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Abstract: Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies,
but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in
hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two
distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively
describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection
was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we
show correlates of adaptive immunity at reinfection, including a differential response in neutralizing
antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin
to define benchmarks for protection against reinfection from SARS-CoV-2.
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1. Introduction

The risk of reinfection with SARS-CoV-2 after primary infection had not been consis-
tently demonstrated until late in 2020 [1]. Multiple reports documented prolonged viral
RNA shedding [2], though virus is not likely to be transmissible after 10 days [3,4], or pos-
sibly up to 20 days in immunocompromised patients [5]. These data suggested prolonged
shedding of viral remnants, as opposed to ongoing shedding of replication-competent
virus. A large case series from the Korean CDC [6] found lack of transmission events from
symptomatic patients repeatedly positive for SARS-CoV-2 after negative testing. Most case
reports did not distinguish between prolonged shedding and reinfection [7–9]. Without
viral sequencing analysis, one could not exclude the possibility that prolonged shedding in
some patients might actually be reinfection. In August 2020, reports from Hong Kong and
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Nevada described reinfection 5 and 2 months after primary infection, respectively [10,11].
In this case, report, we describe a third case of reinfection discovered contemporaneously
in the summer of 2020.

After SARS-CoV-2 infection, most persons develop anti-SARS-CoV-2 antibody re-
sponses characterized by rising IgG, IgM and IgA to viral spike, receptor binding domain
(RBD) or nucleocapsid (N) antigens [12]. By 4 weeks after symptoms onset, IgM and IgA
decline substantially, as does IgG in patients with mild or asymptomatic infections, while
IgG persists at higher levels after severe COVID-19 illness [13]. Evidence suggests that
SARS-CoV-2-specific antibodies can be protective, as indicated by the lack of infection in
those with pre-existing neutralizing antibodies (nAb) in a recent high attack rate outbreak
aboard a fishing vessel [14]. Convalescent plasma programs are based on the assumption
that humoral immunity will aid in the response to SARS-CoV-2 [15], as are vaccine pro-
grams aiming to provide durable herd immunity [16]. However, correlates of immunity
from reinfection have not been established due to the few documented reinfections, and
the limited immunological studies in the reports of reinfection [10,11]. Here, we use whole
viral genome sequencing to define a reinfection case. We then present antibody, B cell and
T cell analyses to evaluate the patient’s lack of immunity against a new SARS-CoV-2 strain.

2. Materials and Methods
2.1. Patient Population & PCR Testing

“Re-positivity” was defined as repeat SARS-CoV-2 PCR positive after negative test-
ing in patients with initially PCR-confirmed COVID-19. To understand the duration of
shedding and phenotypes of re-positivity, we analyzed a database of all SARS-CoV-2 PCR
testing for patients with nasopharyngeal samples sent from the emergency departments or
hospitals of Swedish Health System in Seattle, WA, USA. Semi-quantitative real time poly-
merase chain reaction (RT-PCR) testing reported as cycle thresholds (Ct) were performed
on the Xpert Xpress SARS-CoV-2 test on the GeneXpert Infinity (Cepheid, Sunnyvale, CA,
USA). Hospital policies discouraged unnecessary testing, but the decision to test was left to
individual providers. Retesting was often requested by congregate living facilities prior
to receiving patients following hospitalization. Discontinuation of transmission-based
isolation synchronized with the CDC interim guidance [17]. Descriptive statistics were
performed on population shedding dynamics.

