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Abstract— The challenges to solving the collision avoidance
problem lie in adaptively choosing optimal robot velocities in
complex scenarios full of interactive obstacles. In this paper, we
propose a distributed approach for multi-robot navigation which
combines the concept of reciprocal velocity obstacle (RVO) and
the scheme of deep reinforcement learning (DRL) to solve the
reciprocal collision avoidance problem under limited information.
The novelty of this work is threefold: (1) using a set of sequential
VO and RVO vectors to represent the interactive environmental
states of static and dynamic obstacles, respectively; (2) developing
a bidirectional recurrent module based neural network, which
maps the states of a varying number of surrounding obstacles to
the actions directly; (3) developing a RVO area and expected
collision time based reward function to encourage reciprocal
collision avoidance behaviors and trade off between collision
risk and travel time. The proposed policy is trained through
simulated scenarios and updated by the actor-critic based DRL
algorithm. We validate the policy in complex environments with
various numbers of differential drive robots and obstacles. The
experiment results demonstrate that our approach outperforms
the state-of-art methods and other learning based approaches in
terms of the success rate, travel time, and average speed. Source
code of this approach is available at https://github.com/
hanruihua/rl_rvo_nav.

I. INTRODUCTION

Multi-robot navigation systems have been widely used in
many applications to improve productivity and reduce labor
costs. In general, there are two types of multi-robot navigation
systems: centralized and distributed methods. In a centralized
system, the controller can flexibly coordinate multiple robots
in the same workspace to avoid collisions given complete in-
formation about the whole swarm. The commercial centralized
planners normally plan paths for robots without considering
collisions at first and then employ scheduling schemes to avoid
collisions at potential conflict points, such as the crossroad of
the planned paths [1]. However, it is known that the centralized
system requires more computation budget when the number of
robots increases, and it may also suffer from the signal delay
or instability between each individual robot and the central
controller.

The distributed multi-robot system allows each robot to
make decisions independently based on onboard sensors. As
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such, it is suitable for deploying a large number of robots
with a relative low computational budget. One of its major
challenges is how to achieve reliable collision avoidance with
limited sensing information and determine optimal velocities
independently with sufficient safety and high efficiency.

Some approaches design the dynamically-feasible trajecto-
ries for each robot within a time interval in real time to achieve
collision-free navigation, followed by replanning the new
trajectories in the next time horizon [2]. However, the finer
discretization of time requires more computation resources
to get more accurate results. Other approaches calculate the
optimal velocities directly with low costs, such as the potential
field based approaches, where the concept of potential field,
including artificial attraction and repulsion, is utilized to find
the collision-free and time-efficient velocities [3]. Neverthe-
less, the problem of handling the local minima is challenging.

Velocity obstacle (VO) based approaches as well as their
extensions [4]–[7] are widely used for dynamic collision
avoidance, which predicts collision regions for robots and
determines the velocity of each robot to avoid reaching the
union of these regions in real time. In contrast, deep reinforce-
ment learning (DRL) based approaches represent environment
state with suitable data structure and train the neural networks
with manually designed rewards [8]–[11]. DRL approaches are
advantageous in converting the rich training experiences into
capabilities of taking multiple steps ahead into account and
achieving more aggressive movement decisions.

However, there are three challenges when developing a fully
functional DRL based multi-robot navigation system:
1) Interactive environment state representation. How to

develop a proper form of environment state representation
which can explicitly describe the collision avoidance inter-
actions between those robots is still an open problem.

2) Efficient mapping from sequential environment states
to continuous control actions. How to achieve the optimal
and precise control actions for collision avoidance given the
current sequential environment state using neural networks
at a low computational cost is still challenging.

3) Reward design for collision avoidance behavior regula-
tion. There is still no systematic method to design rewards
according to the observations for representing the collision
risk precisely and guiding robots to achieve reciprocal
collision avoidance (RCA) behaviors.

Some methods use a set of vectors containing positions
and velocities from multiple robots as the policy input [12],
[13], which does not directly describe the collision avoidance
interaction constraints among robots and hence demands extra
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capabilities of DRL networks to derive those constraints. To
map the state of varying number of robots to actions, some
approaches use recurrent neural networks (RNNs) to extract
invariant features from the sequential input and output the
value function to select optimal actions from a discrete action
space [11], [14], but the unidirectional RNNs tend to focus on
the recent input robot information instead of the information
of all those robots. Besides, the high computational cost of
the control action limits the applications of these approaches.
For the reward design, a dynamic window approach (DWA)
is used to encourage those local robots’ behaviors towards
dynamically feasible areas [15]. However, such a method does
not encourage reciprocal collision avoidance behavior among
multiple robots.

