailings and improve plant growth (de-

Bashan et al., 2010; Grandlic et al., 2009).  

Inoculation of functional microbes such as plants growth promoting bacteria (PGPB) 

and mycorrhizal fungi has been found to be beneficial to root nutrient acquistion and plant 

tolerance of heavy metals (Alguacil et al., 2011; Ma et al., 2006). For instance, inoculating 

PGPB (e.g., N2-fixing bacteria, phosphate and potassium solubilisers) enhanced plant 

growth in Pb-Zn tailings in arid area and alleviated metal toxicity in plants (Grandlic et al., 

2009; Wu et al., 2006). Many pot and field experiments have shown the potential of 

arbuscular mycorrhizal fungi (AMF) in facilitating plant establishment in tailings (Ma et al., 
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2006). In addition, mycorrhizal colonisation of plant roots also helps reduce translocation of 

heavy metals to shoots by binding them to the cell walls of the fungal hyphae (Chen et al., 

2007), but effectiveness of mycorrhizal colonisation varies among the introduced fungal 

isolates (Orłowska et al., 2005). 

Microbial inoculums may differ in their tolerance to stresses present in tailings. It is 

likely that potential application of microbial inoculation is more efficient in slightly or 

moderately metal-polluted sites compared to heavily polluted areas (Wu et al., 2006). 

Similarly, AMF adapted to uncontaminated soil stimulate plant growth far more than those 

adapted to the moderately contaiminated sites (Shetty et al., 1994). Therefore, it is 

necessary to investigate not only the tolerance of introduced microbial species or community, 

but also their interactions with other amendments, which modify physicochemical properties 

in tailings for microbial colonisers, in order to formulate efficient amendment strategy for 

technosols development in tailings. 

 

2.2.3 Rhizosphere effects of tolerant pioneer and native plants in microbial 

development of tailing-soil 

Plant cover provides both intangible and tangible benefits in mine tailings landscapes, 

such as surface stabilisation, land quality improvement, and increased biodiversity in tailings 

landscapes. Due to the presence of many physical and biogeochemical constraints, natural 

colonisation of diverse native plants in tailings is largely unsuccessful if without significant 

physicochemical improvement, except for limited number of highly tolerant plant species 

(Huang et al., 2012; Shu et al., 2002). However, soil development in tailings may be 

stimulated by the colonisation of tolerant pioneer plants, because root turnover can provide 

inputs of organic matter and stimulate the colonisation of rhizosphere microbial communities, 

in addition to root-induced improvement of physical structure in the tailings. For example, it 

is reported that initially low microbial diversity in non-vegetated tailings was rapidly increased 

after plant establishment and succession later (Alguacil et al., 2011). Even a relatively low 

plant cover is sufficient to stimulate microbial community recovery (Moynahan et al., 2002). 

It is worth noting that the establishment of pioneer plant species is far from the rehabilitation 

of target plant communities consisting keystone species and expected species diversity, 

which might be achieved at the later stage during plant community succession. 

Rhizosphere in the immediate vicinity of growing roots are known to promote microbial 

biomass, diversity and activities, where roots produce organic exudates, including enzymes 

and organic compounds (Bais et al., 2006). Some root exudates (e.g., isofalvones) are able 
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to attract beneficial bacteria (e.g., Bradyrhizobium japonicum), working as symbiotic signals 

to microorganisms in nutrient-poor soil (Dakora and Phillips, 2002). For instance, legume 

plants routinely use flavonoid molecules in root exudates to induce transcription of 

nodulation genes, leading to nodule formation and N2 fixation, particularly in infertile soil 

(Dakora and Phillips, 1996). Besides, root exudates stimulate the formation of mycorrhizal 

fungi association with roots, by inducing spore germination and/or hyphal growth in 

vesicular-arbuscular fungi, bringing about the overall improvement in the capacity of nutrient 

(particularly, P) and water acquisition (Gilbert et al., 2000). In addition, many low weight 

organic compounds in root exudates may chelate cations to form organo-mineral complexes, 

thus reducing their availability to plants and microbes (Compant et al., 2005). As a result, 

the introduction of tolerant native plants as pioneer plants may greatly stimulate the 

development of rhizosphere microbial communities, in terms of biomass, diversity and 

functions, which critically contribute to the development of functional technosols in the 

tailings. 

Many metallophytes are recommended for tailings phytostabilisation, due to their 

tolerance of hostile habitat conditions, such as Cynodon dactylon, Festuca rubra, Agrostis 

tenuis, Agrostis stolonifera, Typha latifolia and Phragmites australis (Archer and Caldwell, 

2004). However, due to the relatively high amount of metals in tailings, it is impossible to 

rely on hyperaccumulatiing plant species (e.g., Cd > 0.01 %, Cu, Pb > 0.1 % dry weight) 

(van der Ent et al., 2013) to remove such quantities metalloids and metals from sulfidic 

tailings of base metal mines, even assuming these plants could grow adequate biomass. 

Gramineous grasses and legumes are generally the favourable options for phytostabilisation 

purpose, due to their adaptation to nutrient deficiency and fast growing trait (Li, 2006). Native 

plant species well adapted to local climatic conditions are preferred to be used as pioneer 

plants, without residual risks of weed proliferation and associated negative impacts on native 

plant species (Singh et al., 2002).  

Relative abundance of microorganisms and associated functions in the rhizosphere 

have been found to be species specific (Carrasco et al., 2010). Plants tend to actively select 

specific rhizosphere microorganisms to establish the habitat for themselves (Doornbos et 

al., 2012). Field-grown potato and wheat are associated with distinct ascomycete community 

in the rhizosphere (Viebahn et al., 2005). Root system of L. spartum presents a higher 

cellulose content than that of p. miliaceum, favouring colonisation and growth of fungi-

producing extracellular cellulases (Carrasco et al., 2010). Symbiosis of AMF and hyphae 

with legume (Acacia spp.) had been observed in many native acacia species in Australia 

(Herrera et al., 1993), while very low or absent in some species (e.g., Ptilotus spp., Triodia 
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spp.) (Jasper et al., 1989). Much less has been known about microbial communities in the 

rhizosphere of native plant species under field conditions, compared to those for crops. In 

the present project, key native plant species from Mount Isa/Clonccury regions of Northwest 

Queensland have been used to stimulate microbial colonisation and diversity in the 

amended tailings of Cu-Pb-Zn mines. 

2.3 Rehabilitation of biogeochemical capacity and processes in tailings for 

engineering functional technosols 

2.3.1 Biogeochemical processes critical to technosol development  

In base metal mine tailings, the weathering and transformation of minerals are 

considered to be indicators of pedogenesis, particularly those abundant in reactive primary 

minerals (e.g., pyrites) (Uzarowicz and Skiba, 2011). In addition to geochemical stabilisation 

resulted from mineral weathering in the tailings, soil-like structure and functions are to be 

developed through coupled physical, chemical and biological processes to stimulate 

technosols formation in tailings (Remenant et al., 2009). Therefore, a comprehensive 

evaluation of pedogenesis in tailings require clear characterisation of mineralogical, 

hydrogeochemical and biogeochemical processes, in response to various ecological 

engineering inputs (Huang et al., 2014).  

Soil formation in natural ecosystems is typically an extreme slow process that occurs 

of lengthy periods of time (thousands and even millions of years) (Jenny, 1941). Natural soil 

formation from bedrocks undergoes intertwined physical, chemical and biological processes 

under the influence of pedogenetic factors (i.e., climate, biological activity, topography and 

time) (Jenny, 1941). However, technosols are a new reference soil group (as noted in World 

Reference Base for Soil Resources), and they contain a large range of materials of natural 

and/or anthropic origin, such as mine tailings (Uzarowicz and Skiba, 2011).  

When comparing the tailings with natural soil in terms of mineralogy, fertility and 

microbial community, the most significant differences are elevated metals of lithogenic origin, 

low in clay minerals and organic matter and stressed microbial community dominated by 

extremophiles in the base metal mine tailings (except for red mud) (Li and Huang, 2015; 

Lottermoser, 2010). Tailings are normally deficient in SOM due to the absence of plant cover 

or low productivity of the plants. SOM levels in tailings tend to increase with the progress of 

vegetation establishment and development (Lorenz and Lal, 2007; Ussiri et al., 2006). 

However, the efficiency of OC stabilisation in the tailings seemed to be low. For example, in 

Cu tailings rehabilitated more than 20 years with a dominated grass vegetation, the levels 
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of TOC in tailings were only 18 % of those in soil samples from the reference site (Huang et 

al., 2011).  

Accumulation of organic matter is often reported as a primary pedogenetic process 

occurring in technosols formation (Hernández-Soriano et al., 2013). Different processes 

such as solute (e.g., sulphates, carbonates) movement, aggregation involving minerals and 

organic materials, changes in structure and hydrodynamics (Hartmann et al., 2010) have 

also been shown to occur during technosols formation. Ecological engineering inputs and 

direct/indirect interactions with natural climatic or environmental factors are expected to 

accelerate the processes of physical, chemical and biological changes and influence 

technosol formation in the tailings. 

Although advanced extraction technologies has extracted majority of metals for profit 

purpose, the concentrations of heavy metals and metalloids (e.g., As, Cu, Mn, Pb, Cd, Zn) 

in tailings remain very high, which largely exceed the ecological investigation levels (Li and 

Huang, 2015). There has been increasing evidence that phytostabilisation of base metal 

mine tailings require more knowledge about how to develop functional soil and root zones 

to support target plant communities, rather than simply rely on the unrealistic potential of 

hyperaccumulating plant species (Huang et al., 2012; Li and Huang, 2015; Monserie et al., 

2009). The pedogenesis on coal mining sites have been studied with pioneer plant cover, 

the function of soil fauna and organic matter accumulation (Hafeez et al., 2012; Novo et al., 

2013). Yet, few studies have been conducted to understand the mineral transformation and 

translocation in the early stage of pedogenesis (Huot et al., 2014). As a result of the research 

undertaken for this literature review, it is apparent that the success of phytostabilisation of 

tailings landscapes depends on the development of hydrogeochemically stable and 

biogeochemically functional tailing-soils (technosols) by utilising effective ecological 

engineering options, and this is closely linked with the tolerance capacity and growth 

requirements for the candidate plant species. Therefore, the scientific merits and 

environmental and economic benefits have justified the present project to investigate critical 

factors and processes involved in technosol formation from sulfidic tailings, in response to 

suitable ecological engineering options. 

2.3.2 Research questions  

The present project aims to develop a suit of effective ecological engineering options 

(including organic amendment, microbial inoculation and introduction of pioneer native plant 

species), based on the comprehensive evaluation the efficacy and underlying mechanisms 

involved in the amelioration of tailings’ biogeochemical properties and biogeochemical 
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processes. The physicochemical and biochemical properties in the rhizosphere soils 

underneath key native plant species (i.e., Acacia chisolmii and Triodia pungens) in natural 

sites colonised by target native plant community have been characterised to provide the 

benchmark and target for engineered pedogenesis in the tailings. Detailed research 

questions to be investigated may include:  

(1) What are the characteristics of OC pools and its dynamics in tailings?  

(2) What are the characteristics the microbial community (diversity, composition and 

biogeochemical processes) in response to amendment options (e.g., organic 

amendment, microbial inoculum and plant introduction)? What are the 

environmental drivers? 

(3) What are the relationships of microbial community and functions in tailings and how 

it is linked to the pioneer plant survival and growth? 

Specifically, a series of laboratory, glasshouse and field trials have been designed and 

carried out:  

(1) In Chapter 3, Organic carbon stabilisation in weathered and fresh Cu-Pb-Zn tailings 

amended with woodchips under field conditions aims to investigate OC pools and 

forms in typical Cu-Pb-Zn tailings with different mineral composition with the 

purpose to explore possible mechanisms of OC stabilisation in tailings, in response 

to exogenous organic amendment in field conditions 

(2) Chapter 4, Plant colonisation stimulated organic carbon formation and microbial 

biomass and functions in weathered Cu-Pb-Zn tailings from a long-term field trial 

aims to characterise OC pools and associated microbial biomass and functions in 

tailings from long-term field trial to evaluate organic amendments and plants roles 

in technosols formation in tailings;  

(3) Chapter 5, Biogeochemical changes induced by addition of exogenous organic 

matter with contrasting properties in weathered and neutral Cu-Pb-Zn tailings – a 

6-month microcosm study aims to evaluate how typical organic amendments in 

driving the shift of microbial community structure and functions in tailings under 

controlled laboratory conditions;  

(4) Chapter 6, Establishing microbial diversity and functions in weathered and neutral 

Cu–Pb–Zn tailings with native soil addition aims to investigate the dosage effects 

of soil inoculum on rehabilitation microbial community diversity and functions in 

tailings with the purpose to identify important physicochemical factors driving the 

shift of microbial communities; 
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(5) Chapter 7, Sugarcane and biochar differ in ameliorating Cu-Mo-Au tailings for 

phytostabilisation with native plant species-A greenhouse study aims to investigate 

the efficacy of organic amendments on rehabilitation of microbial communities 

interacting with native plants based on greenhouse study, which provide basic 

information to guide selection of candidate pioneers plants for sustainable tailings 

phytostabilisation.  

From the findings against these objectives, a conceptual model has been synthesized 

to illustrate the processes stimulating the development of technosols in the Cu-Pb-Zn 

tailings and provide a basis for further research progress. 
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Chapter 3 Organic carbon stabilisation in weathered and fresh Cu-Pb-Zn tailings 

amended with woodchips under field conditions  

3.1 Introduction 

 Organic carbon (OC) stabilisation is one of the key processes involved in soil formation 

(Quideau et al., 1998). OC is an essential constituent in the soil matrix, playing a crucial role 

in the biological (provision of substrate and nutrients for microbes and plants) (Alguacil et 

al., 2011), chemical (buffering and pH changes; chelation of metals) (Park et al., 2011) and 

physical (aggregation and stabilisation of soil structure) properties (Abiven et al., 2009) and 

functions in soil. The degree of OC stabilisation in tailings could be an overall indicator of 

engineered soil formation and technosols development (Bendfeldt et al., 2001; Shukla et al., 

2004). In natural soils, mechanisms contributing to OC stabilisation include: (1) the chemical 

recalcitrance of complex organic matter, retarding its degradation by microorganisms (e.g., 

lignin, wax etc.) (Marschner et al., 2008); (2) interaction between organic and inorganic 

substances (e.g., Ca2+, Mg2+, Fe3+, Al3+) or other organic substances with charged surface 

(Kleber et al., 2007); and (3) physical protection by forming barriers among microbes, 

enzymes and organic substance (e.g., aggregates, clay occluded OC) (von Lützow et al., 

2008). Over the last decade, characterising OC distribution and chemistry through physically 

fractionation methods has contributed significantly to our understanding about the 

mechanisms of OC stabilised in soil (Six et al., 2002; von Lützow et al., 2007), but with little 

published information about OC fractions in base metal mine tailings.  

Endogenous accumulation of OC in tailings is very slow due to the harsh 

physicochemical conditions limiting natural colonisation of plants. Therefore, the addition of 

exogenous organic matter (e.g., plant residue, biosolids, biochar, manure etc.) is one of the 

common practices to provide organic carbon, and also improve the growth conditions for 

plants (Fellet et al., 2011; Huang et al., 2011a). However, to what extent that OC could be 

stabilised in tailings from organic amendments is still unclear.  
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It is widely accepted that microbial communities colonising the tailings are low in 

biomass, diversity and activities compared to natural soils (Huang et al., 2011b; Li et al., 

2014; Pepper et al., 2012). Therefore, we expect that the turnover of organic matter by 

biological processes in tailings is fairly slow compared to natural soil. Direct interactions 

between tailings minerals and organic compounds may be more important to OC 

stabilisation in the tailings in the initial phase of soil formation.  

Furthermore, tailings vary significantly in physical and biogeochemical properties, due 

to ore mineralogy, processing technology and stages of mineral weathering (Lottermoser, 

2010). For example, Mount Isa Mine (MIM) tailings from Tailings dam 5 (TD5), were 

decommissioned about 40-year ago. This dam, had received mixed streams of Cu and Pb-

Zn tailings, with higher ratio of Cu to Pb-Zn tailings. Tailings from Tailings dam 7 (TD7) had 

been recently deposited less than 2-year from mixed streams of Cu and Pb-Zn tailings, with 

much lower ratio of the former to the latter. Due to changes of ore composition and mineral 

processing techniques, tailings in TD7 composed of minerals with a finer particle size and 

higher sulphide (e.g., pyrite) content compared to TD5 (Gao and Young, 2002). Changes in 

tailings composition occur during mineral weathering in terms of secondary mineral 

precipitates, sulphide mineral oxidation, primary mineral dissolution and secondary mineral 

formation (Lottermoser, 2010; Wakelin et al., 2012). Forsyth (2014) suggested that the rates 

of sulphide depletion ranged from 5 to 17 mM pyrite per year with consumption of 24 to 39 

mM CaMg(CO3)2 per year in TD5 during the period of deposition. Mineralogy of these two 

tailings is summarised in Table 2-1. Overall, fewer secondary minerals were observed in 

TD7 compared to TD5 (Forsyth, 2014).  

Therefore, we hypothesize OC will be stabilised in tailings via organo-mineral 

interactions and aggregation, and their accumulation rates and associated mechanisms are 

markedly different between TD5 and TD7 tailings, which may be influenced by their particle 

size, mineralogy and geochemistry. The present study aimed to characterise: (1) the 

distribution of OC in different physical fractions of TD5 and TD7 amended with woodchips 

after 2.5-year field trial; and (2) the major forms of OC in the tailings, with the purpose to 

explore possible mechanisms of OC stabilisation in tailings, in response to exogenous 
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organic amendment. The information about physical and chemical forms of OC in tailings 

could help us formulate effective amendment strategies to enhance OC stabilisation and the 

formation of technosols for successful phytostabilisation. 

 

Table 3-1 Major minerals in TD5 and TD7, reproduced from Forsyth (2014) 

Minerals ( > 2 % by weight) Formulae TD5 TD7 

Quartz SiO2 √ √ 

Amphibole SiO4 √ √ 

Plagioclase feldspar NaAlSi3O8-CaAl2Si2O8 √ √ 

Talc Mg3Si4O10(OH)2  √ 

Chlorite Mg6Si4O10(OH)8 √ √ 

Muscovite KAl2(Si3Al)O10)(OH)2 √ √ 

Microcline KAlSi3O8 √  

Pyrite FeS2 √ √ 

Ankerite Ca(Fe2+(CO3)2) √  

Ankerite ± sphalerite Ca(Fe2+(CO3)2) ± ZnS  √ 

Dolomite CaMg(CO3)2 √ √ 

Calcite CaCO3 √  

Gypsum CaSO4(H2O)2  √ 

Goethite α-Fe3+O(OH) √ √ 

Most likely trace apatite and secondary phosphates Ca10(PO4)6(OH)2 √ √ 

 

3.2 Materials and methods 

3.2.1 Field column incubation 

The Cu-Pb-Zn tailings were collected from the top 1 m of the MIM Tailings TD5 and 

TD7 in late 2009. The tailings were excavated in bulk, air-dried, crushed and mixed 

thoroughly on site before use. A column (1 x 1 x 1 m bulk container) trial was established at 

the end of 2009, located at the edge of the TD5. The TD5 and TD7 tailings were thoroughly 

mixed with woodchips (WC) (namely TD5+WC, TD7+WC) (C: N ratio of 98) at the rate of 
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20 % (v/v), and incubated in the columns under field conditions. Woodchips applied in the 

field column were from road tree pruning, with particle size ranging from 5-10 cm. Both the 

control (tailings without WC, namely TD5, TD7) and the WC amended tailings were 

replicated in three columns, which were randomly laid out and blocked according to the 

tailings type. Treatments included TD5, TD5+WC, TD7 and TD7+WC (Fig. 3-1). 

The climate of the incubation site is defined as subtropical and semi-arid, with generally 

warm to hot temperatures (17-32 °C), an annual pan evaporation of 2800 mm, and an 

average rainfall of 465 mm (Bureau of Meteorology Australian Government, 2015). Rainfall 

is highly variable between the wet season (during November to February) and dry season. 

The tailings and the amended tailings from each column were sampled in April 2012 

at 0-10 cm depth from the treatments described above. Each sample consisted of a 

composite of 5 cores taken randomly from the central area (about 5-10 cm from the edge) 

of each column. All the samples were dried at 40 °C and sieved less than 2 mm for 

physicochemical analysis and OC fractionation. 

 

 

Fig. 3-1 Cu-Pb-Zn tailings (TD5) field incubated tailings under semi-field conditions at TD5 

east of Mount Isa Mines, northwest Queensland, Australia. The treatments were TD5 

Control(a), TD5+WC (b), TD7 (c), and TD7+WC (d) (Source: Longbin Huang, The 

University of Queensland). 

 

3.2.2 Physicochemical analysis  

The pH and electrical conductivity (EC) (1: 5 tailings: water) in the water-extracts of the 

samples were measured using a pH electrode (TPS 900-P) and an EC electrode (TPS 2100), 

respectively. Cation exchange capacity (CEC) was quantified using the silver thiourea 
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method (Pleysier and Juo, 1980). Water holding capacity (WHC) was measured using the 

method as described by Wang et al. (2003). Total elemental concentrations were 

determined by means of inductively coupled plasma optical emission spectroscopy (ICP-

OES, Varian) after aqua-regia digestion (Li et al., 2013). A standard reference soil material 

(SRM 2711a Montana soil, National Institute of Standards, USA) was used to verify the 

accuracy of element determinations with recoveries of 90 ± 10%. 

Water-soluble organic carbon (WSOC) was extracted by shaking samples with 

deionised water at a ratio of 1: 2 (w/v) on an end-over-end shaker at 20 °C for 1 h (Tao and 

Lin, 2000). The suspension was then centrifuged at 4000 rpm for 10 min and passed through 

0.45 μm pore filter before WSOC determined using the dichromate digestion method 

(Bremner and Jenkinson, 1960). Concentrations of water-soluble elements were analysed 

with ICP-OES after shaking 1 g samples in 50 ml deionised water for 1 h (Dold, 2003).  

Microbial biomass (MBC) in the samples was determined using the chloroform 

fumigation and extraction method. Briefly, aliquots of fresh samples were fumigated with 

chloroform vapour in darkness for 24 h. Both fumigated and unfumigated samples were 

extracted with 0.25 M potassium sulphate and filtrated through Whatman® No. 42 filter paper. 

Soluble OC in the extracts was determined using the dichromate digestion method (Bremner 

and Jenkinson, 1960). MBC was calculated as the difference of OC between fumigated and 

unfumigated samples with a conversion factor KEC as 0.38 (Vance et al., 1987). 

3.2.3 Analysis of iron and aluminium (hydr-) oxides 

Dithionite-citrate-bicarbonate (DCB) extractable Fe and Al (Fed, Ald) were determined 

in the tailings samples for crystalline Fe oxides, Al substituted in crystalline Fe oxides and 

amorphous Fe and Al. Acid-oxalate extractable Fe and Al (Feo, Alo) were determined 

following the method as described by Rayment and Lyons (2011), mainly as estimates of 

amorphous and poorly crystalline minerals (e.g., ferrihydrite and imogolite). The difference 

between DCB and acid-oxalate extractable Fe represents crystalline Fe (Fed-o). Fe and Al 

concentrations in the extracts were measured using ICP-OES. 
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3.2.4 OC fractionation and analysis  

Tailings was fractionated following the procedure as shown in Fig. 3-2. Aggregates and 

further fractionation was undertaken using the modified method of Six et al. (2002). In brief, 

150 g of air-dried samples were submerged in deionised water on a 250 μm sieve for 5 

minutes to allow slaking of water-unstable aggregates, which were separated through a nest 

of sieves (250 μm and 53 μm) using wet sieving. The sieving was carried out manually by 

moving the sieves up and down 3 cm at the rate of 50-time in 2 minutes. Floating material 

was collected with a syringe for weight and OC measurement. As weights of this fraction for 

each sample was negligible compared to total weight (accounting for 0-0.5 %), they were 

not taken into consideration for mass and OC recovery calculation in the present study. 

Fractions retained on each sieve were gently back-washed into 500 ml polyethylene 

evaporation containers and oven dried at 50-60 °C for 15 h. The mass of silt+clay particles 

(< 53 μm) was calculated by the differences between total mass of the sample used for 

fractionation and the aggregates collected.  

Mean weight diameter (MWD) was calculated using the Eq. 3-1, where xi is the mean 

diameter of any particular size range of aggregates separated by sieving, wi is the weight of 

aggregates in that size range as a fraction of the total dry weight of the tailings used, and n 

is the number of aggregate classes separated. 𝑀𝑊𝐷 = ∑ 𝑥𝑖  𝑤𝑖𝑛𝑖=1  (Eq. 3-1) 

Following initial separation, a 15 g sub-sample of macroaggregate (> 250 μm) and 

microaggregate (53-250 μm) fractions were dispersed in 0.5 % sodium hexametaphosphate 

using a mechanical end-over-end shaker for 15 h at the speed of 30 rpm at room 

temperature (22 ± 1 °C). The dispersed macroaggregate and microaggregate fractions were 

further separated by passing the fractions through 53 μm sieve. OC in the intra-

macroaggregate particulate fraction (> 53 μm) (macro-iPOC) was regarded as unprotected 

OC in the tailings; and that in the intra- microaggregate particulate fraction (> 53 μm) (micro-

iPOC) was regarded as physically protected OC in the tailings; and the OC in intra-

macroaggregate silt+clay fraction (< 53 μm) (macro-iMOC), intra-microaggregate silt+clay 
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fraction (< 53 μm) (micro-iMOC), and silt+clay particles (< 53 μm) (oMOC) were all regarded 

as mineral associated OC (MOC).  

The OC and N concentrations in the bulk tailings and each fractions were determined 

by dry-combustion with a LECO CNS-2000 analyser (LECO Corporation, MI, USA) after 

acid-removal of inorganic carbon (You et al., 2014. Refer to Appendix A). There was a mean 

of 99.7 % mass recovery in aggregate dispersion and fractionation procedure. Recovery of 

OC ranged from 85.5 to 110.6 % (mean, 96.6 %) in macroaggregate dispersion and 

fractionation, and ranged from 84.8 to 111.1 % (mean, 96.9 %) in microaggregate dispersion 

and fractionation, respectively. 

 

Fig. 3-2 Organic carbon (OC) fractionation procedure in the tailings 

 

3.2.5 Statistical methods 

Primary data processing was performed using Microsoft® Excel. One-way analysis of 

variance (ANOVA) was carried out for evaluating the significant differences among the 

treatments after normality check. Two-way ANOVA was performed to test significant 

differences between the types of tailings and effects of woodchips. Means were compared 

using the least significant differences (LSD) test at P = 0.05. Pearson linear correlations 

among physicochemical properties, mineral composition, and OC fractions were also 
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conducted. All statistical analyses were conducted using the SPSS software package (SPSS 

Statistics 20.0, Chicago, IL, USA).  

3.3 Results  

3.3.1 General physicochemical properties in the tailings 

General physicochemical properties of the tailings in all the treatments were 

summarised in Table 3-2. Both TD5 and TD7 were finely-textured, with 11.2-13.3 % particles 

in macroaggregate and 49.8-54.8 % particles were in microaggregate. They were slightly 

acid to neutral (6.7-6.9) with extremely low levels of TOC, TN, CEC, WHC and WSOC, 

especially in TD5. Microbial communities in these two tailings were with low MBC, less than 

16 mg kg-1, accounting for 0.5 % of TOC in both TD5 and TD7. Both were sulphidic saline 

tailings, containing high levels of salts, and the levels of EC were greater than 3 mS cm-1. 

The salinity problem was even more severe in TD7 with the EC as high as 5.4 mS cm-1. 

They were also with high levels of total Cu, Pb and Zn, which were above the ecological 

investigation limits (Mendez and Maier, 2008), especially in TD7. 

Application of WC brought about significant changes of some physicochemical 

properties in the WC amended TD5 and the WC amended TD7 after 2.5-year field incubation. 

TOC significantly increased from 1.5 to 4.3 g kg-1 in the WC amended TD5 compared to 

TD5. Similarly, TOC increased from 3.9 to 10.5 g kg-1 in the WC amended TD7 compared 

to TD7. Moreover, significant improvements of TN (P < 0.01), WHC (P < 0.001), CEC (P < 

0.01), WSOC (P < 0.001), and a greater abundance of macroaggregate (P < 0.01) and MWD 

(P < 0.01) were observed in the WC amended TD5 compared to TD5. MBC in the WC 

amended TD5 also slightly increased. However, this increase was not statistically significant. 

Similarly, all the properties mentioned above were improved significantly in the WC 

amended TD7 compared to TD7.  
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Table 3-2 Selective physicochemical properties in TD5 and TD7 with woodchips application 

Treatments pH EC  

(m

S 

cm-

1)a 

CEC  

(cmo

l+ kg-

1)b 

WH

C 

(%)c 

MBC 

(mg 

kg-

1)d 

C:N Total (g kg-1) Water Soluble (mg kg-1) Aggregates 

TOC
e 

TNf Cu Pb Zn S Fe C S Cu Zn Macro

aggre

gate(

%) 

Micro

aggre

gate(

%) 

MW

D(m

m)g 

TD5 Mean  6.69α 3.4
α 

0.79
α 

19.2
α 

13.0
α 

13.7 1.5α 0.11
α 

1.1
α 

1.9
α 

4.1α 47
α 

91 5.1α 238α 0.12
α 

18.4
α 

11.2α 49.8α 0.21
α 

S.D.h 0.04 0.3 0.27 1.2 1.8 2.4 0.0 0.02 0.1 0.1 0.3 4 6 2.0 125 0.01 2.3 2.4 4.0 0.03 

TD5

+W

C 

Mean  6.66α 4.5
αβ 

1.66
α 

21.9
β 

18.3
αβ 

13.3 4.3β 0.34
β 

1.0
α 

1.9
α 

3.9α 46
α 

88 48.8
β 

601β 0.33
β 

18.5
α 

19.2β 31.1β 0.28
β 

S.D. 0.08 0.8 0.41 0.7 6.4 2.9 0.4 0.11 0.1 0.2 0.4 5 4 19.5 113 0.01 2.6 2.4 1.5 0.03 

TD7 Mean  6.86β 5.4
β 

1.61
α 

29.1
γ 

15.9
α 

12.5 3.9β 0.31
β 

1.6
β 

3.8
β 

11.8
β 

75
β 

105 18.0
αβ 

1016
γ 

0.16
α 

20.5
α 

13.3α 54.8γ 0.24
αβ 

S.D. 0.04 0.1 0.42 1.0 6.4 0.9 0.4 0.05 0.2 0.4 1.6 9 9 3.1 146 0.02 2.5α 1.5 1.1 0.01 

TD7

+W

C 

Mean  6.52γ 8.7
γ 

3.85
β 

32.8
δ 

24.8
β 

18.8 10.5
γ 

0.57
γ 

1.5
β 

3.1
β 

13.6
β 

77
β 

101 83.4
γ 

2321
δ 

0.37
β 

85.2
β 

29.6γ 29.4β 0.39
γ 

S.D 0.02 1.2 1.17 1.6 5.9 1.4 1.2 0.10 0.1 1.0 1.1 3 5 12.7 514 0.04 12.0 5.2 2.4 0.05 

a Electrical conductivity. b Cation exchange capacity. c Water holding capacity. d Microbial biomass carbon. e Total organic carbon. f Total 

nitrogen. g Mean weight diameter. h Standard deviation. Values are means (n = 3); values labelled with letters ‘α, β, γ and δ’ within the 

column indicate significant differences among the treatments at the level of P < 0.05. 
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However, the WC application had some negative impacts on tailings physicochemical 

properties. For example, EC was significantly increased from 3.4 to 4.5 mS cm-1 in the WC 

amended TD5 compared to TD5. In addition, water-soluble S and Cu significantly increased 

from 238 to 601 mg kg-1 (P < 0.01) and 0.12 to 0.33 mg kg-1 (P < 0.01) respectively in the 

WC amended TD5 compared to TD5. In the WC amended TD7, pH decreased from 6.86 to 

6.52 compared to TD7. In addition, the WC amended TD7 became more saline with EC 

increased to 8.7 mS cm-1. Significant amounts of water-soluble S, Cu and Zn were released 

in the WC amended TD7 compared to TD7. Specifically, water-soluble S and Cu almost 

doubled in the WC amended TD7 compared to TD7. Water-soluble Zn in the WC amended 

TD7 was as high as 85.2 mg kg-1, 3-fold greater compared to the level in TD7. 

 

3.3.2 Chemical forms of iron (Fe) and aluminium (Al) (hydr-) oxides 

There were several types of Fe and Al containing minerals in both TD5 and TD7 tailings 

(Table 3-1), which present in different forms (Table 3-3). Both TD5 and TD7 tailings 

contained similar amounts of crystalline Fe (Fed-o) and amorphous Fe (Feo). The amorphous 

Fe (Feo) in the tailings raged from 4.5 to 5.2 g kg-1, without significant differences among all 

the treatments. Both amorphous Fe and crystalline Fe were abundant in TD5 and TD7, with 

Feo/Fed ratio ranging from 0.43 to 0.46. The WC treatment did not change the relative 

distribution of amorphous and crystalline Fe in the WC amended TD5, while in the WC 

amended TD7, there was significantly increased amount of crystalline Fe, and Feo/Fed 

decreased from 0.48 to 0.27 (P < 0.01) (Table 3-3).  

Overall, Al contents in both Alo and Ald were significantly greater in TD7 compared to 

TD5. The majority of Al in TD5 was in the form of amorphous Al (Alo) (0.25 g kg-1), with 

Alo/Ald ratios around 1. Levels of Ald increased following WC application with the Alo/Ald ratios 

decreased from 0.71 in the TD7 to 0.53 in WC amended TD7, suggesting the increased 

levels of crystalline Al in latter treatment compared to the former. 
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Table 3-3 Iron and aluminium (hydr-) oxides in TD5 and TD7 with woodchips application 

Treatment

s 

Feo 

(g kg-1) 

Fed 

(g kg-1) 

Fed-o 

(g kg-1) 

Feo/Fed Alo 

(g kg-1) 

Ald 

(g kg-1) 

Alo/Ald 

TD5 4.5(0.7)
a 

10.0(0.9)
a 

5.5(1.5)a 0.46(0.10)
a 

0.25(0.05)
a 

0.26(0.01)
a 

1.00(0.22)
a 

TD5+WC 5.2(0.5)
a 

12.0(0.5)
a 

6.9(0.5)a 0.43(0.03)
a 

0.25(0.00)
a 

0.23(0.01)
a 

1.06(0.08)
a 

TD7 4.7(0.3)
a 

9.8(0.6)a 5.1(0.3)a 0.48(0.01)
a 

0.45(0.03)
b 

0.64(0.01)
b 

0.71(0.04)
b 

TD7+WC 5.0(0.2)
a 

18.3(2.5)
b 

13.3(2.3)
b 

0.27(0.03)
b 

0.43(0.05)
b 

0.81(0.06)
c 

0.53(0.07)
b 

Values are means (n = 3) with standard deviation in brackets; values labelled with letters 

‘a, b, c, d’ within the column indicate significant differences among the treatments at the 

level of P < 0.05. 

 

3.3.3 OC concentrations and C: N ratios in the tailings fractions 

The concentrations of OC and C: N ratios in each OC fractions were shown in Table 

3-4. Background OC was detected in the unamended TD5 and TD7 tailings. In TD5 samples, 

OC concentrations were generally low in all of the fractions, ranging from 1.8 to 3.7 g kg-1. 

The C: N ratios in these fractions were variable. Specifically, in TD5, the C: N ratio of the 

particulate fraction associated with macroaggregates (Macro-iPOC) was the highest (13.9). 

C: N ratios were lower in mineral associated fractions (4.4-6.1), including both Macro-iMOC 

and Micro-iMOC fractions in TD5. In the TD7 tailings, the OC concentrations in all the 

fractions were also low, ranging from 2.9 to 7.0 g kg-1; the OC fraction with the greatest C: 

N (14.6) was also found in Macro-iPOC fraction. Comparatively, the C: N ratios (9.2-10.9) in 

TD7 fractions of Macro-iMOC and Micro-iMOC were greater than those in the same fractions 

in TD5 (4.4-6.1) (P < 0.01). 

In the WC amended TD5, OC concentrations in all the fractions significantly increased. 

