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REIDEMEISTER TORSION OF A 3-MANIFOLD OBTAINED BY AN

INTEGRAL DEHN-SURGERY ALONG THE FIGURE-EIGHT KNOT

Teruaki Kitano

Abstract

Let M be a 3-manifold obtained by a Dehn-surgery along the figure-eight knot.

We give a formula of the Reidemeisiter torsion of M for any SLð2;CÞ-irreducible
representation. It has a rational expression of the trace of the image of the meridian.

1. Introduction

Reidemeister torsion is a piecewise linear invariant for manifolds and origi-
nally defined by Reidemeister, Franz and de Rham in 1930’s. In 1980’s Johnson
developed a theory of the Reidemeister torsion from the view point of certain
relation to the Casson invariant of a homology 3-sphere. He also derived an
explicit formula for the Reidemeister torsion of a homology 3-sphere obtained by
a 1=n-Dehn surgery along any torus knot for SLð2;CÞ-irreducible representations.
We generalized the Johnson’s formula for any Seifert fibered space [2] along his
studies.

In this paper, we give a formula for 3-manifolds obtained by Dehn surgeries
along the figure-eight knot. Let KHS3 be the figure-eight knot. The knot
group p1ðS3nKÞ has the following presentation

p1ðS3nKÞ ¼ hx; y jwx ¼ ywi

where w ¼ xy�1x�1y. Now x is a meridian.
Let M be a 3-manifold obtained by a 1=n-surgery along K . The funda-

mental group p1ðMÞ admits a presentation as follows;

p1ðMÞ ¼ hx; y jwx ¼ yw; xl n ¼ 1i

where l ¼ w�1 ~ww and ~ww ¼ x�1yxy�1. Now l is a longitude. Let r : p1ðMÞ !
SLð2;CÞ be an irreducible representation. Assume the chain complex C�ðM;C2

rÞ
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is acyclic. Then Reidemeister torsion trðMÞ ¼ tðC�ðM;C2
rÞÞ is given by the

following.

Theorem 1.1.

trðMÞ ¼ 2ðu� 1Þ
u2ðu2 � 5Þ

where u ¼ trðrðxÞÞ.

Remark 1.2.
(1) We remark the trace u cannot move freely on the complex plane in the

above formula. The value u depends on the surgery coe‰cient n.
(2) Tran [9] discusses the generalization of the above formula for twist knots.
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2. Definition of Reidemeister torsion

First let us describe the definition of the Reidemeister torsion for SLð2;CÞ-
representations. Since we do not give details of definitions and known results,
please see Johnson [1], Milnor [5, 6, 7] and Kitano [2, 3] for details.

Let W be an n-dimensional vector space over C and let b ¼ ðb1; . . . ; bnÞ and
c ¼ ðc1; . . . ; cnÞ be two bases for W . Setting bj ¼

P

pjici, we obtain a non-
singular matrix P ¼ ðpijÞ with entries in C. Let ½b=c� denote the determinant
of P.

Suppose

C� : 0 �! Cm �!qm Cm�1 �!
qm�1 � � � �!q2 C1 �!

q1
C0 �! 0

is an acyclic chain complex of finite dimensional vector spaces over C. We
assume that a preferred basis ci for Ci is given for each i. Choose some basis
bi for Bi ¼ Imðqiþ1Þ and take a lift of it in Ciþ1, which we denote by ~bbi. Since
Bi ¼ Zi ¼ Ker qi, the basis bi can serve as a basis for Zi. Furthermore since the
sequence

0 ! Zi ! Ci ! Bi�1 ! 0

is exact, the vectors bi U ~bbi�1 form a basis for Ci. Here ~bbi�1 is a lift of bi�1 in Ci.
It is easily shown that ½bi U ~bbi�1=ci� does not depend on the choice of a lift ~bbi�1.
Hence we can simply denote it by ½bi U bi�1=ci�.

Definition 2.1. The torsion tðC�Þ is given by the alternating product

Y

m

i¼0

½bi U bi�1=ci�ð�1Þ iþ1

:
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Remark 2.2. It is easy to see that tðC�Þ does not depend on the choices of
the bases fb0; . . . ; bmg.