To this end, we propose a distributed multi-robot navigation
approach combining the benefits of the VO concept with the
DRL framework to achieve the reciprocal collision avoidance
task under limited surrounding information in the shared
workspace. Specifically, we utilize VO vectors to model both
dynamic agents and static obstacles and employ bidirectional
gated recurrent units (GRUs) based neural network for feature
extraction and action calculation under the continuous space.
The reward function is also designed based on the RVO area.
The main contributions of this work include:
1) We represent the information of surrounding robots and

obstacles in terms of RVO and VO vectors respectively to
achieve a unified environment state representation, which
enables each robot to explicitly describe its (reciprocal)
collision avoidance interactions with both dynamic agents
and static obstacles.

2) We develop a bidirectional gated recurrent units (BiGRUs)
based neural network to extract environment features from
the sequential input and map the features to the continuous
control action directly with low cost.

3) We develop a novel reward function based on the RVO or
VO areas and expected collision time, which encourages
robots to learn reciprocal local collision avoidance behav-
iors under diverse situations.

Section II reviews the related work, followed by the intro-
duction of the system framework and the problem statement in
Section III. Then, Section IV describes the deep reinforcement
learning network structure, and Section V provides the training
algorithm in detail. The proposed method is validated by
experiments in Section VI. Finally, the conclusion and future
work are presented in Section VII.

II. RELATED WORK

A. Reciprocal Velocity Obstacle

The central concept of VO is to formulate a potential
collision area for a moving obstacle using the relative velocity
and position. A velocity outside this area is then chosen for
the robot to complete the collision avoidance task. Based on
this concept, RVO has been developed to achieve reciprocal
collision avoidance (RCA) [16], where each robot has a
similar navigation policy and uses an equal effort to avoid
each other. RVO has been further developed into optimal

reciprocal collision avoidance (ORCA) [4], where several half-
plane constraints in the velocity space are used to help the
robot find the optimal velocity through linear programming.
Non-Holonomic ORCA (NH-ORCA) combines the kinematic
model with ORCA to guarantee the ORCA performance under
non-holonomic constraints [6]. However, the perfect sensing
assumption limits the performance of these approaches in real-
world applications. Therefore, some approaches combine VO
based methods with robot kinematic constraints to account
for the uncertainties in localization and control by increasing
the collision radius of the robot [5], [17]. Other approaches
propose a probabilistic variant of RVO (PRVO) to overcome
Gaussian uncertainties [18]. Despite all, most of these VO
based approaches are overly conservative, which inevitably
reduces navigation efficiency.

B. Deep Reinforcement Learning

On the other hand, DRL based collision avoidance ap-
proaches can take a large number of training experiences into
account and are advantageous in tackling complex scenarios
with high efficiency and robustness. Specifically, collision
avoidance with DRL (CADRL) employs a value network to
generate a collision-free path toward the goal [19]. Some ap-
proaches focus on the sensor-level collision avoidance policy
that maps raw sensor data to the robot control vector with
end-to-end training [9], [20], [21].

Compared with sensor-level methods, agent-level DRL ap-
proaches use environment models other than raw sensor data
to achieve high computational efficiency as well as flexibility
for sensor modalities and kinematic/dynamic details [12].
However, the dimension of the input data for a neural network
is required to be fixed. Thus, for the environment model
with the time-varying number of surrounding robots, some
approaches assume that the number of obstacles is a constant
and has an upper limit [13]. RNNs are able to tackle a variable
number of moving obstacles, such as in GA3C-CADRL [11],
where the exteroceptive measurements at each step are rear-
ranged as the sequential input data through the long short-
term memory (LSTM) module to produce a fixed-size feature
vector of the environment. However, such a fixed-size vector
likely gives more weights to the final section of the input
sequences, which limits the performance in the obstacle-dense
environment. Thus, the socially aware RL (SARL) has been
proposed [22], which utilizes the self-attention mechanism
to infer the relative importance of the surrounding dynamic
obstacles but without emphasizing the reciprocal collision
avoidance interactions and the ability of tackling noncircular
obstacles. In this paper, we use RVO vectors as input instead
of robot positions and velocities, which can better describe the
reciprocal collision interactions among robots and model the
obstacles with various shapes. A bidirectional GRUs based
neural network is designed to map the state of a varying
number of surrounding robots to the continuous action directly
with low-cost computation.