2.2. Virologic and Immunologic Analyses

Viral sequencing in March was performed via rapid metagenomic next-generation
sequencing (NGS) [18], and in July was modified from the multiplexed PCR amplicon NGS
method using the ARTIC V3 primers [19]. SARS-CoV-2 clade designations and phylogenetic
analyses were produced using NextStrain [20]; sequence acknowledgements are provided
in Table S3. Serological testing used enzyme-linked immunosorbent assay (ELISA) for
anti-spike, anti-RBD, and anti-N IgG, IgM and IgA antibodies, as well as a functional
assay for antibodies that block binding of RBD to an ACE2 fusion protein [13]. Functional
nAb were measured with a cell-culture based assay using pseudoviruses containing either
the D614 or the G614 epitopes in spike [21]. Immunoglobulin heavy chain (IGH) genes
expressed by peripheral blood B cells were sequenced with amplicon libraries produced
for each isotype [22], and paired IGH and light chain sequences were determined with
single B cell transcriptome analysis [22]. T cell phenotyping was performed by single cell
CITE-seq (10x Genomics, Pleasanton, CA, USA) with dimensional reduction analysis [23].
Plasma cytokine levels were measured with proximity extension assay (Olink Proteomics,
Uppsala, Sweden) [23]. All assays are described in depth (Supplemental Materials).
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3. Results
3.1. Population Sampling

Between 1 March and 12 August 2020, 11,622 patients were tested for SARS-CoV-2
by RT-PCR (Figure S1). Of these, 643 patients had at least one positive test (5.5% positiv-
ity) and 176 patients had at least two positive samples. Time from first positive to last
positive was determined as the shedding duration (Figure 1A). The median (interquartile
range) shedding duration was 12.1 (6.4, 24.7) days, with a positively skewed distribution
(kurtosis = 10.7). Shedding was <59 days in 95% of patients and was >75 days in only two
patients. Re-positivity was observed in 43 patients (Figure 1B) with patterns suggesting:
(1) inadequate sampling technique, (2) assay limitations with the Ct result hovering at the
limit of detection, (3) prolonged shedding, potentially combined with either of the former,
or (4) reinfection. The patient with the longest duration between negative RT-PCR and
re-positive was enrolled in an observational study to distinguish between these possibilities.

1 
 

 Figure 1. Population viral RNA shedding from patients with COVID-19. Panel (A): Distribution
of shedding duration in patients who had at least 2 positive SARS-CoV-2 PCR tests. The shedding
duration was calculated as the time from first positive sample to last positive sample. In the histogram
(n = 176), the proportion of patients is plotted as density on the y-axis and shedding duration (in
days) is on the x-axis. Panel (B): Time course of SARS-CoV-2 shedding in patients (n = 43) who
had “re-positive” pattern (repeat SARS-CoV-2 PCR positive after negative testing in patients with
initially PCR-confirmed COVID-19, i.e., a positive-negative-positive pattern). In the spaghetti plot,
semi-quantitative real-time PCR expressed in cycle thresholds (Ct) is plotted on the y-axis and time
course in days from first positive to last positive is on the x-axis. Ct is the average result of E & N2
genes except where one target was undetectable and then Ct was set to value of single positive
target. Ct range: 14.9–44.0. Negative (undetectable) results are set to Ct = 50 for purposes of display.
UD = undetectable. Red stars mark possible reinfections due to low CT value at re-positive, or long
duration since last positive PCR, respectively.
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3.2. Case Study

InCoV139 is a sexagenarian (age between 60–69), who resides in a skilled nursing
facility (SNF) and has a history of severe emphysema (FEV1 34% predicted) on home
oxygen, and hypertension. In late February, the patient visited the emergency room visit for
syncope and was diagnosed with exacerbation of chronic obstructive pulmonary disease.
Three days later, the patient returned with recurrent syncope, but now also had symptoms
including fever, chills, productive cough, dyspnea and chest pain and was admitted to the
hospital. At the SNF, the patient reported exposure to a SNF employee who was recently
returned from the Philippines with a respiratory infection. Auscultation revealed diffuse
wheezing and dullness at the left base and chest X-ray showed hyperinflation and bibasilar
infiltrates (Figure S2). Unstable atrial fibrillation ensued and the patient was treated
with cardioversion and anticoagulation. On hospital day 6, the patient tested positive
for SARS-CoV-2 by rt-PCR, confirming the diagnosis of severe COVID-19 pneumonia.
The patient received treatment with supportive care consisting of supplemental oxygen,
steroids, and multimodal inhaled therapies for chronic obstructive pulmonary disease. The
patient returned to the SNF after testing negative on days 41 and 43 of hospitalization
(43 and 45 days after symptoms onset, which was retrospectively determined as the date of
first syncope).