For example, the OC concentration in Macro-iPOC in TD5+WC was 4-fold (12.1 g kg-1) 

compared to TD5 (P < 0.001). C: N ratios of this fraction in TD5+WC (33.0) were also 
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significantly higher than those in TD5 (13.9) (P < 0.05). Similar findings were observed for 

Micro-iPOC fraction between TD5+WC and TD5. In the mineral associated fractions, OC 

concentrations in both Macro-iMOC and Micro-iMOC slightly increased in TD5+WC (3.1-5.6 

g kg-1) compared to those in TD5 (2.3-3.7 g kg-1). C: N ratios in these two fractions were not 

different between the treatments of TD5 and TD5+WC.  

 

Table 3-4 OC concentrations and C: N ratios in the tailings fractions in TD5 and TD7 with 

woodchips application.  

Treat

ments 

Macro-iPOC Micro-iPOC Macro-iMOC Micro-iMOC 

OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N 

TD5 3.2(0.3)a 13.9(5.7)a 1.8(0.1)a 7.3(1.1)a 2.3(0.3)
a 

4.4(1.6)a 3.7(0.4)a 6.1(1.4)a 

TD5+

WC 

12.1(0.7)b 33.0(6.6)b 6.0(0.1)b 17.7(1.8)
b 

3.1(0.1)
a 

4.1(0.9)a 5.6(0.5)b 5.3(0.2)a 

TD7 3.6(0.3)a 14.6(1.1)a 2.9(0.2)a 7.8(0.6)a 7.0(0.9)
b 

10.9(2.4)
b 

6.0(0.2)b 9.2(1.2)b 

TD7+

WC 

37.3(10.3)
c 

40.1(11.4)
b 

6.0(0.4)b 10.6(2.0)
c 

9.4(0.9)
c 

9.9(0.9)b 10.0(0.5)
c 

10.4(1.1)
b 

Values are means (n = 3) with standard deviation in brackets; values labelled with letters 

‘a, b, c, d’ within the column indicate significant differences among the treatments at the 

level of P < 0.05. 

 

The WC application also significantly increased OC concentrations in all the fractions 

in TD7+WC compared to TD7. The Macro-iPOC fraction in the TD7+WC contained the 

highest OC concentration (37.3 g kg-1) and C: N ratio (40.1), significantly greater compared 

to respective fraction in TD7 (P < 0.001). The OC concentration in Micro-iPOC fraction in 

TD7+WC doubled compared to the respective fraction in TD7. The C: N ratio in this fraction 

was also significantly greater in TD7+WC compared to TD7 (P < 0.05) Furthermore, OC 

concentrations in Macro-iMOC and Micro-iMOC in the TD7+WC increased significantly (9.4-
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10.0 g kg-1) compared to the TD7 (6.0-7.0 g kg-1), but with no effect on C: N ratios in these 

two fractions.  

In both TD5+WC and TD7+WC, C: N ratios were highest in unprotected OC (Macro-

iPOC) (33.5-40.1), followed by physically protected OC (Micro-iPOC) (10.6-17.7) and 

mineral associated OC (Macro-iMOC and Micro- iMOC) (4.1-10.9). 

 

3.3.4 OC distribution in the tailings fractions  

The OC content in each of the OC fractions was calculated based on OC 

concentrations and mass aggregate distribution (%) of each fraction (Fig. 3-3). The pattern 

of OC distributed in each fraction and the contributing mechanisms to OC stabilisation in 

these tailings (TD5 and TD7) differed from each other.  

Generally, OC contents in the unprotected fraction of Macro-iPOC (0.18-0.19 g kg-1) 

were extremely low in both TD5 and TD7, accounting for 4.7-12.8 % of TOC in these tailings 

(Fig. 3-3). The OC stored in this fraction was significantly increased by the addition of WC 

to as much as 0.85 and 4.11 g kg-1 in the TD5+WC and TD7+WC, respectively, accounting 

for 19.6 % and 38.5 % of TOC in these two tailings.  

The physically protected OC (Micro-iPOC) (0.60-0.73 g kg-1) was low in TD5 and TD7, 

accounting for 47.8 % and 15.8 % of TOC in these tailings, respectively. In TD5+WC and 

TD7+WC, the physically protected OC (Micro-iPOC) increased to 1.42 and 1.45 g kg-1, 

accounting for 33.6 % and 13.9 % of the TOC, respectively. Physical protected OC was a 

major form of OC stabilised in both TD5 and TD5+WC. 

The mineral associated OC (MOC), sum of Macro-iMOC, Micro-iMOC and oMOC, in 

TD5 was as low as 0.11-0.32 g kg-1 in each of the fractions and a combined total of 0.60 g 

kg-1. Addition of WC significantly increased the OC in TD5+WC in form of organo-mineral 

complexes, which appeared in Macro-iMOC (0.38 g kg-1) and Micro-iMOC (0.98 g kg-1), 

particularly in the latter. Overall, MOC is a dominant form of the TOC (45.3 %) in TD5+WC, 

compared to the physically protected OC (33.6 %).  
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The MOC in TD7 was considerably higher at 0.53-1.90 g kg-1 in each of the fractions 

(a combined total of 3.00 g kg-1). The addition of WC in TD7 significantly increased OC 

content in the fractions of Macro-iMOC (1.70 g kg-1), Micro-iMOC (0.90 g kg-1) and oMOC 

(2.21 g kg-1) (P < 0.001). Total MOC increased to 4.82 g kg-1 in TD7+WC, accounting for 

45.9 % of the TOC in this treatment. 

 

 

Fig. 3-3 OC content as non-protected OC (Macro-iPOC), physically protected OC (Micro-

iPOC) and mineral associated OC in macroaggregate (Macro-iMOC), microaggregate 

(Micro-iMOC) and silt+clay particles (oMOC) in TD5 and TD7 with woodchips application. 

Values are means (n = 3); error bars indicate standard deviations; the letters ‘a, b, c, d’ 

above each OC fractions indicate significant differences among the treatments at the level 

of P < 0.05. 
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As shown in Fig. 3-4, distribution of OC in different fractions indicated that majority of 

the OC (61.5-95.3 %) was either physically protected in microaggregate or mineral 

associated in all the tailings. Application of WC in both TD5 and TD7 enhanced OC in a non-

protected form (Macro-iPOC), which could be further decomposed. Physically protected OC 

in microaggregate (Micro-iPOC) was the most important component (47.8 %) of TOC in TD5 

compared to the mineral associated OC (39.4 %). The proportion of MOC was as high as 

45.3-77.3 % of TOC in TD5+WC, TD7 and TD7+WC. Overall, physically protected OC had 

greater contribution in TD5 and TD5+WC compared to the respective fraction in TD7 and 

TD7+WC.  

 

 

Fig. 3-4 Distribution (%) of Macro-iPOC, Micro-iPOC and MOC (sum of Macro-iMOC, 

Micro-iMOC and oMOC) in TD5 and TD7 with woodchips application. Values are means (n 

= 3); error bars indicate standard deviations. 

 

We also found closely positive relationship between the amounts of OC stabilised in 

the tailings and contents of Fe and Al (hydr-) oxides in the tailings (Table 3-5). Specifically, 

the crystalline Fe, and both crystalline and amorphous Al had significantly positive 

correlations with MOC in the tailings (P < 0.01). 
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Table 3-5 Correlations among OC fractions and Fe and Al (hydr-) oxides in TD5 and TD7 

with woodchips application. 

OC fractions Alo Feo Ald Fed-o 

TOC  0.51 0.31 0.76** 0.86** 

Micro-iPOC -0.12 0.45 0.10 0.65* 

MOCa 0.75** 0.25 0.89** 0.72** 

Values followed with ‘** and *’ indicate significance of correlations at the levels of P < 0.01 

and P < 0.05 respectively. 

 

3.4 Discussion 

The importance of TOC as an overall indicator of soil quality has been widely 

recognised (Anderson, 1977; Bendfeldt et al., 2001). Increasing TOC in tailings is also a 

critical factor in the process of soil development toward biogeochemically functional 

technosols supporting sustainable plant communities (Li and Huang, 2015). TOC (1.5-3.9 g 

kg-1) in the TD5 and TD7 tailings without organic amendment was close to the levels of 

surface (0-10 cm) desert soils (0.5-3.5 g kg-1) (Charley and West, 1975). As well as many 

other limiting physicochemical factors, the low levels of TOC in the tailings make it difficult 

for colonisation of microorganisms and thus limiting the biogeochemical processes to 

sustain productive and healthy plant communities (Harris, 2009). The present study showed 

that the addition of exogenous organic matter (e.g., woodchips of local native trees) rapidly 

and significantly increased the TOC in the Cu-Pb-Zn tailings. The rate of stabilised OC 

(physically protected and mineral associated) increase in the tailings in the present study 

appeared to be faster (0.5-1.5 g kg-1 y-1) than those formed under naturally rehabilitated 

vegetation cover in glacial till mine spoil in a semi-arid climate and those stabilised at an 

early stage of ecosystem development (Anderson, 1977; Crews et al., 2001) and the re-

established forest (Richter et al., 1999) (< 0.1 g kg-1 y-1). Consistent with previous studies 

(Bendfeldt et al., 2001; Shukla et al., 2004), in the present study, significant positive 

relationships were observed between TOC and nutrient availability (TN, R2 = 0.93, P < 0.01, 
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n = 12), aggregation (MWD, R2 = 0.88, P < 0.01, n = 12), water relations (WHC, R2 = 0.82, 

P < 0.01,, n = 12), chemical buffering capacity (CEC, R2 = 0.90, P < 0.01, n = 12) and 

microbial properties (MBC, R2 = 0.64, P < 0.05, n = 12) (Table 3-2). Thus, compared to 

unamended tailings, the WC amended tailings, including both TD5+WC and TD7+WC, with 

greater TOC (4.5-10.5 g kg-1) are likely to be less deficient in N and with greater water and 

nutrient retention capacity. The percentage of macroaggregate in both TD5 and TD7 (< 15 %) 

were significantly increased to (19.2-29.6 %) with WC application, getting close to those 

found in natural soils (> 30 %) (Bird et al., 2002). More macroaggregates and pores in these 

amended tailings will allow improved water and gas movement (Tisdall and Oades, 1982).  

Stimulating aggregation by organic amendments, especially microaggregation, is 

expected to contribute to OC stabilisation in the tailings. Based on the hierarchy aggregation 

model (Tisdall and Oades, 1982), microaggregation of mineral particles largely depends on 

binding agents, such as amorphous Fe and Al oxy/hydroxides, and organic molecules 

probably derived from resistant fragments of roots, hyphae, and bacterial cells. 

Macroaggregation of mineral particles largely depends on plant roots and hyphae, mainly 

comprised of undecomposed OC (Caesar-TonThat et al., 2008). The physically protected 

OC was one major form of OC stabilised in TD5 and TD5+WC, accounting for 33.6-47.8 % 

of TOC. Relative contribution of this fraction is almost 10-fold of those reported in natural 

soils, but OC content (1.5 g kg-1) in this fraction is much lower than those found in natural 

soils (von Lützow et al., 2006; Wiesmeier et al., 2012). It is widely recognised that both plant 

and microbes in tailings are stressed by the unfavourable physicochemical conditions 

(Santibáñez et al., 2008). The binding agents to aggregate tailings particles may be more 

related to the presence of secondary minerals such as Al/Fe-oxyhydroxides, and less to 

organic binding compounds produced by roots and microbes. In addition, increased acids 

and free cations from mineral weathering in the tailings may result in the dissociation of 

aggregates (Kögel-Knabner et al., 2008). Therefore, the introduction of pioneer plant 

species may be required to further enhance aggregation and OC stabilisation processes in 

the tailings, through improved abundance and activities of associated rhizosphere microbial 
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communities and self-mulching of organic compounds with charged surface from plant litter 

and root exudates. 

Isotope studies showed that the organo-mineral complexes are the dominant form of 

stable OC below the A horizon in many soil types (Six et al., 2000), which were mainly 

associated with polymeric Fe and Al hydroxide through sorption, entrapment or 

complexation (Mikutta et al., 2006; von Lützow et al., 2006). The relative distribution of the 

OC among various physical fractions appeared different between the weathered (TD5) and 

fresh (TD7) tailings, due to their differences in mineralogy and geochemistry. The distribution 

of OC in various fractions in the WC amended tailings may be the combined effects of 

organic matter decomposition, aggregation, and organo-mineral interactions. Generally, WC 

application increased the formation of stabilised OC more in the TD7 (fresh) than TD5 

(weathered), especially in the mineral associated form (Table 3-4). In the present study, 

positive relationships were found among amorphous Al (Alo) and crystalline Fe (Fed-o) and 

MOC, suggesting that Fe, Al (hydr-) oxides in the tailings are important in the formation of 

organo-mineral complexes and associated OC stabilisation (Denef et al., 2002; Duiker et al., 

2003). In soils, crystalline Fe and Al oxides are prevalent (Richards et al., 2009), contributing 

to most of the OC in mineral associated fractions. In the tailings, we also found crystalline 

Fe and Al oxides also significantly contributed to MOC. The increasing crystalline Fe and Al 

in the WC amended tailings (Table 3-3), particularly in TD7+WC, might play more important 

roles in OC stabilisation in latter phase. In addition to Fe and Al (hydr-) oxides, the difference 

of levels and distribution of MOC between TD5 and TD7 may also have been influenced by 

the Ca/Mg minerals (Jastrow et al., 2007), reactive surface ratio (CEC, clay content), pH 

conditions (Carrasco et al., 2009) or abundance of metal ions (e.g., Cu2+, Zn2+) (Manceau 

and Matynia, 2010), which need further invesitgation.  

We found significant decreases of C: N ratios in both physically protected OC and 

organo-mineral complexes compared to those non-protected form (Table 3-3). The findings 

are consistent with previous observations (Plaza et al., 2013). This might result from the 

preferential enrichment of N-containing compounds (e.g., those of protein, microbial by-

product etc.) (Wang and Lee, 1993) bound to tailings particles. N-rich organic materials (e.g., 
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crop residues, compost, leguminous plant biomass etc.) may be used partially or wholly 

(depending on their local availability) to enhance efficacy of OC stabilisation in tailings. 

Organic materials with relative high N and density of functional anion groups may be 

advantageous to stimulate organo-mineral interactions in tailings, such as sugarcane 

residue and compost (Yuan et al., 2014).  

In addition to N-level in the organic amendment used in the tailings, the low microbial 

biomass may have limited the decomposition of exogenous organic matter and thus the 

formation of stabilised OC associated with aggregates. The relative effectiveness of different 

organic materials in stimulating soil development of the tailings, in relation to their effects on 

microbial community abundance, composition and functions, will be investigated later in this 

thesis (see Chapter 5 and 7). 

As sulphidic Cu-Pb-Zn tailings, both TD5 and TD7 contain abundant sulphide minerals, 

mainly in the form of pyrites (Forsyth, 2014). The content of pyrite in TD5 (1-2 % w/w) is 

much lower than that of TD7 (12-15 %), as the former is much older (nearly 40-year old 

since deposition) compared to the latter (< 2 years) (Forsyth, 2014). Oxidation and co-

dissolution of reactive minerals (e.g., galena, sphaleriete, chalcopyrite etc.) are common 

phenomenon in sulphidic tailings, resulting in acidification and/or release of soluble salts 

(Aguilar et al., 2004). In the present study, WC application increased the levels of soluble 

salts (EC, water-soluble S) and heavy metals (water-soluble Cu and Zn) in the WC amended 

TD5 and TD7. Salts may move to the surface of tailings via water evaporation capillary rise 

although due to the woodchips addition improved the structure, macropore formation and 

thus the water infiltration water conductivity. In addition, the considerable increase of salts 

and heavy metals suggested further mineral weathering and pyrite oxidisation were 

enhanced by the WC treatment, especially in the fresh tailings (e.g., TD7). The enhanced 

geochemical reactions by organic amendments may be exploited to further enhance the 

weathering of tailings minerals and thus consolidate the degree of hydrogeochemical 

stability in the early phase of soil formation, leading to an improved chance of 

biogeochemical rehabilitation in the later phase. 
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3.5 Conclusions 

In summary, organic amendment (woodchips) rapidly increased the amount of 

stabilised OC in neutral Cu-Pb-Zn tailings regardless their weathering stages, which is 

critical to the technosols formation and the associated rehabilitation of physical structure 

and biogeochemical processes in the long term. The majority of OC (61.5-80.3 %) was either 

physically protected through aggregation or in the form of organo-mineral complexes in the 

amended tailings. Physically protected OC was a dominant form of OC in TD5 and mineral 

associated OC was the dominant form of OC in TD7 and WC amended tailings (45.3-77.3 %). 

The Fe and Al (hydr-) oxides in tailings contributed significantly to OC stabilised in mineral 

associated fractions. In addition, OC stabilised in both tailings was enriched with N. Organic 

amendments with high N and density of surface functional groups (such as sugarcane mulch, 

compost, legume biomass, etc.) may be advantageous in enhancing OC stabilisation and 

aggregation in tailings, compared to organic amendment with very high C: N ratios (such as 

woodchips of native trees). This could be investigated in future research.  
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Chapter 4 Plant colonisation stimulated organic carbon stabilisation and microbial 

biomass and functions in neutral and weathered Cu-Pb-Zn tailings from a long-term 

field trial  

4.1 Introduction 

The success of phytostabilisation of sulphidic tailings depends on the development of 

plant-tolerable root zone conditions in the tailings profiles, specifically a high degree of 

hydrogeochemical stability and biogeochemical functionality (Huang et al., 2012; Li and 

Huang, 2015). In natural and cultivated soils, soil organic matter is regarded as an overall 

indicator of soil quality (Lal, 2009). As an essential constituent in the soil matrix, soil organic 

matter plays crucial roles in biological (provision of substrate and nutrients for microbes and 

plants) (Alguacil et al., 2011a), chemical (buffering and pH changes; chelation of metals) 

(Park et al., 2011) and physical (aggregation and stabilization of soil structure) (Abiven et 

al., 2009) properties in soils. Tailings, in contrast, are dominated by residue minerals and 

contain little organic matter in the profile (Lottermoser, 2010). Therefore, stimulating OC 

stabilisation is expected to rehabilitate the soil physical structure and biogeochemical 

functions (e.g., nutrients cycling) to support plants colonised in tailings (Huang et al., 2011).  

Without inputs, weathered tailings lack a proper physical structure, have only stressed 

microbial community and functions. They are also low in macronutrients (e.g., N, P, K) and 

high in soluble salts, and metals and metalloids (Mendez and Maier, 2007; Ye et al., 2002) 

for direct revegetation. Addition of exogenous organic matter (e.g., plant residue, biosolids, 

biochar, manure etc.) is a common practice to stimulate soil formation and improve the 

growth conditions for plants (Fellet et al., 2011; Munksgaard and Lottermoser, 2010). Our 

earlier findings suggest that, if plants were not introduced, OC was physically protected by 

organo-mineral interactions and aggregation in both weathered and fresh tailings (Chapter 

3) due to the electrostatic interactions between functional groups of organic matter and 

tailings mineral particles (Yuan et al., 2014; Zech et al., 1997). However, little is known 

whether the introduction of tolerant native plant species could stimulate OC stabilisation and 
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improve the physical structure, and microbial community and biogeochemical functions in 

the weathered and neutral Cu-Pb-Zn tailings.  

Previous studies also found that the introduction of tolerant native plant species as 

pioneer plants stimulated the development of heterotrophic bacterial communities (Li et al., 

2014), because plant roots can produce exudates and stimulate bacterial colonisation in the 

rhizosphere (Bais et al., 2006). Alternation of OC in tailings with plant colonisation is 

assumed to be different from those without plant cover. The recolonisation of rhizosphere 

bacterial communities may in turn stimulate biogeochemical processes and OC associated 

with tailings mineral particles through aggregation and organo-mineral interactions (Harris, 

2009; Six et al., 2006).  

The present study aims to provide a snap-shot analysis of the distribution of OC, 

microbial biomass and functions in weathered and neutral Cu-Pb-Zn mine tailings from a 

long-term (2.5-year) field trial under subtropical and semi-arid climatic conditions at Mount 

Isa, northwest Queensland, Australia. Native plant species were introduced into the tailings 

treatments with/without organic amendment to test the hypothesis that pioneer plants could 

stimulate microbial community development with associated functions recovery, and 

increase the OC stabilisation in aggregates and organo-mineral complexes.  

4.2 Materials and methods 

4.2.1 Experimental design and sampling 

Background information regarding the location and climatic conditions of experimental 

site was described previously (Li et al., 2014) and Chapter 3. The weathered and neutral 

Cu-Pb-Zn tailings from Tailings dam 5 (TD5) of Mount Isa Mine (MIM) were excavated in 

bulk, air-dried, crushed and mixed thoroughly on site before use. An appropriate volumes of 

the tailings was mixed with 20 % (v/v) woodchips (WC). The properties of WC were 

described in Chapter 3.2.1. Control (tailings only, TD5) and WC amended tailings (TD5+WC) 

were loaded into modified industry bulk containers (1 x 1 x 1 m dimension) in situ in 

November, 2009. Native plants (P) (Triodia pungens, Acacia chisolmii, Ptilotus exaltatus) 
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were introduced into 3 containers of each treatment, compared to 3 replicates of each 

treatment without plants introduction, forming 4 treatments in total: TD5, TD5+WC, TD5+P, 

and TD5+WC+P (Fig. 4-1). During incubation, no fertiliser was applied and regular irrigation 

watering (about once per week) was performed provided by drip-irrigation in the initial phase, 

with increasing intervals between watering later.  

Tailings and the amended/revegetated tailings from each column were sampled in April 

2012 at 0-10 cm depth from the treatments described above; each sample consisted of a 

composite of 5 cores taken randomly from the central area (about 5-10 cm from the edge) 

of each column. The fresh samples were sealed in plastic bags in the field and stored at 

4 °C for transporting to the laboratory for microbial analysis within 1 week after collection. 

For physicochemical analyses, subsamples were dried at 40 °C and sieved less than 2 mm 

prior to use. 

 

 

Fig. 4-1 View of field incubated tailings with treatments of TD5 (a), TD5+WC (b), TD5+P 

(c), and TD5+WC+P (d) at the time of sampling, in Mount Isa, northwest Queensland, 

Australia (Source: Longbin Huang, the University of Queensland). 

 

4.2.2 Physicochemical analysis 

Selected physicochemical properties were measured as described in Chapter 3.2.2. 

Total N in the water extract was determined colorimetrically with the salicylic acid method 

(Cataldo et al., 1975) following potassium persulphate digestion (Raveh and Avnimelech, 

1979).  
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4.2.3 Aggregates separation and OC fractionation  

Aggregates separation and OC fractionation were conducted as described in Chapter 

3.2.4. There was a mean of 99.6 % mass recovery in aggregate dispersion and fractionation 

procedure. Recovery of OC ranged from 85.5 to 115.3 % (mean, 104.1 %) in 

macroaggregate dispersion and fractionation, and ranged from 84.7 to 109.2 % (mean, 

96.9 %) in microaggregate dispersion and fractionation, respectively. OC contents in each 

fraction were calculated based on OC concentrations and mass distribution (%) of each 

fraction. 

4.2.4 Microbial biomass, organic matter mineralisation and enzyme assays  

Microbial biomass was extracted and microbial biomass carbon (MBC) was measured 

as describe in Chapter 3.2.2. Microbial biomass nitrogen (MBN) was calculated as the 

difference of ninhydrin nitrogen (Inubushi et al., 1991) between fumigated and unfumigated 

samples with a conversion factor KEN as 0.54 (Joergensen, 1996). Microbial quotient was 

calculated as the ratio between MBC and TOC.  

The nitrogen mineralisation rate was assessed using an incubation method (Chen et 

al., 2004). In brief, 50 g fresh tailings samples were incubated aerobically at 25 °C for 28 

days. Water loss from the tailings during incubation was adjusted with deionised water every 

two days. Subsamples were taken at day 0 and 28 after commencing incubation and 

extracted with potassium chloride (2M) for the analysis of mineral nitrogen, the sum of 

ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the extract. The net 

mineralisation rate was calculated from the difference of mineral N in the extracts of each 

incubated sample between day 28 and day 0 (Eq. 4-1). Concentrations of NH4-N in extracts 

were measured with the indophenol blue method (Verdouw et al., 1978) and NO3-N with the 

salicylic acid colorimetric method (Cataldo et al., 1975). 

Net mineralisation rate = 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑁 (𝑑𝑛)−𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑁 (𝑑0)𝑛  Eq. 4-1 

Where n is the days for incubation, and dn indicate the mineral N at nth day. D0 indicate 

mineral N at day 0.  
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Activities of 4 soil enzymes (dehydrogenase, invertase, urease, and neutral 

phosphatase) were measured in this study with fresh samples. Dehydrogenase activity was 

measured using the incubation method followed the method of Serra-Wittling et al., (1995). 

In brief, 2 g of samples was incubated with 2 ml of 0.5% 2,3,5-triphenyl-tetrazolium chloride 

(TTC) and 2 ml of Tris–HCl buffer (0.5 M, pH 7.6) for 2 h at 30 °C in the dark. Sample 

sterilised by autoclaving are used as a paired blank. Immediately after incubation, the 

triphenyl formazan (TPF) formed was extracted with 100 ml of methanol by shaking 

vigorously for 1 min. TPF was measured spectrophotometrically at 485 nm using methanol 

as the blank. Dehydrogenase activity was calculated as the difference between unsterilised 

and sterilised samples and expressed as μg TPF g−1 h−1. Invertase activity was determined 

using sucrose as the substrate (Frankeberger and Johanson, 1983). In brief, 0.4 ml of 

toluene was added to 2 g tailings sample and allowed to stand for 15 min. Then, 2 ml of 10 % 

sucrose and 2 ml acetic acid buffer (0.2 M, pH 5.5) were added. The mixture was incubated 

for 24 h at 37 °C and made up to 100 ml with deionised water. After filtration, reducing sugars 

in 1 ml of filtrate were measured using a molybdenum-blue method (Gusakov et al., 2011). 

Invertase activity was based on the difference in reducing sugar concentrations between the 

substrate induced samples and a blank control and calculated as μg of reducing sugar g−1 

h−1. Urease activity was determined with urea as substrate for incubation (McGarity and 

Myers, 1967). In brief, 0.4 ml of toluene was added to a 2 g sample and allowed to stand for 

15 min. The samples were then mixed with 2 ml of 10 % urea solution and 2 ml citric acid 

buffer solution (1 M; pH 6.7). After incubation at 37 °C for 24 h, the culture solution was 

made up to 100 ml with deionised water and immediately filtered. The resulting ammonium 

product in the filtrate was measured colorimetrically using the indophenol-blue method 

(Ivančič and Degobbis, 1984). Urease activity was calculated from the difference between 

the produced ammonium and the initial ammonium content of the control. Neutral 

phosphatase activity was analysed by the disodium phenyl phosphate method (Shen et al., 

2006). Briefly, 0.4 ml toluene was added to 2 g of sample and allowed to stand for 15 min. 

The sample was then mixed with 2 ml of 0.5 % (w/v) disodium phenyl phosphate and 2 ml 

of citric acid buffer (0.2 M, pH 7.0) and incubated for 24 h at 37 °C. The culture solution was 
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then made up to 100 ml with 38 °C distilled water and filtered. 1 ml filtrate was diluted to 5 

ml with distilled water. After the addition of 4 ml of borate buffer (0.05 M, pH 10), 0.5 ml of 

2 % 4-amino antipyrine and 0.5 ml of 8 % potassium ferricyanide, absorbance at 510 nm of 

the solution was measured spectrophotometrically. Neutral phosphatase activity was 

calculated as the difference of phenol formed between the substrate-induced sample and 

the sample free control. 

4.2.5 Statistical methods 

Primary data processing was performed using Microsoft® Excel. One-way analysis of 

variance (ANOVA) was carried out for significant treatment effects after normality check. 

Two-way ANOVA was carried out for test of significant different effects of organic 

amendments and plant colonisation. Means were compared using the least significant 

differences (LSD) test at P = 0.05. Pearson linear correlations between biogeochemical 

properties and microbial properties in tailings were also calculated. All statistical analyses 

were conducted using the SPSS software package (SPSS Statistics 20.0, Chicago, IL, USA).  

4.3 Results  

4.3.1 Selective physicochemical properties of the tailings 

The analyses of physicochemical properties of the tailings across treatments (Table 4-

1) showed TD5 tailings were characterised by the lowest levels of TOC, N, WHC and CEC. 

Also, the water-soluble organic carbon (WSOC) and water-soluble nitrogen (WSN) in TD5 

were the lowest among all treatments, measuring 5.1 and 0.9 mg kg-1 respectively. Tailings 

in TD5 contained high concentrations of soluble salts (EC) and S. Cu, Pb and Zn were 

abundant in tailings at the levels far higher than those of ecological investigation limits. 

Tailings in TD5 were acid to neutral with pH of 6.69. The water-soluble heavy metals (such 

as Cu and Zn) were 1000-fold lower than their total levels. Aggregate distribution in TD5 

was dominated by microaggregate fraction (49.8 %) with the lowest abundant of 

macroaggregate (11.2 %) and smallest MWD (0.21 mm) among all the treatments. 



54 

Table 4-1 Selective physicochemical properties in TD5 with woodchips application and plant colonisation. 

Treatments pH EC  

(m

S 

cm-

1)a 

CEC  

(cmo

l+ kg-

1)b 

WH

C  

(%)c 

C:N Total (g kg-1) Water Soluble (mg kg-1) Aggregates 

TO

Cd 

TNe Cu Pb Zn S Fe C N S Cu Zn Macr

oagg

rega

te  

(%) 

Micr

oagg

rega

te  

(%) 

MWD(

mm)f 

TD5 Mean  6.69 3.4
α 

0.79
α 

19.2
α 

13.7 1.5
α 

0.11
α 

1.1 1.9 4.1 47 91 5.1α 0.9α 238α 0.12
α 

18.4 11.2
α 

49.8
α 

0.21α 

S.D.g 0.04 0.3 0.27 1.2 2.4 0.0 0.03 0.1 0.1 0.3 4 6 2.0 0.4 125 0.01 2.3 2.4 4.0 0.03 

TD5+

WC 

Mean  6.66 4.5
β 

1.66
α 

21.8
β 

13.3 4.3
β 

0.34
β 

1.0 1.9 3.9
α 

46 88 48.8
β 

3.1β 601β 0.33
β 

18.5 19.2
β 

31.1
β 

0.28β 

S.D. 0.08 0.8 0.41 0.7 2.9 0.4 0.11 0.1 0.2 0.4 5 4 19.5 0.2 113 0.01 2.6 2.4 1.5 0.03 

TD5+

P 

Mean  6.41 5.2
β 

4.52
β 

22.1
β 

11.7 4.7
β 

0.40
β 

1.0 1.5 3.5 41 83 26.1
γ 

17.2
γ 

706β 0.45
γ 

17.5 19.1
β 

50.2
α 

0.30β 

S.D. 0.06 0.4 0.31 0.4 1.7 0.2 0.04 0.1 0.1 0.6 2 5 1.9 1.2 73 0.06 0.8 2.8 0.3 0.03 

TD5+

WC+

P 

Mean  6.50 5.6
β 

4.48
β 

21.7
β 

13.3 5.5
γ 

0.43
β 

1.0 1.6 3.7 38 94 78.3
δ 

19.0
δ 

710β 0.48
γ 

17.2 21.1
β 

51.3
α 

0.32β 

S.D. 0.03 0.7 0.43 0.2 2.2 0.0 0.08 0.0 0.1 0.4 3 8 2.4 1.3 92 0.03 0.3 1.1 2.1 0.01 

a Electrical conductivity. b Cation exchangeable capacity. c Water holding capacity. d Total organic carbon. e Total nitrogen. f Mean weight 

diameter. g Standard deviation; Values are means (n = 3); values labelled with letters ‘α, β, γ and δ’ within the column indicate significant 

differences among treatments at the level of P < 0.05 (only labelled for selected parameters)
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The application of WC and plant colonisation brought about significant changs of 

physicochemical properties in the tailings (Table 4-1). With WC application and plant 

colonisation, WHC in all the amended tailings increased significantly (P < 0.01), and there 

were significant increase in macroaggregate (19.2-21.1 %) in all the amended and/or 

revegetated tailings with significantly increased MWD ranging from 0.28 to 0.32 mm (P < 

0.05). OC levels and nutrients conditions improved considerably in these amended tailings. 

Specifically, TOC, TN, CEC increased by 2-6 folds in all the amended tailings (P < 0.05) 

compared to TD5, with the greatest level found in the treatment of TD5+WC+P. 

Around 1-2 % of TOC in these amended tailings were in the water-soluble form 

(WSOC), which also significantly increased (P < 0.05), particularly in the treatment of 

TD5+WC+P. Moreover, WSN increased from 0.9 to 3.1 mg kg-1 in TD5+WC compared to 

TD5. Particularly, in treatments with plants, including TD5+P and TD5+WC+P, WSN 

increased by 5-fold compared to those in TD5+WC, which were 17.2 and 19.0 mg kg-1 

respectively.  

Furthermore, WC application and plant colonisation shifted the geochemistry in the 

amended tailings. Tailings in all the treatments were acid to neutral with pH ranging from 

6.41 to 6.69. A slight decrease of pH was found in all the amended tailings but was not 

statistically different from the control. In contrast, EC in the amended tailings ranged from 

4.5 to 5.6 mS cm-1, significantly greater than the level in TD5 (3.4 mS cm-1) (P < 0.001). In 

addition, the levels of water-soluble S and Cu in the amended tailings were 2-3 folds 

compared to those in TD5. 

 

4.3.2 OC concentrations, C: N ratios and content in the tailings fractions 

In general, 98-99 % TOC in the tailings was in the insoluble form, a vast majority (64-

87 %) of which was physically protected in microaggregate or in organo-mineral complexes 

in the tailings. Similar to TOC, OC concentrations and OC contents in all the fractions were 

lowest in TD5. WC and plants colonised in tailings increased OC concentrations and OC 
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contents in all the fractions significantly (P < 0.05), except the OC concentration of Macro-

iMOC fraction in TD5+WC (Table 4-2).  

In bulk tailings, C: N ratios ranged from 11.7 to 13.7 with no significant differences 

among the treatments (Table 4-1); this ratio did vary greatly among different OC fractions 

(Table 4-2). Specifically, we observed that in all the amended tailings, C: N ratios were 

highest in the Macro-iPOC (24.5-33.0) fraction, followed by Micro-iPOC (16.8-17.7) and 

MOC (4.1-6.3) (e.g., Macro-iMOC, Micro-iMOC). Compared to respective fractions in TD5.  

 

Table 4-2 OC concentrations and C: N ratios of OC fractions in TD5 with woodchips 

application and plant colonisation 

Treatme

nts 

Macro-iPOC Micro-iPOC Macro-iMOC Micro-iMOC 

OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N OC  

(g kg-1) 

C: N 

TD5 3.2(0.3)  
a 

13.9(5.7)
a 

1.8(0.1)
a 

7.3(1.1)a 2.3(0.4)
a 

4.4(1.6)
a 

3.7(0.4)
a 

6.1(1.4)
a 

TD5+WC 13.8(2.2)
b 

33.0(6.6)
b 

6.0(0.1)
b 

17.7(1.8)
b 

3.1(0.5)
a 

4.1(0.9)
a 

5.6(0.5)
b 

5.3(0.2)
a 

TD5+P 11.7(0.8)
b 

27.2(3.4)
b 

4.3(0.3)
b 

16.8(3.0)
b 

8.3(1.8)
b 

5.9(0.7)
a 

7.2(0.2)
c 

6.3(1.4)
a 

TD5+WC

+P 

12.5(1.0)
b 

24.5(3.2)
b 

4.5(0.0)
b 

16.8(1.5)
b 

9.5(1.4)
b 

5.5(0.6)
a 

7.9(0.4)
c 

5.8(0.9)
a 

Values are means (n = 3) with standard deviation in bracket; values labelled with letters ‘a, 

b, c, d’ indicate significant differences among the treatments at the level of P < 0.05. 