Moreover, a proper reward function is the central part
of neural policy training. For most DRL based navigation
approaches, the reward functions are designed based on the



Fig. 1: An illustration of velocity obstacle and reciprocal velocity obstacle for the dynamic agent and static line obstacle.

distance among robots, goals, and obstacles, which represent
the collision possibility [9], [23]. Both behaviors of moving
to the goal and keeping away from obstacles can be assigned
positive and negative rewards easily. In this paper, the reward
function is designed based on the RVO area and using the
expected collision time to represent the collision risk, which
encourages the RCA regular behaviors.

III. SYSTEM SETUP AND PROBLEM STATEMENT

A. System Framework

In our system, a group of differential drive robots navigates
in a shared workspace with a series of positions and velocities
along x and y directions. Each robot has no communication
with the others but can sense the surrounding robots within
a certain range. The information for each robot includes the
robot radius, current velocity, current orientation, and desired
velocity. The desired velocity is the maximum velocity for
the robot moving from the current position to its goal directly
without considering obstacles. Similarly, the information of
the surrounding robots consists of the robot radiuses, relative
positions, and velocities, which can be represented in terms of
RVO vectors [16]. Moreover, the static line obstacles can also
be represented by VO vectors [24]. These vectors are fed into
a neural network to train the collision avoidance policy. The
reward function, which helps evaluate the states and actions,
is designed based on the VO area and expected collision
time under the current velocities. The navigation policy is
trained in simulated scenarios and optimized by using the
PPO algorithm. Whereas the policy output of most RL based
approaches is the control vector for the robot directly, that of
our approach is an increment of the current velocity at each
time step, that is, the change rate of the current velocity, which
can achieve smoother and efficient robot control. Finally, the
output velocity is decomposed into the linear and angular
components to control the differential drive robot.

B. Reciprocal Velocity Obstacle

This section summarizes the geometrical definition of the
VO and RVO. For disc-shaped robot A and robot B with
radiuses Ra and Rb, the positions and velocities can be
denoted as pA, pB , vA, vB , respectively. The VO area of

the robot A generated by the robot B can be given by the
following formula:

V OAB(vB) = {vA |λ(pA,vA − vB) ∩B ⊕−A 6= ∅}, (1)

where λ(p,v) denotes the ray with a starting point of p and
in the direction of v, and ⊕ is the Minkowski sum. As shown
in Fig. 1 (a), a VO area can be constructed by an apex, where
vp=vB , and two direction vectors, vl,vr. It represents the
velocity set that might incur collisions for a robot within a
period. To achieve collision avoidance from obstacles, robot
A should select a velocity outside the VO area, that is v′A /∈
V OAB(vB). Similarly, the VO area of the static line obstacle
is constructed using the same definition, which is shown in
Fig. 1 (b). In addition, for the situation that the static obstacle
blocks the path from the current position of a robot to its goal,
a global navigation strategy is required to generate a rational
desired velocity.

As VO based methods have been widely used for avoiding
dynamic obstacles, RVO is more suitable for a group of robots
to avoid each other actively. As illustrated in Fig. 1 (c), RVO
is extended from the VO concept geometrically and can be
described using the following formula:

RV OAB(vB ,vA) = {v′A
∣∣2v′A − vA ∈ V OAB(vB)}. (2)

Actually, a RVO area can be obtained by translating from a
VO area whose apex is moved from vB to vA+vB

2 . Thus,
both VO and RVO can be represented by a six-dimensional
vector c = [vp,vl,vr] ∈ R6, where vp = [vx, vy] denotes the
coordinates of the apex, vl = [vlx, vly] and vr = [vrx, vry]
describe the direction of left and right rays respectively. Within
a robot group, each robot selects a velocity outside such a
joint VO and RVO areas to achieve the collision avoidance
task cooperatively.