After the hospitalization in March for severe COVID-19 pneumonia, InCoV139 re-
mained isolated from family and visitors, interacting only with SNF residents and staff.
After moving to a different facility, the patient described exposure to residents at the new
facility who were coughing. On day 140 after the first positive SARS-CoV-2 PCR, the
patient returned to the ER with dyspnea, reporting 2 weeks of dry cough and weakness.
SARS-CoV-2 PCR was repeatedly positive on days 1 and 6 of re-hospitalization (day 14 and
day 19 after reinfection date of symptoms onset). Compared to admission in March, the
patient was less severely ill in July, by physiologic, laboratory and radiographic parameters,
with higher Ct values (Table 1, Figure S2). Status returned to baseline after treatment with
remdesivir and dexamethasone. The complete SARS-CoV-2 RT-PCR testing history is given
(Table S1), with variability in testing location in March indicative of the rapid evolution of
clinical care processes and limited availability of SARS-CoV-2 diagnostic RT-PCR testing.

Table 1. Clinical Parameters at Peak Illness for COVID-19 Episodes.

Parameter: Primary Infection
(March) *

Reinfection
(July) *

Vital Signs:

Temperature (◦C) 38.4 37.0

Heart Rate (/min) 101 86

Blood pressure (mmHg) 156/96 143/93

Respiratory Rate (/min) 20 19

SpO2 (%) on supplemental O2 rate 93% on 6 L/min 94–97% on 3 L/min

BMI (kg/m2) 18.7 20.4

Laboratory:

Total white blood count (cells/µL) 16,200 6700

Absolute neutrophil count (cells/µL) 12,960 2010

Absolute lymphocyte count (cells/µL) 1600 600

Hematocrit (%) 39.6% 42.8%

Platelet count (cells/µL) 290,000 240,000

D-dimer (≤0.49 µg/mL) ** N/A 0.47

Creatinine (mg/dL) 1.01 1.07
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Table 1. Cont.

Parameter: Primary Infection
(March) *

Reinfection
(July) *

Procalcitonin (≤0.25 ng/mL) ** 0.15 0.08

C-reactive protein (≤5 mg/L) ** N/A <3.0

SARS-CoV-2 rt-PCR CT (target 1) † 22.8 (E) 43.3 (E)

SARS-CoV-2 rt-PCR CT (target 2) † 26.5 (RdRp) 39.6 (N2)
* Peak day of illness for each COVID-19 episode is given. For primary infection, peak illness occurred in the 1st
hospitalization (March) on hospital day #5. For reinfection, peak illness occurred in the 2nd hospitalization (July)
on hospital day #1. ** Normal ranges given as indicated. † SARS-CoV-2 qualitative polymerase chain reaction
(rt-PCR) cycle threshold (CT) was based on the WHO assay in March (UW Virology) and the Cepheid Infinity in
July (LabCorp Seattle).

3.3. Viral Sequencing and Phylogenetic Analysis

Comparison of InCoV139 sequences from March and July revealed 10 high confidence
single nucleotide variants (SNVs) of which 5 type the March sequence to clade 19B, and
5 type the July sequence to clade 20A. The InCoV139-March sequence (Genbank: MT252824)
shares the canonical mutations (C8782T and T28144C) which define clade 19B and dis-
tinguish it from the original clade 19A, of the Wuhan-Hu-1 reference strain (Genbank:
NC_045512.2). InCoV139-March additionally shares C18060T with the first US case WA1
(Genbank: MN985325), which was circulating in Asia and introduced via a traveler re-
turning from Wuhan, China to the Puget Sound area north of Seattle in mid-January [23].
InCoV139-March diverges from WA1 by at least 2 other mutations suggesting evolution
via community spread in the ensuing 7 weeks from diagnosis of WA1 to diagnosis of
InCoV139-March. Conspicuously, the July sequence (InCoV139-July) harbors none of the
canonical mutations defining clade 19B and instead shares the canonical mutations defining
clade 20A (C3037T, C14408T and A23403G), one canonical mutation of clade 20C (G25563T),
as well as one other 20A mutation. Importantly, present in InCoV139-July (but not in
InCoV139-March) is the A23403G mutation, which confers the D614G amino acid change in
spike protein and defines the SARS-CoV-2 strain with greater replicative fitness, introduced
separately to the US East Coast via Europe [18]. As indicated in the phylogeny (Figure 2),
sequence differences (Table S2) clearly define 2 genetically distinct viruses which evolved
separately from a common ancestor in early divergent events.