 

Changes of C: N ratios with WC application and plants colonisation also varied among 

fractions and treatments (Table 4-2). Specifically, C: N ratios in fraction of Macro-iPOC 

significantly increased from 13.9 in TD5 to 24.5-33.0 (P < 0.05) in the amended tailings. The 

ratios in physically protected OC also increased from 7.3 in TD5 to 16.8-17.7 (P < 0.05) in 

the amended tailings. In contrast, C: N ratios in Macro-iMOC and Micro-iMOC between TD5 

and amended tailings were not statistically significantly different. 
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Fig. 4-2 OC content as non-protected OC (Macro-iPOC), physically protected OC (Micro-

iPOC) and mineral associated OC in macroaggregate (Macro-iMOC), microaggregate 

(Micro-iMOC) and silt+clay particles (oMOC) in TD5 with woodchips application and plant 

colonisation. Values are means (n = 3); error bars indicate standard deviations; the letters 

‘a, b, c, d’ above each OC fractions indicate significant differences among the treatments 

at the level of P < 0.05. 

 

4.3.3 Microbial community and functions among treatments 

Microbial biomass (MBC, MBN), microbial quotient (MBC: TOC), and net 

mineralisation rate were measured for all the treatments. As shown in Table 4-3, MBC only 

accounted for a small portion (0.5-1.4 %) of TOC in all the treatments. Consistent with TOC, 

it is not surprising that microbial biomass (MBC and MBN) were lowest in TD5. Microbial 

biomass (MBC and MBN) changed significantly with application of WC and plant 

colonisation, increasing in all the amended tailings, particularly in the TD5+WC+P treatment.  

A similar trend of net N mineralisation rates was observed among these treatments 

(Table 4-3). In particular, compared to treatment of TD5+WC, tailings in both treatments of 
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TD5+P and TD5+WC+P were characterised by greater biomass, microbial quotient (MBC: 

TOC) and net N mineralisation rate (Table 4-3).  

 

Table 4-3 Microbial biomass (MBC, MBN), microbial quotient (MBC: TOC) and net N 

mineralisation rate in TD5 with woodchips application and plant colonisation. 

Treatments MBC  

(mg kg-1) 

MBN  

(mg kg-1) 

MBC: TOC 

(%) 

Net N mineralisation rate  

(mg mineral N kg-1 d-1) 

TD5 13.0(1.8)a 0.87(0.22)a 0.86(0.13)b 0.018(0.003)a 

TD5+WC 18.3(1.3)ab 1.89(0.28)b 0.43(0.14)a 0.030(0.009)ab 

TD5+P 53.8(2.4)c 4.99(0.03)c 1.00(0.04)bc 0.045(0.011)b 

TD5+WC+P 76.1(7.9)c 6.20(0.93)c 1.37(0.14)c 0.039(0.010)b 

Values are means (n = 3) with standard deviation in brackets; values labelled with letters 

‘a, b, c, d’ indicate significant differences among the treatments at the level of P < 0.05. 

 

In the present study, selected enzymes were examined, which are closely related to 

the energy transfer (dehydrogenase) and element cycling processes of C (invertase), N 

(urease) and P (neutral phosphatase) in the tailings (Fig. 4-3). Microbial biomass was 

positively linked to their activities in the tailings (Table 4-4), which increased in all the 

amended tailings, especially in the treatment of TD5+WC+P.  

The activities of dehydrogenase, invertase and neutral phosphatase were consistently 

higher in the treatment of TD5+P and TD5+WC+P regardless of WC treatment. In contrast, 

the activity of urease activity was less effectively rehabilitated in TD5+P tailings and only 

significantly increased in TD5+WC and TD5+WC+P. Moreover, neutral phosphatase activity 

showed no significant differences among the amended treatments, TD5+WC, TD5+P, and 

TD5+WC+P. 
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Fig. 4-3 Activities of dehydrogenase (a), urease (b), invertase (c) and neutral phosphatase 

(d) in TD5 with woodchips application and plant colonisation. Values are means (n = 3); 

error bars indicate standard deviations; the letters ‘a, b, c, d’ above the bars indicate 

significant differences among the treatments at the level of P < 0.05. 

 

Table 4-4 Correlations among microbial biomass and activities in TD5 with woodchips 

application and plant colonisation.   

Microbial 

properties  

Net 

mineralisation 

rate 

Dehydrogenase 

activity 

Urease 

activity 

Invertase 

activity 

Neutral 

phosphatase 

activity 

MBC 0.92** 0.77** 0.73** 0.93** 0.71** 

MBN 0.91** 0.78** 0.68* 0.96** 0.77** 

Values followed with ‘** and *’ indicate significance of correlation at the levels of P < 0.01 

and P < 0.05 respectively. 



60 

4.4 Discussion 

The present findings have shown that OC in the weathered and neutral Cu-Pb-Zn 

tailings increased through the addition of organic matter (woodchips), which were further 

significantly enhanced by the colonisation of native plants under field conditions. In addition, 

microbial community and functions were rehabilitated in the amended tailings, particularly in 

those with a combined application of organic amendment and plant colonisation.  

4.4.1 OC stabilisation in the tailings in response to woodchips application and 

plants colonisation 

Both WC and plants colonised in tailings are important sources of OC which would be 

decomposed by microbial colonisers and stabilised in tailings. TOC in TD5 is extreme low 

(1.5 mg kg-1). Only 13 % TOC in TD5 were in the unprotected form with C: N ratio of 13.9, 

close to that (13.7) of bulk tailings. Organic matter in TD5 may be at late stage of 

decomposition with majority of them comprised with recalcitrant organic compounds 

(Couˆteaux et al., 1995). In all the amended tailings, unprotected OC contained 22-36 % of 

TOC with the greatest C: N ratio ranging from 24.5-33.0 (Table 4-2). These OC might be 

furthered decomposed and stabilised in the amended tailings (Bruun et al., 2010).  

It is widely accepted that recalcitrance, spatial inaccessibility and organo-mineral 

interactions are major mechanisms contributing to OC stabilisation (von Lützow et al., 2008). 

We observed that majority of OC (64-77%) in the amended tailings were physically protected 

or in the form of organo-mineral complexes. In the TD5 treatment, physically protected OC 

were dominant than mineral associated OC in the tailings, presenting as high as 47.8 % of 

TOC. MOC became dominant in tailings with WC application and plant colonisation, 

accounting for 45-77 % in the amended tailings. In the present study, OC stabilised 

(physically protected and mineral associated) via WC application and plant colonisation 

found to be time efficient compared to early soil ecosystem development (Anderson, 1977; 

Crews et al., 2001). 
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Physically protected OC is closely linked to the aggregation processes in soil. In the 

present study, stimulated aggregation in the amended tailings not only contributed to the 

stabilisation of OC in tailings (Table 4-5), it is also fundamentally important to improve the 

tailings’ physical structure and hydraulic properties (Table 4-1) (Six et al., 2000). Stimulating 

aggregation and OC stabilisation strongly depends on the presence of binding agents (e.g., 

fragments of roots, hyphae, polysaccharides, bacterial cells and colonies) (Tisdall and 

Oades, 1982). In the examined tailings, WC application stimulated the macroaggregate 

development, with greater MWD compared to TD5. In the plant colonised tailings, both 

macroaggregate and microaggregate development stimulated, particularly in the tailings 

with combined WC and plant colonisation (Table 4-1), which might be attributed to aid of 

plants roots and a greater microbial biomass (Table 4-3).  

Moreover, plants are also particularly important in stimulating OC stabilised with 

tailings mineral particles (Table 4-5). OC concentrations were significantly greater in these 

mineral associated fractions (Macro-iMOC and Micro-iMOC) with plant colonisation (TD5+P 

and TD5+WC+P) compared to tailings without (TD5 and TD5+WC). Capacity of OC 

associated with tailings minerals depends strongly on the surface chemistry of organic 

matter and minerals. For example, carboxylic C with negative charge has the largest 

potential to bind to minerals, followed by phenolic and hydroxylic C (Kumar et al., 2007), 

while alkyl and aromatic C, which are relatively nonpolar or hydrophobic involve little in 

organo-mineral interactions. Functional groups of organic matter (e.g., aliphatic or phenolic 

OH), aliphatic acid (e.g., citric acid, malic acid) and some proteinaceous organic compounds 

(e.g., amines, ring-NH, heterocyclic-N) (Vieublé Gonod et al., 2006) are likely to strongly 

bind with minerals (e.g., Fe, Al, Mn oxides, edge sites of phyllosilicates, allophane, imogolite, 

smectite, vermiculite, illite) to form resistance organo-mineral complexes in the soil (Feng et 

al., 2005; Kögel-Knabner et al., 2008). The different OC stabilised with tailings mineral 

particles among treatments could be at least partially attributed to the different forms of OC 

entering into tailings and the biogeochemical modification of organic compounds. 

Interestingly, levels of WSN were particularly higher in treatments with plant colonisation 

than those in TD5 and TD5+WC. Natural vegetation improving N supply is not only important 
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to plant growth but also to microorganism development. Variations among treatments 

suggested that limited N is available in WC, while colonisation of plants aid the fertility 

improvement in the root zone tailings, which may be consequences of root exudates and/or 

litter return from established plants. In this case, N2 fixation in roots of the planted 

leguminous plants (Acacia spp.) might have occurred and contributed to the N supply in the 

rhizosphere. The enriched soluble N-containing compounds might also contribute to OC 

stabilisation in tailings with plants colonisation (Plaza et al., 2013).  

 

Table 4-5 Two-way ANOVA of woodchips and plant colonisation impacts on OC fractions 

in the tailings. 

OC fractions WC Plant WC x Plant 

 F Sig. F Sig. F Sig. 

TOC 65.19 0.000 202.49 0.000 52.85 0.000 

Macro-iPOC 63.22 0.001 93.47 0.000 74.21 0.000 

Micro-iPOC 24.37 0.002 121.95 0.000 6.95 0.030 

Macro-iMOC 11.50 0.009 22.38 0.001 0.24 0.640 

Micro-iMOC 0.00 0.952 310.38 0.000 0.05 0.824 

oMOC 0.00 0.985 6.42 0.035 2.74 0.137 

 

WC low in N (C: N ratio of 98) and WSN might be decomposed slowly in the examined 

tailings (Aber and Melillo, 1982), constrained by the small size and tolerant dominant 

bacterial community (e.g., rubrobacter) (Li et al., 2014). In contrast, in tailings with plant 

colonisation, root exudates, the mixture of enormous range of small molecular weight 

compounds (e.g., carbohydrates, carboxylic acids and amino acids) (Lynch and Whipps, 

1991), might enter into tailings. Due to their negative charges, these substances may be 

sorbed to the mineral phase through cation binding (Jones and Brassington, 1998). 

Meanwhile, organic matter derived from roots of plant colonised in tailings could be 

incorporated into microbial biomass, stimulating the decomposition and element cycling 

processes in the improved tailings (Fig. 4-3). As decomposition proceeds, N is retained in 

the microbial products while C is respired (Quideau et al., 2000). Therefore, these N 
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enriched organic compounds might readily interact with tailings mineral particles, 

contributing to OC stabilised in the form of organo-mineral complexes. 

4.4.2 Rehabilitating microbial community and functions in the tailings  

These snap-shot analyses provided initial evidence on the importance of plants and 

microbes in the formation of OC fractions associated with microaggregates and organo-

mineral complexes, and thus technosols formation in tailings. The importance of a diverse 

and functioning microbial community to support a plant community has been well 

documented in the literature (Harris, 2009, Bais et al., 2006). Furthermore, existence of plant 

is crucial to shape microbial structure and driving biogeochemical processes in the tailings. 

These plants also likely benefit from microbe-root interactions to gain competitive 

advantages in stressed environments. For example, some plant growth promoting bacteria 

and fungi benefit plants in terms of tolerance capacity to nutrients deficiency and ecotoxicity 

in tailings (Christopher et al., 2008; Compant et al., 2005). Previous studies have indicated 

initially low microbial diversity in non-vegetated tailings rapidly increases after plant 

establishment and later succession (Alguacil et al., 2011b; Li et al., 2014), with significantly 

improved microbial functions (decomposition, nutrient cycling etc.) even with a relatively low 

plant coverage in tailings (Moynahan et al., 2002). The presence of surviving plants is likely 

to shift the microbial community in tailings away from the autotrophic dominant structure (Li 

et al., 2014). We also observed the importance of introduced pioneer native plants in 

rehabilitation of microbial biomass and functions in amended tailings, which is essential to 

technosols development for tailings phytostabilisation. 

In the present study, OC, microbial biomass and biogeochemical processes (net 

mineralisation rate, enzymatic activities) had been improved to some degree through WC 

application and plant colonisation. The weathered and neutral Cu-Pb-Zn tailings were 

depleted in reactive minerals (e.g., pyrite) and had a relatively stable geochemistry (Forsyth, 

2014). Microbial communities present in this type of tailings are likely to be more diverse 

than those in acid Cu-Pb-Zn tailings (Mendez et al., 2008). The enhanced OC in the 

amended tailings provides energy and nutrients for microbial colonisers, greatly stimulating 
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development of heterotrophic bacteria and contributing to the decomposition and element 

cycling processes in tailings, especially in tailings with combination of WC and plant 

colonisation.  

In general, the efficacy of WC and plant colonisation in regards to OC stabilisation and 

microbial structure in the examined tailings is still limited, compared to those in natural soils, 

probably due to the short history and low rate of OC turnover. The greatest TOC in 

TD5+WC+P was only 5 g kg-1 (Table 4-1), which is 10-50 % of those in natural soil under 

similar climatic conditions (Bird et al., 2002; Kihara et al., 2012; Mendham et al., 2002, also 

refer to Appendix B). Additionally, bacterial communities in all the amended tailings were 

dominated by tolerant species and the fungal community is hardly detected in these tailings 

(Li et al., 2014), much less diverse than microbial communities that colonise in natural soils 

(Berg and Smalla, 2009; Burke et al., 1998). The relatively low diversity of the microbial 

community and absence of eukaryote in the tailings concerned may have resulted from other 

stresses such as elevated salinity, high concentrations of heavy metals, extreme 

temperature changes, and low rainfall in the field (Madigan et al., 2006).  

Nevertheless, the incorporation of WC and plant colonisation greatly improved the 

nutrients, WHC, CEC and aggregation in the amended tailings, resulting in much-improved 

microbial biomass and enzymatic activities, compared to the control. In addition, we found 

that further mineral weathering was induced in this relatively weathered Cu-Pb-Zn tailings, 

resulting in a further increase of EC, levels of soluble S and metals (Cu, Zn) (Table 4-1). 

This is consistent with our previous findings that there were abundant Thiobacillus, an 

autotrophic sulphur oxidiser in the amended tailings (Li et al., 2014). The induced mineral 

weathering associated with organic amendments in tailings has been reported in previous 

studies (García et al., 2007; Hayes et al., 2012; Li et al., 2013). It is likely that during the 

process of mineral weathering, stresses from acids, soluble salts or trace metals might be 

aggravated, constrained both microbial community and plant colonisation in these tailings. 

From the present study, stabilisation of OC could be achieved through the application of WC 

and plant colonisation. However, whether the microbial community in tailings could be 

rehabilitated with the structure and function close to those in soils supporting desired native 
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tolerant plant species is yet to be determined. It is still a fundamental question relevant to 

sustainable tailings phytostabilisation.  

4.5 Conclusions  

Organic amendment (WC) and introduction of pioneer plants effectively increased the 

nutrients availability and improved physical structure and chemical buffering capacity, with 

induced mineral weathering processes in the weathered and neutral Cu-Pb-Zn tailings. 

Combined treatments of organic amendment (WC) and introduction of pioneer plants rapidly 

built up OC and effectively rehabilitated microbial biomass and functions in the 

amended/revegetated tailings. The majority of OC (64-77 %) in the amended/revegetated 

tailings was physically protected in microaggregate and organo-mineral complexes. Plants 

played a particularly important role in OC stabilisation through aggregation and organo-

mineral interactions with stimulated microbial biomass and N rich organic compounds inputs. 

Furthermore, plants colonisation also contributed significantly to rehabilitate microbial 

structure and functions in the amended/revegetated tailings. Microbial community 

composition and functions in the tailings may have been altered by changes of 

physicochemical properties induced by organic amendments and plant colonisation, which 

will be investigated in the later chapters.   



66 

Chapter 5 Biogeochemical changes induced by exogenous organic amendments with 

contrasting properties in weathered and neutral Cu-Pb-Zn tailings – a 6-month 

microcosm study  

5.1 Introduction 

Organic carbon (OC) stabilisation is one of the critical benefits of organic amendments, 

which plays essential roles in the physical structure and biogeochemical functions of soils 

(Ros et al. 2003; Tejada et al. 2006). An important impact from organic amendment in 

tailings is the improved colonisation of diverse microbial communities facilitating the 

biogeochemical processes in tailings (Pepper et al., 2012). Our previous findings from a field 

trial demonstrated that the addition of exogenous organic matter (woodchips of native trees) 

in the neutral Cu-Pb-Zn tailings enhanced the OC stabilisation and physical structure 

(Chapter 3 and 4) (also refer to Huang, Baumgartl, et al. 2011). With the hosting effects of 

pioneer native plants in the weathered and neutral Cu-Pb-Zn tailings, microbial community 

structure in the amended/revegetated tailings began to shift from the autotrophic to 

heterotrophic bacterial communities with increased biomass, even when only organic matter 

with high C: N ratios (woodchips with C: N of 98) added (Li et al., 2014) and also refer to 

Chapter 3 and 4.  

Organic amendments not only provide OC and nutrients (Chèneby et al., 2010), they 

also have marked impacts on the physical stability, hydraulic properties, mineral weathering 

and heavy metal mobility in the amended tailings (Li et al., 2013; Steiner et al., 2008). 

Various organic amendments have been applied for tailings amelioration, including compost, 

manure, biosolids, plant residues and biochar (Chiu et al., 2006; Gardner et al., 2012). 

However, nutrient-rich organic amendments such as manure and biosolids may not be 

suitable for the local native plant communities, which are slow growing and have low nutrient 

requirements (Huang et al., 2012) and also refer to Appendix B. Our previous results have 

demonstrated the benefits of native plant-biomass with relatively high C: N ratio (woodchips) 

in improving biogeochemical properties and functions in the tailings (refer to Chapter 3 and 
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4). Alternative sources of biomass from native acacia species are also readily available in 

semi-arid regions. As leguminous shrub, the acacia biomass contains relatively a high N 

content and a large proportion of labile carbon and may further improve the rate and intensity 

of biogeochemical changes in tailings towards the desired state of functional technosols 

(Huang et al., 2014). It is critical to investigate how microbial community composition and 

functions in tailings are driven by the changed physicochemical properties induced by 

different organic amendments. However, little published information is available regarding 

detailed changes in microbial community composition and associated biogeochemical 

processes in Cu-Pb-Zn tailings, in relation to organic amendments with contrasting 

properties (e.g., acacia biomass, recalcitrant biochar).  

The present study evaluated biogeochemical changes induced by the addition of 

acacia biomass and recalcitrant biochar within the context of engineered pedogenesis in the 

tailings, including microbial community composition and functions, and associated 

physicochemical properties in the tailings, to formulate efficient amendment strategies to 

accelerate technosols formation. The specific objectives were to: (1) investigate the effects 

of acacia biomass and biochar on the diversity, composition, and functions of microbial 

communities in the amended tailings, in relation to the induced physicochemical changes; 

and (2) identify important physicochemical factors driving the shift of microbial communities 

in response to the different organic amendments. We hypothesized that microbial 

communities might substantially shift because of the changed physicochemical properties 

in response to amendments of acacia biomass with large proportions of labile organic 

carbon and nitrogen compared to the biochar. 

5.2 Materials and methods 

5.2.1 Experimental design  

The weathered and neutral Cu-Pb-Zn tailings applied in this study were taken from 

Mount Isa Mine (MIM), TD5 from the top 50 cm with 5 replicates mixed as bulk samples in 

May, 2013. The tailings are neutral with an average pH of 7.1 ± 0.1, abundant in quartz, 
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dolomite, pyrites, gypsum and kaolinite and contain 6.0 ± 0.2 % Fe, 4.9 ± 0.1 % Ca, 3.3 ± 

0.0 % S, 0.13 ± 0.03 % Cu, 0.18 ± 0.02 % Pb, and 0.29 ± 0.01 % Zn.  

Acacia biomass (AC) (mainly shoots) of dominant native leguminous species (woody 

shrub) was collected in bulk, from natural vegetation located at George Fischer colluvium 

plain, at about 26 km north of the MIM tailing impoundments. The biomass was oven dried 

at 65 °C. Briefly, AC was of near neutral pH (6.8 in water) and contained 40.2 % total organic 

carbon (TOC) and 1.05 % total N with a C: N ratio of 38. Biochar (BC) was produced from 

pine wood heated to a temperature of 650 °C. It was neutral to slightly alkaline in pH (7.8) 

and contained about 79.0 % TOC and 0.19 % TN with a C: N ratio of 416. Both AC and BC 

were ground to pass through 1 mm sieve and to achieve uniform mixing with the tailings. 

Both were sterilised before they were added to the tailings. We recognise that organic 

amendment in tailings would be more feasible in the form of mulch rather than powder in 

future operations under field conditions. 

200 g air-dried tailings were thoroughly mixed with designated proportions (w/w basis) 

of the sterilised AC and BC using an end-over-end shaker for 15 h. There were 4 treatments 

with 3 replications in each treatment, including the control (tailings only), tailings mixed with 

5 % AC (5%AC); tailings mixed with 5 % BC (5%BC), and tailings mixed with combined 5 % 

AC and 5 % BC (5%AC+5%BC). The mixtures were adjusted to 15 % water content and 

aerobically incubated for 6 months from May 2013 in the dark at 25 °C. All the containers 

were covered with plastic film perforated with several pinholes to ensure gas exchange while 

avoiding rapid water loss. Sterilised deionized water was used to adjust moisture contents 

in the treatments every 2-3 days to compensate for water loss through evaporation 

throughout the incubation period. At the end of incubation, the samples were collected and 

divided into 2 portions in each replicate: one portion was stored at 4 °C for Mineral N and 

basal respiration analyses within 48 h and for microbial biomass determination, enzyme 

assays and DNA extraction within 4 weeks, the other portion was air-dried for 

physicochemical analyses. 
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5.2.2 Physicochemical analysis 

Methods to determine physicochemical properties of the samples can be found in 

Chapter 3.2.2, including pH, EC, CEC, WHC, TOC, TN, WSOC and ICP-OES analysis of 

elements after aqua-regia digestion. Mineral N was sum of ammonium nitrogen (NH4-N) and 

nitrate nitrogen (NO3-N) were extracted and determined as described in Chapter 4.2.4. 

5.2.3 Microbial biomass, respiration and enzyme assays 

Microbial biomass and enzyme assays were measured as described in Chapter 4.2.4. 

Microbial basal respiration rate in fresh samples was measured at the end of the incubation 

period. Samples were placed in a closed chamber attached with infrared gas carbon dioxide 

(CO2) analyser (Q-Box SR1LP soil respiration package, Oregon, Canada). Gas 

accumulated in the chamber was collected 2 s-1 for 10 minutes for the analysis of CO2 

concentrations.  

5.2.4 DNA extraction, pyrosequencing and data analysis 

DNA extraction in the samples was performed with a PowerSoil® (Deoxyribonucleic 

acid) DNA Isolation Kit (MO BIO LACoratories, Inc.) following cell enrichment using sucrose 

density gradient centrifugation (Li et al., 2014). DNA concentrations and quality were 

determined with a Nanodrop spectrometer (Thermo Scientific, US). Quality DNA was 

selected and submitted to the Australian Centre for Ecogenomics, The University of 

Queensland for pyrosequencing with paired-end Illumina MiSeq platform (Caporaso et al., 

2012). Universal fusion primers 926F (5′-AAACTYAAAKGAATTGACGG-3′) and 1392wR 

(5’-ACGGGCGGTGWGTRC-3’) were applied, which cover most bacteria, archaea and 

eukaryotes (Cayford et al., 2012). Paired-ends reads were assembled by aligning the 3’ 

ends of forward and reverse reads with Paired-End reAd mergeR (PEAR) (PEAR 0.9.4) with 

a minimum output length of 200 bp after quality trimming at Q20. Assembled sequences 

along with the corresponding quality values were processed using the Quantitative Insights 

Into Microbial Ecology (QIIME) toolkit (Caporaso et al., 2010). Primers were trimmed using 

Seqtk (Li, 2012). Sequences with 97 % similarity were classified as an operational taxonomic 
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unit (OTU) and were sorted by abundance followed by UCLUST clustering employed 

USEARCH (Edgar, 2010). Full length duplicate sequences were removed and singletons 

were discarded. Chimera were filtered using the Genomes on Line Database (Gold) as a 

reference (Liolios et al., 2008). UCLUST was applied to assign taxonomy to the 

representative OTUs, which were aligned by Python Nearest Alignment Space Termination 

tool (PYNAST) (Caporaso et al., 2010). The rarefaction curve and the non-normalised OTUs 

table, with the abundance of different OTUs and their taxonomic assignments for each 

sample were generated in QIIME. 

Mean number of OTUs and Shannon diversity values based on the non-normalised 

OTUs table were calculated in R (package ‘vegan’). Nomaliser (Imelfort and Dennis, 2011) 

was used to find a centroid normalised OTUs table. A heatmap (version 2.15.1; package 

‘heatmap2’) was created in R (Kolde, 2012). The most abundant OTUs sequences and 

reference sequences from GenBank were aligned using SILVA incremental aligner (SINA) 

(Pruesse et al., 2012) and a neighbour-joining phylogenetic tree was generated using MEGA 

6 (Tamura et al., 2013) based on the alignment. 

5.2.5 Statistical methods 

Primary data processing was performed using Microsoft® Excel. One-way analysis of 

variance (ANOVA) was carried out for significant test among treatments. Means were 

compared using the least significant differences (LSD) test at P = 0.05. Pearson linear 

correlations among physicochemical properties and microbial properties in tailings were also 

analysed. All statistical analyses were conducted using the SPSS software package (SPSS 

Statistics 20.0, Chicago, IL, USA). 

Canonical correspondence analyses (CCA) were carried out using CANOCO software 

for Windows 4.5 (Biometris-Plant Research international, Wageningen, The Netherlands). 

CCA were performed for correlations of microbial types and measured environmental 

variables.at the phyla level for microbial species and elected environmental parameters (e.g., 

pH, EC, Cu, S).  
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5.3 Results  

5.3.1 Physicochemical changes detected in the tailings 

As shown in Table 5-1, the control in the present study contained low levels of TOC, N 

and P, limited water-soluble OC (WSOC) and nutrients (mineral N). The tailings were saline 

with an EC of 6.3 mS cm-1. There were elevated levels of heavy metals (i.e., Cu, Pb and Zn). 

At neutral pH, the soluble heavy metals (e.g., WS Cu, WS Zn) were low, accounting for less 

than 0.1 % of the total heavy metals.  

Physiochemical conditions in the amended tailings were altered by the AC and BC 

amendments, with different magnitude of changes. The pH conditions in all the treatments 

remained neutral to alkaline, regardless of the organic amendments. The AC and BC 

treatments (individually or in combination) significantly increased the WHC in the amended 

tailings, especially in the 5%AC+5%BC treatment. Levels of nutrients in the amended 

tailings significantly increased in the AC-treatments, including the 5%AC and 5%AC+5%BC 

treatments. For example, levels of TOC, TN, WSOC and mineral N increased in these two 

treatments more than 10-fold, compared to the control. Furthermore, the CEC was 

significantly elevated in the 5%AC and 5%AC+5%BC treatments. In contrast, BC had only 

limited impacts on nutrient availability and CEC in the amended tailings. The levels of TN, 

WSOC, mineral N and CEC in 5%BC treatment did not differ significantly from those in the 

control. 
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Table 5-1 Selective physicochemical properties in the control and amended tailings with acacia biomass and biochar application. 
 Treatments pH EC 

(mS cm-1)a 

CEC 

(cmol+ kg-1)b 

WHC 

(%)c 

Total (g kg-1) Water/salt extractable (mg kg-1) 

TOCd Ne P Cu Pb Zn WSOCj Mineral 

N  

WS 

Cug 

WS 

Znh 

Control Mean  7.11 6.3α 3.4α 29.9α 2.5α 0.15α 0.19 2.1 2.2 4.8 2.8α 1.8α 0.12α 0.06α 

S.D.i 0.08 0.3 0.2 2.2 0.6 0.01 0.02 0.1 0.2 0.3 0.2 0.6 0.01 0.02 

5% AC Mean  7.14 6.4β 6.9β 38.1β 22.7β 0.45β 0.19 1.7 1.9 4.1 63.1β 15.4β 0.37β 0.76β 

S.D. 0.04 0.2 0.4 3.6 1.5 0.04 0.04 0.1 0.1 0.4 5.6 2.0 0.06 0.21 

5%BC Mean  7.29 5.9β 3.2α 40.2β 42.0γ 0.20α 0.22 1.7 1.9 4.3 2.4α 1.1α 0.13α 0.03α 

S.D. 0.11 0.1 0.1 3.0 1.6 0.03 0.05 0.1 0.2 0.4 1.0 0.4 0.01 0.01 

5%AC+5%BC Mean  7.31 5.2β 6.2β 54.3γ 53.7δ 0.42β 0.16 1.7 1.9 4.0 48.4γ 15.4β 0.22γ 0.35γ 

S.D. 0.06 0.3 0.4 3.8 2.6 0.05 0.01 0.1 0.2 0.2 1.8 3.2 0.01 0.07 

a Electrical conductivity. b Cation exchangeable capacity. c Water holding capacity. d Total organic carbon. e Total nitrogen. f water-soluble 

organic carbon. g water-soluble Cu. h water-soluble Zn. i Standard deviation. Values followed with letters ‘α, β, γ and δ’ within the column 

indicate significant differences among the treatments at the level of P < 0.05 (only labelled for selected parameters). 
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Although EC in the 5%AC+5% BC treatment significantly decreased (P < 0.05) 

(perhaps, due to dilution effect), high levels of salinity remained in all the treatments, ranging 

from 5.2 to 6.4 mS cm-1. In the 5%BC treatment, the difference in WS Cu and WS Zn did 

not differ significantly from the control, while both WS Cu and WS Zn significantly increased 

in the 5%AC and 5%AC+5%BC treatments (P < 0.05). In particular, the highest levels of WS 

Cu and WS Zn were found in the 5%AC treatment. 

5.3.2 Microbial biomass, respiration and profiling of microbial diversity 

Lowest levels of MBC and basal respiration were observed in the control. There were 

no significant differences in MBC and basal respiration between the control and 5%BC 

treatments (P < 0.05). Among the treatments, AC addition significantly stimulated microbial 

biomass and respiration in the amended tailings (Fig. 5-1a and Fig. 5-1b).  

Specifically, levels of MBC increased from 5.1 mg kg-1 in the control to 84.7 mg kg-1 

and 99.0 mg kg-1 in 5%AC and 5%AC+5%BC treatments respectively. The basal respiration 

rates in AC-amended tailings (5%AC and 5%AC+5%BC treatments) were 10-fold compared 

to the control. Using all the samples, MBC and basal respiration were positively correlated 

with each other (R2 = 0.98, P < 0.01, n = 12).  

The pyrosequencing analysis of DNA extracted from the tailings samples uncovered a 

total of 116,619 good quality reads (Fig. 5-2), which were classified into 172 OTUs0.97. In 

general, microbial diversity in the tailings was lowered by AC and BC application, but not 

the species richness (Fig. 5-1c and Fig. 5-1b). Specifically, no significant differences of the 

microbial communities in species richness and diversity were found between the control and 

the 5%AC+5%BC treatment. Both species richness and diversity of the microbial 

communities in the 5%AC treatment were lower than those in the control (P < 0.05). 

However, species richness significantly increased in 5%BC treatment compared to the 

control (P < 0.05), although there was lower species diversity in this treatment. 
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Fig. 5-1 Microbial biomass carbon (MBC) (a), basal respiration rate (b), observed species 

(c) and Shannon diversity (d) in the tailings and the amended tailings with acacia biomass 

and biochar application. Values are means (n = 3); error bars indicate standard deviations; 

the letters ‘a, b, c, d’ above the bars indicate significant differences among the treatments 

at the level of P < 0.05.  
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Fig. 5-2 Rarefaction curves in the control and the amended tailings with acacia biomass 

and biochar application. 

 

5.3.3 Microbial composition and variation across amendment treatments 

Most importantly, the AC and BC treatments altered microbial community composition 

and dominant microbial groups. In general, microbial communities in all treatments were 

dominated by prokaryotes with negligible amount of eukaryotic microbes (only one OTU 

affiliated to eukaryote microbes with less than 0.2 % in all samples).  

The major OTUs and their affiliations were shown in Fig. 5-3. The most abundant 

archaeal sequences were affiliated with Crenarchaeota, sharing 99 % of similarity with 

Nitrososphaera sp.. Bacterial OTUs dominated all the microbial assemblages and those 

within the phylum Proteobacteria and Bacteroidetes were most abundant. Abundant 

bacterial OTUs (> 10 % in at least one sample) could be classified into 3 groups, Group 1, 

best hit with Sphingobacterium sp., Brevundimonas sp., Ochrobactrum sp., Delftia sp. and 
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Pseudomonas sp.; Group 2, affiliated to Methylophaga sp. and Limnobacter sp.; and Group 

3, including Legionella sp. and Thiohalobacter sp.. 

 

 

Fig. 5-3 A neighbour-joining phylogenetic tree of 16S rRNA gene sequences recovered 

from in the control and the amended tailings with acacia biomass and biochar application. 

Only representative OTUs were shown in this tree; the taxonomic groups are delineated 

on the right; scale bar stands for 0.05 changes per site. 
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Specifically, significant differences in microbial community composition were detected 

among treatments at both phylum and genus levels (Fig. 5-4 and Fig. 5-5). As indicated by 

the cluster analysis, the microbial communities in the 5%AC and 5%AC+5%BC treatments 

were clearly different from those in the control and the 5%BC (Fig. 5-5).  

 

 

Fig. 5-4 Relative abundance of different phylum and classes of Proteobacteria in the 

control and the amended tailings with acacia biomass and biochar application. The 

bacterial phyla with a frequency less than 1 % are shown as ‘others’; values are means (n 

= 3); error bars indicate the standard deviation; error bars were drawn for the most 

abundant phylum and classes of Proteobacteria. 
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Fig. 5-5 Microbial community composition detected at the genus level in the control and 

the amended tailings with acacia biomass and biochar application. The abundance of 

genera is indicated and cluster analysis of the community composition between the 

samples is shown. Only the OTUs with a frequency of greater than 1 % were shown in the 

figure. 

 

The most prominent group was γ-Proteobacteria in both the control and the 5%BC 

treatments. The most abundant genus of γ-Proteobacteria sequence in the control was 

affiliated to Legionella sp. (14.8 %) in Group 3. The abundance of this genus significantly 

decreased in the 5%BC treatment (P < 0.05). In contrast, the abundance of species affiliated 

to Groups 2 and Group 3 significantly increased in 5%BC treatment, including 

Thiohalobacter sp. (33.5 %), Limbobacter sp. (11.4 %) and Methylophaga sp. (4.8 %) (P < 
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0.05). Meanwhile, genera in Group 1 (e.g., Brevundimonas sp., Ocharobactrum sp., 

Pseudomonas sp.) were significantly depressed (P < 0.05) in the 5%BC treatment compared 

to the control.  

The shift of microbial community composition in the 5%AC and 5%AC+5%BC 

treatments was similar. The abundance of β-Proteobacteria and Bacteroidetes in these 2 

treatments was much higher compared to the control (P < 0.05). Specifically, bacteria in 

Groups 1 were greatly stimulated in these AC-amended tailings. For example, 

Brevundimonas sp. and Pseudomonas sp. increased by 40 % and 50 % respectively in both 

5%AC and 5%AC+ 5%BC treatments compared to the control. Furthermore, the abundance 

of Ochrobactrum sp. and Sphingobacterium sp. doubled in both 5%AC and 5%AC+5%BC 

treatments compared to the control. Meanwhile, the abundance of bacteria in Group 3 (e.g., 

Legionella sp. and Thiohalobacter sp.) significantly decreased in both 5%AC and 

5%AC+5%BC treatments (P < 0.05). In contrast, the abundance of Limbobacter sp. 

belonging to Group 2 greatly increased in the 5%AC+5%BC treatment, but not the 5%AC 

treatment. 

5.3.4 Enzymatic activities across amendment treatments 

Across the treatments, dehydrogenase (R2 = 0.90, P < 0.01, n=12), invertase (R2 = 

0.93, P < 0.01, n=12), urease (R2 = 0.77, P < 0.01, n=12) and neutral phosphatase (R2 = 

0.90, P < 0.01, n=12) activities were positively correlated with MBC in the present study. 