C. Problem Statement

The multi-robot collision avoidance problem can be defined
as an optimization problem that finds a series of optimal
velocities to minimize the travel time under the collision
avoidance constraints. For a group of n differential drive
robots navigating in the shared workspace, each robot i with
radius Ri, state pit = [pixt, p

i
yt], and velocity vit = [vixt, v

i
yt]

can sense m surrounding robots j with a limited range dl



at time t. The robot’s observation has two parts, the propri-
oceptive measurement oself of the state of the ego-robot and
the exteroceptive measurement osur of the surrounding envi-
ronment. The proprioceptive observation includes the robot’s
current velocity, orientation, its desired velocity, and its virtual
radius for collision avoidance, i.e., oself = [vt, ori,vdes

t , Rc].
The exteroceptive observation contains the RVO vectors c, as
well as the relative distance d and expected collision time
te between the ego-robot and its j-th neighboring robot or
obstacle under the current velocity. While the expected colli-
sion time will be an infinite value when there is no collision
possible under the current situation, which will influence the
subsequent calculations. Thus, we use the reciprocal value
re to replace that, i.e., re = 1/(te + 0.2), where 0.2 is a
constant value. Hence, the exteroceptive observation should
be: ojsur = [cj , dj , rej ], where j = 0, 1, · · · ,m. Given
the proprioceptive/exteroceptive observations as the input, the
policy neural network πθ parameterized by θ will output the
actions at, which are the robot’s velocity increment in each
time step, i.e., ∆vt = [∆vxt,∆vyt]. The computed velocity
increments are optimal if the resulting velocity in the next
time step is not only collision-free but also has a minimal
difference to the robot’s desired velocity. In other words, we
need to solve the following constrained optimization problem
at each time step ∆t for each robot:

arg min
πθ

∥∥vt − vdes
t

∥∥ ,
s.t. ∆vt ∼ πθ (at | oself ,osur ) ,

vt = vt−1 + µ ·∆vt,
pt = pt−1 + ∆t · vt,
dj = ‖pt − pjt‖ ,
∀j ∈ [1,m], dj > Rc +Rjc,

(3)

where ‖·‖ is the Euclidean norm operation for a vector, µ is the
hyperparameter adjusting the range of the velocity increment,
and dj is the distance between a robot and its j-th neighbor
with position pjt and collision radius Rjc. All the robots share
the same navigation policy πθ and find the optimal velocity
independently.

IV. REINFORCEMENT LEARNING FRAMEWORK

An actor-critic reinforcement learning framework consists
of observation space, action space, reward function, policy
actor, and policy critic. The policy actor in the form of a deep
neural network maps the observed information into an action
to control the robot. The policy critic in the form of a deep
neural network utilizes the reward function to evaluate each
action made by the actor.

A. Observation Space and Action Space

The observation space contains the proprioceptive and ex-
teroceptive measurements, as mentioned in Section III, o =
[oself,o

j
sur], j = 0, · · · ,m. The action space is the velocity

increment within the x − y plane, a = [∆vx,∆vy]. Thus,
the control vector at the next time step should be vt+1 =
vt + µ · a. Specifically, the velocity is clipped within a range
between a maximum and a minimum value, vt ∈ [vmin,vmax].

However, all the robots are non-holonomic and controlled by
the transitional and rotational velocity, vct = [vt, ωt]. Thus,
we convert the orthogonal velocity vt = [vxt,vyt] to vct as
follows: {

vt = ‖vt‖ · cos(ς)
ωt = −ς/τ , (4)

where ς is the radian difference between the orientations of the
robot and velocity vt, and τ is the guaranteed time to adjust the
rotation rate. Thus, the transitional velocity is determined by
the speed component along with the robot orientation. And the
rotational velocity is to make the robot orientation consistent
with the direction of orthogonal velocity.

B. Neural Network Architecture

The architecture of the deep neural network is illustrated
in Fig. 2. For the variable-length input sequences, existing
work uses the LSTM to produce a fixed-length representation,
which processes inputs in a strict order [11]. By contrast,
we use the bidirectional GRU module, which consists of two
GRUs to process the inputs with both forward and backward
directions, respectively. Such a scheme helps the network more
accurately to find the underlying relationship among input
vectors better depending on the limited information, resulting
in a better presentation of the input sequences. At each step,
the exteroceptive measurements ojsur in terms of a series of
vectors are fed into the BiGRU in the first ascending order of
re and the second descending order of the distance d. There
are two final hidden states, hfor and hback, from the forward
and backward GRU, respectively. They are added as one 256-
D fixed-size vector hm. This output is concatenated with the
proprioceptive measurement oself as the integrated fixed-length
observation o. To achieve a normalized representation to speed
up the training process, where all parts have a common scale,
we use the Layer Normalization method [25] to process fixed-
length observation. The output is used as the input data of
two neural networks. One is for the policy actor πθ, which
consists of two hidden fully connected (FC) layers with 256
rectifier linear units. The output of the final layer is a two-
dimensional vector, which is the mean of velocity vmean,
activated by a hyperbolic tangent activation function (Tanh).
The action is sampled from a Gaussian distribution represented
by its mean, vmean, and log standard deviation vlog std, where
vlog std is updated independently. Another neural network is
for the policy critic Vψ(o), which is also composed of two
hidden fully-connected layers with 256 rectifier linear units.
The output of its final layer activated by an identity function
is a scalar value used to evaluate each state-action pair.