3.4. Anti-SARS-CoV-2 Antibody Response

Plasma samples from InCoV139 in July were measured for anti-SARS-CoV-2 antibodies
(Figure 3). IgG antibodies against RBD, spike and nucleocapsid were detected, with low
optical density compared to positive control [13] and showed a decreasing trend from
day 14 to 42 after reinfection symptoms onset. IgM was weakly positive to spike, but
undetectable to RBD and nucleocapsid. IgA specific for spike and nucleocapsid, but not
RBD, was detected at low levels on day 14 to 21. Anti-spike and anti-RBD IgA showed a
surprising increase by day 42, confirmed in replicate and titration experiments (Figure S3).
IgG subclass analysis revealed that the patient’s RBD-specific IgG response consisted of
low levels of IgG3, without detectable IgG1, despite having both IgG1 and IgG3 specific for
spike and nucleocapsid proteins with decreasing trend (Figure S4). Antibodies blocking
ACE2-RBD binding were undetectable at day 14, suggesting a lack of potentially protective
antibodies, and increased by day 42 (Figure 3). At day 14 and 42, nAb titers (IC50) were
1:260 and 1:382 against D614 (Wuhan-Hu-1) pseudovirus, and were 1:449 and 1:1168 against
a mutated D614G pseudovirus, showing differential increase of nAb to D614G pseudovirus
compared to the Wuhan-Hu-1 strain (Figures 3D and S5).
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Figure 2. Phylogram of SARS-CoV-2 Isolates in Washington State. A phylogeny of SARS-CoV-2 in
Washington State demonstrates that the primary and reinfection strains are distinct. The figure also
includes contextual sequences illustrating clade roots and the pairs of reinfection cases from Hong
Kong and Nevada. The pair of reinfection samples from InCoV139 (red) type to clade 19B from the
primary infection in March and to clade 20A from the reinfection in July. The initial Hong Kong
sample was in Clade 19A and the reinfection sample in 20A; both Nevada samples were in Clade
20C. Sequences labels follow abbreviated GISAID nomenclature, and further sequence information is
provided (Table S2). An interactive version of this tree is included as supplemental material.

3.5. Antibody and B-Cell Receptor Repertoires

B cells were evaluated in peripheral blood at day 14 and 18 after reinfection by
NGS of IGH genes of all isotypes (Figure 4A). Healthy human peripheral blood shows a
predominance of naïve B cells expressing IgM and IgD without somatic hypermutation,
and memory B cells with mutated class-switched antibodies. In contrast, the acute response
to primary SARS-CoV-2 infection features large polyclonal expansions of recently class-
switched, low somatic hypermutation B cells expressing IgG subclasses and, to a lesser
degree, IgA subclasses [12], as shown in longitudinal samples from an unrelated patient at
day 9 (prior to seroconversion) and day 13 (after seroconversion) after primary infection
with SARS-CoV-2. In contrast, clones with low somatic hypermutation did not emerge by
day 14 or 18 after reinfection in patient InCoV139 (Figure 4A). Parallel analysis by single-B
cell immunoglobulin sequencing revealed elevated frequencies of IgA-expressing B cells,
particularly IgA2-expressing cells (Figure 4B).