Now we apply this torsion invariant of chain complexes to the following geometric
situations. Let M be a finite CW-complex and ~MM a universal covering of M.
The fundamental group p1ðMÞ acts on ~MM as deck transformations. Then the
chain complex C�ð ~MM;ZÞ has the structure of a chain complex of free Z½p1ðMÞ�-
modules. We denote the 2-dimensional vector space C

2 by V . Using a repre-
sentation r : p1ðMÞ ! SLð2;CÞ, V has the structure of a Z½p1ðMÞ�-module.
Then we denote it by Vr and define the chain complex C�ðM;VrÞ by
C�ð ~MM;ZÞnZ½p1ðMÞ� Vr. Here we choose a preferred basis

f~uu1 n e1; ~uu1 n e2; . . . ; ~uuk n e1; ~uuk n e2g

of CqðM;VrÞ where fe1; e2g is a canonical basis of V ¼ C
2 and ~uu1; . . . ; ~uuk are lifts

of the q-cells giving the preferred basis of CqðM;ZÞ.
We suppose that all homology groups H�ðM;VrÞ are vanishing. In this

case we call r an acyclic representation.

Definition 2.3. Let r : p1ðMÞ ! SLð2;CÞ be an acyclic representation.
Then the Reidemeister torsion trðMÞ is defined to be the torsion tðC�ðM;VrÞÞ.

Remark 2.4.
(1) We define trðMÞ ¼ 0 for a non-acyclic representation r.
(2) The Reidemeister torsion trðMÞ depends on several choices. However

it is well known that the Reidemeister torsion is a piecewise linear
invariant. See Johnson [1] and Milnor [5, 6, 7].

Here we recall the Reidemeister torsion of the torus and the solid torus.

Proposition 2.5. Let r : p1ðT 2Þ ! SLð2;CÞ be a representation.
(1) This representation r is an acyclic representation if and only if there exists

an element z A p1ðT 2Þ such that trðrðzÞÞ0 2.
(2) If r is acyclic, then it holds trðT 2Þ ¼ 1.

Next we consider the solid torus S1 �D2 with p1ðS1 �D2ÞGZ generated by g.

Proposition 2.6. Let p1ðS1 �D2Þ ! SLð2;CÞ be a representation. Then it
holds

trðS1 �D2Þ ¼ 1

detðrðgÞ � EÞ

¼ 1

2� trðrðgÞÞ
for a generator g A p1ðS1 �D2ÞGZ. Here E is the identity matrix in SLð2;CÞ.
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From here we assume M is a compact 3-manifold with an acyclic representation
r : p1ðMÞ ! SLð2;CÞ. Here we take a torus decomposition of M ¼ AUT 2 B.
For simplicity, we write the same symbol r for a restricted representation to
subgroups p1ðAÞ, p1ðBÞ and p1ðT 2Þ of p1ðMÞ.

By this torus decomposition, we have the following exact sequence:

0 ! C�ðT 2;VrÞ ! C�ðA;VrÞlC�ðB;VrÞ ! C�ðM;VrÞ ! 0:

Proposition 2.7. Let r : p1ðMÞ ! SLð2;CÞ be a representation which
restricted to p1ðT 2Þ is acyclic. Then H�ðM;VrÞ ¼ 0 if and only if H�ðA;VrÞ ¼
H�ðB;VrÞ ¼ 0. In this case it holds

trðMÞ ¼ trðAÞtrðBÞ:

We apply this proposition to any 3-manifold obtained by Dehn-surgery along a
knot. Now let M be a closed 3-manifold obtained by a 1=n-surgery along the
figure eight knot K . We take an open tubular neighborhood NðKÞ of K and its
knot exterior EðKÞ ¼ S3nNðKÞ. Under the presentation

p1ðEðKÞÞ ¼ hx; y jwx ¼ ywi

where w ¼ xy�1x�1y, l ¼ w�1 ~ww and ~ww ¼ x�1yxy�1, x is a meridian and l ¼ w�1 ~ww
is a longitude.

We denote its closure of NðKÞ by N which is homeomorphic to S1 �D2.
Since this 3-manifold M is obtained by Dehn-surgery along K , we have a torus
decomposition

M ¼ EðKÞUN:

Let r : p1ðEðKÞÞ ¼ p1ðS3nKÞ ! SLð2;CÞ be a representation which extends to
p1ðMÞ.