C. Reward Function

In the reinforcement learning framework, the design of the
reward function is vital to policy performance. The common
distance based reward function, such as the penalties for
the increasing distance to obstacles or the awards for the
decreasing distance to the goal [9], [11], is improper for our
RVO observations, which do not include the information of
positions and velocities directly. Thus, a novel reward function
based on RVO areas is developed, which helps each robot to



Fig. 2: An illustration of the proposed BiGRU based neural
network architecture of the navigation policy actor and critic.

learn a reciprocal collision avoidance behavior. In addition,
based on our previous experiences, the expected collision
time performs better than the distance-to-obstacle in terms
of representing the collision risk, as the expected collision
time takes both the distance-to-obstacle and relative velocity
between the robot and the obstacle into account. Based on this
concept, the RVO reward function rtrvo at time t is designed as
follows, which represents the quality of the selected velocity
vt judged by the joint RVO area:

rtrvo =


a− b ∗ diffv if vt /∈ RV O or ξ > 5

c− d ∗ (ξ + f)
−1

if vt ∈ RV O and ξ > 0.1

−e ∗ (ξ + f)
−1

if ξ ≤ 0.1

,

(5)
where diffv is the distance between the selected velocity and
desired velocity, diffv =

∥∥vt − vdes
t

∥∥, and ξ is the expected
minimum time that the robot has a collision with an obstacle
under the current velocity. Whether the current velocity vt is
within the RVO area is judged by a six-dimensional vector
c = [vp,vl,vr] as follows:

{
vt ∈ RV O : = (vt − vp)× vl ≥ 0 ∧ (vt − vp)× vr ≤ 0
vt /∈ RV O : = (vt − vp)× vl < 0 ∨ (vt − vp)× vr > 0

,

(6)
where × is cross product.

The characters a, b, c, d, e, f are all constant values and
tunable to adjust the policy performance. a and c are the basic
awards to encourage the behavior when the current velocity
is close to the desired velocity, or the current collision risk
is low, which tend to be positive values. b is the coefficient
to adjust the weight of diffv , which represents the motion
of moving with the desired velocity. While d, e are the
coefficients to adjust the weight of (ξ + f)

−1, which denotes
the motion of keeping longer expected collision time. The
range of (ξ + f)

−1 is [0, f−1]. It is the substitute of ξ, which is
inappropriate for policy training directly because of the range
[0,+∞]. To summarize, for the crowded scenarios, bigger
values of d and e are recommended to guarantee the collision
avoidance ability. The values for our policy training in this
paper are a = 0.3, b = 1.0, c = 0.3, d = 1.2, e = 3.6, f = 0.2.
The main idea is that when the velocity is in the joint RVO
area, the robot has to pay attention to the potential collision
judged by the expected collision time. The constant values of

Algorithm 1: Policy Training Algorithm

1 Initialize the policy actor πθ and critic Vψ;
2 for epoch ← 1, 2, · · · do
3 for robot i← 1 to n do // collect data
4 Run policy πθold for T steps;
5 Collect data {oit,ait, rit} for T steps;
6 Compute GAE: Âi1, · · · , ÂiT ;
7 Add data into buffer i;

8 for buffer j ← 1 to n do // update policy
9 for k ← 1 to Kiter do

10 Optimize LCLIP (θ) w.r.t. θ with la;
11 if KL-divergence > KL then break;
12 θold ← θ;
13 for h← 1 to Hiter do
14 Optimize LV (ψ) w.r.t. ψ with lv;
15 ψold ← ψ;

the reward function are all tunable parameters, which can be
adjusted to improve the training performance.