Vaccines 2023, 11, 5 7 of 14
Vaccines 2022, 10, x FOR PEER REVIEW  7  of  14 
 

 

 

Figure 3. Anti‐SARS‐CoV‐2 serologies and neutralizing antibodies. Plasma samples were analyzed 

by ELISA at a 1:100 dilution for the presence of IgG, IgA and IgM antibodies binding to the SARS‐

CoV‐2 spike (Panel (A)), nucleocapsid (Panel (B)), and RBD (Panel (C)) antigens. Panel (D) shows 

the results of testing for antibodies that block the binding of ACE2 to RBD, carried out with a 1:10 

dilution of plasma (left y‐axis). Pseudovirus neutralizing antibodies were detected with in vitro cell 

culture assay with D614 (Wuhan‐Hu‐1) pseudovirus and D614G pseudovirus (right y‐axis). For all 

panels,  time  on  the  x‐axis  indicates days  after  symptom  onset during  SARS‐CoV‐2  reinfection. 

Plasma pools from SARS‐CoV‐2 pre‐pandemic healthy blood donors and from primary  infection 

COVID‐19 patients were used as negative and positive quality control (QC), respectively. The dot‐

ted lines are the cutoffs value for a positive result for each assay, determined as described in the 

Supplemental Materials. All samples were tested in duplicate wells; mean OD values are shown. 

Results are shown from one of two replicate experiments carried out on different days. 

3.5. Antibody and B‐Cell Receptor Repertoires 

B cells were evaluated in peripheral blood at day 14 and 18 after reinfection by NGS 

of IGH genes of all isotypes (Figure 4A). Healthy human peripheral blood shows a pre‐

dominance of naïve B cells expressing IgM and IgD without somatic hypermutation, and 

memory B cells with mutated class‐switched antibodies. In contrast, the acute response to 

primary  SARS‐CoV‐2  infection  features  large  polyclonal  expansions  of  recently  class‐

switched, low somatic hypermutation B cells expressing IgG subclasses and, to a lesser 

degree, IgA subclasses [12], as shown in longitudinal samples from an unrelated patient 

at day 9 (prior to seroconversion) and day 13 (after seroconversion) after primary infection 

with SARS‐CoV‐2. In contrast, clones with low somatic hypermutation did not emerge by 

day 14 or 18 after reinfection in patient InCoV139 (Figure 4A). Parallel analysis by single‐

B  cell  immunoglobulin  sequencing  revealed  elevated  frequencies  of  IgA‐expressing B 

cells, particularly IgA2‐expressing cells (Figure 4B). 

Figure 3. Anti-SARS-CoV-2 serologies and neutralizing antibodies. Plasma samples were analyzed by
ELISA at a 1:100 dilution for the presence of IgG, IgA and IgM antibodies binding to the SARS-CoV-2
spike (Panel (A)), nucleocapsid (Panel (B)), and RBD (Panel (C)) antigens. Panel (D) shows the results
of testing for antibodies that block the binding of ACE2 to RBD, carried out with a 1:10 dilution of
plasma (left y-axis). Pseudovirus neutralizing antibodies were detected with in vitro cell culture assay
with D614 (Wuhan-Hu-1) pseudovirus and D614G pseudovirus (right y-axis). For all panels, time on
the x-axis indicates days after symptom onset during SARS-CoV-2 reinfection. Plasma pools from
SARS-CoV-2 pre-pandemic healthy blood donors and from primary infection COVID-19 patients
were used as negative and positive quality control (QC), respectively. The dotted lines are the cutoffs
value for a positive result for each assay, determined as described in the Supplemental Materials. All
samples were tested in duplicate wells; mean OD values are shown. Results are shown from one of
two replicate experiments carried out on different days.