Similar to MBC, the lowest enzymatic activities were found in the control and the 5%BC 

treatment, which were not statistically different from each other.  

All the 4 enzymes were significantly increased in the 5%AC and 5%AC+5%BC 

treatments (Fig. 5-6). Compared to the control, the levels of dehydrogenase, invertase and 

urease activities in the 5%AC treatment were elevated to 3-4 folds, while neutral 

phosphatase activities were around 10-fold greater. Moreover, no differences were found 

between the 5%AC and 5%AC+5%BC treatments for dehydrogenase and neutral 
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phosphatase activities, while invertase and urease activities in the 5%AC+5%BC treatment 

were much greater than those in the 5%AC treatment (P < 0.05). 

 

 

Fig. 5-6 Activities of dehydrogenase (a), invertase (b), urease (c) and neutral phosphatase 

(d) in the control and the amended tailings with acacia biomass and biochar application. 

Values are means (n = 3); error bars indicate standard deviations; the letters ‘a, b, c, d’ 

above the bars indicate significant differences among the treatments at the level of P < 

0.05. 
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5.4 Discussion 

5.4.1 Biogeochemical changes induced by different organic amendments  

Through purposeful ecological engineering inputs (e.g., plant biomass-based organic 

amendments), it is possible to shift microbial community composition and dominant 

microbial groups towards those functioning species driving the biogeochemical processes, 

critical to the initiation of technosols development in the tailings (Huang et al., 2014). The 

present results demonstrated that organic amendments of contrasting properties resulted in 

different biogeochemical changes in the amended tailings, based on observed 

physicochemical properties, microbial community composition and functions. These 

changes are critical to the rehabilitation of biogeochemical processes and the technosols 

formation in the weathered and neutral Cu-Pb-Zn tailings.  

Although the 6-month incubation did not significantly enhance the microbial diversity 

in the amended tailings, the microbial community composition and the relative abundance 

of phylum and genera were significantly altered by the organic amendments which were 

associated with changes in physicochemical properties (particularly those amended with 

AC). For example, in the weathered and neutral Cu-Pb-Zn tailings (control) without any 

amendments, the most abundant genus Legionella sp. is an aerobic chemoorganotrophic 

gram-negative bacilli which proliferates in neutral pH conditions (Hao et al., 2010). This 

specie was greatly depressed in all the amended tailings, especially in the AC amended 

tailings. Interestingly, in the tailings amended with BC, abundant microorganisms were 

mainly autotrophic and tolerant bacteria, reflecting the selective pressure by environmental 

stresses in the Cu-Pb-Zn tailings. For example, the most abundant microorganism 

Thiohalobacter sp., in the BC amended tailings, closely linked to sulphur- (S-) oxidising 

processes, is salt-tolerant γ-Proteobacteria (Sorokin et al., 2010). The stimulated 

Limnobacter sp. and Methylophaga sp. in BC amended tailings were also metal and salt 

tolerant (Lu et al., 2011; Villeneuve et al., 2013). Also, the relative abundance of species 

potentially beneficial to plant growth (e.g., Brevundimonas sp., Pseudomonas sp.) (Bakker 
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and Schippers, 1987; Park et al., 2008) were depressed in BC amended tailings. We 

assume that the shift of the microbial community in the BC amended tailings might 

accelerate sulphide oxidisation and geochemical reactions, leading to faster transition from 

geochemically unstable tailings into the state of high hydrogeochemical stability (Kock and 

Schippers, 2008). This is particularly important in tailings containing a relative high 

percentage pyrites (Li et al., 2015). The hypothetical effects of BC in enhancing the 

abundance and functions of autotrophs and associated sulphide oxidation should be tested 

in fresh tailings, in relation to accelerating weathering of reactive minerals and the transition 

into a hydrogeochemically stable state, which is the foundation of engineered pedogenesis 

(Li et al., 2015).  

Overall, biochar in the form of recalcitrant OC may not be suitable as a primary 

amendment option in terms of stimulating the colonisation of soil-like microbial communities 

in the tailings. The AC biomass contained much higher proportion of labile OC and higher 

levels of N than the BC used here (Table 5-1), and favoured the shift of dominant microbial 

groups from autotrophic extremophiles towards heterotrophic bacteria in the evolving 

microbial communities, in response to direct and indirect changes of physicochemical 

conditions in the tailings. Microbial community composition in 5%AC and 5%AC+5%BC 

treatments were similar to each other, both shifting towards microbial communities 

resembling those in local natural soils. Both the potential heterotrophic and plant growth 

promoting bacteria in Group 1 (e.g., Ochrobactrum sp., Sphingobacterium sp., 

Brevundimonas sp., and Pseudomonas sp.) were greatly stimulated in these AC-amended 

tailings (P < 0.05) (Fig. 5-6). These bacteria in Group 1 are potentially important in 

degradation of complex organic compounds (e.g., phenol, cellulosic fibres) (Kılıç, 2009; 

Lednická et al., 2000), improving plant survival and growth via enhanced tolerance 

resistance (Sharma et al., 2003) and nutrient acquisition (Mehnaz et al., 2007; Vessey, 

2003). Therefore, AC appeared to be more effective in rehabilitating soil-like microbial 

communities and functions in tailings, thus stimulating the soil formation process of highly 

weathered tailings to biogeochemically functional technosols. It is worthwhile to point outthat 
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the effects observed in a relatively short-term laboratory incubation experiment might be 

difficult to relate to those in the tailings under field conditions, but the findings at least 

suggest that it is important to apply suitable types of organic amendments for the purpose 

of engineering technosols in the tailings and stable carbon (e.g., biochar) may not be 

effective in the rehabilitation of soil-like microbial communities and biogeochemical functions 

in the tailings. Further field studies involved in temperature and hydraulic movement are 

required for to verify the present findings in the tailings landscapes under local climatic 

conditions.   

The main impacts of organic amendments on the microbial community composition 

were on the bacterial communities, which recovered more readily than the fungal 

communities in the amended tailings. Although fungi are only a minor part of the microbial 

communities in soils (20 %), they play important roles in soil functions and associated plant 

communities, affecting, for example, plant diversity and productivity (Ingram et al., 2005; 

Van Der Heijden et al., 2008). As one of the significant groups, fungi is ubiquitous and 

diverse in soil ecosystems of low productivity (Griffiths and Philippot, 2012). Fungi is also 

detected in extreme environments (e.g., acid mine drainage, tailings and solar salterns) 

(Baker et al., 2004; Cantrell et al., 2006; Huang et al., 2011), tolerant to stresses caused by 

acidity and elevated levels of heave metals and salinity. However, fungi was almost absent 

in all the treatments in the present study, which should be further investigated in future 

experiments. Supplement amendment strategies (fungi inoculation, introducing tolerant 

native plants) may require for the development of fungal communities in the tailings. 

5.4.2 Physicochemical drivers of microbial composition and functions 

The results showed that AC and BC contained contrasting forms of organic compounds 

(labile carbon, carbohydrates) and nutrients contents (e.g., N and P) (Table 5-1). The 

application of AC and BC resulted in an array of change in physicochemical properties (e.g., 

pH, EC, water soluble heavy metals) in the microcosm system (incubated tailings), which 
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collectively drove the shift of microbial community composition and functions along different 

directions.  

Unlike natural soils, where there is usually a positive relationship between TOC and 

MBC (Brejda et al., 2000), increased TOC by organic amendments in the amended tailings 

was less related to the levels of MBC in this study. The high amounts of labile forms of OC 

and N (WSOC and mineral N) were more closely related to the build-up of microbial biomass. 

The solubility of OC is closely linked to corresponding chemical composition of organic 

amendments. For example, lignin is not a significant source of soluble OC compared to other 

organic compounds (e.g., carbohydrate, protein) (Engelhaupt and Bianchi, 2001). Organic 

amendments with relatively high content of lignified organic compounds (e.g., biochar used 

in the present project) may inhibit the production of labile OC and consequently the 

biogeochemical processes (Fellet et al., 2011; Jones et al., 2012). The labile OC and 

nutrients from AC can be utilised by heterotrophic microorganisms in the tailings, which in 

turn, stimulate organic matter decomposition and nutrients cycling processes.  

Species richness and diversity of the microbial community were found to be more 

related to pH and EC conditions in the tailings. Neutral pH conditions favour the majority of 

microorganisms (Ussiri and Lal, 2005); extreme pH conditions (e.g., acidic or alkaline) may 

result in the loss of microbial diversity by favouring those microbial groups tolerant of these 

extreme pH conditions (Rothschild and Mancinelli, 2001). Previous studies have 

investigated the impacts of a range of pH conditions, from extreme acidic (pH: 2-3) to 

alkaline (pH: 7-8), on microbial communities in mine tailings. Results indicated that 

increasing the pH was beneficial to the development of diverse microbial communities in 

tailings as acidic pH conditions usually elevated the solubility of heavy metals and 

associated ecotoxicity (Kock and Schippers, 2008; Londry and Sherriff, 2005; Mendez et al., 

2008). Although the tailings used in the present study are neutralised, the small change in 

pH (7.1-7.3) induced by the organic amendments may have caused marked impacts on 

microbial community composition, albeit relatively weaker than other physicochemical 

conditions (such as the levels of soluble OC and N). The level of EC is negatively correlated 
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to microbial diversity in the tailings in the present study (Table 5-2), which is consistent with 

previous studies where loss of microbial diversity was found along gradients of increasing 

salinity (Casamayor et al., 2002). High concentration of salts results in hyper-osmotic 

stresses to microbial colonisers (Muhammad et al., 2006). In the present study, neither AC 

nor BC were effective in alleviating salinity problem in the tailings, where the lowest EC in 

the 5%AC+5%BC treatment was 4-fold greater compared to saline soil (1.5 mS cm-1). 

Water-soluble heavy metals seemed to have negative impacts on the microbial diversity 

(Table 5-2).  

 

Table 5-2 Correlations among tailings physicochemical properties and microbial biomass, 

respiration and diversity in the control and the amended tailings with acacia biomass and 

biochar application. 

Physicochemical 

properties 

MBC Basal 

respiration 

Observed 

species 

Shannon 

diversity 

pH 0.195 0.049 0.658* 0.011 

EC  -0.346 -0.171 -0.638* -0.227 

WHC  0.706* 0.567 0.486 -0.031 

CEC  0.944** 0.982** -0.352 -0.253 

TOC  0.498 0.361 0.679* -0.273 

TN  0.962** 0.987** -0.249 -0.355 

WS Cu  0.736** 0.853** -0.497 -0.487 

WS Zn  0.798** 0.900** -0.535 -0.439 

WSOC  0.949** 0.989** -0.381 -0.318 

Mineral N  0.947** 0.963** -0.279 -0.176 

Data followed with ‘** and *’ indicate significance of correlation at the levels of P < 0.01 

and P < 0.05 respectively. 

 

Several studies have shown the capacity of organic amendments for metal 

immobilisation via absorption, complexation, reduction and volatilization (Park et al., 2011). 

In particular, metal complexation by dissolved OC is an important factor in the mobilisation 
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of metals like Cu2+ (Bolan et al., 2011). However, in this study, levels of water-soluble heavy 

metals significantly increased in the AC amended tailings (5%AC and 5%AC+5%BC 

treatments) although there are considerable increases of WSOC. This may be the reason 

that dominant metal ions (e.g., Cd2+, Pb2+, and Zn2+) concerned in the present study have 

low affinity for soluble organic molecules in the pore water. The differences in the efficacy 

of AC and BC in heavy metals immobilisation may result from the differences in the (1) initial 

pH conditions of organic amendments (BC is slightly alkaline than AC); (2) increase levels 

of labile OC in AC amened tailings favouring the development of heterotrophic bacteria, 

which may stimulate mineral weathering and dissolution processes (Ribeta et al., 1995). 

Shift of microbial community composition in the tailings is closely associated with the 

physicochemical variables induced by AC and BC application in the present study. The 

presence of dominant bacteria (e.g., Sphingobacterium sp., Brevundimonas sp. and 

Ochrobactrum sp.) was positively driven by the improved nutrient availability (e.g., WSOC, 

mineral N, TN) in the 5%AC and 5%AC+5%BC treatments and to some extent, negatively 

driven by the levels of total heavy metals. In the neutral Cu-Pb-Zn tailings, the soluble heavy 

metals (i.e., WS Cu, WS Zn) may not be the major limiting factors to the dominance of 

heterotrophic bacteria and functions of resultant microbial communities, as demonstrated by 

the observed microbial biomass, respiration rates and enzymatic activities.  

The changes of pH and WHC in the BC amended tailings favoured colonisation of 

Thiohalobacter sp., Methylophaga sp. and Limnobacter sp. in the 5%BC treatment. The 

dominant physicochemical factors driving these changes are the levels of nutrients (TOC, 

TN, WSOC, and mineral N) and total heavy metals (e.g., Cu, Pb and Zn) in the tailings. The 

impact of salinity (EC) on the changes in composition of the microbial communities in the 

tailings at the genus level is weaker than the other environmental variables (Fig. 5-7). 

Current understanding concerning fungal community diversity and functions in extreme 

environments is limited (compared to bacterial community). Although a number of studies 

have demonstrated the impacts of environmental factors and plant traits on fungal 

composition and diversity, the conclusion on dominant site factors remains conflicted in the 
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literature (Guo and Gong, 2014; Sikes et al., 2014). The low fungal diversity and abundance 

in the present tailings might be a result of the co-occurrence of multiple stresses (e.g., salts, 

heavy metals) (Casamayor et al., 2002; Nordgren et al., 1983). Since the universal primers 

926F and 1392R are16S rRNA-gene group specific primers targeting bacterial and archaea, 

they don't completely cover the 18S rRNA gene in eukarya (Engelbrekston et al., 2010) with 

SILVA database for eukaryotic amplicons (Pruesse et al., 2007). As a result, the 

quantification of fungal community in the present study is significantly underestimated and 

require further sequencing using a primer targeting fungi. 

 

 

Fig. 5-7 Canonical correspondence analyses (CCA) ordination biplot of relative genera 

abundance of microbial community and dominant site factors in the control and the 

amended tailings with acacia biomass and biochar application. Genera less than 1 % are 

excluded in this analysis 

 

Microbial inoculums might be a fast-track solution to rehabilitate a diverse and 

abundant fungal community in tailings. Furthermore, as increase of abundance and diversity 
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of fungal community is found positively related to plant productivity and diversity, regardless 

of stresses levels (Guo and Gong, 2014; van Ryckegem and Verbeken, 2005), it is possible 

to rehabilitate fungal community in the tailings with the introduction of pioneer plant species 

(due to plant-hosting effects). The role of pioneer native plant species can further galvanise 

the positive effects of AC amendment on the recovery of soil-like microbial communities via 

intensive root-microbe interactions in the weathered and neutral tailings. Where acute 

toxicity has been alleviated after extensive weathering and neutralisation, pioneer native 

plants could survive in the tailings, due to the high tolerance of salinity and low nutrient 

availability in the semi-arid environment. A follow-up trial with native plant species was 

conducted to test this hypothesis (Chapter 7). 

5.5 Conclusions  

In the weathered and neutral Cu-Pb-Zn tailings, microbial community composition will 

shift along different directions by applying organic amendments with contrasting 

chemical/biochemical forms (mainly the degree of OC solubility and nutrient contents). 

Among the physicochemical factors examined, the levels of N, total and soluble OC, and 

total and water-soluble heavy metals induced the strongest changes in diversity and relative 

abundance of different groups of microbial communities in the tailings. Acacia biomass with 

relative greater levels of lability of organic matter and total N brought about significant 

increases of labile OC and nutrients, and favoured the development of potential 

heterotrophic bacteria in the neutralised Cu-Pb-Zn tailings. The enhanced heterotrophic 

bacteria in the AC amended tailings could in turn facilitate the organic matter decomposition 

and nutrient cycling processes as indicated by the greatly elevated enzymatic activities. 

These biogeochemical processes are critical to the rehabilitation of soil functions and the 

development of the amended tailings towards functional technosols. In contrast, inert 

organic amendment such as biochar with little soluble OC and nutrients, is far less effective 

to rehabilitate heterotrophic microbial community and associated biogeochemical processes 
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in the amended tailings. However, the positive effects of BC on the relative abundance of S- 

oxidising bacteria suggest that it may be possible to accelerate microbial mediated 

oxidisation of sulphide minerals and thus hydrogeochemical stabilisation in sulphidic tailings. 

A combination of acacia biomass and biochar appeared to rehabilitate microbial 

communities in the tailings with better efficiency, in terms of the diversity of microbial 

community and microbial functions.  
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Chapter 6 Establishing microbial diversity and functions in weathered and neutral 

Cu–Pb–Zn tailings with native soil addition 

6.1 Introduction  

Successful phytostabilisation of tailing landscapes is often hindered by the lack of 

adequate volume of growth medium (e.g., soil), leading to the necessity of ecologically 

engineering technosols by amending tailings for direct revegetation (Li and Huang, 2015; Li 

et al., 2013; Scalenghe and Ferraris, 2009; Uzarowiczand Skiba, 2011). Our previous 

studies show that organic amendments with high proportion of labile organic carbon (OC) 

and nutrients could stimulate microbial communities and functions in tailings (Chapter 3, 4 

and 5), while the reactive geochemistry of base metal mine tailings may prevent a rapid 

pedogenesis and thus development of microbial diversity in the amended tailings (Li and 

Huang, 2015; Li et al., 2014; Li et al., 2013), also refer to Chapter 5. Within this context, we 

proposed a new amendment strategy of natural soil addition, in addition to incorporating 

plant-biomass organic amendment, for accelerating the development of soil biogeochemical 

functions in weathered and neutral Cu-Pb-Zn tailings. 

Base metal mine tailings are abundant in reactive minerals, among which pyrites 

dominate and the presence of these will suppress the development of microbial consortia 

with biological functions similar to that of a functional soil (Li and Huang, 2015). It is found 

that only tolerant and/or lithotrophic microbial phylotypes are sustained in Cu-Pb–Zn tailings 

(Li et al., 2014; Wakelin et al., 2012; Zhang et al., 2007b). The rehabilitation of native 

microbial communities in the amended tailings is a critical step in the process of technosols 

formation (Li and Huang, 2015). Natural soils from local plant communities are rich in 

microbes tolerant of in situ edaphic and climatic conditions. Addition of local soil containing 

native microbial communities may not only ameliorate the tailings physicochemical 

conditions, but also accelerate the shift toward soil-like microbial communities. 
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In previous studies, plant biomass-based organic amendments were shown to be 

essential for the development of microbial communities in the tailings from the mine site of 

this study (Li et al., 2014) and also refer to Chapter 4 and 5. However, amending tailings 

with organic matter alone is seldom adequate for establishing microbial diversity and 

functions resembling those in local soil (see Chapter 4, 5 and Appendix B). Therefore, the 

present study aims to investigate the effects of adding local top soil collected from native 

vegetation habitat on the establishment of microbial diversity and functions in the neutral 

and weathered Cu-Pb-Zn tailings from Mount Isa mines, north Queensland, in addition to 

plant-biomass organic matter. Specifically, we aimed to examine (1) whether microbial 

functions (e.g., microbial biomass, basal respiration and enzymatic activities) and diversity 

could be established in the Cu–Pb–Zn tailings with inputs of natural soil in combination with 

sugarcane; and (2) how the microbial community composition, examined using in-depth 

sequencing with universal primers, changes with the soil addition regime. The expected 

findings would contribute to the identification of ecological engineering options to accelerate 

technosols formation in the tailings for supporting native plant communities. 

6.2 Methods and materials 

6.2.1 General 

The Cu-Pb-Zn tailings were sampled in May in 2013 from Mount Isa Mine (MIM) 

Tailings dam 5 (TD5) as described in Chapter 4.2.1. Local climatic conditions were 

described in Chapter 3.2.1. Natural vegetation at Mount Isa is dominated by Eucalyptus, 

Spinifex and Acacia species (Appendix C). The tailings area was still devoid of natural plant 

colonisation, despite their weathered state (Li et al., 2014). The soil used for tailings 

amendment was sampled from a natural vegetation land adjacent to the TD5.  

The soil is a typical highly-weathered and mineralised soil with fragmented structure, 

alkaline in pH (8.3), low content of organic C (< 0.1 %), low electrical conductivity (EC, 0.8 

mS cm-1) and high abundances of iron oxides (mainly goethite and hematite) (Li and Huang, 
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2015; Li et al., 2014). Both tailings and soil were oven dried at 40 °C, sieved through 2 mm 

and mixed thoroughly before use.  

Sugarcane was used as a tailing amendment option in this study, in combination with 

natural soil. The sugarcane (debris, including leaves and stem) was purchased from 

Bunnings Warehouse (Brisbane, Australia; http://www.bunnings.com.au). It contained large 

amounts of carbohydrates (86 %), and had the properties of: EC 2.4 mS cm-1, pH 6.5 and 

CEC 42.7 cmol+ kg-1. The sugarcane was dried at 65 °C, ground and sieved through 1 mm 

before use.  

6.2.2 Tailings treatments 

The tailings were mixed with the natural soil at the rate of (% w/w): 12.5, 25 and 50, 

with a total of 400 g of the tailings-soil mixtures. The tailings and soil only were used as 

positive and negative controls, for the purpose of comparison. All treatments (including the 

controls) were replicated 3 times in the pots. In all the treatments, 5 % (w/w) sterilised 

sugarcane debris was added as a basal amendment, based on our previous tests. The 

treatments were designated as tailings, 12.5% soil, 25% soil, 50% soil and soil, respectively. 

All the treatments were incubated in plastic containers in a temperature controlled 

incubator in the dark at 25 °C for 8 weeks. Water loss was adjusted with sterilised deionised 

water every 2 days, to maintain about 15 % water content (based on weight changes). At 

the end of incubation, tailings-soil mix samples were subsampled at 4 °C for the analysis of 

microbial biomass, enzyme assays and DNA extraction. A separate set of subsamples were 

dried at 40 °C for physicochemical analyses.  

6.2.3 Physicochemical analysis 

All the selected physicochemical analysis were measured as described in Chapter 

3.2.2. 

http://www.bunnings.com.au/
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6.2.4 Microbial biomass, respiration and enzyme assays 

Microbial biomass and enzyme assays were measured as described in section 4.2.4. 

Basal respiration was measured as described in Chapter 4.2.3. 

6.2.5 DNA extraction, pyrosequencing and analysis 

DNA was extracted as described in Chapter 5.2.4. Sequence data was analysed 

through the ACE Pyrosequencing Pipeline (Imelfort and Dennis, 2011). The sequence reads 

were sorted according to the barcode in QIIME (Caporaso et al., 2010), trimmed to 250 bp 

length and de-noised using ACACIA (Bragg et al., 2012). Sequences with 97 % similarity 

were classified as an operational taxonomic unit (OTU) using CD-HIT-OTU (Wu et al., 2011) 

and then aligned by PYNAST (Caporaso et al., 2010). All sequences were assigned through 

the GreenGenes database (2011 Fed release) to the taxonomy with BlastTaxonAssigner in 

QIIME. The OUTs table, rarefaction curve, the heatmap and neighbour-joining phylogenetic 

tree were conducted as described in Chapter 5.2.4. 

6.2.6 Statistic methods 

Primary data processing was performed using Microsoft® Excel. All significant tests 

were done using SigmaPlot 12.5 (Systat Software Inc., London, UK). Principal component 

(PCA) and canonical correspondence analyses (CCA) were performed using R with ‘vegan’ 

package (Oksanen et al., 2007). PCA and CCA were performed at the class level for 

microbial species and for selected environmental variables (e.g., Pb, Zn, S) to detect the 

importance of microbial community composition and tailings treatments, and for correlations 

of microbial community composition and measured environmental variables. 

6.3 Results  

6.3.1 Physicochemical changes in the tailings in response to treatments 
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Table 6-1 Selective physicochemical properties of the tailings-soil mix treatments 

Treatments pH 

EC  

(mS 

cm-

1)a 

CEC  

(cmo

l+ kg-

1)b 

WH

C 

(%)c 

TOC
d 

TNe 
WS

OCf 
Total concentration (g kg-1) 

Water soluble concentration (mg 

kg-1) 

g kg-1 S Ca Al Fe Pb Zn S Ca N Pb Zn 

Tailings  
Mean  

7.70 2.51
α 

3.5α 46.6
α 

25.5
α 

0.44α 0.30
α 

32.6 75.4 4.8 78.6 2.78 6.23
α 

4181 2722 66 0.05 0.35
α 

S.D.g 0.00 0.27 1.0 1.4 2.0 0.04 0.03 3.3 6.7 0.9 11.3 0.46 1.01 135 18 11 0.01 0.01 

12.5% 

soil  

Mean  
7.57 2.68

α 

6.5β 50.9
α 

26.5
α 

0.46α 0.24
αβ 

33.8 75.2 6.9 74.3 2.70 5.21
β 

4085 2715 34 0.02 0.27
β 

S.D. 0.06 0.16 0.4 3.2 2.8 0.03 0.05 1.1 4.4 0.5 2.1 0.63 0.28 37 21 2. 0.01 0.02 

25% 

soil  

Mean  
7.53 2.68

α 

7.3β 49.3
α 

24.3
α 

0.46α 0.18
βγ 

31.3 72.0 9.0 71.8 2.24 5.08
β 

4048 2733 26 0.02 0.26
β 

S.D. 0.06 0.05 0.5 2.6 0.5 0.02 0.03 5.1 11.7 1.63 10.9 0.32 0.69 34 7 2 0.01 0.02 

50% 

soil  

Mean  
7.63 2.63

α 

10.4
γ 

50.2
α 

23.4
α 

0.45α 0.16
γ 

22.4 62.7 14.6 69.1 1.34 3.35
γ 

3927 2748 21 0.03 0.27
β 

S.D. 0.06 0.04 0.2 3.8 0.6 0.05 0.05 4.2 6.6 3.1 12.2 0.21 0.05 48 21 2 0.02 0.06 

Soil 
Mean  

7.73 0.83
β 

9.9γ 49.7
α 

25.3
α 

0.52β 0.18
γ 

1.4 30.1 22.2 43.8 0.02 0.14
δ 

840 528 12 0.02 0.03
γ 

S.D. 0.06 0.05 0.7 5.6 2.7 0.04 0.05 0.2 9.8 1.8 6.9 0.00 0.02 35 27 1 0.01 0.01 

a Electrical conductivity. b Cation exchange capacity. c Water holding capacity. d Total organic carbon. e Total nitrogen. f Water soluble 

organic carbon. g Standard deviation. Values followed with letters ‘α, β, γ and δ’ indicate significant differences among the treatments at 

the level of P < 0.05 (only labelled for selected parameters). 
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After the 8-week incubation, the tailings-soil mix treatments had similar pH, TOC, TN 

and WHC. The soil had much lower EC and water-soluble Zn levels than the tailing 

treatments. In contrast, the tailings' EC and water-soluble Zn levels were high in all the 

tailings-containing treatments, regardless of the level of soil addition rates (Table 6-1). 

In the tailings-soil mix, MBC (Fig. 6-1a) and Shannon diversity (Fig. 6-1d) increased 

linearly with increasing soil addition rates, while WSOC and soil respiration showed a 

reverse trend. A significantly negative correlation between MBC and WSOC (Table 6-1) 

was detected across the treatments (P = 0.010). The microbial respiratory quotient differed 

significantly among the 5 treatments (P < 0.001), with tailings being the highest and the 

50% soil and soil treatments not statistically different.  

 

 

Fig. 6-1 MBC (a), WSOC (b), basal respiration rate (c) and microbial community diversity 

indexes (d) in the tailings-soil mix treatments. Values are means (n = 3); error bars indicate 

standard deviations; letters ‘a, b, c and d’ above indicate significant differences among the 

treatments at the level of P < 0.05; letters ‘α, β, γ and δ’ above indicate significant 

differences of Shannon diversity among the treatments at the level of P < 0.05. 
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The measured activities of the selected enzymes including dehydrogenase, invertase 

and urease increased with increasing soil addition rates, with the 50% soil treatment and 

soil being significantly (P < 0.05) higher than the other treatments (Fig. 6-2). The increased 

levels of these enzymatic activities in the treatments coincided with decreased levels of 

WSOC and water-soluble N (Table 6-1). Neutral phosphatase activities were not significantly 

different among the 4 tailings-containing treatments, but was significantly lower (P < 0.002) 

in the soil only treatment. 

 

 

Fig. 6-2 Activities of dehydrogenase (a), invertase (b), urease (c), and neutral phosphatase 

(d), in the tailings-soil mix treatments. Values are means (n = 3); error bars indicate 

standard deviations; letters ‘a, b, c and d’ above indicate significant differences among the 

treatments at the level of P < 0.05. 
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6.3.2 Microbial community composition and variation across the treatments  

Pyrosequencing of the small subunit rRNA genes was performed to explore the 

detailed microbial diversity within different treatments of tailings-soil mix. It was apparent 

that the depth of sequencing well covered the microbial diversity therein (Fig. 6-3). A total of 

71,351 good quality reads were obtained by pyrosequencing in the present study. These 

sequences were classified into 1200 OTUs0.97. Major OTUs and their affiliations were shown 

in Fig. 6-4. The 1200 OTUs0.97 were affiliated with 54 classes of 2 phyla of bacteria, 5 classes 

within 2 archaeal phyla, and 4 phyla of fungi. There were 17 non-fungi eukaryotic OTUs and 

3 unknown OTUs. 

 

 

Fig. 6-3 Rarefaction curve of OTUs recovered from the tailings-soil mix treatments. 
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Fig. 6-4 A neighbour-joining phylogenetic tree of 16S rRNA gene sequences recovered 

from the tailings-soil mix treatments. Only representative OTUs were shown in this tree; 

the taxonomic groups are delineated on the right; scale bar stands for 0.02 changes per 

site. 
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The observed species of the microbial communities in the tailings-soil mix treatments 

ranged from 130 ± 23 (tailings) to 262 ± 19 (50% soil), and the Shannon index ranged from 

4.58 ± 0.17 (tailings) to 6.31 ± 0.37 (soil). The observed species was not significantly 

different among the treatments (P < 0.07), despite the 50% soil treatment being significantly 

higher than the tailings (P < 0.01). In contrast, the Shannon diversity was significantly 

different (P < 0.001) among the treatments, with higher microbial diversity in the soil and 50% 

soil treatments than those in the other 3 treatments. 

 

 

Fig. 6-5 Pyrosequencing-based microbial community composition (bacterial phyla, 

archaea, fungi and non-fungal eukaryotic microbes) of the tailings-soil mix treatments.The 

bacterial phyla with a frequency less than 1 % are shown as ‘others’; values are means (n 

= 3); error bars indicate standard deviations included for the top 4 abundant groups (α-

Proteobacteria, γ-Proteobacteria, fungi and Bacteroidetes). 
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Bacterial OTUs dominated all the microbial assemblages in tailings-soil mix treatments 

and those within the phyla of Proteobacteria and Bacteroidetes were most abundant (Fig. 

6-5). Dominant bacterial OTUs (> 1 % in all samples) were closest to Rhizobium sp., 

Novosphingobium sp., Agromyces sp., Pseudomonas sp. and Lysobacter sp. Some other 

abundant bacterial OTUs (> 10 % in at least 1 sample), which were detected in all the 

treatments but not all samples, were affiliated with Cellvibrio sp., Flavitalea sp., 

Altererythrobacter sp. and Sphingomonas sp. (Fig. 6-6). The most abundant archaeal OTU 

was assigned to Nitrososphaera sp. In comparison of all the treatments, significant 

differences were found for abundances of Planctomycetes (P < 0.001) and Firmicutes (P = 

0.002), both of which increased with soil percentage. 

 

 
Fig. 6-6 Microbial community composition detected at the genus level in the tailings-soil 

mix treatments. The abundance of genera is indicated and cluster analysis of the 

community composition between the samples is shown. Only genera with a frequency of 

greater than 1 % are shown in the figure. 
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Fig. 6-7 Principal component analysis (PCA) of the microbial community composition 

detected in the tailings-soil mix treatments. Correlations with classes of microorganisms (in 

red) are made; the PCA axes differentiate the tailing samples according to their microbial 

community composition 

 

Fungi was detected in all the treatments, though their abundance was low in the soil 

and tailings only, but their abundance was around 10 % in the tailings-soil mix treatments 

(Fig. 6-5). The major fungal phylotypes (> 1 % in at least one sample) were affiliated with 

the phyla of Ascomycota and Basidiomycota, and were closest to Emericellopsis sp., 

Stachybotrys sp., Pleosporales sp. and Sebacina sp. The most abundant of these, 

Emericellopsis sp., is potentially alkalitolerant in the tailing treatment (Fig. 6-6).  

The CCA analysis indicated a strong association between fungi (Agaricomycetes) and 

microbial biomass and the activities of enzymes related to C and N cycling (Fig. 6-8). Non-

fungi eukaryotes, mainly affiliated with the phyla of Nematoda and Protozoa, were detected 

in all soil-containing treatments but not in the tailings only. The most abundant Nematoda 

was closest to Aphelenchus sp., a typical mycophagous nematode. 
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Fig. 6-8 Canonical correspondence analysis (CCA) of class abundance vs. enzymatic 

activities, microbial biomass carbon, respiration and water soluble organic carbon in the 

tailings-soil mix treatments. Abbreviations are as indicated in Table 6-1. 

 

6.3.3 Microbial community structure vs. environmental variables  

To explore whether the amendment strategy had driven the shift of microbial 

community structure and what environmental variables contributed to the shift, multivariate 

analyses were performed on the data assemblages of microbial community composition and 

environmental variables. At higher taxonomic levels, the microbial community structure in 

the tailings was clearly separated from those of the soil only, and the tailings-soil mix 

treatments which formed another cluster (Fig. 6-6 and Fig. 6-8).  

Tailings were abundant in γ-Proteobacteria, mainly Cellvibrio sp., Pseudomonas sp. 

and Lysobacter sp., while soils were abundant in α-Proteobacteria, mainly 

Novosphingobium sp., Eubacterium sp. and Rhodospirillales sp.. A CCA analysis further 

indicated that the dominance of γ-Proteobacteria in tailings was strongly associated with the 

stressors, including EC (thus S), total Zn and total Pb (Fig. 6-9). 
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Further, it is worth noting that large differences in abundance were observed for fungi 

and protists at the genus level among replicates across the treatments. These genera 

included Emericellopsis sp., Pleosporales sp., Acremonium sp., and Aphelenchus sp.. The 

CCA indicated that community differences were associated with the physiochemical 

properties of the different treatments. For example, CEC and N may be factors important for 

the Agaricomycetes (Fig. 6-9). 

 

 

Fig. 6-9 CCA of class abundance vs. environmental variables in the tailings-soil mix 

treatments. Abundance less than 1 % are excluded from this analysis.  

 

6.4 Discussion 

From the present results, incorporation of local soil from native vegetation into the 

weathered and neutral Cu-Pb-Zn tailings significantly changed the composition and 

structure of microbial communities in the tailings-soil mix. The addition of up to 50 % local 

soil increased the microbial diversity and enzymatic activities for C and N turnover, with a 
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respiratory quotient similar to that of the native soil. The phyla Proteobacteria, Ascomycota 

and Bacteroidetes dominated in all the treatments, but the microbial community composition 

was clearly differentiated among the treatments of tailings only, the tailings-soil mix and the 

soil only. In the mixtures of tailings and soil, opportunistic development of fungi and protists 

was found. The development of fungi in the treatments was also strongly associated with 

the microbial biomass and selected enzymatic activities. 

6.4.1 Colonisation of native soil microbial community in the tailings 

Consistent with previous studies, the microbial assemblages in all the tailings-

containing treatments were dominated by prokaryotes (bacteria and archaea); however, 

non-negligible amounts of eukaryotic microbes were also detected in this study. Prokaryote 

diversity has been examined in various tailing environments in the past decade (Baker and 

Banfield, 2003; Bond et al., 2000a; Bond et al., 2000b) and eukaryotes have been detected 

in some studies (Baker et al., 2004; Baker et al., 2009). To our knowledge, this is the first 

report to detect the presence of prokaryotic and eukaryotic microbes in tailings using in-

depth sequencing. Possibly the importance of eukaryote microorganisms in tailings 

biogeochemistry has been overlooked in past studies. 