V. POLICY TRAINING

PPO is a popular optimization method for DRL algorithms,
which is advantageous for training the policy associated with
continuous action spaces. In this work, we utilize the PPO
algorithm to train and update the multi-robot collision avoid-
ance policy successively. The detail of the training algorithm is
summarized in Algorithm 1. First, this algorithm begins with
the initialization of the neural network parameters, including
the policy actor πθ and critic Vψ . Then, during the training
loop, each robot runs in the environment with the navigation
policy πθ for T timesteps. The data of observation, reward,
and action of each robot at each time step t is collected.
Generalized advantage estimator (GAE) is used to estimate the
advantage of the action of robot i using the reward function
rit and value function Vψ . The related observation, action,
and reward data are stored in the buffer for the following
policy update. The buffered data are used to construct the
clip surrogate objective LCLIP (θ) and loss of value function
LV (ψ) [26], which are optimized with the Adam optimizer
and learning rate la, lv respectively. The learning rates de-
termine the change rate of the policy model within each
update step. The Kullback-Leiber (KL)-divergence measures
the difference between two probability distributions of the
previous and current policies. The update loop will stop when
the KL-divergence value is over a threshold (denoted by KL),
which means that the model changes too fast, and hence such
an update process is unsuccessful.

VI. EXPERIMENTS AND RESULTS

A. Simulation Setup

In this work, the navigation policy RL-RVO is trained
through the simulated scenario and implemented with Pytorch
(Python 3.8). The simulated scenarios are developed and
plotted via the OpenAI Gym interface [27], which is a popular



TABLE I: The hyperparameters of the training process

Para. Val. Para. Val. Para. Val. Para. Val.
dl 4 la 4e-6 Kiter 50 κ 5
τ 0.2 lv 5e-5 KL 0.01 µ 1.0
Rc 0.3 e1 200 Hiter 50 T 450
Rjc 0.3 e2 1000 vmin -1.5 vmax 1.5

toolkit for developing reinforcement learning algorithms. We
use several disc-shaped robots to train the collision avoidance
policy through the circle scenario only. In the circle scenario,
all robots with random orientations are uniformly arranged
along with a circle shape. And the goal position is on the
opposite side, which leads to a rich interaction for the robots,
as illustrated in Fig. 3 (a). Specifically, the sensing range dl
and the maximum input number of neighbors κ of each robot
are limited to be 4m and 5, respectively. All robots share the
same policy and collect the observations for the parameter up-
date by the PPO algorithm after each epoch. The environment
will be reset when there are collisions or over the maximum
episode length. To speed up the training convergence, we use
two stages to perform the training process. First, the policy
is trained in a 9m × 9m circle scenario with a few robots
(2 or 4) for e1 epochs to achieve basic functionality, such as
moving toward the goal position. Then, the policy continues
to be trained with 10 robots in the same circle scenario for
about e2 epochs. The training process will be early stopped
depending on the success rate and step cost. The values of the
hyperparameters for the training process are chosen, as listed
in Table I. Typically, the training process is performed via a
computer with CPU i7-9700 and GPU Nvidia GTX 1080 for
about 10 hours.

Fig. 3: The simulated scenarios for multi-robot navigation: (a)
circle scenario, (b) random scenario, (c) corridor scenario.

B. Results and Discussions

1) Metrics: Three metrics are utilized to evaluate the policy
performance, including success rate, travel time, and average
speed. The success rate is a ratio of the successful cases
without any collision or being stuck somewhere during the
navigation, which describes the policy’s ability of collision
avoidance. The travel time refers to the amount of time,
represented by the iteration step in the simulation when all
robots arrive at the goal positions, which reflects the policy’s
efficiency. The average speed of the navigation process of the
whole robot team measures the policy’s performance on effec-
tive velocity selection. In addition, the average computational
cost of a control action for one robot is also compared.

2) Simulated experiments: To validate the collision avoid-
ance performances of our policy, we compare it with
SARL [22], GA3C-CADRL [11], and NH-ORCA [6] in both
circle and random scenarios. The random scenarios are used
to test the generalization ability of a navigation policy trained
from a specific scenario, where both initial and target positions
are generated randomly with a minimum interval (1m) and
change randomly in each test episode, as shown in Fig. 3 (a)
and (b). To test the ability of collision avoidance under limited
information, the sensing range is set to be dl=4m. All policies
are performed for 100 episodes with various numbers of robots
(from 6 to 20). The average results with standard deviations
(std) of 100 cases in 9m×9m circle scenarios and 10m×10m
random scenarios are listed in Table II. The trajectories of
four approaches are compared visually in Fig. 4. Finally, the
average computational cost to achieve single control action for
each robot is shown as a bar figure in Fig. 5.
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Fig. 4: An illustration of the trajectories generated by four
approaches respectively in the circle scenario.
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Fig. 5: A comparison of the average computational cost to
achieve single control action for each robot.