Remark 2.8. We remark that g ¼ lG1 in p1ðMÞ if and only if the surgery
coe‰cient is 1=n.

In this case it holds the following.

Proposition 2.9. If r is acyclic on p1ðT 2Þ and p1ðMÞ, then trðMÞ ¼
trðEðKÞÞtrðNÞ. Further if all chain comeplexes are acyclic, then

trðMÞ ¼ trðEðKÞÞ
2� trðrðlÞÞ :

3. Main result

Recall the following lemma, which is the fundamental way to study SLð2;CÞ-
representations of a 2-bridge knot. Please see [8] as a reference.
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Lemma 3.1. Let X ;Y A SLð2;CÞ. If X and Y are conjugate and XY 0YX ,
then there exists P A SLð2;CÞ such that

PXP�1 ¼ s 1

0 1=s

� �

; PYP�1 ¼ s 0

�t 1=s

� �

:

We apply this lemma to irreducible representations of p1ðEðKÞÞ. For any irre-
ducible representation r, we may assume that the representative of this conjugacy
class is given by

rs; t : p1ðEðKÞÞ ! SLð2;CÞ ðs; t A Cnf0gÞ
where

rs; tðxÞ ¼
s 1

0 1=s

� �

; rs; tðyÞ ¼
s 0

�t 1=s

� �

Simply we write r to rs; t for some s; t. We compute the matrix

R ¼ rðwÞrðxÞ � rðyÞrðwÞ ¼ ðRijÞ
to get the defining equations of the space of the conjugacy classes of the irre-
ducible representations.

� R11 ¼ 0,
� R12 ¼ 3� 1

s2
� s2 þ 3t� t

s2
� s2tþ t2,

� R21 ¼ 3t� t

s2
� s2tþ 3t2 � t2

s2
� s2t2 � t3 ¼ tR12,

� R22 ¼ 0.
Hence R12 ¼ 0 is the equation defining the space of the conjugacy classes of the
irreducible representations.

This equation

3� 1

s2
� s2 þ 3t� t

s2
� s2tþ t2 ¼ 0

can be solved in t as

t ¼ 1� 3s2 þ s4 G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2s2 � s4 � 2s6 þ s8
p

2s2
:

Here it can be seen that L ¼ rðlÞ ¼ ðlijÞ is given by the followings:

Lemma 3.2.

l11 ¼ 1� t

s2
þ s2t� t2 þ t2

s4
� t2

s2
þ s2t2 � t3 � t3

s2

l12 ¼
t

s3
þ s3t� t2

s
� st2

l21 ¼
t2

s3
� 2t2

s
� 2st2 þ s3t2 þ t3

s3
� 2t3

s
� 2st3 þ s3t3 � t4

s
� st4

l22 ¼ 1þ t

s2
� s2t� t2 þ t2

s2
� s2t2 þ s4t2 � t3 � s2t3
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Here we get the trace of direct computation.

trðrðlÞÞ ¼ 2� 2t2 þ t2

s4
þ s4t2 � 2t3 � t3

s2
� s2t3

It is easy to see that trðrðlÞÞ0 2 if u ¼ sþ 1

s
¼ 2. Hence there exists an element

z A p1ðT 2Þ such that trðrðzÞÞ0 2. This means that r is always acyclic on T 2.
Now we have

trðMÞ ¼ trðEðKÞÞtrðNÞ:
Here we obtain the Reidemeister torsion of EðKÞ as follows. See [3] for precise
computation.

Proposition 3.3.

trðEðKÞÞ ¼ �2ðu� 1Þ
where u ¼ sþ 1

s
.

By substituting

t ¼ 1� 3s2 þ s4 G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2s2 � s4 � 2s6 þ s8
p

2s2

in trðrðlÞÞ, we get the following proposition.

Proposition 3.4.

trðNÞ ¼ � 1

u2ðu2 � 5Þ :

Therefore we obtain the following formula:

trðMÞ ¼ trðEðKÞÞtrðNÞ

¼ ð�2ðu� 1ÞÞ � 1

u2ðu2 � 5Þ

� �

¼ 2ðu� 1Þ
u2ðu2 � 5Þ :

Remark 3.5. The representations for u2 � 5 ¼ 0 are degenerate into reduc-
ible representation from irreducible representations.
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