Most of the dominant species across all the microbial assemblages were potential 

heterotrophic decomposers which would be required for litter decomposition in soil 

(Mergaert et al., 2003; Sohn et al., 2004; Zgurskaya et al., 1992), or nitrogen-fixers (Sawada 

et al., 2003; Spang et al., 2012). The abundances of Planctomycetes (P < 0.001) and 

Firmicutes (P = 0.002) in the tailings-soil mix increased with increasing soil addition. Both 

the Planctomycetes and Firmicutes are important microbial phyla in natural bulk and 

rhizosphere soils (Fierer et al., 2007) but are generally much less abundant in Pb-Zn tailings 

(Li et al., 2014; Zhang et al., 2007a; Zhang et al., 2007b). These phyla may be an indicator 

of the ameliorating effects of the soil amendment and the rehabilitation of soil-like biological 

capacity in the engineered technosols. 

There is the possibility that the findings of the pyrosequencing are influenced by DNA 

that is extracellular or from dead cells. It may be that extracellular DNA from dead bacteria 
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can be a significant proportion of the sample DNA. However, it is reported that the turnover 

of soil DNA can be considerable, for example > 90 % of extracellular microbial DNA may be 

degraded within 4 days (Herdina et al., 2004). So we consider the high abundance of these 

bacterial types detected by DNA sequencing to indicate the presence of these 

microorganisms in the tailings-soil mix samples after the 8-week incubation. It would be 

useful to validate and quantify these findings in future work by designing specific probes and 

using fluorescence in situ hybridisation. 

The measured activities of the selected enzyme dehydrogenase, invertase and urease 

increased with increasing soil amendments. These three enzymes are involved in C and/or 

N turnover in soil (Das and Varma, 2011). Due to the added sugarcane, the starting levels 

of soluble organic carbon and N were similar in all the treatments. It is logical to deduce that 

the increased levels of these enzyme activities in the treatments coincided with decreased 

levels of WSOC and water soluble N. It was surprising to have observed that neutral 

phosphatase activities was not significantly different among the four tailings-containing 

treatments in our present experiment, as the tailings may contain stressors that suppress 

phosphatase activity (Nannipieri et al., 2011). A possibility here is that the tailing microbial 

communities were adapted to the stresses and the phosphatase activity of these organisms 

was somehow induced by the addition of the sugarcane debris. Organic amendment has 

been found to induce phosphatase activity in other contaminated soils (Renella et al., 2005). 

It would also be useful to examine the dynamics of these changes by analysis of multiple 

points as the samples develop over time. This would confirm whether the observed 

enzymatic activities were the results of the active colonisation of the soil microbes or just the 

residual activities (Smith and Parsons, 1985). 

It is known that microorganisms can have major impacts on geochemical processes in 

mine tailings (Diaby et al., 2007). Changes in microbial communities, in response to 

remediation measures, also have functional implication for tailings' soil biological capacity 

for plant establishment (Li et al., 2014). The observed species of microbial communities in 

tailings and soil as well as the mix treatments was fairly low in comparison to fertile natural 

or arable soils (Li et al., 2014). The alpha diversity in the tailings may be primarily limited by 
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toxicity factors in the tailings, even if microbial community composition can be changed by 

the soil amendment. It was apparent that further chemical weathering of minerals had 

occurred in the amended treatments within the 8-week period to maintain soluble ion levels 

similar to that detected in the tailing treatments. Such rapid weathering is not common in 

normal soils, but has been found in many sulphidic coal and base metal mine tailings (Dold 

and Fontboté, 2001; Park et al., 2013), particularly when organic matter is added in the 

tailings (Li et al., 2014; Li et al., 2013). 

The stimulation of the fungi colonisation in the tailings-soil mix is rather unexpected, 

since fungi abundance was low in the soil and tailings only treatments. In the mixed 

treatments of the present experiment, the abundance of fungi accounted for about 10 %, 

indicating their potential importance in the establishment of microbial communities in the 

engineered tailings-soils. The major fungal phylotypes (> 1 % in at least one sample) were 

typical heterotrophic decomposers in soil (Basiewicz et al., 2012; Haugland et al., 2001; 

Zhang et al., 2009; Zuccaro et al., 2004). Among these fungi, the most abundant, 

Emericellopsis sp., is potentially alkalitolerant, a trait possibly aiding its survival in the 

unfavourable geochemical conditions of the tailing treatments. From an engineering 

viewpoint, the colonisation of fungi in the amended tailings is of particular importance in soil 

with low organic carbon and nutrients, in addition to the development of prokaryotic microbial 

communities. In agriculture, high soil fungal: bacterial ratios are well-recognized as 

indicative for more sustainable soil ecosystems with low fertility background (De Vries et al., 

2006). Fungi play special roles in recycling and retaining nutrients (Averill et al., 2014) and 

improving soil physical structure (Ritz and Young, 2004), and soil ecosystem tends to be 

dominated by fungi in late terrestrial succession (Crawford et al., 2012). A CCA analysis 

indicated a strong association between fungi (Agaricomycetes) and microbial biomass and 

the activities of enzymes related to C and N cycling (Fig. 6-7). Therefore, the colonisation of 

fungi may be not only an indicator of amelioration of the tailings environment but also a 

driving factor in tailing pedogenesis after amendment. 

The survival of non-fungi eukaryotes in all soil-containing treatments is also interesting. 

The occurrence of the most abundant Nematoda, Aphelenchus sp. may be highly connected 
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to the development of fungi (Walker, 1984), as supported by our findings that there was a 

strong correlation between the total abundance of fungi and soil protists (R2 = 0.60, P < 0.05, 

n = 15) in all the samples. Although the protists were low in abundance, the survival of the 

protists in the tailings-soils mix implies the possibility of reconstructing a food-web similar to 

natural soil in the tailings by the current amendment strategy. 

6.4.2 Environmental drivers in the establishment of microbial community 

The additions of local soil from native vegetation habitat not only provide the inocula 

of soil microbes, but also altered the physicochemical conditions in the tailings through 

dilution, addition and interactions between the soil and tailing factors. At the end of the 8-

week of incubation tests, the microbial communities were the result of selection of soil 

microbes caused by physicochemical conditions induced by soil addition. The microbial 

community structure differences may be a reflection of the different magnitudes of metal 

stresses of the tailing environment, while ample carbon sources were provided for 

microorganisms in the tailings and the soil treatment. Metal stresses can induce changes of 

soil microbial communities in not only the community structure (Deng et al., 2009) but also 

the abundance of specific functional groups (Li et al., 2009; Li et al., 2012). In a study of Pb–

Zn tailings from the Aravaipa Valley, Graham County, Arizona γ-Proteobacteria (in 

percentage) were detected an order of magnitude higher in comparison to that in the 

reference soil where α-Proteobacteria were much more abundant (Mendez et al., 2008). 

Moreels et al. (2008) also found that microbial communities sensitive to metals can evolve 

toward γ-Proteobacteria-enriched communities under metal stress. These results imply that 

γ-Proteobacteria may be more tolerant of environmental stresses than other classes. Indeed, 

it was found in the present study that the dominance of γ-Proteobacteria in tailings was 

strongly associated with the stressors, including EC (thus S), total Zn and total Pb. 

Despite the apparent difference in patterns of microbial community structure between 

tailings and soil, the microbial community structure of their mix was not a simple result of 

superimposition. Rather, opportunistic development of fungi and nematodes was found in 

these treatments. This could be related to the complex dynamics of nutrient levels and 
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environmental stresses created by the additions of sugarcane and soil materials. Further, it 

is worth noting that large differences in abundance were observed for fungi and protists at 

the genus level among replicates in all treatments. CCA indicated that community 

differences can be associated with the physiochemical nature of the different treatments. 

Stochastic assembly processes can also contribute to microbial community variation, as 

found in soils and other habitats after disturbance (Ferrenberg et al., 2013; Zhou et al., 2014). 

However, the occurrence of community clusters based on the tailing treatments (Fig. 6-7) 

implies that stochastic processes were not the dominating influence on the community 

patterns detected here. The dynamic of tailing microbial community structure merits a further 

investigation in long-term and under field conditions. 

6.5 Conclusions 

In weathered and neutral Cu-Pb-Zn tailings, the native soil inoculation approach may 

be used to fast-track the establishment of native microbial communities and initiate the 

rehabilitation of biogeochemical processes in the technosol for establishing native plant 

species well adapted to the local soil conditions, although field trials are required to 

investigate the persistence across seasons and years.  
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Chapter 7 Biogeochemical changes induced by organic matter of contrasting 

properties and native plant colonisation in fresh and neutral Cu-Mo-Au tailings of low 

phytotoxicity 

7.1 Introduction 

Functional technosol development in base metal mine tailings consists of two critical 

phases – (1) weathering of reactive minerals and hydrogeochemical stabilisation and (2) 

development of biogeochemical structure and functional processes (Huang et al., 2014a; 

Huang et al., 2012). Direct revegetation of base metal mine tailings, even in the significantly 

amended tailings, without successful soil formation in situ has had little success in 

establishing a healthy plant cover and plant communities of high diversity and sustainability 

(Chen et al., 2007; Chiu et al., 2006; Song et al., 2004). Technosols with adequate 

biogeochemical capacity and functions is anticipated to develop from sulphidic tailings only 

after many decades of weathering of sulphides and pedological development under natural 

conditions (Uzarowicz and Skiba, 2011). 

As microbial community and activities are crucial for ecosystem functions and plant 

productivity (Harris, 2009), rehabilitation of functional microbial communities is an essential 

part of technosols formation from the amended tailings (Li and Huang, 2015; Mendez and 

Maier, 2008). The development of microbial communities and their functions in amended 

tailings has become an critical indicator of technosol formation in tailings, subjected to 

various ecological engineering inputs. It is widely recognised that plant species and matrix 

properties together shape the structure and functions of microbial communities (Berg and 

Smalla, 2009). As a result, the introduction of tolerant pioneer plant species should be 

considered when investigating ecological engineering options to stimulate the technosols 

formation in tailings.  

Our previous studies using the weathered and neutral Cu-Pb-Zn tailings have 

demonstrated that it is highly possible to accelerate the process from tailings to 

biogeochemically functional technosols with purposely designated ecological engineering 
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inputs, such as the incorporation of organic amendments and introduction of pioneer plant 

species (Huang et al., 2011; Li et al., 2015; also refer to Chapter 3, 4, and 5). However, 

based on field trials and laboratory pre-tests, the initiation and stimulation of biogeochemical 

changes towards functional technosols is far less efficient in the fresh tailings which contain 

abundant reactive minerals and are undergoing dynamic hydrogeochemical actions of 

reactive minerals (e.g., pyrites and the equivalent) (refer to TD7 in Chapter 3). The 

weathered Cu-Pb-Zn tailings from TD5 tested in the laboratory incubation (refer to Chapter 

5 and 6) are too saline for the examined plant species even after 20 years of weathering 

under field conditions.  

Many fresh tailings from Cu- and Cu-Mo-Au mines contain low amounts of reactive 

minerals and exhibit relatively stable geochemical conditions (Forsyth, 2014; Huang et al., 

2011). For example, the EHM tailings (tailings from Ernest Henry Mine from processing 

chalcopyrite ores) in the resent study are much less hydrogeochemically reactive than those 

from Mount Isa Mines (TD5 and TD7), due to the mineralogical composition of the former 

(Siliezar et al., 2011). It is possible to initiate technosols formation in this type of fresh tailings 

by directly focusing on biogeochemical structure and function rehabilitation (Huang et al., 

2014b). Additionally, a field trial has already shown that native grass species can be 

successfully established in this fresh Cu-Mo-Au tailings amended with organic amendment 

(hay) under  subtropical and semi-arid climatic conditions; the native grass also flowered, 

seeded and self-recruited in the field trials (Huang et al., 2011). Therefore, the Cu-Mo-Au 

EHM tailings may be used to support the conceptual proposition that biogeochemical 

rehabilitation phase in the engineered pedogenesis is critically dependent on the 

hydrogeochemical stabilisation in the tailings. The primary objective of this study was to 

investigate the responses of microbial community structure and functions in fresh Cu-Mo-

Au tailings amended with organic matter containing high proportions of labile organic carbon 

and the colonisation of native plant species under greenhouse conditions compared to those 

amended with recalcitrant biochar.  

The adverse conditions in tailings (e.g., nutrients depletion, low water holding capacity, 

heavy metal toxicity, salinity) favour the development of tolerant microbial communities (Li 
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et al., 2014; Li et al., 2015; Schimel et al., 2007). Microbial diversity, biomass and associated 

biogeochemical activities are therefore extremely low compared to natural soil (Kock and 

Schippers, 2008; Li et al., 2014). Organic amendments may rehabilitate diverse and 

functioning microbial communities in tailings that are beneficial to plant establishment and 

growth (Pepper et al., 2012). Furthermore, exogenous organic amendments (e.g., plant 

residue, biochar, compost, manure etc.) may rapidly build up organic carbon pools, 

contributing to microbial biomass and functions rehabilitation (Rosario et al., 2007) (also see 

Chapter 3, 4 and 5). In particular, the introduced pioneer plant roots would assist the 

colonisation of beneficial rhizosphere microbes that would benefit plants in nutrient 

acquisition and tolerance resistance in the stressed tailings environment (Fellet et al., 2014; 

Santibáñez et al., 2008; Solís-Domínguez et al., 2011). Besides, the effects on the 

colonisation of rhizosphere microbial communities may differ between leguminous and 

gramineous plant species.  

This study compared the efficacy of two typical organic amendments and the 

colonisation of two native plant species on biogeochemical properties and processes (such 

as microbial community structure and functions), applied in fresh and neutral Cu-Mo-Au 

tailings with a relatively stable geochemistry and low contents of reactive minerals (e.g., 

sulphides). The native species Iseilema vaginiflorum (grass) and Acacia chisholmii 

(leguminous shrub) were tested in this study. Both are drought and nutrient efficient tolerant 

species typically distributed in the region of Cloncurry and Mount Isa, northwest Queensland, 

Australia (Hunter and Melville, 1994). A field survey shows these two species are capable 

of colonising infertile land (Diagne et al., 2013), with high tolerance to salinity (Marcar et al., 

1991) and elevated levels of heavy metals (Justin et al., 2011). The specific objectives of 

this study were to: (1) characterise the growth and element uptake by native grass Iseilema 

vaginiflorum (IV) and leguminous shrub Acacia chisholmii (AC) in the tailings; (2) investigate 

the efficacy of organic amendments on rehabilitation of microbial communities interacting 

with native plants. Information from this study is foundation to formulate effective organic 

amendment strategies for technosols formation in relatively stable and neutral base metal 

mine tailings rehabilitated with tolerant native plant species. 
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7.2 Materials and methods 

7.2.1 Ernest Henry Mine and sample collection  

The tailings used in this study came from processing ores containing iron oxides (23 % 

magnetite), Cu (1 %) and Au (0.5 g t-1) (Siliezar et al., 2011) at Ernest Henry Mine (EHM), 

Cloncurry, northwest Queensland, Australia (refer to Appendix C). The tailings were 

collected from tailings impoundment areas in June 2012. The tailings are slightly alkaline 

with an average pH of 7.7, EC of 1.5 mS cm-1 and contain 3 % S, 0.3 % Fe, 0.1 % Mn and 

0.01 % Cu.  

Bulk tailings were transported to the laboratory and dried at 40 °C in an aerated oven 

until a constant weight was reached. Prior to incubation, the tailings were sieved through 2 

mm stainless mesh steel and homogenised. Organic amendments, sugarcane as fresh plant 

biomass and biochar as recalcitrant carbon, were used in this study. Properties of sugarcane 

(SC) were described in Chapter 5.2.1. Biochar (BC) properties were described in Chapter 

4.2.1. Both were ground to less than 1 mm and sterilised prior to incubation. 

7.2.2 Experiment design and greenhouse incubation  

The seeds of Iseilema vaginiflorum (IV) and Acacia chisholmii (AC) were collected from 

the native plant in the sampling area of the tailings. Iseilema vaginiflorum seedlings were 

prepared by germinating in an incubator and healthy seedlings grown in greenhouse culture 

for 3-week before transplantation into the amended tailings. 3 seedlings were selected for 

each pot in each treatment to permit rapid saturation of the root mass in the pot. Acacia 

chisolmii seeds were sown and cultured for 12-week prior to transplanting into the amended 

treatments. Due to the relatively larger root system per plant, only one healthy AC seedling 

transplanted in each pot (replicate) of the treatments. Seedlings with similar growth 

conditions were selected for the experiment. At transplanting, all seedlings were carefully 

washed with tap water to remove soil particles and quickly rinsed 3 times with deionised 

water. 
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The treatments included: control, 10%SC+IV, 10%BC+IV, 10%SC+AC and 

10%BC+AC, with 3 replicates in each treatment. Tailings and 10 % (w/w) of SC or BC were 

thoroughly mixed and subsequently placed in pots (12 cm in diameter and 10 cm in height) 

with a piece of 0.1 mm moisture mat underneath to retain the fine tailings particles. All pots 

and mats were sterilised before use. The rate of amendment application was selected based 

on our preliminary experiments under laboratory and field conditions (Li et al., 2014; Li et al., 

2015). Preliminary experiments showed that neither of these plant species could survive in 

the tailings without organic amendments due to high mechanical compaction and anoxia 

conditions.  

The plants were cultured under greenhouse conditions with an atmospheric 

temperature of 20-29 °C and 55 % relative humidity. Deionised water was added daily to 

counter water loss through evaporation; soil moisture in the pots was maintained to 50-60 % 

of the maximum water holding capacity. The pots were arranged in a randomised block 

design and incubated for 8 weeks (i.e., early May to the end of June, 2013).  

At harvest, plants shoots were cut off at the base of each plant with a stainless steel 

blade. Roots were then gently separated from the tailings to remove any attached particles 

by hand. For all the revegetated treatments, tailings attached to the plant roots were 

purposely collected as bulk rhizosphere tailings, which were stored at 4 °C for DNA 

extraction and subsequent microbial community analyses. Bulk tailings were sampled and 

stored at 4 °C for microbial biomass and enzyme assays analyses.  

For plant analyses, both shoots and roots were rinsed with deionised water 3 times, 

followed with 0.01M hydrochloride acid and millipore water and dried at 65 °C until a constant 

weight. They were ball milled and stored in a desiccator prior to chemical analysis.  

7.2.3 Plant analysis 

Total N concentrations in plant tissues were determined by dry-combustion with a 

LECO CNS-2000 analyser (LECO Corporation, MI, USA). Plant samples (0.05-0.10 g) were 

digested with concentrated nitric acid using an open-vessel microwave (Milestone Start D) 

(Huang et al., 2004). Total elements were analysed by inductively coupled plasma optical 
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emission spectroscopy (ICP-OES, Varian) .A standard reference plant material (ASPAC 61, 

Canola leaf, Australian Soil and Plant Analysis Council) was used to test the accuracy of the 

measurement with the recoveries ranging from 90 ± 10 %. 

7.2.4 Physicochemical analysis 

All the selected physicochemical analyses were measured as described in Chapter 

3.2.2 

7.2.5 Microbial biomass, basal respiration and enzyme assays 

Microbial biomass and enzyme assays were determined as described as Chapter 4.2.4. 

Basal respiration measurements were conducted as described in Chapter 5.2.3.  

7.2.6 DNA extraction, pyrosequencing and analysis 

DNA extraction, pyrosequencing and analyses were performed as decribed Chapter 

5.2.4 

7.2.7 Statistical methods 

Primary data processing was performed using Microsoft® Excel. One-way analysis of 

variance (ANOVA) was carried out for significant tests among treatments. Two-way ANOVA 

was carried out for significant tests of differences in microbial communities between organic 

amendments and plant species. Means were compared using the least significant 

differences (LSD) test at P = 0.05. Pearson linear correlations among plants properties, 

biogeochemical properties and microbial properties in tailings were also analysed. All 

statistical analyses were conducted using the SPSS software package (SPSS Statistics 20.0, 

Chicago, IL, USA).  

Principal component (PCA) and canonical correspondence analyses (CCA) were 

carried out using CANOCO software for Windows 4.5 (Biometris-Plant Research 

international, Wageningen, The Netherlands). PCA and CCA were performed at the class 

level for microbial species and for selected environmental variables (e.g., pH, EC, Cu, S) to 
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detect the distribution of microbial communities in the tailing treatments, and for correlations 

of microbial composition and measured environmental variables. 

7.3 Results  

7.3.1 Physicochemical properties in the tailings 

Basic physicochemical properties of the tailings are summarised in Table 7-1. The 

results showed that the tailings were neutral to alkaline and slightly saline. The tailings 

contained low levels of TOC and nutrients (e.g., TN), but elevated levels of sulphur (S) and 

iron (Fe) bearing minerals. In addition, the levels of heavy metals (e.g., Mn, Cu and As) were 

in the toxic range for agriculture purpose (Mendez and Maier, 2008).  

The organic treatments significantly modified the physicochemical properties of the 

amended tailings, compared to the control. Both SC and BC increased WHC by 2-3 folds in 

the amended tailings, compared to the control. The SC amendment significantly increased 

levels of TOC (P < 0.001), TN (P < 0.01) and CEC (P < 0.01) compared to the control. The 

addition of BC in the tailings brought about significant increase of TOC (P < 0.001), but not 

TN and CEC compared to the control.  

Organic amendment and plant colonisation did not change total concentrations of most 

elements (e.g., S, Ca, Mn, Cu and As). However, the levels of water-soluble Cu and As in 

the tailings were significantly increased by the SC treatments (P < 0.01) and water-soluble 

Mn and Cu decreased by the BC treatments significantly (P < 0.01) compared to the control. 
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Table 7-1 Selective physicochemical properties in the sugarcane and biochar amended tailings with native plants 

Treatments pH EC  

(mS 

cm-1)a 

CEC  

(cmol+ 

kg-1)b 

WHC  

(%)c 

TOCd TNe Total concentration (g kg-1) Water soluble concentration (mg 

kg-1) 

g kg-1 S Ca Mn Cu As S Ca Mn Cu As 

Control Mean  7.7 1.4αβ 1.2α 14.0α 2.7α 0.27α 32.0 46.6 3.2 1.25 0.10 181 234 0.25α 0.07α 0.004 

S.D.f 0.07 0.1 0.3 3.3 1.5 0.10 1.2 4.3 0.5 0.20 0.02 48 66 0.08 0.03 0.005 

10%SC+IV Mean  7.6 1.6β 3.3β 41.2β 38.2β 0.48β 24.1 38.8 2.7 1.19 0.06 119 151 0.32α 0.14β 0.01 

S.D. 0.02 0.2 0.8 3.8 3.3 0.02 3.3 1.7 0.1 0.01 0.03 24 36 0.09 0.03 0.003 

10%BC+IV Mean  7.7 1.2α 1.4α 36.9β 70.2γ 0.29α 32.3 46.0 3.3 1.19 0.11 159 192 0.15β 0.01α 0.015 

S.D. 0.04 0.2 0.3 1.3 1.3 0.07 4.8 2.9 0.3 0.03 0.03 53 64 0.04 0.00 0.003 

10%SC+AC Mean  7.6 1.4β 3.7β 41.6β 38.2β 0.49β 26.2 41.9 3.3 1.37 0.09 164 221 0.33α 0.30γ 0.018 

S.D. 0.03 0.1 0.9 2.7 1.3 0.05 4.0 5.0 0.9 0.44 0.03 18 72 0.11 0.10 0.003 

10%BC+AC Mean  7.6 1.1α 1.6α 39.3β 68.6γ 0.30α 28.7 42.0 2.7 1.13 0.09 178 208 0.14β 0.01α 0.014 

S.D. 0.05 0.0 0.2 2.1 2.6 0.01 2.6 2.1 0.1 0.05 0.03 27 34 0.05 0.00 0.007 

a Electrical conductivity. b Cation exchangeable capacity. c Water holding capacity. d Total organic carbon. e Total nitrogen. f Standard 

deviation. Values are means (n = 3); values labelled with letters ‘α, β, γ and δ’ within the column indicate significant differences among 

the treatments at the level of P < 0.05 (only labelled for selected parameters).
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7.3.2 Plants responses in the amended tailings 

All the plants transplanted in the tailings survived during the course of the greenhouse 

experiment. Overall, both IV and AC grew well in the amended tailings (Fig. 7-1).  

 

 

Fig. 7-1 Growth pattern of transplanted mature plant seedlings in the sugarcane and 

biochar amended tailings with native plants after 8-week greenhouse incubation. 

 

These 2 native plant species had different growth responses to the SC and BC 

treatments. As shown in Fig. 7-2, plants grown in the SC amended tailings showed an overall 

greater biomass compared to those grown in the BC treatments. Both shoot and root 

biomass of AC grown in the SC amended tailings were significantly greater than the AC 

grown in the BC amended (P < 0.05). 
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Fig. 7-2 Plant biomass of shoot and roots in the sugarcane and biochar amended tailings 

with native plants. Values are means (n = 3); error bars indicate standard deviations; the 

letters ‘a, b, c, d’ above indicate significant differences of plant shoots among the 

treatments at the level of P < 0.05; the letters ‘α, β, γ and δ’ above indicate significant 

differences of plant roots among the treatments at the level of P < 0.05. 

 

The main effects of the SC and BC treatments seemed to be on Cu concentrations in 

the plant roots. Specially, Cu concentrations in the roots of IV in the BC amended tailings 

(127-199 mg kg-1) were much lower than those in the SC amended tailings (207-328 mg kg-

1) (P < 0.05) (Fig. 6-3d). The same pattern was observed for Cu concentrations in the AC 

roots, which significantly decreased in the BC amended tailings (259-371 mg kg-1) compared 

to those grown in the SC amended tailings (451-651 mg kg-1) (P < 0.05).  

Moreover, there were significant differences between IV and AC in element 

concentrations in the plant shoots. For example, N concentrations (Fig. 6-3a) in the AC 

shoots (13.1-19.1 g kg-1) were significantly greater than those in the IV shoots (22.6-25.6 g 

kg-1) (P < 0.01), while the Cu concentrations in the AC shoots (3-5 mg kg-1) were lower than 

those in the IV shoots (8-17 mg kg-1) (P < 0.05) (Fig. 6-3d). 
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Fig. 7-3 Concentrations of N (a), Ca (b), Mn (c) and Cu (d) in shoot and root of Iseilema 

vaginiflorum and Acacia Chisholmii in the sugarcane and biochar amended tailings with 

native plants. Values are means (n = 3); error bars indicate standard deviations; the letters 

‘a, b, c, d’ above indicate significant differences of plant shoots among the treatments at 

the level of P < 0.05; the letters ‘α, β, γ and δ’ above indicate significant differences of 

plant roots among the treatments at the level of P < 0.05.  
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7.3.3 Microbial functions in the tailings  

 

Fig. 7-4 WSOC (a), MBC (b), microbial community diversity indexes (c), basal respiration 

(d), dehydrogenase (e), invertase (f), urease (g) and neutral phosphatase (h) activities in 

the control and the sugarcane and biochar amended tailings with native plants. Values are 

means (n = 3); error bars indicate standard deviations; the letters ‘a, b, c, d’ above indicate 

significant differences among the treatments at the level of P < 0.05; the letters ‘α, β, γ and 

δ’ above indicate significant differences of Shannon diversity among the treatments at the 

level of P < 0.05. 
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Organic amendments with contrasting properties significantly shifted microbial 

communities and functions in the amended tailings. As shown in Fig. 7-4a, SC amendment 

significantly increased the levels of labile OC (WSOC) (P < 0.05), especially in the 

10%SC+AC treatment. In the BC-amended tailings, there was limited WSOC regardless of 

plant species transplanted. Across the treatments, there was a significant positive 

relationship between WSOC and MBC (R2 = 0.83, P < 0.01, n = 15). Consistent with the 

trend of WSOC in all treatments, microbial biomass (Fig. 7-4b) significantly increased in the 

SC amended tailings, with the highest in the 10%SC+AC treatment.  

Microbial colonisers are closely linked to the biogeochemical processes in tailings. 

Among all samples, MBC positively related to basal respiration (R2 = 0.97, P < 0.01, n = 15), 

dehydrogenase (R2 = 0.92, P < 0.01, n = 15), invertase (R2 = 0.98, P < 0.01, n = 15), urease 

(R2 = 0.96, P < 0.01, n = 15) and neutral phosphatase (R2 = 0.94, P < 0.01, n = 15) activities. 

Therefore, basal respiration and the 4 enzymatic activities significantly stimulated in SC 

amended tailings compared to the control. Moreover, the greatest levels of basal respiration 

and the enzymatic activities were observed in the 10%SC+AC treatment, especially the 

urease activities. In contrast, these biogeochemical processes were still at low levels in both 

10%BC+IV and 10%BC+AC treatments regardless of introduction of pioneer plants, which 

were not different from those in the control (Fig. 7-4). 

 

7.3.4 Microbial community composition in the tailings 

Pyrosequencing of 16s rRNA genes was performed to explore the composition of 

microbial communities within different treatments. A total of 77,055 good quality reads were 

obtained by pyrosequencing, which were classified into 950 OTUs0.97 (Fig. 7-5). These 950 

OTUs0.97 were affiliated to 11 phyla of eukaryotic microorganisms, 3 classes within 2 

archaeal phyla and 63 classes within 24 bacterial phyla. Microbial communities in all the 

tailings were dominated by prokaryotic microorganisms. Both species richness and 

Shannon diversity of the microbial communities significantly increased in all the amended 

tailings compared to the control (P < 0.05), with the most diverse microbial communities in 

the 10%SC+AC treatment (Fig. 7-4c).  
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Fig. 7-5 Rarefaction curve of OTUs and microbial diversity in the control and the 

sugarcane and biochar amended tailings with native plants. 

 

The depth of sequencing well captured the microbial diversity present (Fig. 7-5). 

Bacterial OTUs dominated all the microbial assemblages in all the treatments. Eukaryotic 

microorganisms were detected in all the treatments but at low levels of abundance (< 1 %). 

There were 14 OTUs affiliated to fungi and 37 OTUs to other eukaryotic microbes. 

Specifically, the most abundant fungal OTUs were within the phylum of Dikarya, closest to 

Lentinula sp. Other eukaryotic microorganisms were mainly affiliated to the phylum of 

Alveolata, Viridiplantae and Rhizaria, closest to Colpodella sp., Albizia sp. and 

Spongomonas sp., respectively (Fig. 7-6). OTUs numbers (14) and relative abundance (< 

0.5 %) affiliated to archaea, mainly affiliated to Crenarchaeota, were low in all the treatments 

without statistical differences (Fig. 7-7). 
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Fig. 7-6 A neighbour-joining phylogenetic tree of 16S rRNA gene sequences detected for 

eukaryotic microorganisms in the control and the sugarcane and biochar amended tailings 

with native plants. Only representative OTUs were shown in this tree; the taxonomic 

groups are delineated on the right; scale bar stands for 0.05 changes per site. 
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Fig. 7-7 A neighbour-joining phylogenetic tree of 16S rRNA gene sequences detected for 

archaeal and bacterial communities in the control and the sugarcane and biochar 

amended tailings with native plants. Only representative OTUs were shown in this tree; the 

taxonomic groups are delineated on the right; scale bar stands for 0.05 changes per site. 
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The organic amendments and introduction of native plant species significantly induced 

the changes of bacterial community composition in the tailings along different directions, 

compared to those in the control (Fig. 7-9 and Fig. 7-10). Specifically, microbial communities 

in the SC amended tailings formed one group, the BC amended tailings formed another 

group. Both differed from microbial communities in the control.  

Comparatively, microbial communities in the control were dominated by 

Proteocbacteria and Firmicutes (Fig. 7-8). The most abundant bacterial OTUs in tailings was 

closet to Bacillus sp. (34.0 %), belonging to Firmicutes. Furthermore, Brevundimonas sp. 

(28.0 %) belonging to α-Proteobacteria was also found to be abundant in the control. The 

abundance of these dominant microorganisms in the control (i.e., Bacillus sp. and 

Brevundimonas sp.) significantly decreased (P < 0.05) in all the SC and BC amended tailings. 

In the BC amended tailings, the abundance of Actinobacteira and β-Proteobacteria 

were significantly increased (P < 0.05). The most abundant bacterial OTUs in these tailings 

were shifted to Thermithiobaillus sp., belonging to γ-Proteobacteria. It accounted for 16.8-

25.8 % of microbial communities in the BC amended tailings. Other abundant bacteria 

significantly increased in the BC amended tailings compared to the control, included OTUs 

affiliated to Leifsonia sp. (11.6-17.8 %), Ramlibacter sp. (7.4-8.3 %), Sphingopyxis sp. (5.9-

6.0 %), Sphingomonas sp. (3.6-7.7 %), Microcella sp. (3.8-4.1 %), Limnobacter sp. (1.9-

3.4 %) and Nitrobacter sp. (1.8-1.9 %). The abundance of genera of Sphingopyxis sp. and 

Sphingomonas sp. also increased significantly in the BC amended tailings compared to the 

control. 

In the SC amended tailings, the abundance of Bacteroidetes were significantly 

increased (P < 0.05) (Fig. 7-8). Specifically, the most abundant bacterial OTUs shifted to 

Algoriphagus sp. accounting for 19.4-20.2 % of microbial communities in the SC amended 

tailings. The abundance of genera of Sphingopyxis sp. and Sphingomonas sp. significantly 

increased in the SC amended tailings (P < 0.05). Furthermore, in the SC amended tailings, 

the abundance of dominant bacterial OTUs affiliated to Sediminibacterium sp. (5.9-9.1 %), 

Pseudoxanthomonas sp. (3.6-4.2 %), Terrimonas sp. (1.7-9.3 %), Bacteroidetes sp. (1.9-

6.5 %), Microbacterium sp. (1.6-3.5 %), Planctomyces sp. (1.0-2.6 %) and Opitutus sp.(1.0-

3.2 %) significantly increased, compared to the control (P < 0.05), which were not abundant 

in both the control and the BC amended tailings. 

Two-way ANOVA showed different impacts of organic amendments and plant species 

on microbial community composition. The two plant species (IV and AC) had different effects 

on microbial community composition in the tailings. Specifically, there was a significantly 

greater abundance of Fungi (e.g., Lentinula sp.) (P < 0.05), Cyanobacteria (P < 0.001) and 
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Gemmatimonadetes (P < 0.05) in 10%SC+AC compared to the 10%SC+IV. Microorganisms 

belonging to phylum Bacteroidetes (P < 0.05) and Verrucomicrobia (P < 0.01) were less 

abundant in 10%SC+AC than 10%SC+IV. Nevertheless, the effects of SC amendment on 

microbial community composition appeared dominant over those of plant species (Fig. 7-

10). 

 

 

 

Fig. 7-8 Microbial community composition in the control and the sugarcane and biochar 

amended tailings with native plants. The bacterial phyla with a frequency less than 1 % are 

shown as ‘others’; values are means (n = 3); error bars indicate standard deviations, 

drawn only for abundant phylum or classes of Proteobacteria, Bacteroidetes and 

Actinobacteria. 
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Fig. 7-9 Microbial community composition detected at the genus level in the control and 

the sugarcane and biochar amended tailings with native plants. The abundance of genera 

is indicated and cluster analysis of the community composition between the samples is 

shown. Only the OTUs with a frequency of greater than 1 % were shown in the figure. 
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Fig. 7-10 Principal component analysis (PCA) of the microbial community composition 

detected in the control and the sugarcane and biochar amended tailings with native plants. 

Correlations of phylum and classes of Proteobacteria of microbial community (in blue) are 

made. The PCA axes differentiate the tailing samples according to their microbial 

community composition. 

 

7.4 Discussion  

The present findings showed that both SC and BC amendments in the Cu-Mo-Au 

tailings induced substantial changes of microbial community composition and enzymatic 

activities along different directions. The shift of the microbial community structure in the 

amended tailings can be explained largely by the environmental variables induced by the 

amendments and plant colonisation.  

7.4.1 Modifications of physicochemical properties in the tailings  

Organic amendments and plant colonisation had significant impacts on the 

physicochemical properties in the amended/revegetated tailings. With the addition of SC 
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and BC followed by plant colonisation, we detected increased organic matter content (TOC) 

and WHC in all the tailings; this was observable, because organic matter had a lower bulk 

density and capable of retaining more water in comparison to minerals (Tester, 1990). The 

inputs of exogenous organic matter are particularly important to improve the physical 

structure and hydraulic properties in the tailings. In particular, interactions between organics 

and tailings mineral particles stimulate the aggregation processes in the amended tailings 

(Lenka et al., 2012) (also see Chapter 3 and 4). The development of various sizes of 

aggregates and pores are crucial allowing for water/nutrients retention and movement 

(Monreal and Kodama, 1997). In addition, organo-mineral interactions and aggregation 

processes may be limited in BC amended tailings because of low intensity of negative 

charges at the surfaces of high temperature biochar (Jiang, 2014; Yuan et al., 2014). The 

improvement of the physical structure and hydraulic properties in BC amended tailings are 

more likely attributed to BC-induced reduction of bulk density, which is expected to persist 

in tailings for a long term (Fellet et al., 2011).  