Generally, as the number of robots increases, the success
rate, and average speed decrease, whereas the travel time
increases. In the circle scenario, compared with the other three
policies, our policy has the highest success rate, average speed,
and lowest travel time, especially in the crowded scenario, as
shown in Fig. 6 (a). When there is a small number of robots,
the policies perform comparably in the sparse scenario. As
the number of robots increases, other policies have a heavy
decrease in terms of the success rate, while our policy still
works well. Similarly, in the randomly generated scenarios,



TABLE II: A performance comparison of four approaches in the circle and random scenarios with different numbers of robots.

Robot
Number

Success Rate Travel Time (iteration step) / std Average Speed (m/s) / std
RL-RVO SARL GA3C-CADRL NH-ORCA RL-RVO SARL GA3C-CADRL NH-ORCA RL-RVO SARL GA3C-CADRL NH-ORCA

sensing range: 4m, circle scenario
6 1 1 0.98 1 78.29/4.48 78.79/11.32 101.0/35.08 79.26/6.63 1.09/0.06 1.08/0.12 1.05/0.24 1.15/0.09

10 0.99 0.89 0.82 1 90.23/4.16 92.31/18.32 101.96/7.59 91.32/20.3 0.98/0.04 0.92/0.18 0.97/0.15 0.94/0.12
14 0.97 0.82 0.75 0.97 103.13/5.04 115.04/43.61 125.7/27.98 116.25/16.59 0.88/0.04 0.91/0.24 0.93/0.17 0.77/0.1
16 0.93 0.76 0.61 0.89 111.75/7.88 128.85/38.52 141.4/33.76 130.43/25.04 0.83/0.05 0.90/0.31 0.86/0.1 0.72/0.12
20 0.90 0.71 0.34 0.80 128.62/9.52 138.73/33.05 152/30.23 143.51/27.89 0.76/0.07 0.80/0.19 0.75/0.34 0.70/0.13

sensing range: 4m, random scenario
6 1 0.93 0.81 0.94 75.24/17.59 88.22/22.83 90.49/52.73 77.41/15.49 0.75/0.13 0.58/0.27 0.75/0.24 0.82/0.12

10 0.98 0.89 0.72 0.92 85.88/13.49 89.64/19.78 110.79/45.53 92.53/23.38 0.70/0.11 0.49/0.28 0.62/0.15 0.68/0.19
14 0.97 0.71 0.61 0.84 95.88/17.12 99.38/29.29 123.67/48.93 97.38/32.55 0.63/0.1 0.56/0.28 0.52/0.17 0.62/0.17
16 0.96 0.69 0.42 0.70 106.91/25.1 116.68/33.85 147.2/41.49 109.41/35.18 0.60/0.12 0.49.0.27 0.43/0.1 0.57/0.21
20 0.92 0.60 0.36 0.65 115.25/21.22 122.11/26.72 151.33/43.21 122.33/39.96 0.56/0.13 0.51/0.36 0.42/0.34 0.52/0.21

our policy has better performance in various dense situations,
as shown in Fig. 6 (b). SARL and GA3C-CADRL predict
the future state of the dynamic obstacles for decision making.
However, the selection schemes of the control action are
easy to encounter a freezing point problem, which influences
the success rate in the random scenario. In comparison, our
policy utilizes the BiGRU module to find more underly-
ing relationships among surrounding robots and predict the
future situation of the given limited information. Besides,
the VO observation and reward guide the robots to achieve
RCA behavior, which also improves the ability of collision
avoidance and efficiency in dense situations. The results of
the standard deviations also demonstrate the stability of our
approach. In addition, the computational cost of our approach
is lower than the other two learning based approaches a lot,
which will influence the real-time performance of the policy.
To summarize, compared with other policies, our policy is
more robust and efficient in crowded situations under limited
information.