3.6. T Cell Phenotypes and Plasma Proteins

T cells were evaluated at day 14, day 18 and day 21 after reinfection by single cell
CITE-seq analysis (Figure 5A) on peripheral blood mononuclear cells (PBMCs). These
data from the reinfected patient are compared against similar analytics of PBMCs collected
from healthy donors and from a cohort of 26 patients after primary SARS-CoV-2 infection
exhibiting varying levels of infection severity. T cell analysis from the reinfected patient
demonstrated a consistently unique T cell signature for all three time points: CD8+ T cells
had very low levels of naïve-, proliferation-, or exhaustion-related transcripts relative to
what is seen in both healthy donors and the COVID-19 primary infection cohort. Further,
memory-like markers were upregulated in the reinfected samples. Similarly, CD4+ T cells
in the reinfected patient samples exhibited decreased levels of naïve-, proliferation- and
exhaustion- related transcripts. Interestingly, the day 21 sample of the reinfected individual
displayed the highest levels of Tfh marker CXCR5. This may be associated with the
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observed increase in the antibody neutralization ability of the reinfected individual on day
42, since Tfh cells are critical for facilitating the maturation of B cells for development of
humoral immunity.
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Figure 4. B cell repertoire responses. Panel (A): Peripheral blood B cell IGH gene repertoires from
peripheral blood mononuclear cell RNA. Three individuals were sampled: a representative healthy
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control (top row); a patient with representative primary SARS-CoV-2 infection at day 9 and 13 post-
onset of symptoms (highlighted by green bar); and reinfected patient at day 14, 18 and 42 (pending)
post-onset of symptoms (highlighted by pink bar). Serostatus and days post symptoms onset are
given on the right y-axis. Columns indicate the class of each IGH sequence with the IGHV gene
indicated on the x-axis. The left y-axis indicates CDR-H3 length in amino acids (AA). Dots indicate
B cell clonal lineages. Point color indicates median IGHV somatic hypermutation frequency for
each clone, and point size indicates the number of reads in the clone. Points are jittered to decrease
over-plotting. Panel (B): The bar plot summarizes single-B cell transcriptome data indicating the
antibody isotype expressed by B cells in the reinfected patient’s blood, plotted as the frequency of
usage of each isotype.
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Figure 5. T cell phenotypes and plasma proteins. T cell phenotypes are compared between the
reinfection patient (InCoV139), 26 representative primary infection patients sampled at 2 time points
with mild infection (n = 29 samples) or severe infection (n = 21 samples), as well as 6 healthy controls
sampled prior to the SARS-CoV-2 pandemic (n = 6 samples). For the primary infection cohort, severity
at the time of sample draw was determined by applying the World Health Organization (WHO)
ordinal scale score (see supplement methods) as follows: mild = WHO 1–4, severe = WHO 5–7.
Panel (A): Heatmaps showing the normalized expression of select phenotype-specific representative
gene expression in CD8+ and CD4+ T cells for healthy controls (top row), primary infection patients
(rows 2–3) and the reinfection patient at different time points (bottom 3 rows). The heatmap color
describes relative abundance. Panel (B): Box plots of select plasma protein levels from the same
healthy, COVID-19 patients and the reinfected individual (all 3 time points). Plasma proteins are
chosen as representative markers of inflammation (IL-6), stimulatory (IL-8), regulatory (IL-10, IL-4),
and chemoattractive (CCL2) cytokines. We also included VEGF level for comparison given the key
role of this marker in hypoxia. Significance is indicated by: (ns = not significant, * p < 0.05, ** p < 0.01,
**** p < 0.0001).

In addition to T cells, plasma protein profiles in the reinfected patient also showed
interesting patterns (Figure 5B). In the primary infection COVID-19 patient cohort, several
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plasma proteins increase with COVID-19 disease severity, including IL-6, IL-8, IL-10,
IL-4, and VEGF. However, in the reinfected patient, the levels of these proteins were not
significantly different from what is observed in the healthy controls, correlating with the
observed mild clinical phenotype at the time of reinfection.