The availability of energy and nutrients (TOC, TN and WSOC) in the amended tailings 

were significantly improved by the application of SC and introduction of these native plants. 

Comparatively, the 10%SC+AC treatment had higher levels of WSOC than the 10%SC+IV 

treatment, suggesting that AC roots might have also contributed more to the WSOC than IV. 

Soluble OC is an important fraction representing the most mobile and readily available form 

to microbes in soil, driving element cycling processes in soil ecosystems (Marschner and 

Kalbitz, 2003). Moreover, the soluble OC can also adsorbed onto clay minerals, contributing 

to OC stabilisation without further access to microbes and decomposition (Neff et al., 2000). 

Therefore, WSOC fraction is closely linked with several biogeochemical processes and soil 

formation in the amended tailings. SC application also induced increased levels of water-

soluble metals, but within the tolerance capacity of these two native plant species. These 

increased levels of water-soluble heavy metals may be caused by rhizosphere acidification 

and/or further mineral weathering processes in the amended tailings (Li et al., 2013; 

Marabottini et al., 2013). In contrast, although BC did not increase labile OC and nutrients 

in the amended tailings, significantly lower levels of water-soluble Mn and Cu were observed 

in the BC amended tailings, compared to the control. The biochar used here had a metal 

adsorption capacity (Jiang, 2014), which may ameliorate the tailings by lowering heavy 

metal phytotoxicity to colonised microbes and plants (Fellet et al., 2014), in addition to other 

improvements. 
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7.4.2 Efficacy of rehabilitation of microbial diversity in the tailings 

Clearly, tailings without improvement represent a harsh environment for both microbes 

and plants based on our pilot experiment and long-term field trials. We observed and 

measured low levels of biomass, microbial diversity and enzymatic activities in the tailings 

without amendments (the control). The colonising microorganisms in the tailings were highly 

bacteria dominant, with negligible fungi and other eukaryotes. Many strains of the dominant 

species Bacillus sp. and Brevundimonas sp. in these tailings were tolerant to heavy metals 

(Wakelin et al., 2010) and irradiation (Dartnell et al., 2010).  

Substantial changes of microbial community composition were observed in all the 

amended/revegetated treatments. Specifically, the phylum of Actinobacteria and the class, 

β-Proteobacteria stimulated in the BC amended tailings compared to the control. At the 

genus level, Thermithiobacillus sp. and Acidiferrobacter sp. were abundant in the BC 

amended tailings, which were mainly chemolithoautotrophic bacteria catalysing S- and Fe- 

oxidising processes (Kelly and Wood, 2000). We assume that these microorganisms could 

facilitate mineral weathering processes, especially in tailings with abundant pyrites (Li and 

Huang, 2015).Consistent with the findings in Chapter 5, the interesting observation of 

stimulated autotrophic S- and Fe- oxidising bacteria in the BC amended tailings should be 

investigated further in relation to the stimulation of mineral weathering and further 

consolidation of hydrogeochemical stabilisation in the sulphidic tailings. 

In comparison, microbial communities in the SC amended tailings were dominated by 

heterotrophic bacteria (e.g., Sphingopyxis sp., Pseudoxanthomonas sp., Gemmatimondetes 

sp., and Sediminibacterium sp.). These species are mostly found in soil and contribute to 

organic matter decomposition and nutrient cycling processes (Cayford et al., 2012; Yamatsu 

et al., 2006). As a result, organic matter with high contents of labile OC (such as sugarcane 

residues) is preferable for priming and stimulating rehabilitation of biogeochemical 

properties and functions in the tailings along the direction of functional technosols formation. 

Fungi play an important role in phytostabilisation of base metal mine tailings due to its 

unique roles in infertile and arid terrestrial ecosystems, through improving nutrient cycling 

and supply and soil structure (Ma et al., 2006; Solís-Domínguez et al., 2011). In the present 

study, the most abundant fungi, Lentinula sp. was found in the amended/revegetated tailings, 

which could facilitate lignin degradation in the N limiting environment (Boyle, 1998). There 

was also a positive correlation between plant biomass (sum of shoot and roots) and 

eukaryotic microorganisms (R2 = 0.66, P < 0.05, n = 12) in this study. However, both diversity 

and abundance of eukaryotic microorganisms (0.05-1 %) in the present study were less than 

10 % of those microbial communities in natural forest soils (Bailly et al., 2007) and native 
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soils under plant cover in Mount Isa area (refer to Appendix B). Since the universal primers 

926F and 1392R are 16S rRNA gene group specific primers targeting bacterial and archaea, 

they do not allow completely covering the 18S rRNA gene in eukarya (Engelbrekston et al., 

2010) with SILVA database for eukaryotic amplicons (Pruesse et al., 2007). The 

quantification of fungal community is underestimated and require further investigation using 

fungi-targeting primers. A factor limiting the abundance of fungi in the amended tailings may 

be the lack of fungal inoculum. Inoculation of topsoil from native vegetation sites (Chapter 

6) may provide large amounts of fungal inoculum for rapid rehabilitation of diverse and 

functional fungal communities in the amended tailings (Li et al., 2015; Orłowska et al., 2005). 

Different microbial community composition in the amended tailings was closely linked 

to amendment induced changes of physicochemical factors (Fig. 7-11). Changes in 

physicochemical properties (e.g., pH, EC, total heavy metals) in the amended/revegetated 

tailings collectively drove the shift of microbial community composition and functions towards 

different trajectories. The abundance of dominant phyla in the control, Firmicutes, and the 

class, α-Proteobacteria, was positively related to heavy metal contents (e.g., Cu, As) in the 

tailings. Seemingly, forms of organic compounds and nutrient contents in SC and BC 

represented contrasting cases in the gradient of organic matter quality, in terms of nutrient 

(e.g., N and P) and labile OC (e.g., carbohydrates) contents. The labile OC and nutrients 

from AC could be utilised by the heterotrophic microorganisms in tailings, which in turn have 

stimulated the organic matter decomposition and nutrient cycling processes. Consistent with 

previous studies (Chapter 5 and 6), the abundance of Bacteroidetes again increased in the 

SC amended tailings compared to the control, which were positively related to nutrient 

conditions (e.g., WSOC, TN). The lack of labile OC and nutrients in the BC amended tailings 

constrained the development of organic matter decomposers. Increased abundance of 

phylum Actinobacteria, and the class, β-Proteobacteria, were mainly ascribed by the 

changed TOC in the BC amended tailings. 
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Fig. 7-11 Canonical correspondence analysis (CCA) of class abundance vs. environmental 

variables in the 15 samples including the control and the sugarcane and biochar amended 

tailings with native plants. 

 

7.4.3 Growth and element uptake of pioneer native plants  

Organic amendments such as SC and BC applied in the present study are pre-

requisites to overcome the primary constraints in the tailings for establishment and growth 

of the introduced pioneer plants. In addition to nutrition, the addition of organic amendments 

improved the physical structure and hydraulic properties in the amended tailings, benefiting 

plant root penetration and growth (Ye et al., 2002). Furthermore, the success of these two 

native plants in the amended tailings implied that they are tolerant of nutrient deficiency (e.g., 

N), salinity and heavy metals. Particularly, compared to the native grass species, Iseilema 

vaginiflorum (IV), Acacia chisolmii (AC) had a much higher growth rate after transplanting, 

and with relatively higher biomass and N concentrations in their shoots. This is possibly 

because AC is a leguminous specie more tolerant of the rooting environment and is able to 

obtain a better N supply via N2-fixation (Meeks, 1998). Therefore, Acacia chisolmii is a good 

candidate pioneer specie in colonising newly improved tailings and stimulate 

biogeochemical rehabilitation toward functional technosols. 
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The SC and BC amendments also resulted in different impacts on heavy metal mobility 

and plant uptake in this study. Particularly, the levels of water-soluble Cu increased in the 

tailings receiving SC, but decreased significantly in the BC amended tailings compared to 

those in the control. The levels of water-soluble Cu in the tailings were closely correlated 

with the Cu uptake by the plants, particularly in the plant roots (R2 = 0.66, P < 0.05, n = 12). 

Impacts of BC on Cu immobilisation may be attributed to its relative high surface pH and the 

presence of some functional groups interact with metal ions (Uchimiya et al., 2011). The BC 

used was pyrolysed at a high temperature (650 °C) with most carboxylic and phenolic groups 

remove (Jiang, 2014). As biochar pyrolysed at low-moderate temperature (< 400 °C) would 

have much higher capacity of metal adsorption (Keiluweit et al., 2010), this type of biochar 

may be explored for maximising the effects of BC adsorption of heavy metals in pore water 

and thus lowering the severity of heavy metal toxicity in plants.  

The levels of Cu in the shoot (3-12 mg kg-1) and root (163-541 mg kg-1) tissues of the 

grass and acacia species were comparable with those of plant species grown in Cu tailings 

reported in the literature (Chen et al., 2007; Chiu et al., 2006; Song et al., 2004) (Table 7-2). 

In general, Cu uptake by these two plant species was as low as 0.2 mg pot-1, representing 

less than 0.01 % of the total Cu in the tailings. These two native plant species from 

Cloncurry-Mount Isa region were tolerant of the levels of total Cu in the tailings, with Cu 

levels in the shoot below the toxicity threshold reported for crop species (20-30 mg kg-1) 

(Mendez and Maier, 2008). As a result, both native plant species would be a good pioneer 

species for providing quick plant cover, while improving the rhizosphere conditions and 

stimulating technosols formation from the fresh and neutral tailings containing relatively low 

contents of reactive minerals and stable hydrogeochemistry. 

 

Table 7-2 Cu concentrations in plant tissues grown in Cu tailings in the literature.  

Plant species Cu concentrations in plant tissues (mg kg-1) Reference 

Shoot Root 

P. vittata, 40-160 700-800 Chen et al. 2007 

T. repens 20-60 350-400 Chen et al. 2007 

C. drummondii 20-120 180-200 Chen et al. 2007 

L. perenne. 20-30 420-500 Chen et al. 2007 

V. zizanioides 9-20 124-384 Chiu et al. 2006 

P. australis 14-39 211-539 Chiu et al. 2006 

S. vulgaris 3-262 33-2882 Song et al. 2004 

E. splendens 4-215 120-6450 Song et al. 2004 
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7.5 Conclusions  

Application of sugarcane and biochar induced the physicochemical properties in the 

tailings and caused substantial changes of microbial community composition and functions 

in different directions, compared to the control. Amendments with labile OC (such as 

sugarcane) coupled with the introduction of pioneer plant species significantly stimulated 

the development of microbial communities with a greater diversity and increased 

dominance of heterotrophic bacterial groups, with much improved microbial functions in 

the amended tailings. This is in contrast to the effects of biochar amendment, which 

enhanced the microbial diversity while with dominance of chemolithoautotrophic S- and 

Fe- oxidising bacteria, might further consolidating hydrogeochemical stabilisation in the 

sulphidic tailings. Pioneer plant species of Iseilema vaginiflorum and Acacia chisolmii 

contributed to the biogeochemical rehabilitation of examined tailings to some extent less 

important to organic amendments. Overall, combined use of labile organic amendment 

and pioneer plant species would be an effective approach to initiate and accelerate the 

biogeochemical rehabilitation in the fresh and neutral Cu-Mo-Au tailings with low levels of 

reactive minerals (such as sulphides) and a high degree of hydrogeochemical stability. 
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Chapter 8 General discussion, conclusions and future research needs  

8.1 General discussion 

The vast volumes of tailings from base metal (e.g., Cu, Pb, Zn) mining industry present 

serious threats to environmental and human health. They consist primarily of the ground-up 

gangue with its inherited mineralogy profile causing long-term ecotoxicity (Lottermoser, 

2010). Stabilising mine tailings with native plant communities (phytostabilisation) helps 

reduce pollutant transportation through wind and/or water pathways. Furthermore, metals 

may be sequestered, precipitated or taken up by and stored in plants (Mendez and Maier, 

2007). A lot of researches have focused on techniques for immediate vegetation 

establishment, concentrating on plant species selection for the extreme biogeochemical 

conditions in tailings. However, very few studies have addressed the fundamental 

requirements for a natural recruitment of self-sustaining plant community. Until now, plant 

establishment and life cycle have largely failed in the hostile tailings environments (Hayes 

et al., 2009). Even when tolerant plant species were established successfully, diversity was 

limited and the low functional ecosystem would remain unchanged for decades or centuries 

(Shu et al., 2002). As soil is defined as a natural medium for the growth of land plants, many 

authors have argued that a shift from plants establishment to soil development should be 

the focus for tailings phytostabilisation (Bradshaw, 1997; Scalenghe and Ferraris, 2009).  

Natural soil formation is the consequences of alteration and transformation of novel 

parent minerals following long-term abiotic and biotic interactions. They are normally 

assemblages of unsolidated minerals and organic matter on the Earth’s surface 

experiencing major developmental phases (e.g., bedrock weathering, organic matter 

accumulation, leaching, clay movement) and becoming relatively stable (Jenny, 1941). Soil 

formation in tailings commences as finely ground novel parent minerals with a relative high 

proportion of reactive minerals (e.g., pyrite, chalcopyrite). These are continuously oxidised 

when being exposed to biotic (autotrophic bacteria) and abiotic water and oxygen (Li and 
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Huang, 2015). Therefore, engineered pedogenesis from geochemical unstable tailings to 

technosols require rapid simulation of deterministic physical, geochemical and biological 

processes that would enhance hydrogeochemical stability, organic matter accumulation, 

and rehabilitation of microbial community structure and biogeochemical functions, with much 

improved physicochemical conditions and much reduced ecotoxicity (Uzarowicz and Skiba, 

2011). A conceptual pathway of pedogenesis from geochemically unstable tailings to 

technosols of primary structure and biogeochemical functions, may undergo 3 stages of 

transition before plants can tolerate and proliferate in the medium (Fig. 8-1). 

 

 

Fig. 8-1 A conceptual pathway of pedogenesis from reactive tailings to technosols of 

primary structure and biogeochemical functions. Rings with dash line suggest less 

understood factors and processes in each stage; ring sizes suggest the relative 

importance of the factors and processes in the corresponding stage, reproduced from 

Huang et al. (2014). 
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The present study is the first comprehensive evaluation of technosols formation in Cu-

Pb-Zn tailings in response to ecological engineering techniques. The key processes involved 

in engineered pedogenesis in the tailings include: (1) enhance mineral weathering towards 

a high degree of geochemical stability without rapid acidification, mineral dissolution and 

acute phytotoxicity; (2) physical structure and hydraulic properties improvement either from 

aggregation or directly incorporated materials with lower density and greater capacity to 

retain water than ground minerals; (3) recolonisation and proliferation of diverse microbial 

communities driving biogeochemical processes and functions, consistent with physiological 

requirements (e.g., nutrient and growth requirements) of target native plant species.  

While recognising that significant technosols formation from tailings can only occur 

after extensive weathering of sulphidic minerals and other reactive minerals in the tailings, 

this study focused on the 2nd phase of rehabilitating biogeochemical properties and functions 

by means of effective ecological engineering inputs in neutral tailings with relatively stable 

hydrogeochemistry (Fig. 8-1). The present findings have provided the basis for an integrative 

ecological engineering strategy consisting of suitable organic amendments, topsoil inoculum 

and/or pioneer plant introduction, which stimulate biogeochemical changes along the 

desired directions towards functional technosols from Cu-Pb-Zn tailings. 

Soils from native plant communities consisting of Acacia chisolmii and Spinifex grasses 

(Triodia spp.) (Appendix B) were characterised by relative low levels of soil organic carbon 

(6.03-14.17 g kg-1), microbial biomass (104.3-219.2 mg kg-1) and enzymatic activities, yet 

they could sustain the growth and recruitment of these native plant species, which are 

dominant in the infertile and dry landscapes of northwest Queensland (Appendix C). This 

native soil information sets the direction of technosols formation in the tailings and justify the 

choice of plant biomass-based organic amendments (e.g., woodchips, acacia biomass and 

sugarcane) (rather than N and P rich amendments, such as biosolids, manure or fertiliser), 

because of unique physiological traits of these native plant species (slow growth rates, low 

water and nutrient requirements and sensitive to high levels of nutrients supply).  
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Inputs of exogenous organic matter such as woodchips from local trees actively 

stimulated aggregation with improved physical structure and hydraulic properties in the 

tailings and elevated organic carbon (OC) in both weathered and fresh Cu-Pb-Zn tailings. 

Plant community colonisation further contributed to OC stabilisation in the vegetated tailings 

(Chapter 4). Majority of OC (61.5-80.3 %) with N enriched was stabilised in the physically 

protected microaggregates and organo-mineral complexes in the amended/revegetated 

tailings (Chapter 3 and 4). In particular, compared to woodchips, contribution of labile OC 

and N from plant roots colonising the tailings stimulated microbial biomass and functions in 

the revegetated tailings significantly.  

Based on these findings, a conceptual diagram has been proposed to illustrate (Fig. 8-

2) critical factors and processes in relation to OC stabilisation in tailings regulated by 

ecological engineering inputs. The level of OC is widely recognised as an overall indicator 

of soil quality (Bendfeldt et al., 2001) that drive the associated changes of biogeochemical 

properties and functions in the tailings, and the formation of resultant technosols. N 

containing and negative charged organic compounds from exogenous organic matter and/or 

plants before or after modification by microbial colonisers are main source of OC to be 

stabilised in tailings, contributing significantly to physical structure (organo-mineral 

interactions, aggregation) and biogeochemical functions (decomposition and element 

cycling) recovery. As microbial community to be with low biomass, diversity and activities 

adapted to the stressed habitat conditions in the tailings (Li et al., 2014; Mendez et al., 2008) 

with colonised plant community with low productivity and diversity in the tailings (Ye et al., 

2000, 2002; Archer and Caldwell, 2004), input of N rich and negative charged organic 

compounds (e.g., microbial biomass, microbial by-products, plant root exudates etc.) is low 

to anticipate in organo-mineral interactions and aggregation processes in the tailings (Plaza 

et al., 2013). The instinct properties of tailings directly inherited from ore mineralogy, mineral 

processing and deposition period (Lottermoser, 2010) influenced the capacity and efficiency 

of OC stabilisation by ecological engineering inputs. Tailings type determined the binding 

mineral agents and surface area where organo-mineral interactions occur (Yuan et al., 2014). 
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It is possible to stimulate OC stabilisation via introduction of pioneer plants and direct 

application of stable OC or plant-biomass based organic amendments with relative relatively 

greater N content and lower C: N ratio.  

 

 
Fig. 8-2 A Conceptual diagram that OC stabilisation in tailings in response to organic 

amendments and/or introduction of pioneer plants (dash line suggested processes to be 

investigated). 

 

Functional microbial communities of increased diversity in the amended tailings can 

be successfully rehabilitated with the addition of plant-biomass based organic amendments 

and/or soil with/without introducing pioneer plants. Organic amendments with contrasting 

properties (labile OC content, N contents) induce biogeochemical changes in the amended 

tailings along different directions. Microbial community composition and relative dominance 

of autotrophic and heterotrophic bacteria were also substantially shifted by the organic 

amendments, inoculation of topsoil, and introduction of pioneer plants in response to the 
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induced changes in the physicochemical properties in the amended tailings (e.g., WSOC, 

available N, EC, total and water-soluble heavy metals, aggregates, WHC etc.) (Fig. 8-3). 

Generally, both plant biomass forms (e.g., sugarcane and acacia biomass) and 

recalcitrant biochar application contribute to physical structure stability with more water 

retained, when incorporating exogenous materials into the neutral Cu-Pb-Zn (Chapter 5 and 

6) and Cu-Mo-Au tailings (Chapter 7).  

Mineral weathering occurred continuously in the tailings abundant in primary mineral 

(Forsyth, 2014; Li et al., 2013). In the present study, both plant biomass and recalcitrant 

biochar application seemed to have potential to accelerate mineral weathering processes 

and hydrogeochemical stabilisation in the amended tailings. The positive impacts of plant 

biomass on mineral weathering and dissolution were observed in all the amended tailings 

with significantly increased soluble salts and heavy metals. This might be due to the overall 

stimulated microbial biomass and activities as indicated by elevated enzymatic activities in 

response to available OC and nutrients. Some heterotrophic bacteria can also catalyse S-

oxidation in sulphidic tailings (N̆ancucheo and Johnson, 2011). Recalcitrant biochar 

stimulated the abundance of S- and Fe oxidising bacteria in the amended tailings (Chapter 

5 and 7), although associated functional consequences were not yet confirmed. 

Plant biomass based amendments in the amended tailings increased the labile OC 

and nutrients which favoured the development of potential heterotrophic bacteria (Chapter 

5, 6 and 7). When nutrients were not the limiting factor, microbial diversity in tailings was 

more related to the levels of EC and total and soluble heavy metals (Chapter 5 and 6). Plant 

colonisation further increased microbial community diversity and heterotrophic bacteria in 

the revegetated Cu-Mo-Au tailings (Chapter 7) via root-microbe interactions (Lilia et al., 

2013). As organic matter decomposition and nutrients cycling processes were mainly driving 

by heterotrophic microorganisms, these biogeochemical processes greatly increased in 

these amended/revegetated tailings, which is critical to the rehabilitation the tailings towards 

functional technosols for tailings phytostabilisation. Furthermore, nutrient cycling from 

organic matter decomposition in the amended tailings are also important to sustain the 
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growth of the introduced pioneer tolerant native plant species (Kemmitt et al., 2008; also 

refer to Chapter 7).  

In contrast, the stable C, biochar with little labile OC and nutrients is less effective in 

rehabilitating heterotrophic bacterial communities and associated biogeochemical 

processes. On the other hand, its application increased the relative abundance of S- and 

Fe- oxidising bacteria in the amended tailings(Chapter 5 and 7). This suggests that biochar 

application may accelerate microbial mediated oxidation of sulphide minerals in fresh tailings, 

containing high levels of sulphidic minerals, thus accelerating the weathering process and 

hydrogeochemical stabilisation. The exact mechanisms involved in BC stimulated 

abundance of S- and Fe- oxidising bacteria are yet to be understood.  

In general, the bacterial community is more readily rehabilitated than the fungal 

community in the amended/revegetated tailings (Chapter 5 and 7). Inoculation of topsoil 

from native plant communities may fast-track the colonisation and recovery of the fungal 

community by providing inoculum. Addition of up to 50 % local soil increased the microbial 

diversity and enzyme activities for C and N turnover with a respiratory quotient similar to that 

of the local soil. In addition, fungi and protists can be stimulated in tailings-soil mix with the 

addition of plant biomass based amendment. Combining the addition of plant biomass with 

native soil inoculation may be used to fast-track the establishment of native microbial 

communities and initiate the biogeochemical functional technosols formation in tailings 

(Chapter 6).  

Induced change of physicochemical properties in amended tailings following organic 

amendments enhanced the survival and growth rates of native plants. The examined native 

plant species Iseilema vaginiflorum and Acacia chisolmii could grow in neutral Cu-Mo-Au 

tailings (low in sulphide minerals and relatively stable in hydrogeochemistry) recieving 

organic amendments, especially in those amended with plant biomass. Overall, both native 

plant species showed promising potential for Cu tailings phytostabilisation with preference 

to accumulate Cu in plant roots rather than shoots (Chapter 7). 
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Fig. 8-3 A conceptual diagram illustrating the key biogeochemical processes and driving 

environmental factors affecting technosol formation in the tailings. ‘+’ / ‘-’ indicate 

amendments/key environmental variables that have positive / negative impacts (dash line 

suggested relationship to be investigated). 

 

8.2 Conclusions 

Based on the findings reported in this study, we can conclude the following: 

(1) Plant biomass based organic amendments rapidly increased the amount of stabilised 

OC in Cu-Pb-Zn tailings with majority of OC either physically protected through 

aggregation or in organo-mineral complexes in the amended tailings. OC stabilised in 

the tailings was enriched with N; Fe and Al (hydr-) oxides in the tailings contributed 

significantly to OC stabilised in the mineral associated fractions. Plant colonisation 

stimulated microbial community and functions with greater N, further enhanced OC 
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stabilisation through aggregation and organo-mineral interactions in the revegetated 

tailings.  

(2) In the neutral weathered Cu-Pb-Zn tailings or fresh Cu-Mo-Au tailings, microbial 

community composition can be shifted along different directions by organic 

amendments with different availability of labile OC and nutrient contents. Plant biomass 

based organic amendment with relatively greater levels of labile OC and nutrients 

favoured the development of potential heterotrophic bacteria in the amended tailings, 

and in turn, facilitated organic matter decomposition and nutrient cycling processes in 

contrast to recalcitrant biochar.  

(3) Microbial communities in the tailings-soil mix with plant biomass based organic 

amendment were substantially changed with opportunistic development of fungi 

strongly associated with the microbial biomass and selected enzymatic activities. A 

combination of plant biomass based organic amendment and native soil inoculation 

could be used to fast-track the establishment of native microbial communities and 

initiate biogeochemical processes to rehabilitate amended tailings towards functional 

technosols.  

(4) Organic amendments effectively improved the physicochemical properties in the fresh 

and neutral Cu-Mo-Au tailings with low contents of sulphide minerals, facilitating 

tolerant native plant species survival and growth. Microbial community composition in 

the amended/revegetated tailings substantially shifted with greater diversity of 

heterotrophic bacteria and fungi compared to the control. Plant biomass amended 

tailings were abundant with potential heterotrophic bacteria with stimulated organic 

matter decomposition and nutrient cycling sustaining native plant growth with greater 

biomass compared to the recalcitrant biochar. The positive impact of biochar on heavy 

metal immobilisation in the amended tailings may be beneficial in terms of reduced 

heavy metal concentrations in the pore water and thus lower plant uptake of heavy 

metals.  
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8.3 Future research needs 

For the future research needs, the following recommendations are made: 

(1) Simulating biological weathering processes in sulphidic tailings for rapid 

stabilisation of hydrogeochemistry  

This study demonstrated that high-temperature biochar had the potential to 

stimulate the abundance of Fe- and S-oxidising bacteria in the amended tailings. Further 

investigation should determine if physiological functions of these autotrophic bacteria 

could be intensified to accelerate the weathering of reactive minerals (e.g., pyrites) in 

tailings. 

(2) Relationship between changes of microbial community composition and 

biogeochemical functions  

Further studies are required to relate the microbial community changes to 

physiological functions of enhanced microbes, in relation to biogeochemical processes, 

such as in situ litter decomposition and nutrient cycling. The information will enrich the 

model of engineered pedogenesis in base metal mine tailings and long-term direction of 

technosols development under local climatic conditions, in response to purposely 

designated ecological engineering options in the short-term.  
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Appendix A Quantitative measurement of organic carbon in mine wastes: Methods 

comparison for inorganic carbon removal and organic carbon recovery 

A.1 Introduction 

Quantitative measurement of organic carbon (OC) is often required for site 

characterisation and ecological assessment of plant communities revegetated in mined land, 

which may contain mine wastes (such as tailings) rich in primary and secondary minerals of 

inorganic carbon (IC) such as carbonates (calcite, dolomites, etc.), chlorides and metals 

(ferrous Fe and Mn oxides) (Guilbert and Park, 1986). Tailings are residue wastes from 

processing ores [e.g., rock ores for metals gold (Au), copper (Cu), nickel (Ni), lead (Pb), zinc 

(Zn), uranium (U)] and industrial minerals (e.g., bauxite, coal), which contain unstable 

primary and secondary minerals rich in metals and metalloids [e.g., aluminium (Al), arsenic 

(As), Au, chromium (Cr), Cu, Ni, Pb, Zn, and U], salts, and unwanted gangue minerals (e.g., 

silicates, carbonates, oxides/hydroxides, sulphides, etc.) (Lottermoser, 2010). Although 

conventional wet-oxidation OC measurement techniques such as those of Walkley and 

Black (1934) and Heanes (1984) are not affected by the presence of carbonates, other 

minerals [such as chlorides, ferrous iron (Fe) and manganese (Mn) oxides] interfere with the 

wet-oxidation process and colour development (Nelson and Sommers, 1982). Elevated 

amounts of calcite and dolomite are common carbonate minerals present in mine tailings 

and show similar effects to carbonate soils on OC determination (Guilbert and Park, 1986). 

Additionally, OC concentrations in mine wastes is very low initially but it can be increased 

by organic amendment and plant litter inputs from established vegetation. For example, OC 

content in mine wastes increased from 3 to 50 g kg−1 when mined land was rehabilitated by 

vegetation for a number of years (Rodríguez et al., 2009). 

Dry combustion methods, in which carbon dioxide (CO2) evolved from combustion of 

both organic matter and carbonate is measured by gas chromatography or infrared analysis, 

provide a direct measurement of total C (Tiessen et al., 1981). Methods based on the dry-

combustion technique for determination of OC in carbonate-rich soils must consider either 
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(1) IC subtraction, in which OC is estimated as the difference between total C measured 

directly by dry combustion and inorganic C measured as CO2 evolution upon acid treatment 

of a replicate sample such as in volumetric calcimeter; or (2) direct OC quantification by dry 

combustion in the same sample after IC removal using acid pretreatment. 

In the first method, one of duplicate subsamples of a mine waste is treated by 

hydrochloric acid (HCl) of appropriate concentration in a sealed container to hydrolyse 

carbonate minerals and release IC as CO2, which is subsequently quantified by gravimetric 

(Sherrod et al., 2002), titrimetric (Bundy and Bremner, 1972), volumetric (Wagner et al., 

1998), spectrophotometric, or gas chromatographic techniques. The other replicate 

subsample is directly analysed for total C content by dry-combustion method. However, this 

method is not recommended for highly carbonate-rich soil samples (e.g., > 59 %) with low 

OC levels (Schmidt et al., 2012), due to the large errors brought about by two separate 

analyses. In the direct OC analysis method, a sample is at first thoroughly pretreated with 

acids, such as dilute HCl (Connin et al., 1997), a mixture of dilute sulphuric acid (H2SO4) 

and ferroferric oxide (Fe3O4) (Nelson and Sommers, 1982), hydrofluoric acid (HF) (Rumpel 

et al., 2006), sulphurous acid (H2SO3) (Schmidt et al., 2012), metaphosphoric acid (HPO3) 

(Midwood and Boutton, 1998), or HCl vapour (Harris et al., 2001), to hydrolyse carbonate 

minerals into CO2 without the need for precise IC quantification, prior to dry-combustion 

analysis of the C remaining in the same sample. The risks of acid pretreatment (acid wash 

or fumigation) are the incomplete reaction with (or dissolution of) carbonates, a rapid 

hydrolysis of acid-susceptible organic molecules (e.g., small proteins and water soluble 

carbohydrates), or underestimation of volatile OC compounds (Hewitt, 1998). Currently, 

detailed evaluation of these two methods has not yet been done for quantification of OC in 

mine wastes such as base metal mine tailings. 

OC is an integral indicator of organic matter decomposition and soil quality, which is 

useful for assessing the development of a soil-like matrix composed of mine wastes and 

amending materials and the changes of revegetated land after mining. High levels of IC and 

metal elements and/or very low levels of OC are commonly present in mine wastes, 
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hindering the direct adoption of routine soil OC analytical methods. As a result, it is 

necessary to develop or modify OC quantification method(s) in mine wastes and mined land 

under revegetation. The primary aims of the present study are to evaluate two different 

methods of OC quantification in mine wastes based on dry combustion technique: (1) IC 

subtraction and (2) direct OC determination after acid pretreatment, in terms of recovery and 

precision. The performance of these two methods for analysis of OC in mine wastes is 

evaluated in three aspects: (1) the recovery rate of inorganic and organic materials added 

to mine waste samples; (2) the lower and upper limits of IC/OC quantification; and (3) a 

comparison between the two methods in the analyses of OC in base metal mine tailings. 

A.2 Materials and methods 

A.2.1 Carbonate and organic materials 

A range of typical carbonate and organic materials were quantitatively added into mine 

waste samples to test their recoveries using both methods (Table A-1).  

 

Table A-1 Total carbon (TC) content in carbonate and organic materials 

Carbonate material Formula C 

content  

(g kg-1) 

Organic 

material 

Formula C 

content  

(g kg-1) 

Calcium carbonate  CaCO3 116.6 Sucrose C12H22O11 420.7 

Magnesium 

carbonate basic 

MgCO3 121.2 EDTA C10H16N2O8 411.2 

Calcitea  CaCO3 85.5 Cellulose (C6H10O5)n 403.0 

Magnesite a MgCO3 133.4 Litter na 398.8 

Dolomite a (CaMg)(CO3)2 100.2 Charcoal C 947.4 

a: major chemical composition in carbonate minerals; na: not available. Values are means 

(n = 3). 

 

The carbonate compounds and minerals used to spike the samples were calcium 

carbonate (CaCO3, Sigma-Aldrich, DE), magnesium carbonate (MgCO3, Sigma, AU), and 
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carbonate mineral powder (calcite, magnesite, dolomite) (general grade, Pottery Supplies, 

Brisbane, AU). Organic C materials used to spike the samples were sucrose (C12H22O11, 

Sigma chemicals, AU), ethylenediaminetetraacetic acid (EDTA) (C10H16N2O8, Sigma-Aldrich, 

AU), cellulose microcrystalline (Alfa Aesar, UK), litter (general grade, acacia leaf and twig 

litter, finely ground < 0.5 mm, AU), and charcoal (C, Sigma-Aldrich, USA). The C contents 

in these carbonate and organic materials were determined by the dry-combustion method 

for total C determination (LECO Corporation, St Joseph, MI) (Table A-1). 

A.2.2 Properties of mine wastes 

7 samples of base metal mine tailings were collected from a field revegetation trial 

established in 2010 at a tailings storage facility. There are 3 types of base metal mine tailings, 

which are highly weathered Cu-Pb-Zn tailings, freshly deposited Cu-Pb-Zn tailings and Cu-

Mo-Au tailings. The general properties of tailings samples are summarised in Table A-2. All 

the samples were collected from top 10 cm layer in each treatment. The samples were dried 

at 40 °C in an air-drafted oven until constant weights. Subsamples representative of the bulk 

samples were further ground to pass through a 0.5 mm sieve for OC analyses by the two 

methods described below. 

 

A.2.3 Dry combustion for total carbon quantification 

A CNS-2000 automated analyser (Leco Corporation, St Joseph, MI) was used to 

determine C content in the samples by dry combustion. Aliquotes (0.2–0.3 g) of standard 

materials or tailings samples were accurately weighed to a preweighted tin foil sheet. 

Samples and standards were combusted on a TRUSPEC instrument at 1350 °C and evolved 

CO2 was measured using an infrared detector cell. The EDTA calibrations, blanks, and 

ASPAC quality control (QC) check samples were included for quality control. Each sample 

was analysed in triplicate. 
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Table A-2 Properties of mine waste samples collected from field trials located in Mount Isa, 

northwestern Queensland, Australia 

Tailings  

Sample 

No 

Mine 
Tailings 

type 
Treatment Vegetation pHa Mineralogy 

1 Cu-Pb-Zn Fresh 
Pure 

tailings 

No 

vegetation 
6.9 

Quartz: 20-

60 % 

Dolomite/ 

calcite/ankerite: 

18-25 % 

Pyrite: 6-35 % 

Chlorite and 

feldspar: 10-

5 % 

Other < 5 % 

 

2 Cu-Pb-Zn Fresh 

Amended 

with plant 

biomass 

No 

vegetation 
6.5 

3 Cu-Pb-Zn 
Highly 

weathered 

Pure 

tailings 

No 

vegetation 
6.7 

4 Cu-Pb-Zn 
Highly 

weathered 

Amended 

with plant 

biomass 

No 

vegetation 
6.7 

5 Cu-Pb-Zn 
Highly 

weathered 

Amended 

with plant 

biomass 

vegetation 

cover 
6.5 

6 Cu-Mo-Au Fresh 
Pure 

tailings 

No 

vegetation 
7.4 

7 Cu-Mo-Au Fresh 
Pure 

tailings 

vegetation 

cover 
7.2 

a: In1:5 sample/water extract followed pH electrode (TPS 900-P). 