3) Ablation Study: We also compare our policy with RL-
NRVO, RL-LSTM and RL-Reward to demonstrate the func-
tionality of components of our approach in the circle, random,
and corridor scenarios, as shown in Fig. 3. All the policies are
trained in the same DRL framework but with different compo-
nents. RL-NRVO is the policy using the original information
of robots as input instead of RVO vectors. This information
includes relative positions/velocities and robot radiuses, as
introduced in [13], i.e., osur = [px, py, vx, vy, R]. Similarly,
RL-LSTM is the policy which replaces the BiGRUs with
LSTM to tackle the input information of robots with varying
numbers. And RL-Reward utilizes the distance-based reward
function to train the policy under the same observations, as
described in [9]. The results are listed in Table III. It can
be seen that other policies can tackle the circle scenario well
but have a dramatic performance decrease in the untrained
(random and corridor) scenarios. The reason is that RL-
NRVO does not learn an appropriate and regular behavior
from the non-RVO input. Using LSTM to represent the robot
information with variable numbers is not enough to tackle
the crowded workspace. The distance base reward function is
unmatched with the RVO based observations.

4) Real-world experiments: The RL-RVO policy is im-
plemented and tested in Turtlebot robots to demonstrate the
performance of our policy in the real world. Those experiments
use up to 8 differential drive Turtlebots, as shown in Fig. 7.

(a) The results in the circle scenario.

(b) The results in the random scenario.

Fig. 6: The testing results of four policies in the simulated
scenarios in terms of three metrics (the standard deviation
values are illustrated proportionally by the size of shades).

TABLE III: The results of ablation experiments

Setup
robot number 8, sensing range: 4m,

circle/random/corridor scenario
Policy Success Rate Travel Time Average Speed

RL-RVO 1/1/0.89 83.75/79.71/84.23 1.04/0.73/0.89
RL-NRVO 0.97/0.53/0.29 94.45/85.22/89.31 0.94/0.70/0.84
RL-LSTM 0.96/0.85/0.42 90.05/91.65/85.43 0.96/0.69/0.70
RL-Reward 0.93/0.71/0.58 98.54/88.87/92.61 0.91/0.68/0.67

All the Turtlebots are arranged along a circle with random
orientations. Each Turtlebot is equipped with a mini PC to
compute velocity and a tag to localize itself by the UWB
localization system. The robots receive the exteroceptive mea-
surements through the ROS architecture. Specifically, due to
the mechanical limit, the maximum velocity of each robot is
set to be 1m/s.

Because of the high computational cost of GA3C-CARDL
and SARL, we only compare our policy with NH-ORCA using
4, 6, and 8 Turtlebots in the real world experiment with circle
scenario. Statistics across 50 cases are described in Table IV.
Different from simulated experiments, there are ubiquitous
uncertainties in real-world experiments. NH-ORCA does not
take noise and uncertainties into account, thus its performance
is less robust in real-world experiments. In contrast, our policy
has a better success rate, and it also takes less travel time to
accomplish the same navigation tasks than NH-ORCA.

VII. CONCLUSION

In this paper, we have presented a DRL based multi-
robot navigation approach, which utilizes RVO techniques to



TABLE IV: Results of Real-World Experiment

Test Setup realistics scenario
Robot Number Success Rate Travel Time (s) / std Average Speed (m/s) / std

RL-RVO NH-ORCA RL-RVO NH-ORCA RL-RVO NH-ORCA
4 1 1 13.96/1.09 14.98/1.16 0.81/0.11 0.79/0.21
6 0.91 0.85 16.01/0.92 18.45/1.11 0.74/0.12 0.72/0.17
8 0.89 0.68 22.18/1.25 28.94/1.57 0.69/0.15 0.65/0.23

Fig. 7: An illustration of real-world experiments: (left) a single
Turtlebot, (right) eight Turtlebots positioned along a circle
uniformly with random orientations.

tackle collision avoidance problems. The proposed RVO based
dynamic and static environment state representation can better
describe the reciprocal interactions. The developed BiGRUs
based neural network can extract environment features despite
the varying number of moving robots and map the features
to the control actions directly with low cost. The RVO area
and expected collision time based reward function can achieve
reciprocal collision behaviors and a trade-off between the
collision risk and travel time. Both simulated and real-world
experiments have been performed respectively to evaluate
the policy’s navigation performance. Four policies, including
RL-RVO, SARL, GA3C-CADRL, and NH-ORCA have been
compared in terms of success rate, travel time, and average
speed in both circle and random scenarios. The experiment
results have shown that the proposed approach has a superior
collision avoidance capability and time efficiency over other
methods in the crowded environment. The ablation study
demonstrates the functionality of the individual components
in our approach. Furthermore, it has been shown that our
policy has been generalized well to tackle situations with more
numbers of robots than those used for training. Our future
work includes extending such an approach to addressing multi-
robot navigation problems with more challenging uncertainties
in the real world.
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