4. Discussion

We present a case of SARS-CoV-2 reinfection and perform extensive characterizations
of antibody and B cell responses. At the time of the case in summer 2020, our data provided
a benchmark for understanding the correlates of humoral immunity required to prevent
reinfection. Understanding such correlates can aid in planning public health measures
as some persons are likely to be at risk for reinfection due to waning antibody-mediated
immunity. Understanding protective levels of total anti-spike antibodies and nAb are
important for vaccine development.

Molecular evidence for reinfection in our patient is strong. At initial infection during
the early outbreak in Seattle, sequences of community circulating viruses had low diversity,
and were derived from a founder virus introduced to the US some 7 weeks earlier [24]. By
the time of the reinfection, the spike variant D614G from Europe had taken over as the
predominant circulating strain [25]. The time course of InCoV139’s two infections overlaps
with the transition in Seattle to the newer D614G strain [26], supporting reinfection as
opposed to intra-host evolution.

The case patient had anti-SARS-CoV-2 IgG antibodies in the first weeks after reinfec-
tion, but notably, levels of anti-RBD IgG were relatively low, with no evidence of blocking
antibodies to the RBD-ACE2 complex. ACE2 blocking increased only slightly by day
42, likely due to IgA antibodies, suggesting an impairment in the humoral response to
reinfection. In the B cell receptor repertoire, new class-switched clones with low somatic
hypermutation were not prominent by day 18 or even by day 42 after reinfection, in contrast
to B cell responses seen in primary infection of patients. T cell phenotyping and plasma
proteomics suggests a mild response of CD8+ and CD4+ cells with little in the way of
inflammation. CD4+ Tfh transcripts did increase by day 42 consistent with this cells role
in facilitating the maturation of B cells and humoral immunity. While we do not know
the nAb titers immediately at the time of reinfection, by day 14 after reinfection, nAb
levels were comparable to those observed after boosted vaccination [21]. By day 42 nAb
response showed a 1.5-fold increase to Wuhan-Hu-1 pseudovirus, and a 2.6-fold increase
to D614G pseudovirus. Taken together, these findings suggest that poorly developed or
waned antibodies against the D614 virus formed after primary infection in March 2020
were not protective against reinfection with the D614G spike variant acquired in July 2020.
These results have important implications for the success of vaccine programs based on the
Wuhan-Hu-1 strain.

Fortunately for our patient, the reinfection was milder than was the primary infection,
in contrast to the Nevada case [11]. This case report provides an initial in-depth assessment
of adaptive immune responses including T cell, B cell and antibody-mediated immunity
during reinfection. The humoral immunity in this patient was clearly insufficient to prevent
reinfection, and therefore provided a starting point for the development of benchmarks for
antibody responses associated with protective immunity. Larger case series of reinfection
patients or follow-up experience after vaccination studies will be needed to more thoroughly
evaluate correlates of immune protection against SARS-CoV-2.

5. Conclusions

This paper was drafted in August 2020 and is largely unmodified from the manuscript
we finalized as a preprint in September 2020 [27]. In addition to our results on humoral
immunity, this publication represents an important snapshot or time capsule of the state
of scientific response early in the COVID19 pandemic. Notably, at that time, there was
tremendous skepticism of the possibility of reinfection with SARS-CoV-2 (e.g., [28]). This
skepticism persisted despite periodicity (waves) in infection counts after outbreaks that
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should have resulted in herd immunity if textbook assumptions were valid [29]. The first
outbreak in Manaus was one such example [30]. Waning immunity and reinfection are now
recognized to be more important factors for COVID19 epidemiology than was originally
anticipated. Understanding reinfection—causes, mechanisms, and consequences—will
be important for future public health responses to emerging pathogens. As of late 2022,
SARS-CoV-2 reinfection has been increasingly studied and reviewed (e.g., [31,32]). As the
current COVID19 pandemic moves towards endemicity, near constant infection rates in
some populations may indicate a herd-immunity steady state in which waning immunity
in previously immune individuals balances renewed immunity due to vaccinations and/or
infections. The length of immunity conveyed by vaccination and infection, which will
vary between individuals and over time, will in large part determine the nature and public
health impact of endemic COVID19.
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