 

A.2.4 IC quantification for IC subtraction method 

For the IC subtraction method, TC was done by the dry combustion method. Recovery 

test was performed for TC quantification using the dry-combustion technique according to 

ISO 19446 (ISO, 1995).  

The IC (carbonate standard materials) recovery test was conducted for IC 

quantification procedure. In this test, an appropriate amount of standard IC (calcium 



183 

carbonate, CaCO3) and OC (sucrose, C6H12O6) were spiked into 1.0000 g ± 0.0010 g tailings 

sample 1 to test the IC recovery at the range of 0-70 % CaCO3 equivalent (e.g., 0-80 g IC 

kg−1). The amounts of standard materials added were CaCO3 at the levels of 0.0200 ± 

0.0010, 0.0400 ± 0.0010, 0.0800 ± 0.0010, 0.1600 ± 0.0010, 0.3200 ± 0.0010, 0.6400 ± 

0.0010 g. In addition, 5 types of carbonate minerals (CaCO3, MgCO3, dolomite, magnesite, 

calcite) were spiked into 1.0000 g tailings sample 1 separately at the rate of 0.1600 ± 0.0010 

g to test the recoveries of various IC standard materials. To test the interference from OC in 

the IC quantification procedure, 0.010 ± 0.001 g sucrose was spiked in all the mixtures as 

well. Tailing sample 1 (1.0000 ± 0.0001 g) without inorganic and organic materials was used 

as the blank.  

The IC content was determined in triplicates of the samples using methods modified 

from Bundy and Bremner (1972). Samples were treated with an acidic reagent to hydrolyse 

carbonates into CO2, which was absorbed in a base solution and estimated by the titrimetric 

method. Briefly, mixtures of tailings and standard materials described in previous 

paragraphs were accurately weighed into 120 ml polythene containers. A 20 ml beaker 

containing 10 ml of 2 M sodium hydroxide (NaOH) was affixed to the side of the upper 

section of each container. This enabled the CO2 absorption up to 120 g kg−1 IC in mixture 

within the range designated for carbonate content. Both the sample container and the 

beaker containing the base solution were placed in an air tight 1 L glass jar and tightly 

stoppered. An aliquot of 30 ml 2 M HCl was injected into the sample container through the 

needle-puncture stopper using a 50 ml hypodermic syringe. After adding the acid solution, 

the whole jars were gently swirled for 1-2 minutes to mix the content and allowed to stand 

at room temperature (20-25 °C) for 48 h. After this, the NaOH solution was transferred into 

a 150 ml Erlenmeyer flask and made up to 50 ml with CO2-free deionized water. 3 droplets 

of phenolphthalein indicator solution were added into the base solution, which was titrated 

with 0.5 M HCl until the pink colour became colourless. The volume of acid used for each 

sample solution was recorded and IC content (as dissolved CO2) was calculated according 

to a standard curve prepared from CO2 evolved from known amounts of CaCO3 using the 
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same procedure. IC contents of each treatment were calculated as the difference between 

samples and blank. IC added into tailings were calculated based on the C concentration 

(Table A-1) and weights of added carbonate minerals. The IC recovery of all carbonate 

minerals were calculated as follows:  

Eq A-1  

The 7 types of tailing samples were analysed for TC and IC content with the same 

method, and the difference between TC and IC concentration was the TOC of tailings 

samples.  

A.2.5 Acid pretreatment for direct OC quantification by dry combustion 

For direct OC quantification with acid pretreatment method, and to test the OC (organic 

standard materials) recovery, appropriate amount of organic C (sucrose, C6H12O6) and 

standard IC (calcium carbonate, CaCO3) were spiked into 1.0000 g ± 0.0010 g tailings 

sample 1 and used to test the OC recovery within the range of 0-7 % organic C (e.g., 0-70 

g OC kg−1). The amounts of standard materials added were sucrose at the levels of 0.0050 

± 0.0005, 0.0100 ± 0.0005, 0.0200 ± 0.0005, 0.0400 ± 0.0005, 0.0800 ± 0.0005, and 0.1600 

± 0.0005 g. In addition, 5 types of organic minerals (sucrose, EDTA, cellulose, litter, and 

charcoal) were spiked into 1.0000 ± 0.0010 g tailings (sample 1) separately at the rate of 

0.0400 ± 0.0005 g to test the recoveries of various OC standard materials. To test the 

interference from IC in the OC quantification procedure, 0.1000 ± 0.0010 g dolomite was 

spiked in all the mixtures as well. Tailing sample 1 (1.0000 ± 0.0001 g) without inorganic 

and organic materials was used as the blank. Moreover, mixture of sucrose (0.0400 ± 0.0005 

g) and dolomite (0.1000 ± 0.0010 g) was included in each batch to test the recovery of OC 

without any tailings samples. 

The procedure to have these spiked samples treated is as follows: As preliminary 

experiments demonstrated that H2SO3 was not effective and sufficient to remove all 

carbonates in the tailings samples, probably due to the low penetration ability into mineral 
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matrix (data not shown), the acid pretreatment used to treat the samples containing 

carbonates in this study was HCl. Any surplus or residual HCl following pretreatment was 

removed by hot plate and vacuum drying processes in the fume hood to minimise the 

corrosive risk to the total C analyser (LECO Corporation, St. Joseph, MI). Briefly, 1 ml of 5 

M HCl solution was evenly added to the mixtures in a 25 ml preweighed glass beaker. The 

sample beaker was placed on a hot plate at 60 °C to enhance moisture evaporation. An 

additional 5 M HCl solution was added into the beaker until no effervescence was observed. 

The acid pretreated samples were finally dried on the hot plate (60 °C) overnight (15 h). The 

dried samples were further gently vacuumed by increasing pressure up to 85 kPa and 

holding at this pressure for 2 h. At the end of this period, the mass change for each sample 

after the acid pretreatment was recorded for mass conversion in the final calculation of OC 

content per unit of original sample weight. The pretreated samples were then finely ground 

in a mortar and pestle and stored in a desiccator before being subsampled for OC analysis 

by dry combustion in a total C analyser (LECO Corporation, St Joseph, MI). The OC contents 

of each sample were calculated as the difference between samples and blank. The OC 

added into tailings were calculated based on the OC concentration (Table A-1) and weights 

of added organic materials. The OC recovery of all organic minerals was calculated as 

follows: 

Eq. A-2 

The 7 types of tailings were measured with dry combustion for direct OC quantification 

using the same method. 

A.2.6 Acid pretreatment methods comparison 

In the acid pretreatment, in addition to spiked standard recoveries of IC subtraction 

and direct OC quantification methods, limit of detection (LOD) and limit of quantification 

(LOQ) were calculated to identify the lower limits of C contents, below which analytical 

precision becomes unacceptable. Relative standard deviation (RSD) was calculated to 
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assess the analytical precision. Moreover, both methods were applied in OC content 

quantification in 7 tailings samples to investigate their correlations and differences. 

Limits of detection (LOD): the lowest quantity of a substance that can be distinguished 

from the absence or zero. The value of LOD is given by the following equation: 

Eq. A-3 

where Xbl is the mean of the n blank measures, SDbl is the standard deviation of the n blank 

measures, and k is a numerical factor chosen according to the confidence level desired, 

which is commonly set as 3 for LOD (Mocak, 1997). For calculation of LOD, blank is the 

sample without any tailings/standard materials.  

Limits of quantification (LOQ) are the limits at which we can confidently measure the 

differences between two different values, which are generally taken as a concentration equal 

to 10 standard deviation of the blank, therefore, 3.3 times of LOD (Eq. A-4) (Currie 1999): 

Eq. A-4 

Relative standard deviation (RSD) is the absolute value of the coefficient of variation. 

Values with RSD less than 10 % have been suggested as acceptable in terms of analytical 

precision (Green, 1996). The calculation is based on all the samples used in this study, 

including spiked samples, standard materials and tailings samples.  

Eq. A-5 

A.2.7 Data analysis 

The relationship between the IC/OC spiked (based on weight of standard materials) 

and the IC/OC measured for both methods were tested with a simple linear regression model. 

The same simple linear regression model was also used for OC values measured with both 

methods for the 7 tailing samples. In addition, means comparison (T-test) was used to test 

whether the OC values measured by the two methods were significantly different (P < 0.05). 

All statistical analysis were conducted using the SPSS software package (SPSS Statistics 

20.0, Chicago, IL, USA). 
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A.3 Results 

A.3.1 Inorganic carbon quantification recovery  

The IC subtraction method achieved a satisfactory recovery of added IC in the form of 

carbonates and various minerals spiked in the tailings samples (Table A-3). The volume and 

strength of HCl used successfully hydrolysed the CaCO3 added, with a recovery rate of 84.8-

117.0 % (means = 99.7 %). In addition, there was a positive linear correlation between the 

measured amounts of C and the amounts of IC added (R2 = 0.997), without significant 

interference from the tailings matrix or the organic material (sucrose) spiked in the tailings.  

 

 

Fig. A-1 The linear relationship between inorganic carbon (IC) content added as CaCO3 in 

the tailings samples and measured IC content in IC quantification method measured by 

titration. The dashed line is a 1:1 line, indicating a 100 % recovery of the added IC. 

 

The mean recovery (%) of IC from calcium carbonate, magnesium carbonate, calcite, 

magnesite, and dolomite using the IC quantification method were 103.0, 91.9, 91.4, 87.5, 

and 90.6 % respectively (Table A-3). As a result, the IC in base metal mine tailings can be 

satisfactorily quantified as the amount of CO2 released from the HCl induced hydrolysis of 

carbonate minerals by using the setup of acid reaction vessel and base trapping method. 
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Nevertheless, the recovery of the added IC may be underestimated when the IC content is > 

60 mg g−1 (Fig. A-1), because of the lower efficiency of HCl to release CO2 when there were 

high contents of carbonate. A quantitative recovery of IC could be obtained with less sample 

or increase the volume of HCl used, but this possibility was not tested. 

 

Table A-3 Mean recovery (%) of inorganic carbon (IC) in carbonate materials in IC 

quantification (measured by titration) and organic carbon (OC) in typical organic materials 

in direct OC measurement based on dry combustion method. 

IC quantification TC measurement after HCl treatment 

Carbonate material Recovery (%) Organic material Recovery (%) 

Calcium carbonate 103.0 Sucrose 40.3 

Magnesium carbonate basic 91.9 EDTA 76.2 

Calcite 91.4 Cellulose 81.1 

Magnesite 87.5 Litter 91.6 

Dolomite 90.6 Charcoal 85.8 

 

A.3.2 Organic carbon recovery and acid pretreatment for IC removal  

The recovery of added OC in the tailings was satisfactory, except for the water-soluble 

OC, sucrose. The recovery rate of the added sucrose C varied with the amount of sucrose 

C spiked in the tailings samples.  

The recovery rate of added OC in the form of sucrose in the tailings spiked with CaCO3 

declined from 76.4 to 28.3 %, when the amount of OC added increased from 2 to 70 mg C. 

However, in tailings free mixture of CaCO3 and sucrose, the recovery of OC in the form of 

sucrose was as high as 93.9 %. This suggested that there may be impacts of the tailings 

matrix (rich in minerals) on the recovery of added soluble OC in the form of sucrose through 

the loss as CO2 during the acid pretreatment phase. Other studies found that water-soluble 

OC (such as sucrose) would be quickly oxidised and lost as CO2 by chloride and co-formed 

chlorine when concentrated HCl interacted with manganese dioxide (MnO2) at elevated 
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temperature on a hot plate (Bisutti et al., 2004; Furlani et al., 2006). However, possible 

reasons were not examined in this study. It is suggested the loss of organics during acid 

pretreatment could be minimised by keeping the temperature moderate (e.g., 40 °C) (Heron 

et al., 1997). As shown in Table A-4, except for sucrose, average recovery of C in most of 

organic compounds ranged from 76-91 % using the direct OC quantification by acid 

pretreatment method. Therefore, it could be a mean to quantifying OC in base metal mine 

tailings. 

 

Table A-4 Mean recovery (%) of IC in carbonate materials in IC quantification (measured 

by titration) and OC in typical organic materials in direct OC measurement based on dry 

combustion method. 

IC quantification TC measurement after HCl treatment 

Carbonate material Recovery (%) Organic material Recovery (%) 

Calcium carbonate 103.0 Sucrose 40.3 

Magnesium carbonate basic 91.9 EDTA 76.2 

Calcite 91.4 Cellulose 81.1 

Magnesite 87.5 Litter 91.6 

Dolomite 90.6 Charcoal 85.8 

 

The direct OC quantification method with acid pretreatment had a generally lower 

recovery rate compared to the added OC standard materials. Several critical factors should 

be closely controlled when using this method for OC quantification in base metal mine 

tailings, including (1) the possible loss of soluble C by mineral oxidization induced by the 

acid pretreatment; (2) the accuracy in weighing the samples before and after acid 

pretreatment; and (3) the representativeness of subsampling acid-pretreated samples. In 

general, direct OC quantification after the HCl pretreatment method in this study achieved 

better performance in the removal of carbonates, with superior time efficiency and greater 

OC recoveries for most of organic compounds compared to methods reported in literature, 

which involve acid pretreatment followed by washing. For example, hydrofluoric acid (2 and 
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10 %) or hydrochloric acid (0.5 M) wash resulted in about 20 % of OC loss as the acid 

dissolved OC in the discarded wash (Mathers et al., 2002; Schmidt et al., 2012). The loss of 

OC could be up to 80 % with H2SO4 and nitric acid (HNO3). H2SO3 (6 %) wash and HCl 

vapour fumigation methods were unable to remove 100 % of carbonate present, particularly 

in highly calcareous soils with  more than 50 % carbonate (Bisutti et al., 2004; Harris et al., 

2001). Although the acid fumigation method could remove up to 80 % carbonate if the 

sample was wet, it took much longer time to achieve similar effects (32 mg IC required at 

least 6 h) compared to the liquid HCl treatment (Yamamuro and Kayanne, 1995).  

A.3.3 Analytical Precision 

The precision of different methods was characterized by RSD (%), which is calculated 

according to Table A-5. The upper limit for OC quantification was 7 %, which is generally 

greater than the values found for most base metal mine tailings. The lower limit was 

assessed by LOQ. The standard deviation of 10 blank analytical values in IC quantification 

by titration method was 0.22 g kg−1, and total C analysis based on dry-combustion method 

was 0.03 g kg−1 (Table A-5).  

RSD (%) was less than 10 % (Fig. A-2a) in the tailings samples with IC contents of 5 - 

30 g kg−1, whereas RSD (%) rose to 17.5 % when IC contents were less than 5 g kg−1. 

Similarly, when using the dry combustion method to quantify C content in both acid-

pretreated samples and untreated samples, RSD (%) values were less than 10 % when C 

contents in tested samples were larger than 5 g kg−1 (0.5 %), which were 3-10 folds of 

instrument detection and quantification limits (Fig. A-2b). 
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Fig. A-2 Analytical precision at different levels of C content in the mine waste samples: (a) 

the analysis of IC in carbonate materials as CO2 quantified by titration and (b) direct OC 

quantification method after acid pretreatment to remove the IC. The data were pooled from 

all the tests conducted from the present study. 
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Table A-5 Limits of determination (LOD) and limits of quantification (LOQ) in IC 

quantification procedure in IC subtracting method and TC quantification based on dry 

combustion method 

 
IC quantification measured by titration  

(g kg-1) 

TC measured by dry combustion  

(g kg-1) 

Sbla 0.22 0.03 

LOD 0.66 0.09 

LOQ 2.2 0.3 

a: the number of blank sample analysis n = 10. 

 

A.3.4 Method comparison in OC quantification of base metal mine tailings 

TC contents in the 7 base metal mine tailings samples were determined by dry 

combustion and ranged from 3.91-38.57 g kg−1 (Table A-6).  

 

Table A-6 OC content obtained from IC subtraction method and direct OC method. TC and 

IC contents were also presented.  

Tailings  

Sample 

No a 

IC subtraction method 
Direct OC 

method 

Total C (g kg-1) Inorganic C (g kg-1) OC estimated (g kg-1) OC(g kg-1)b 

1 14.48 (0.12) 12.55 (0.49) 1.93(0.60) 1.20(0.20) 

2 21.78(1.16) 8.86(0.56) 12.92(0.60) 9.47(0.25)* 

3 37.67(0.08) 35.37(2.73) 2.30(2.30) 1.27(0.03) 

4 38.57(0.21) 35.45(1.3) 3.12(1.51) 4.36 (0.36) 

5 34.89(0.62) 29.84(0.22) 5.05(0.40) 4.64 (0.03) 

6 3.82(0.06) 4.71(0.57) -0.89(0.64) 1.65 (0.13) 

7 4.88(0.67) 3.91(0.18) 0.97(0.49) 2.62 (0.13)* 

a: details of the tailings samples have been described in Table A-2; b. OC values followed 
with asterisks (*) indicated there are significant differences between the two methods 
following the paired T- test (P < 0.05). 
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The majority of TC was present in the form of carbonate C in these samples. The IC 

subtraction method based on the difference between TC and IC measured separately was 

unsuccessful in tailings 3, which is pure tailings without neither plant biomass mulch nor 

vegetation cover. The problem with this method is that by subtracting IC from TC, when 

there is a relatively small difference (OC content less than 5 g kg−1), there is a much larger 

error occuring in 2 separate measurements. By comparing the OC values, no significant 

differences between the two methods for 5 of the 7 samples. However, sample 2 with high 

OC content showed a significant differences between these two methods.  

As shown in Fig. A-3, the regression relationship indicated both of the methods were 

comparable (R2 = 0.818) with a general lower values in the direct OC quantification with acid 

pretreatment method. It may be the reason that part of readily soluble/oxidisable OC in 

tailings samples were lost during acid-pretreatment procedure. 

 

 

Fig. A-3 The linear relationship of OC values obtained by IC subtraction method and direct 

OC quantification method in tested tailings samples. The dashed line is a 1:1 line, 

indicating a same value obtained by both methods. 
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A.4 General discussion and conclusions  

The acid treatment in the IC subtraction method effectively solubilized (quantified as 

CO2 released) a range of carbonate compounds and minerals such as CaCO3, MgCO3, 

dolomite, magnesite, and calcite with recovery rates of 87-103 %. In the direct OC 

determination method, the pretreatment with 5 M HCl brought about a favorable recovery 

(76-92 %) of a range of added organic materials, such as EDTA, cellulose, plant litter, and 

charcoal. However, the water-soluble sucrose had only a 40 % recovery rate. The precision 

of both IC and OC quantification methods declined when the C contents were less than 5 g 

kg−1, with RSD greater than 10 %. The OC values in 5 of the 7 tested samples of base metal 

mine tailings were comparable by these two methods. However, the IC subtraction method 

was unsuccessfully applied in samples with very low OC contents (less than 5 g kg−1). Direct 

OC quantification with acid pretreatment method will result in a significantly lower OC values 

compared to the IC subtraction method if there is high OC content. 

Based on results above, two suggestions are raised for OC quantification methods for 

base metal mine tailings. The IC subtraction method is applicable for tailings samples with 

relative high OC content, such as tailings amended with organic matter (e.g., litter or mulch) 

or under vegetation cover, with an expected OC content greater than 5 g kg−1. The direct 

OC quantification method with acid pretreatment is preferred when the samples contained 

very low levels of C (e.g., IC < 5 g kg−1 and OC < 5 g kg−1). This is because the IC subtraction 

method is not applicable and often results in negative values. However, because the 

recovery of OC varies greatly with the nature of organic materials spiked in the tailings 

samples, a significantly large portion of water-soluble OC may be lost during acid 

pretreatment for direct OC measurement. As such, this method is not recommended for OC 

quantification for mine wastes containing large amounts of soluble/small molecules of 

organic compounds (e.g., carbohydrates, proteins, low weight organic acids, etc.), such as 

tailings frequently amended with manure and biosolids. When there is less 5 g kg−1 OC in 

mine waste (such as pure tailings), both methods may need further refinement to increase 
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the analytical precision, for example, by adjusting sample weight and increasing the number 

of replications. 

A major uncertainty from IC subtraction method was the effect of removal of all types 

of carbonate minerals in tailings. Carbonate minerals such as siderite (FeCO3), malachite 

(Cu2(CO3)(OH)2), cerussite (PbCO3), and smithsonite (ZnCO3) are quite common in base 

metal mine tailings (Blowes et al., 1998). Reactions of acid and these carbonate minerals 

vary. For example, compared to malachite, which strongly reacts with hydrochloric acid, 

siderite and smithsonite only slowly react with it (Bisutti et al., 2004). Therefore, it is 

recommended to investigate the ore mineralogy of tailings and forms of major carbonate 

minerals. Although a stronger or more oxidisable acid or additional heating procedure will 

increase acid hydrolysation ability and result in the induced oxidisation of organic C as well. 

In addition to effectiveness of acid to remove all types of carbonate minerals, for direct OC 

quantification method, the various recoveries of different organic standard materials used in 

this study indicate the acid pretreatment procedure results in a difference of loss of OC with 

different forms. Further analysis is required to test the effects of acid pretreatment on OC 

recovery from different OC forms.   
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Appendix B Biochemical properties of highly mineralised and infertile soil modified 

by Acacia and Spinifex plants in northwest Queensland, Australia 

B.1 Introduction 

In many remote regions of Australia (such as Mt Isa and Cloncurry, Northwest 

Queensland) where base metal mines (e.g., Cu, Pb-Zn mines) are located, the lack of 

adequate volumes of topsoil to cover large area of mined landscapes (e.g., 100s-1000s 

hectares of waste rock and tailings dams) has made necessary to engineer growth media 

and root zones for revegetation purposes (Huang et al. 2014). Wrong choices of engineering 

options such as the common practice of applying high rates of N and P inputs via (in)organic 

fertilizers in root zones would result in significant deviation of developmental trajectory of 

revegetated plant communities from the expected, in terms of species diversity and weed 

competitions (as we have observed in field trials at Mt Isa Mine) (Huang et al. 2011; 2012). 

This is because there is a close feedback between soil and plant systems in terrestrial 

ecosystems through linkages of functional microbial community and associated biochemical 

processes (Kardol et al. 2010; Wardle et al. 2004). High fertility in root zones favour forest 

and crop species of high productivity (Liu et al. 2012; Waldrop et al. 2000), while slow-

growing native plant species with low productivity and low nutrient requirements dominate 

infertile and arid landscapes (Burns et al. 2013). Soil biochemical properties and key 

biological processes (e.g., organic matter decomposition, nutrient cycling) (Caravaca et al. 

2005; Marschner et al. 2001) in the root zone are results from the long-term plant 

colonization through species-specific litter feedback and root zone modification (Quideau et 

al. 2001). Therefore, understanding physicochemcial and biochemical properties in soils 

colonized by the keystone native plant species in target plant communties will provide 

benchmarks for engineering growth media and root zones in mined land rehabilitation. 

At  Mt Isa, Northwest Queensland where many copper-gold (Cu-Au) and lead-zinc (Pb-

Zn) mines are located, native plant communities distributed in the colluvial plains are 
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dominated by slow-growing and water-nutrient efficient spinifex and acacia species (Specht 

and Specht 1999; Fox et al. 2001), due to their highly adaptive ecophysiological traits in 

infertile and arid landscapes (Diagne et al. 2013; Reid and Hill 2013). For example, 

Chisholm’s Wattle (Acacia chisolmii, C3 plant, N2-fixing legume shrub) and Spinifex (Triodia 

spp, C4 grass) are two keystone native plant species widely present on stony and lateritic 

soils in the colluvial and well drained land of Mt Isa region (Northwest, Queensland, Australia) 

(Specht and Specht 1999; Fox et al. 2001). Leguminous species (e.g., Acacia spp.) are 

critical N sources in infertile soil systems (Wardle et al. 2004). In addition, legume-microbes 

interactions have been observed for Acacia spp. with abundant propagules, AM hyphae and 

infectivity, which are not common for spinifex (Jasper et al. 1989a; b). Spinifex with unique 

drought adaptive leaf anatomy is tolerant of high temperature and radiation and extreme 

water deficit conditions (Winkworth 1967). The canopy characteristics and physiological 

traits of these species are ideal for phytostabilizing mined land under semi-arid climatic 

conditions (Murphy et al. 2010; Nicholas et al. 2009). However, the lack of information about 

biogeochemcial properties of natural soils colonized by target native plant communities 

hinders decision-making at local base metal mines (such as Mt Isa Mines), about growth 

media and root zone reconstruction options in rehabilitation programs. 

The present study is aimed at characterizing physicochemical and biochemical 

properties in infertile soils colonized by the acacia (A. chisholmii) and spinifex (T. pungens) 

species in a colluvial plain at George Fisher, Mt Isa, Northwest Queensland, Australia. 

Differences of microbial biomass, structure (PLFAs profile) and functions (respiration, 

mineralization, enzymatic activities) in root zone soils were compared between the two 

species. Carbon (C) isotope signature of plant litters and soil organic carbon (TOC) were 

used to confirm species’ contribution to TOC over long periods (Dalal et al. 2005). The 

analysis of community-level phospholipid-derived fatty acids (PLFAs) profiles (Zelles et al. 

1992) and enzymatic activities (Badiane et al. 2001) was conducted to characterize 

biochemical properties of soils colonized by the two native species. Possible associations 

were explored between the physicochemical properties and microbial community structure 
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and functions in root zone soils. The specific objective of this study is to provide fundamental 

information about the biochemical properties and processes in native soils and its interaction 

with native plant species, with the purpose to aid decision-making in engineering growth 

media and root zones, which are consistent with ecophysiological requirements of these 

native plant species for phytostabilizing mined land, such as fertility management and 

amendment options. 

B.2 Materials and methods 

B.2.1 Site description and sampling 

Mt Isa (20.73 °S, 139.5 °E) is located in Northwest Queensland, Australia. Local 

climatic conditions can be found at Australian Metrological Bureau 

(http://www.bom.gov.au/qld/mt_isa/). In summary, its climate can be classified as subtropical 

and semi-arid, with annual pan evaporation of 2800 mm and average annual rainfall of 427 

mm, and average yearly temperature of 25.5 °C (19 – 32 °C). Local rainfalls are highly 

variable between wet season (during November to February) and dry season and can vary 

significantly from year to year. For example, above average rainfalls were recorded for the 

years 1991 (618 mm), 1997 (799 mm) and 2011 (1113 mm), but as low as 201 mm in 2008. 

Plant and soil sampling was conducted in February, 2013 when there was monthly rainfall 

of 90.9 mm and average temperature of 23.7 °C (Bureau of Meteorology 2013). 

The soil in the region is classified as Rudosols (Isbell 2002). Soils are shallow red 

duplexes, red-brown loams and red earths (Christian et al. 1954). The dominant vegetation 

in Mt Isa area is low open woodland (Eucalyptus-Acacia) in combination with open hummock 

grassland (Triodia pungens) (Perry et al. 1964). 

Soil and plant samples were collected from a selected area of 50 × 70 m at George 

Fischer colluvium plain with similar topographic feature to Mt Isa Mine tailings landscapes, 

about 26 km north of the Mt Isa Mine tailings impoundments. Two transacts of 30 m length 

with dominant species stands were chosen for each species. The distance between the two 

transacts was maintained at least 20 m apart from each other. Three representative sites 

http://www.bom.gov.au/qld/mt_isa/
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(30 x 30 cm quadrat under dense species stand) along each transact were sampled for soil 

and litters beneath mono-dominance stands of acacia (A. chisholmii) and spinifex (T. 

pungens), respectively. Plant litters and the corresponding surface soil at the depth of 0-5 

cm was sampled within each quadrat. At each site, 3 representative subsamples of soil were 

taken across each quadrate and pooled into a composite sample which was evenly divided 

into two sets of subsamples. One set of sub-sample was transferred in plastic bags in the 

field and stored at 4 °C before transportation back to the laboratory, and then, dried at 40 °C 

and sieved < 2 mm for physicochemical analyses. The other set was snap-frozen in liquid 

nitrogen in the field, transported back to the laboratory in a cryo-shipper and freeze-dried 

prior to PLFA analysis. Plant materials were rinsed in 3 changes of deionized water and 

dried at 65 °C until a constant weight and ball milled for further analysis. 

B.2.2 Plant analysis 

Total elements of plant litter were analysed as described in Chapter 7.2.3. The ratio of 

isotope 13C and 12C (δ13C) were analysed by continuous flow isotope ratio mass 

spectrometry (CF-IRMS, Tracer Mass, Europa Scientific). Solid-state cross-polarisation 

magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C-NMR) for plant litter 

was done using A Bruker Advance 300 high-resolution NMR spectrometer interfaced to a 

7.05 Tesla ULTRASHIELD bore magnet system. Material was placed in the 4 mm zirconium 

rotor and rotated at 7 kHz. Usual parameters included 42 ms acquisition time with sweep 

width of 30 kHz; 2 K data points were collected. Cross-polarisation time was between 1 and 

4 ms. High-power decoupling was applied using tppm15 scheme. Between 4 and 10 K scans 

were collected. The spectra were plotted between -15 and 265 ppm, and peaks in the 

spectrum were assigned to four main chemical shift regions: alkyl C (0-50 ppm), O-alkyl C 

(50-110 ppm), aromatic C (110-160 ppm) and carboxyl C (160-210 ppm) (Webster et al., 

2000). In general, Alkyl C represents lipids and other aliphatics, whereas O-alkyl represents 

more labile carbohydrates such as cellulose (Mathers et al., 2007). Relative intensity for 

each region was determined by integration using the Varian NMR software package 
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(Version 6.1c, Varian Inc., Palo Alto, CA). Areas of each chemical shift regions were 

measured and calculated as percentage of the total area. 

B.2.3 Soil physicochemical properties analysis 

The ratio of isotope 13C and 12C (δ13C) were analysed by continuous flow isotope ratio 

mass spectrometry (CF-IRMS, Tracer Mass, Europa Scientific). As no carbonate was 

detected in any of the soil samples, TOC and TN concentrations in soils were determined 

by dry combustion method with a LECO CNS-2000 analyser (LECO Corporation, MI, USA). 

Selective physicochemical properties were measured as described in Chapter 3.2.2, 

including pH, EC, WHC, CEC, WSOC and total and water-soluble elements in aqua-regia 

digest. Hot-water extractable organic carbon (HWOC) was determined according to the 

method from Sparling et al. (1998). In brief, 10 g air-dried soil was saturated in 20 ml cold 

water (20 °C) for 30 min. The supernatant solution was then discarded and the change of 

sample weight was recorded to correct the actual sample: water ratio applied for hot water 

extraction. The mixture of sample and deionised water with a ratio of 1: 2 was incubated in 

water bath at 80 °C for 16 h. After then, the mixture was centrifuged at 4000 rpm for 10 min 

and filtered through 0.45 μm glass-fibre filter. HWOC was determined by dichromate 

digestion method (Bremner and Jenkinson, 1960).  

Bioavailable organic carbon (Bioavailable OC) was determined using the incubation 

method (Chen et al., 2004). In brief, 50 g soil was adjusted to 50 % WHC and incubated 

aerobically at 25 °C for 4 weeks. All containers were covered with plastic film perforated with 

several pinholes for gas exchange but avoiding rapid water loss. Deionized water was added 

to the mixture every 2-3 days during incubation to compensate for water loss via evaporation. 

Samples were placed in a closed chamber attached with infrared gas carbon dioxide (CO2) 

analyser (Q-Box SR1LP soil respiration package, Oregon, Canada). The atmosphere 

accumulated in the chamber were collected twice per second for 10 minutes for the analysis 

of CO2 concentrations. Tests were conducted at 1, 3, 7, 14, 21 and 28 days of incubation. 
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The bioavailable OC was estimated by calculating the cumulative production of CO2 from 

soils during 28 days incubation.  

B.2.4 Estimation of plant derived organic carbon in soil  

The OC in soil derived from C3 plant (acacia) and C4 plant (spinifex) was estimated by 

a mixed model mass balance following the equations below (Balesdent et al., 1996). 

Eq. B-1 

Eq. B-2 

Where δ13Csoil is the δ13C value of TOC, and δ13CC4 and δ13CC3  are the δ13C values of the 

pure C4 and C3 plant litter in the study site, respectively.  

B.2.5 Microbial biomass, basal respiration, net mineralisation rate and enzyme assays 

The microbial biomass, basal respiration, net mineralisation and enzymatic activities 

were measured as described in Chapter 4.2.4 and 5.2.4.  

B.2.6 Microbial community using PLFA analysis 

The soil samples were freeze dried prior to phospholipid fatty acids (PLFAs) extraction 

(Bossio and Scow, 1998). Briefly, soil was extracted in a single-phase mixture of chloroform, 

methanol and 0.05 M phosphate buffer (pH 7.4) at the ratio of (1: 2: 0.8 v/v/v) from 5 g soils. 

Phospholipids were separated from neutral lipids and glycolipids on solid phase extraction 

column (SPE-SI; Bond Elute, Varian, Palo Alto, USA). Neutral lipids and glycolipids were 

eluted with 5 ml chloroform, followed by 10 ml acetone. Polar lipids were eluted with 5 ml 

methanol, and dried under nitrogen gas at 32 °C. Afterwards, samples were subjected to 

mild alkaline methanolysis by methanol: toluene mixture and potassium hydroxide (KOH). 

Resulting phospholipid fatty acid methyl esters (PLFA-ME) were extracted with hexane and 

acetic acid. Prior to analysis with gas chromatography-flame ionization detector (GC-FID) 

(Agilent Technologies, Santa Clare, USA), HP Ultra 2 column, hexane containing methyl 

nonadecanoate fatty acid (19:0) were added as the internal standard. To identify the PLFA-



205 

ME, the gas chromatograph was coupled to an ion trap mass spectrometer (GCQ, 

Thermoquest, Germany). After measurement all values were corrected for the methyl 

carbon. Standard fatty acid nomenclature was applied (Frostegård et al., 1993). Individual 

PLFA biomarkers were used to quantify relative abundance of specific microbial groups. The 

abundance of individual PLFA was determined as nmol per g soil. Concentrations of each 

PLFA were calculated based on the 19:0 internal standard concentration. In this study, 

representative fatty acids for typical microbial community were summarised as follows 

(Bååth and Anderson, 2003; Frostegård and Bååth, 1996): A set of fatty acids represented 

bacterial PLFAs, including 14.0, 15:0, i15:0, a15:0, 16:0, i16:0, 16:1ω7c, a17:0, i17:0, br 

17:0, cy17:0, 18:1ω7c and cy19:0. Sum of i15:0, a15:0, i16:0, a17:0, i17:0 and br17:0 was 

used an indicator of gram-positive (G+) bacteria. Gram-negative (G-) bacteria were 

identified by the PLFAs: 16:1ω7c, cy17:0, 18:1ω7 and cy19:0. The fungi was identified using 

the PLFAs 18:2ω6,9c, 18:1ω9c and 18:1ω9t. PLFAs 16:1ω5c were used as a biomarker for 

arbuscular mycorrhizal fungi (AMF). The actinomycetes were identified by the PLFAs 10Me 

18:0. Other PLFAs such as 11:0, 18:0, and 10Me 19:0 were also used to analyse the 

composition of microbial community. Taken together, all of the PLFAs indicated above were 

considered to be representative of the total PLFAs of soil microbial community (Zelles et al., 

1992) (Table B-1).  

Table B-1 Summary of representative fatty acids for typical microbial community 

Microbial community Representative PLFAs 

Actinomycetes  10Me 18:0 

AMF  16:1ω5c 

Fungi  18:2ω6,9c, 18:1ω9c and 18:1ω9t. 

Bacteria G+ bacteria i15:0, a15:0, i16:0, a17:0, i17:0 and br17:0 

G- bacteria 16:1ω7c, cy17:0, 18:1ω7 and cy19:0. 

Other 

bacteria 

14.0, 15:0, 16:0, 

Others  11:0, 18:0, and 10Me 19:0 
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B.2.8 Statistical methods 

Primary data processing was performed using Microsoft® Excel. One-way ANOVA was 

carried out after normality check to test differences between acacia and spinifex on general 

plant chemistry, soil physicochemical properties, OC and N fractions, microbial properties, 

PLFAs biomarkers and enzymatic activities in the soils. Means were compared using the 

Tukey honest significant difference (HSD) test at P = 0.05.  All statistical analyses were 

conducted using the SPSS software package (SPSS Statistics 20.0, Chicago, IL, USA). 

Redundancy analysis (RDA) were made using CANOCO software for Windows 4.5 

(Biometris-Plant Research international, Wageningen, The Netherlands). RDA-environment 

analysis was performed for microbial community composition (relative abundance of 

individual PLFAs, expressed as % mol of the total) and environmental variables (including 

soil and litter parameters). RDA-function analysis was for linkage between microbial 

structure (relative abundance of individual PLFAs) and functions (basal respiration, net 

mineralisation, enzyme assays) in the examined soils.  

B.3 Results 

B.3.1 Litter chemistry  

As shown in Table B-2, TOC and TP were similar in the acacia and spinifex litter, which 

were 40.2-41.8 % and 0.44 % respectively. TN in the acacia litter was 8-fold greater than 

that in the spinifex litter, resulting in a lower C: N ratio in the acacia litter (38) than the spinifex 

(268). δ13C values of the acacia and spinifex litters were -26.36 ‰ and -14.12 ‰ respectively, 

within the range of typical C3 and C4 plants. 

Chemical composition of acacia and spinifex litter based on characteristic peaks on 

the CP/MAS 13C-NMR spectra was showed in Fig. B-1. Overall, in both acacia and spinifex 

litter, O-alkyl C (the sum of methoxyl, carbohydrate and di-O-alkyl C, 63.3-77.5 %) was the 

highest among the C functional groups, followed by alkyl C (12.3-22.6 %), aromatic C (the 

sum of aryl C and phenolic C, 7.7-8.0 %) and carboxyl C (the sum of carboxylic, amide and 

ester C, 2.5-6.1 %). No difference of the relative intensity of aromatic C was found between 
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the acacia litter and spinifex litter, yet the former was characterised with higher intensities of 

alkyl C and carboxyl C, and lower intensity of O-alkyl C compared to the latter. 

 

Table B-2 Chemical properties of the acacia and spinifex litter 

Parameters Acacia  Spinifex F Sig. 

TOC (%) 40.2 (1.0) 41.8 (0.2)  7.09 0.056 

TN (%) 1.05 (0.03)  0.16 (0.01) 2527.00 0.000 

TP (%) 0.44 (0.05) 0.44 (0.01) 0.059 0.820 

C:N ratio 38 (2) 268 (27) 210.91 0.000 

δ13C (‰) -26.36 (0.58) -14.14 (0.02) 1317.604 0.000 

Values are means (n = 3) with standard errors in brackets. 

 

 

Fig. B-1 CP/MAS 13C-NMR intensities for alkyl C, O-alkyl C, aromatic C and carboxyl C 

determined by spectra integration for the acacia and spinifex litter. Values are means (n = 

3); error bars indicate standard deviations; bars above labelled with ‘***’ suggests 

significant differences between the soils beneath acacia and spinifex at the level of P < 

0.001. 
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B.3.2 Soil physicochemical properties  

The soils beneath acacia and spinifex plants shared some similar basic properties 

(Table B-3), such as WHC and C: N ratio. Other physicochemical properties appeared to be 

different in the soils beneath the two species, such as pH, TOC, TN and CEC. Specifically, 

pH in the acacia soil was lower than the spinifex. The levels of TOC, TN and CEC in the 

soils beneath acacia were 2-3 folds compared to those in the soils beneath spinifex. Labile 

fractions of TOC, WSOC, HWOC and Bioavailable OC were considerably higher in the 

acacia soil than the spinifex soil. 

 

Table B-3 Selective physicochemical properties in the soils beneath acacia and spinifex  

Parameters Acacia  Spinifex F Sig. 

WHC (%) 32.2 (1.8) 27.9 (2.2) 7.277 0.054 

pH 7.2 (0.0) 7.5 (0.0)  60.500 0.001 

EC (mS·cm-1) 0.052 (0.001) 0.071 (0.001) 406.125 0.000 

CEC (cmolc·kg-1) 15.0 (3.6) 6.5 (0.8) 15.814 0.016 

TOC (g·kg-1) 14.17 (1.37) 6.03 (0.39) 97.331 0.001 

TN (g·kg-1) 1.11 (0.10) 0.47 (0.02) 118.361 0.000 

δ13C(‰) -21.29 (0.36) -19.31 (0.45) 34.423 0.004 

C: N ratio 12.8 (1.3) 12.7 (0.3) 0.043 0.846 

TP (g·kg-1) 0.45 (0.08) 0.43 (0.09) 0.111 0.756 

Cu (mg·kg-1) 94.3 (14.9) 93.1 (7.8) 0.016 0.907 

Pb (mg·kg-1) 18.0 (8.3) 22.1 (2.5) 0.686 0.454 

Zn (mg·kg-1) 371.4 (24.4) 295.5 (75.1) 2.776 0.171 

WSOC (mg·kg-1) 17.8 (1.6) 8.6 (2.2) 33.488 0.004 

HWOC (mg·kg-1) 205.1 (30.4) 114.2 (19.3) 19.144 0.012 

Bioavailable OC (mg·kg-1) 768.0 (36.8) 436.0 (35.8) 125.333 0.000 

Values are means (n = 3) with standard errors in brackets. 

 

B.3.3 Microbial biomass, basal respiration, net mineralisation rate and enzymatic 

activities  
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Microbial biomass and activities in the surface soils were contrastingly different 

between acacia and spinifex (Table B-4). MBC in the soils beneath acacia and spinifex were 

219.2 and 104.3 mg·kg-1, respectively. Similar patterns were found for MBN, basal 

respiration rate and net mineralization rate, which were 2-fold in the former compared to the 

latter. 

Specific enzymatic activities related to litter decomposition and nutrient cycling in the 

soil were compared between the acacia and spinifex. Except for the neutral phosphatase, 

activities of dehydrogenase, invertase and urease activities were higher in the acacia soil 

than the spinifex soil. Specifically, the activities of dehydrogenase and invertase in the 

acacia soil were about twice as much as that in the spinifex and urease activity about 3-fold 

higher in the acacia soil than that in the spinifex soil. 

 

Table B-4 Microbial biomass, basal respiration, and net mineralisation rate, and enzymes 

including dehydrogenase, invertase, urease and neutral phosphatase activities in the soils 

beneath acacia and spinifex 

Microbial properties  Acacia  Spinifex F Sig. 

MBC (mg·kg-1) 219.2 (25.9) 104.3 (9.3) 52.439 0.002 

MBN (mg·kg-1) 36.4 (10.8) 17.2 (1.5) 9.446 0.037 

Basal respiration rate  

(mg CO2-C·kg-1 d-1) 

27.4 (1.3) 16.8 (2.9) 33.617 0.004 

Net mineralisation rate  

(mg Mineral N kg-1 d-1) 

2.5 (0.2) 1.1 (0.0) 177.281 0.000 

Enzymatic activities 

Dehydrogenase (μg TPF g-1 h-1) 37.2 (8.7) 15.1 (4.9) 14.582 0.019 

Invertase (μg glucose g-1 h-1) 1746.0 (216.4) 656.8 (180.3) 44.846 0.003 

Urease (μg NH4-N g-1 h-1)  51.2 (7.4) 14.2 (4.1) 57.970 0.002 

Neutral phosphatase  

(μg phenol g-1 h-1) 

93.7 (4.4) 82.9 (7.3) 4.850 0.092 

Values are means (n = 3) with standard errors in brackets. 
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B.3.4 Microbial profiles with PLFA biomarker 

A general structure of soil microbial communities was reflected by PLFA biomarkers. 

In total, 27 PLFAs were identified in the analysis. The numbers of PLFAs (24-27) were within 

similar range in soil underneath acacia and spinifex. Total PLFAs were higher in the acacia 

soil than the spinifex soil, which were 64.0 and 27.2 nmol g-1, respectively (Table B-5). In 

general, abundance of all the microbial groups of PLFAs was greater in the acacia soil than 

the spinifex soil.  

The relative abundance of the individual PLFAs (mol %), as ratios of specific PLFAs to 

total PLFAs, suggested that bacteria is the most abundant (76.2-79.6 %), followed by fungi 

(13.6-18.5 %), AMF (3.5-4.4 %) and actinomycetes (1.9-2.4 %) in the soils colonized by the 

acacia and spinifex plants (Fig. B-2). Although no differences were observed in the 

distribution of bacteria and actinomycetes (mol %) and G+: G- bacteria ratio in the soil 

between the two species, the relative abundance of AMF and fungi and the fungal: bacterial 

ratio were greater in the acacia soil than the spinifex soil (Fig. B-2 and Table B-5). 

 

Table B-5 PLFA profiles of microbial community in the soils beneath acacia and spinifex 

PLFAs profile Acacia Spinifex F Sig. 

Numbers of PLFAs  27 (1) 24 (2) 6.050 0.070 

Total PLFAs (nmol·g-1) 64.0(9.7) 27.2(6.1) 30.759 0.005 

Actinomycete PLFA (nmol·g-1) 1.2 (0.2) 0.7 (0.2) 8.548 0.043 

AMF PLFA (nmol·g-1) 2.2 (0.3) 1.2 (0.4) 11.685 0.027 

Bacteria PLFA (nmol·g-1) 48.8 (7.7) 21.4 (4.2) 28.943 0.006 

Fungi PLFA (nmol·g-1) 11.8 (1.6) 3.8(1.3) 44.213 0.003 

Bacteria G + PLFA (nmol·g-1) 24.8 (3.0) 11.6 (3.3) 25.955 0.007 

Bacteria G – PLFA (nmol·g-1) 6.0 (0.8) 3.0 (0.6) 27.026 0.007 

Bacteria G +/G- ratio 4.2 (1.0) 3.8 (0.4) 0.395 0.564 

Fungal: Bacterial ratio 0.24 (0.01) 0.17 (0.03) 12.358 0.025 

Values are means (n = 3) with standard deviation in brackets. 
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Fig. B-2 The relative abundances of the individual phospholipid fatty acids (PLFAs) 

(mol %), including Arbuscular mycorrhizal fungi (AMF), actinomycetes, fungi and bacteria 

in the soils beneath acacia and spinifex. Values are means (n = 3); error bars indicate 

standard deviations; bars above labelled with ‘*’ suggests significant differences between 

the soils beneath acacia and spinifex at the level of P < 0.05. 

 

B.3.5 Interactions among plants, soil and microorganisms 

The levels of TOC in the acacia soil were higher than the spinifex soil (Fig. B-3). About 

half (58.5 %) of TOC in the acacia soil was derived from C3 plant, while 57.7 % of TOC in 

the spinifex soil was derived from C4 plant, indicating the dominant influence of in situ litters 

from each species on the soil TOC composition. 
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Fig. B-3 C3 and C4 plant derived organic carbon in the soils beneath acacia and spinifex. 

Values are means (n = 3); error bars indicate standard deviations; bars above labelled with 

‘**’ suggest significant differences between the soils beneath acacia and spinifex at the 

level of P < 0.01. 

 

The RDA-environment ordination biplot showed specific associations between 

dominant site factors and individual PLFAs (Fig. B-4). Several biotic and abiotic factors, 

including litter C: N ratio, pH, EC, CEC, WHC, TOC and its labile fractions were identified to 

be closely related to the soil microbial community composition.  
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Fig. B-4 Redundancy analysis (RDA)-environment ordination biplot of relative abundance 

of individual phospholipid fatty acids (PLFAs) and dominant site factors. C:Nlitter, litter 

carbon to nitrogen ratio; C:Nsoil: soil carbon to nitrogen ratio; Abbreviations are indicated in 

Table B-3 and Fig. B-2. 

 

In particular, TOC and its labile fractions were positively related to the relative 

abundance of fungi and majority of G+ bacteria groups. The C: Nlitter ratio, EC and pH were 

positively associated with the relative abundance of AMF (16:1ω5c) and actinomycetes 

(10Me 18:0), but negatively associated with the abundance of fungi (18:2ω6,9c, 18:1ω9c, 

18:1ω9t) and bacteria. The microbial groups were also closely related to the biochemical 

processes in the soils examined (Fig. B-5). Despite the relatively low abundance, AMF 

(16:1ω5c) and fungi (18:2ω6,9c, 18:1ω9c, 18:1ω9t) were positively correlated with the N 

cycle processes (net mineralization and urease activities). 
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Fig. B-5 RDA-function ordination biplot of individual phospholipid fatty acids (PLFAs) and 

biochemical processes. 

 

B.4 Discussion  

Native plant communities in arid landscapes are of low productivity and overall patchy 

distribution pattern of examined native plant species colonizing infertile landscapes under 

semi-arid climatic conditions (e.g., Mt Isa area) (Reid and Hill 2013). From the present 

findings, nutrient (mainly N and P) status in the soils colonized by the native A. chisholmii 

and T. pungens plants was poor compared to that in productive crop/plantation soils (refer 

to Peverill et al. 1999). The nutrient supply, especially N supply, in the root zones seemed 

to rely on N2-fixing native acacia (A. chisholmii) and microbe-driven litter decomposition. 

Within the native plant community, surface soils underneath acacia and spinifex had been 

modified by in situ litter return, based on the δ13C values, in terms of TOC, structure and 

functions of microbial community, though it was unclear about the history of the colonization 
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of the two species at the sites sampled. The levels of MBC, MBN, basal respiration rate and 

net mineralization rate were more than 2 times in the acacia soil than the spinifex soil. 

Microbial communities in the acacia soil had a greater fungal: bacterial ratio than the spinifex 

soil. On this basis, the strategy for engineering growth media and root zones for revegetating 

native acacia-spinifex communities to cover mined lands at local mines may be based on 

remediation with plant organic matter to supply available nutrients and native acacia as host 

plants to rehabilitate native microbial communities for in situ litter decomposition and nutrient 

cycling, rather than nutrient-rich organic/inorganic fertilizer inputs. Biogeochemical 

properties in soil systems are closely coupled with the long-term development of the above 

ground plant communities. Modification of soil system properties induces changes of 

species diversity and abundance in the plant community through feedback mechanisms of 

in situ quantity and quality of plant litter and the abundance of functions of decomposer 

microbes in the rhizosphere (Wardle et al. 2004).  

B.4.1 Importance of organic matter in infertile soil colonized by native plant species 

The present soil (regardless of colonizing plant species) contained much lower TOC 

compared to those reported in forest soils in semi-arid area or those forest/pasture soils 

located in eastern Queensland with higher rainfalls than Mt Isa (Richards et al. 2007; Spain 

and Feuvre 1987; Xu et al. 2008). In general, TOC concentrations in the soil in this study 

were within similar ranges (2.7-16.6 g kg-1) of those found in the soils beneath natural shrub-

grass plant community located in other semi-arid regions (Bastida et al. 2006; Shang and 

Tiessen, 1998; Zhao et al. 2010; Brid et al. 2002; Emmerich, 2003). The annual input of 

plant litter was assumed to be low for both acacia and spinifex, due to water limitation for 

plant biomass production in semi-arid regions (Facelli and Brock 2000). Even though 

detailed information about annual/seasonal patterns of plant litter inputs for both species 

was yet to be determined, it is assumed that higher litter inputs from the acacia stands might 

have occurred, compared to spinifex, based on the levels of TOC and TN. Soil organic 

matter is essential to the long-term soil fertility for sustainable plant biomass production 
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(Tiessen et al. 1994), but its mineralization rate and associated nutrient release in rate and 

composition should be in line with the ecophysiological requirements of target plant 

communities, due to the closely feedback between soil and plant systems (Wardle et al., 

2004). 

Nitrogen enrichment was also observed in the soil beneath acacia and spinifex with 

similar C: N ratio (13), much lower than those in the acacia litter (38) and spinifex litter (268). 

The majority of TOC in the examined soil was composed of microbial biomass or microbial 

by-products rather than the initial state of plant litter (Plaza et al. 2013). This might be the 

reason that the soil underneath both species have a similar C: N ratio, regardless of N 

concentrations of corresponding plants litter.  

In natural ecosystems, plant litter and roots (not reported here) are the main sources 

of TOC, as shown by the isotope evidence of relative contribution of in situ plant litter and 

root inputs to TOC in the soil underneath the two plant species in the present study (Fig. B-

3). However, acacia species are generally short-lived (10-20 years) (Fox et al., 2001; also 

see http://www.herbiguide.com.au/Descriptions/hg_Cootamundra_Wattle.htm) and the 

presence of acacia stands at specific sites may also be impacted by bush fire (unfortunately 

without specific fire and ecology records available for the location). In our own field 

observations, we have also noticed the fact that new emergence of spinifex plants tended 

to concentrate around sites where old acacia plants have died off. This may be one of the 

reasons for the present patterns of δ13C values (13C/12C isotope ratios) in the surface soils 

which were influenced by the standing acacia and spinifex plants, rather than exclusively 

dominated by individual species at the sites sampled. Given the fact that litter decomposition 

rate in terrestrial ecosystems generally increases with initial litter N concentrations (Aerts 

1997), higher N concentration in acacia litter than the spinifex may have enhanced the 

decomposition rate of acacia litter, contributing to enhanced nutrient cycling processes in 

the surface soils. This implies the importance of acacia species in local soil remediation 

either in the form of pioneer plants and/or plant mulch (organic matter) to engineer growth 
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media with nutrient supply potentials in line with growth rates of native plant species to be 

revegetated across mined landscapes (including the >1000 ha tailings) at Mt Isa Mines. 

B.4.2 Structure and functions of microbial community with acacia and spinifex 

species 

Both soil and plant affect microbial community and associated biochemical processes 

(Buyer et al. 2002). Our assessment of structure and functions of microbial community was 

based on coarse PLFAs biomarkers in combination with enzyme assay evaluation. Although 

not allowing a very detailed characterization of microbial community, it permits to understand 

the relationship between structure and functions of soil microbial community and in situ plant 

species. The number of PLFAs and relative distribution of major groups in microbial 

community in the root zone soil associated with both plant species were similar (Table B-5), 

regardless of the different levels of microbial biomass and activities (Table B-3). Overall, 

microbial community associated with both plant species were found to be highly bacteria 

dominant (> 75 %), especially G+ bacteria, which might be attributed to a high input of C 

from rhizodeposition of easily decomposable litter (e.g., sugar, carboxylic acid, amino acids)  

(Kuzyakov et al. 2007), promoting bacterial proliferation rather than fungal microorganisms 

(Buyer et al. 2002). A broad range of bacteria would be required to mediate soil biochemical 

processes such as C acquisition (DeAngelis et al. 2008), N2 fixation (Evans and Ehleringer 

1993), organic phosphorous mineralization and dissolution (Rodrıǵuez and Fraga 1999), 

contributing to overall organic matter decomposition and nutrient cycling processes (Fig. B-

5).  

The fungal: bacterial ratio is a widely used index to indicate the relative contribution of 

fungi and bacteria in soil microbial community. The values (0.14-0.25) in the present study, 

were within the similar range of grassland (0.19-0.22) (Breulmann et al. 2011), but lower 

than those reported in coniferous forest ecosystem (0.26-0.80) with relatively greater 

productivity under favorable fertility conditions (Frostegård and Bååth 1996; Pennanen et al. 

1999). Although AMF and total fungi biomass comprised only a minor proportion (< 20 %) 
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of microbial communities in the examined soil, they are not only important to decomposition 

of more lignified organic compounds (e.g., lignin, phenol) (Araujo et al. 2012), but also play 

a vital role in improving plant growth through nutrient acquisition and tolerance resistance to 

drought (Michelsen and Rosendahl 1990), salts and metals (Ortega-Larrocea et al. 2010).  

As a result, rehabilitation of microbial communities in engineered growth media would 

be critical to initiate and maintain litter decomposition and nutrient cycling for supporting the 

establishment and development of native acacia-spinifex communities revegetated across 

local mined land in the long term. We have demonstrated the use of root zone soils from 

natural plant communities as carriers of native microbial communities in a parallel study to 

investigate factors and processes in biogeochemical rehabilitation of engineered technosols 

from weathered Cu-Pb-Zn tailings (Li et al., 2014; 2015).  

B.5 Conclusions 

In summary, the soils from native plant communities consisting of leguminous Acacia 

chisolmii and Spinifex grasses (Triodia spp.) were characterized by relatively low levels of 

soil organic carbon (6.03-14.17 g kg-1), microbial biomass (104.3-219.2 mg kg-1) and 

enzymatic activities, which have sustained the growth and recruitment of these native plant 

species in the infertile and dry landscapes of northwest Queensland. Surface soils 

underneath acacia and spinifex were also modified by in situ litter return, in terms of TOC, 

structure and functions of microbial community. Overall, the soil underneath Acacia 

chisholmii contained greater levels of TOC and N, microbial biomass and enzymatic 

activities with greater fungal: bacterial ratio than under spinifex. This initial investigation has 

highlighted the greater contribution of native acacia species than spinifex in terms of organic 

matter, nutrient supply and fungi development. This has provided a general guidance for our 

further studies on remediation options for mine tailings rehabilitation. 
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Appendix C Mount Isa tailings history, properties and phytostabilisation 

C.1 Tailings history, properties and climatic conditions in Mount Isa  

Tailings for phytostabilisation in this study are from Mount Isa Mine (MIM) and Ernest 

Henry Mine (EHM) located at Mount Isa, northwest Queensland, Australia (20.73 °S, 

139.5 °E) (Fig. C-1). MIM has been operating since 1923, and operating 2 separate mining 

and processing streams, copper (Cu) and zinc-lead-silver (Zn-Pb-Ag). The ore body is 

originated on sedimentary Cu-Pb-Zn-Au deposit containing 3.3 % Cu, 5.4 % Pb, 6.5 % Zn 

and 154 ppm Ag (Guilbert and Park, 1986). In EHM, commercial production started in March 

1998. Current core contains 1 % Cu, 0.5 ppm Au and 23 % Fe3O4. Intensive mining and 

processing activities occurring in MIM and EHM has brought about huge volumes of tailings 

to be rehabilitated from both history and current expansion of underground operation.  

The mineralogy of MIM tailings are comprised of 20-60 % quartz, 18-25 % carbonate 

and ankerite, 6-35 % pyrite, 10-15 % chlorite and feldspar, and less than 5 % minor phases 

(i.e., chalcopyrite, sphalerite, galena, cobaltite, pyrrhotite, muscovite, talc/serpentine and 

biotite) (Forsyth, 2014). Current tailings impoundments include a decommissioned section 

that is excluded from the operation and a much larger on-going discharge section, which is 

predicted to be expanded to 1500 ha (Longbin Huang, personal communication).  

Tailings from MIM Tailings dam 5 (TD5) were mixed Cu-Ag and Pb-Zn tailings, which 

were deposited more than 40-year ago with obvious oxidised zone formed. The tailings from 

MIM tailings dam 7 (TD7) have been recently (less than 2-year) deposited from mixed 

stream of Cu-Ag and Pb-Zn tailings, which is still active. EHM is located approximately 160 

km northeast from MIM. In addition to quartz, EHM tailings contain abundant magnetite, 

pyrite and calcite and minor phase (e.g., microcline, orthoclase and kaolinite). EHM tailings 

dam continuously receive on-going discharge streams from Cu-ore processing.  
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Fig. C-1 Location map of Mount Isa Mine (MIM) and Ernest Henry Mine (EHM) and tailings 

impoundments located in Mount Isa, Northwest, Queensland, Australia. Photos showed an 

excavated pit on MIM-TD5 (smooth surface, salt efflorescence) and MIM-TD7 (moist 

surface with salt efflorescence when surface water became evaporated).  

 

The temperature at Mount Isa is generally warm to hot (17-32 °C). The climate 

condition is described as subtropical semi-arid with an annual pan evaporation of 2800 mm, 

and an average rainfall of 467 mm (Bureau of Meteorology Australian Government, 2015). 

Rainfall is highly variable between wet season and dry season, of which 80 % occurs during 

the period between December and February. Native soils in the region are shallow red 

duplexes, red-brown loams and red earths, formed from the geology background ranging 

from sandy to clay, with pH ranging from 4 to 9. The natural soil adjacent to MIM and EHM 

are classified as Rudosols (Isbell, 2002). Surface water surrounding (Leichhardt River) is 

slight-moderate alkaline with slight salinity (probably in the dry season). The dominant 

vegetation is low open woodland (Eucalyptus-Acacia) in combination with open hummock 

grassland (Troidia pungens) (Perry et al., 1964). These keystone native plant species are 
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characterised by large root systems and slow growth rates but are highly competitive and 

capable of self-sustaining in landscapes deficient in nutrients and water as well as drought 

and salinity (Diagne et al., 2013). 

C.2 Phytostabilisation practices and unsolved problems 

Investigation of MIM tailings phytostabilisation could be traced back to late 1960s. 

Various amendments, ranging from simple ripping, organic amendment, and fertilizer 

application to limited soil or coarse sand cover together with total deep capping, were 

evaluated individually or combined as a whole. In total, there are 20 research 

greenhouse/field trials conducted, with most extensive investigations on vegetation 

establishment in tailings from tailings dam 3 (TD3) and 5 (TD5) (Table C-1). 
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Table C-1 Amendment strategies and tests of native and naturalised plant species in the past phytostabilisation trials in MIM tailings 

under field or greenhouse conditions, reproduced from Dorjsuren (2014)  

NO T

D 

Amendments Tested plant species Outcomes Refere

nce 

1 3 Mulch and quarried rock low in 

N and P. 

200 native and naturalised species Pea bush (Sesbania benthamania), 

Tumble weed (Salsola kali), 

Polycarpaea glabra, Native amaranth 

(Amaranthus interruptus), Gomphrena 

brownie, Golden beardgrass 

(Chrysopogon fallax), Blue pea 

(Clitoria ternatea), Pink Mulla or Lamb 

tails (Ptilotus exaltatus) survived.  

Rusch

ena et 

al., 

1974 

2 3 7 cm fly ash incorporated into 15 

cm surface layer;  

Basal fertiliser: 600 kg ha-1 

super-P; 400 kg ha-1 blood and 

bone and 90 kg ha-1 urea; 

Maintain weekly with 22.5 kg ha-

1 urea. 

Natural Colonisation No detailed report available. Hunter

, 1974 

 

3 3 Basal fertiliser: 1270 kg ha-1 

super-P; 1270 kg ha-1 blood and 

bone and 90 kg ha-1 urea; 

Sesbania spp., Vicia spp., Cereal rye 

(Secale cereale), Buffel grass (Cenchrus 

ciliaris), Wimmera rye (Lolium rigidum), 

Dominant growth: Cenchrus ciliaris, 

Cynodon dactylon and Chloris gayana. 
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Rhodes grass (Chloris gayana), Couch 

grass (Cynodon dactylon), Sudan grass 

(Sorghum x drummondii), Siratro 

(Macroptilium atropurpureus)  

4 3 7 cm fly ash incorporated into 15 

cm surface layer of tailings;  

Basal fertiliser: 1270 kg ha-1 

super-P; 90 kg ha-1 blood and 

bone and 90 kg ha-1 urea;  

Maintain weekly with 25 kg ha-1 

urea  

Rhodes grass (Chloris gayana)  

 

No detailed report available. 

5 3 7 cm fly ash incorporated into 15 

cm surface layer of tailings;  

Basal fertiliser: 90 kg ha-1 blood 

and bone and 90 kg ha-1 urea;  

Super-P 250-400 kg ha-1 

Rhodes grass (Chloris gayana) No detailed report available. 

6 3 15 cm ripping with 7 cm siltstone 

fines spread on surface or 

incorporated;  

Basal fertiliser: 115 kg ha-1 P 

and 57 kg ha-1 N;  

Rhodes grass (Chloris gayana) Surface siltstone fines more effective in 

biomass production. 
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Maintain bimonthly with 44 kg 

ha-1 urea 

7 3 Super-P supply ranging from 

432-4320 kg ha-1 

Phasey bean (Macroptilium lathyroides) Highest dry biomass at 1728 kg ha-1 

super-P but 1728-4320 kg ha-1 was not 

significantly different; 

Optimum super P: 1296-1728 kg ha-1;  

0-400 kg ha-1 caused extreme P 

deficiency;  

Cu, Zn uptake reduced with increasing 

P addition.  

8 3 Cu-furnace slag mixing with 

tailings 

Phasey bean (Macroptilium lathyroides) Poor growth. 

9 3 Straw or bagasse furnace or 

mixed in 15 cm layer at the rate 

of 5 t ha-1;  

Irrigation and fertiliser 

Winter crops: Vetch and Oats;  

Summer crop –Sorghum spp. 

Organic amendments increased plant 

growth;  

Incorporation of straw is the best 

treatment. 

10  1: 3 fly ash vs tailings 

incorporation;  

Basal fertiliser: Blood and Bone, 

NH4NO3 and Super-P 

Phasey bean (Macroptilium lathyroides) Good growth response if fertilisers 

were added 

11 3 15 cm ripping followed by rotary 

hoeing;  

Couch grass (Cynodon dactylon), Rhodes 

grass (Chloris gayana), salt bush (Atriplex 

Amendments improved infiltration rate, 

decreased EC, and increased P 
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Fly ash (121-162 t ha-1) in the 8-

10 cm surface layer;  

Basal fertiliser: blood and bone 

27 kg ha-1; NH4NO3 27 kg ha-1 

and super-P 2160 kg ha-1;  

spp.), Stylo (Stylosanthes guyanensis cv 

Schofield), Pea bush (Sesbania 

benthamania), Amaranthus (Amaranthus 

interruptus), Townsville stylo 

(Stylosanthes humilis), Buffel grass 

(Cenchrus ciliaris), Siratro (Macroptilium 

atropurpureus), Ptilotus (Ptilotus spp.) 

supply;  

In pure tailings, only Cynodon dactylon 

survived with very low biomass and 

high levels of Cu (> 220 ppm), Zn (153 

ppm), Pb (205 ppm) in plant tissues;  

In fly ash-amended plots, only 

Cenchrus ciliaris Chloris gayana and 

native Sesbania benthamania grew 

well.  

12 3 Mulching or fly ash 

amendments; 

Basal fertiliser: blood and bone 

27 kg ha-1; NH4NO3 27 kg ha-1 

and super-P 2160 kg ha-1;  

Maintain with 11 kg ha-1 urea 

per 4 weeks 

Couch grass (Cynodon dactylon), Rhodes 

grass (Chloris gayana), salt bush (Atriplex 

spp.), Stylo (Stylosanthes guyanensis cv 

Schofield), Pea bush (Sesbania 

benthamania), Amaranthus (Amaranthus 

interruptus), Townsville stylo 

(Stylosanthes humilis), Buffel grass 

(Cenchrus ciliaris), Siratro (Macroptilium 

atropurpureus), Ptilotus (Ptilotus spp.) 

cereal rye (Secale cereale), wimmera rye 

(Lolium rigidum), vetch (Vicia sativa) and 

Sudan grass (Sorghum sudanense). 

Outstanding growth performance: 

Cenchrus ciliaris, Chloris gayana, 

Sorghum sudanense, and Lolium 

rigidum.  

Fly ash far better than mulching, which 

was better than the control. 
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13 3 15 cm ripped in tailings; 

7 cm fly ash blade-mixed into 

the 15 cm surface tailings; 

Basal fertilizer: 55 kg ha-1 N in 

form of urea; 30-250 kg ha-1 

super-P; 

Maintain with 27.5 kg ha-1 urea 

bimonthly 

Rhodes grass (Chloris gayana) and 

Sorghum spp. 

Best growth at super P 250 kg ha-1; 

In fly ash-amended tailings, main 

limiting factor is salinity rather than P 

deficiency. 

Ison, 

1976 

 

14 3 Urea: 150-600 kg ha-1 y-1 

Basal fertilizer: 55 kg ha-1 urea 

and 1270 kg ha-1 super-P;  

Monthly application of urea 

Rhodes grass (Chloris gayana) 150 kg ha-1 urea was still better than 

the control;  

Best growth at 300 and 600 kg ha-1 

urea application;  

Monthly application of 300 kg ha-1 y-1 

urea is far better than 600 kg ha-1 y-1 

as high rates of urea application 

resulted in significant N loss. 

15 3 7 cm layer of siltstone fines 

(3.24 t ha-1) surface/blade-mixed 

into 15 cm tailings;  

Irrigation sewerage. 

Rhodes grass (Chloris gayana) Surface application is better than 

incorporation as it provided protection 

for seedlings and help to reduce 

surface evaporation thus conserving 

water 
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16 5 1 m ripping; 

Surface application of hay and 

cattle grazing. 

Biloela buffel (Cenchrus ciliaris cv. 

Biloela), Bambatsi panic (Panicum 

coloratum cv. Bambatsi), Silk sorghum 

(Sorghum hybrid cv. Silk), Red Flinders 

grass (Iseilema vaginiflorum), Bundle 

(Dichanthium fecundum), Acacia spp. and 

Senna spp.,Eucalyptus spp., Triodia spp., 

Ptilotus exaltatus, Atalaya hemiglauca; 

Sudan grass (Sorghum sudanense). 

Ripping is necessary to minimise water 

stress and most suitable treatment for 

native species with high plant survival 

rates during water logging and summer 

drought; 

Good germination and diversity of 

seeded species, with the dominance of 

seilema vaginiflorum, Dichanthium 

fecundum, Sorghum hybrid Sorghum 

sudanense and significant recruitment 

of Acacia spp.  

Hodge

, 1997  

17 5 1 m deep ripping;  

4 rates of sewage sludge 

treatments;  

Organic amendments (legume 

hay, mitchell and red flinders 

grass; garden refuse, compost 

green wastes). 

Eucalyptus spp., Acacia spp, Triodia spp, 

Ptilotus exaltatus, Whitewood (Atalaya 

hemiglauca) 

 

18 5 Ripping to 1 m deep and 2 m 

wide with rock island 

constructed;  

Sewage sludge injection 

Eucalyptus spp., Acacia spp, Triodia spp, 

Ptilotus exaltatus, Whitewood (Atalaya 

hemiglauca), Stylosanthes guyanensis 

cv. Schofield, Legume tree, Cenchrus 

Produced the best and most consistent 

vegetative growth of native seed mix 

and Leucaena Cunningham;  

Good establishment of Acacia 
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ciliaris, Atriplex spp., White paperbark 

(Melaleuca leucodendra)  

salicinaand Cenchrus ciliaris;  

Natural colonisation was observed with 

Kapok (Ceiba pentandra), Ptilotus spp. 

and Tomato; 

Less of Eucalyptus spp. in fine hay and 

sewage treatment. 

19 5 Deep ripping; 0.5-1 m quarried 

rock capping  

Atalaya hemiglauca, Eucalyptus spp., 

Acacia spp., Triodia spp., and Ptilotus. 

exaltatus  

In 2004, Acacia spp. dominant, with 

grass (Aristida pruinosa, Cenchrus 

ciliaris, Triodia pungens);  

In August 2008, Acacia spp., Cenchrus 

ciliaris and Triodia spp. showed good 

growth and species diversity with low 

ground cover.  

20 7  Kapok bush (Averva javanica), A. 

hemiglauca, Turpentine wattle (Acacia 

chisholmii), A. cunninghamii, Solanum 

ellipticum, Sida cunninghamii 

No detailed report available  Duff, 

2001 



236 

Past phytostabilisation trials in MIM tailings employed agronomic techniques to 

establish plants with high fertiliser input and irrigation in addition to various amendment 

options (e.g., topsoil, siltstone fines, sewage sludge, straw, fly ash etc.). Among more than 

the 200 native species tested in the trials, native grass, Triodia spp., Rhodes grass, buffel 

grass and woody shrub and tree species (e.g., Acacia spp. and Atriplex spp. whitewood) 

showed overall high survival rates and longevity in various trials with minimum amendment 

input (Hodge, 1997; Hunter, 1974; Ruschena et al., 1974). Past trials also showed coarse 

capping material significantly improve plant growth conditions with alleviated compaction, 

capillary rise of salts and improved water storage (Hodge 1997). However, application of 

capping materials onto large scale revegetation trials on existing tailings impoundments at 

MIM with approaching 1500 ha is cost prohibitive. Moreover, the established plants might 

not be sustainable without regular input of nutrients and water (Hodge, 1997). Revegetation 

practice conducted in TD3 showed no recruitment of second generation seedlings emerged 

among the 6500 trees planted in 30 ha area of tailings. Ridge trials (0.5 m topsoil capping 

and sewage sludge irrigation) and Silica capping trial (1 m thick cover of coarse stones) 

conducted in TD5 showed satisfying plant recruitment, but with patchy, inadequate and poor 

growth due to visible stresses from drought, salinity and poor fertility conditions (Hodge, 

1997). Although no conclusive amendment strategies were derived from these trials, these 

past trials provide useful information about predominant constraints in tailings and possible 

amendment treatments for initial germination and establishment of various native plant 

species.  
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